
Self-assembly of patchy particles into polymer chains: A parameter-free
comparison between Wertheim theory and Monte Carlo simulation

Francesco Sciortino
Dipartimento di Fisica and INFM-CNR-SOFT, Università di Roma La Sapienza, Piazzale Aldo Moro 2,
00185 Roma, Italy

Emanuela Bianchi
Dipartimento di Fisica and INFM-CNR-SMC, Università di Roma La Sapienza, Piazzale Aldo Moro 2,
00185 Roma, Italy

Jack F. Douglas
Polymers Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899

Piero Tartaglia
Dipartimento di Fisica and INFM-CNR-SMC, Università di Roma La Sapienza, Piazzale Aldo Moro 2,
00185 Roma, Italy

�Received 29 January 2007; accepted 22 March 2007; published online 17 May 2007�

The authors numerically study a simple fluid composed of particles having a hard-core repulsion,
complemented by two short-ranged attractive �sticky� spots at the particle poles, which provides a
simple model for equilibrium polymerization of linear chains. The simplicity of the model allows for
a close comparison, with no fitting parameters, between simulations and theoretical predictions
based on the Wertheim perturbation theory. This comparison offers a unique framework for the
analytic prediction of the properties of self-assembling particle systems in terms of molecular
parameters and liquid state correlation functions. The Wertheim theory has not been previously
subjected to stringent tests against simulation data for ordering across the polymerization transition.
The authors numerically determine many of the thermodynamic properties governing this basic
form of self-assembly �energy per particle, order parameter or average fraction of particles in the
associated state, average chain length, chain length distribution, average end-to-end distance of the
chains, and the static structure factor� and find that predictions of the Wertheim theory accord
remarkably well with the simulation results. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2730797�

I. INTRODUCTION

Recently, there has been great interest in exploiting self-
assembly to create functional nanostructures in manufactur-
ing, and this challenge has stimulated a great deal of experi-
mental and theoretical activities.1–13 Self-assembly has been
considered for over 50 years to be central to understanding
structure formation in living systems, and thus, modeling and
measurements of naturally occurring self-assembling sys-
tems has long been pursued in the biological sciences.12

Even the term self-assembly derives from an appreciation of
the capacity of viruses to spontaneously reconstitute them-
selves from their molecular components,14,15 much as in the
familiar example of micelle formation by block copolymers,
lipids, and other surfactant molecules exhibiting amphiphilic
interactions. The diversity and morphological and functional
complexity of viruses, as well as the vast number of self-
assembly biological processes in living systems, point to the
potential of this type of organizational processes for manu-
facturing new materials. While the potential of self-assembly
as a manufacturing strategy is clear, our understanding of
how this process actually works is still incomplete and many
of the basic principles governing this type of organization are
unclear. An evolutionary �trial and error� approach to this

problem is not very efficient for manufacturing. There is evi-
dently a need for developing a first principles understanding
of this phenomenon where no free parameters are involved in
the theoretical description in order to elucidate the funda-
mental mechanisms governing self-assembly and the observ-
ables required to characterize the interactions governing ther-
modynamic self-assembly transitions, at least for simple
model systems that can be subjected to high resolution in-
vestigation.

As a starting point for this type of fundamental investi-
gation of self-assembly, we consider the problem of the equi-
librium polymerization of linear polymer chains,16–18 which
is arguably the simplest variety of thermally reversible par-
ticle assembly into extended objects �polymers in the case of
our molecular model�. To investigate this problem analyti-
cally, we exploit the Wertheim thermodynamic perturbation
theory �W-TPT�, which offers a systematic molecularly
based framework for calculating the thermodynamic proper-
ties of self-assembling systems, although this theory has
rarely before been applied to this purpose.19 The Wertheim
theory has been previously considered to better understand
properties of associating fluids. A sticky sphere model, simi-
lar to the one we consider below, has been studied to deter-
mine how particle association affects critical properties in
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competition with fluid phase separation �critical temperature
and composition, binodals, critical compressibility factor,
etc.20–22�. Similar models have also been considered to deter-
mine the effect of association on nucleation23 and model
antigen-antibody bonding.24 In contrast, we are concerned
here with the thermodynamic transition that accompanies the
self-assembly of the particles into organized structures due to
their anisotropic interactions.

The Wertheim theory is certainly not a unique theory of
the thermodynamics of self-assembling particle systems.
Models of equilibrium polymerization of linear, branched,
and compact structures have all been introduced based on the
concept of an association equilibrium being established be-
tween the assembling particles, and a comparison of this type
of theory to simulation has led to remarkably good
agreement.12,25–31 Up to the present time, however, it has
been necessary to adjust the entropy of association parameter
in this class of theories, so that the modeling is not really
fully predictive �see discussion in Sec. III where this quantity
is explicitly determined from the Wertheim theory�. The
unique aspect of W-TPT is that all the interaction parameters
of this theory can be directly calculated from the knowledge
of the intermolecular potential and from a standard liquid
state correlation functions, so that the theory is fully predic-
tive. It has also been shown that W-TPT is formally equiva-
lent to association-equilibrium models of self-assembly.19

Hence, the Wertheim theory also offers the prospect of being
able to improve the predictive character of these other theo-
ries if the theory itself can be validated as being reliable. The
Wertheim theory is based on a formal perturbation
theory,32–34 and there are naturally questions about the accu-
racy that can be expected from this theory.

The present paper considers a stringent test of Wertheim
theory as a model of the thermodynamics of self-assembly
by comparing precise numerical Monte Carlo �MC� data for
the thermodynamic properties of our model associating fluid
to the analytic predictions of the Wertheim theory where
there are no free parameters in the comparison. Notably,
many of the properties that we consider have never been
considered before in the Wertheim theory.

II. TWO PATCHY SITES PARTICLE MODEL

We focus on a system of hard-sphere �HS� particles
�of diameter �, the unit of length� whose surface is decorated
by M =2 identical sites oppositely located �see Fig. 1�.

The interaction V�1,2� between particles 1 and 2 is

V�1,2� = VHS�r12� + �
i=1,2

�
j=1,2

VW�r12
ij � , �1�

where VHS is the hard-sphere potential, VW�x� is a square-
well interaction �of depth −u0 for x��, 0 otherwise�, and r12

and r12
ij are, respectively, the vectors joining the particle-

particle centers and the site-site �on different particles� loca-
tions. Temperature is measured in units of the potential depth
�i.e., Boltzmann constant kB=1�. Geometric considerations
for a three touching spheres configuration show that the
choice of well width �=0.5��5−2�3−1���0.119� guaran-
tees that each site is engaged at most in one bond. Hence,

each particle can form only up to two bonds, and, corre-
spondingly, the lowest energy per particle �“sticking en-
ergy”� is −u0.

The choice of a simple square-well interaction model to
describe the association process between different particles is
particularly convenient from a theoretical point of view. It
allows for a clear definition of bonding and a clear separation
of the bond free energy in energetic and entropic contribu-
tions, being unambiguously related to the depth of the well
and to the bonding volume, respectively.

III. WERTHEIM THEORY

The first-order Wertheim thermodynamic perturbation
theory32–35 provides an expression for the free energy of as-
sociating liquids. The Helmholtz free energy is written as a
sum of the HS reference free energy AHS plus a bond contri-
bution Abond, which is derived by a summation over certain
classes of relevant graphs in the Mayer expansion.35 In the
sum, closed loops graphs are neglected. The fundamental
assumption of W-TPT is that the conditions of steric incom-
patibilities are satisfied: �i� no site can be engaged in more
than one bond and �ii� no pair of particles can be double
bonded. These steric incompatibilities are satisfied in the
present model, thanks to the location of the two sites and the
chosen � value. In the formulation of Ref. 36, for particles
with two identical bonding sites,

�Abond

N
= 2 ln X − X + 1. �2�

Here, �=1/kBT and X is the fraction of sites that are not
bonded. X is calculated from the mass-action equation

FIG. 1. �Color online� Pictorial representation of the model studied. Par-
ticles are modeled as hard-core spheres �gray large sphere of diameter ��,
decorated by two sites located on the surface along a diameter �centers of
the small gold spheres of diameter 2��. The volume of the gold sphere
outside the gray large sphere is the bonding volume. When the site of an-
other particle is located within the bonding volume, the pair interaction
energy is taken to be equal to −u0.
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X =
1

1 + 2�X�
, �3�

where �=N /V is the particle number density and � is defined
by

� = 4�� gHS�r12�	f�12�
�1,�2
r12

2 dr12. �4�

Here, gHS�12� is the reference HS fluid pair correlation func-
tion, the Mayer f function is f�12�=exp�−VW�r12

ij � /kBT�−1,
and 	f�12�
�1,�2

represents an angle average over all orienta-
tions of particles 1 and 2 at a fixed relative distance r12.
Since all bonding sites are identical �same depth and width
of the square-well interaction�, � refers to a single site-site
interaction. The number of attractive sites on each particle is
encoded in the factor 2 in front of � in Eq. �3�. In the
W-TPT, the resulting free energy is insensitive to the location
of the attractive sites, i.e., to the bonding geometry of the
particle. Note that the angle averaged Mayer f function co-
incides with the bonding interaction contribution to the virial
coefficient. At low T �i.e., �u0	1� the hard-core contribu-
tion to the virial becomes negligible as compared to the
bonding component. In this limit, it is also possible to as-
sume exp��u0�−1�exp��u0�, so that the averaged Mayer f
function can be approximated with the virial as well as with
the integral of the Boltzmann factor over the bond volume.38

For a site-site square-well interaction, the Mayer func-
tion can be calculated as37

	f�12�
�1,�2
= �exp��u0� − 1�S�r� , �5�

where

S�r� =
�� + � − r�2�2� − � + r�

6�2r
�6�

is the fraction of solid angle available to bonding when two
particles are located at relative center-to-center distance r.
Thus, the evaluation of � requires only an expression for
gHS�r12� in the range where bonding occurs ��
r
�+��.
We have used the linear approximation39

gHS�r� =
1 − 0.5�

�1 − ��3 −
9

2

��1 + ��
�1 − ��3 � r − �

�
� �7�

�where �= �� /6��3��, which provides the correct
Carnahan-Starling40 value at contact. This gives

� =
Vb�e�u0 − 1�

�1 − ��3 � �1 −
5

2

�3�2 + 8�� + 3�2�
��15� + 4��

�

−
3

2

�12�� + 5�2�
��15� + 4��

�2� , �8�

where we have defined the spherically averaged bonding vol-
ume Vb
4���

�+�S�r�r2dr=��4�15�+4�� /30�2. For the spe-
cific value of � studied here, Vb=0.000 332 285�3. At low �,
gHS�r� tends to the ideal gas limit value gHS�r��1. In this
limit

� = Vb�e�u0 − 1� . �9�

Equation �3� can be easily solved, providing the T and �
dependence of X as

X =
2

1 + �1 + 8��
, �10�

which has a low-T limit X��2��.
In the more transparent chemical equilibrium form, Eq.

�10� can be written as

1 − X

X2 = 2�� = �Kb. �11�

The last expression shows that, within the Wertheim theory,
bonding can be seen as a chemical reaction between two
unreacted sites forming a bonded pair. In this language the
quantity Kb
2� plays the role of equilibrium constant �in
unit of inverse concentration�. Writing �Kb=exp�−���Ub

−T�Sb�� �introducing the energy and entropy change in the
bond process�, it is possible to provide precise expressions
for �Ub and �Sb within the Wertheim theory. Specifically,
when e�u0 	1 �a very minor approximation since aggregation
requires T
u0 to be effective�, it is possible to identify

�Ub = − u0, �12�

�Sb = ln�8���
�

�+�

gHS�r�S�r�r2dr� �13�

�note that �Sb is in dimensionless entropy units since Boltz-
mann constant is taken equal to 1�. If gHS�1, �Sb

=ln�2NVb /V�. Hence, the change in energy is given by the
bond energy, while the change in entropy is essentially pro-
vided by the logarithm of the ratio between the bonding vol-
ume and the volume per site �V /2N�.

IV. CLUSTER SIZE DISTRIBUTIONS
AND ASSOCIATION PROPERTIES

It is interesting to discuss the prediction of the Wertheim
theory in terms of clusters of physically bonded particles.41,42

In the case of square-well interactions �different from the
case of a continuous potential� we can define a bond between
two particles unambiguously. Evidently, when there is a
bond, the interaction energy equals −u0.

To make the discussion more transparent, we can define
pb
1−X as the probability that an arbitrary site is bonded. It
is thus easy to convince oneself that the number density of
monomers is �1=��1− pb�2=�X2 since both sites must be
unbonded.19 Similarly, a chain of l particles has a number
density �l equal to

�l = ��1 − pb�2pb
�l−1� = �X2�1 − X��l−1� �14�

since one site of the first and one of the last particle in the
chain must be unbonded and l−1 bonds link the l particles.

Once the cluster size distribution of chains is known, it
is possible to calculate the average chain length L as the ratio
between the total number density and the number density of
chains in the system, �i.e., as the ratio between the first 	l1

and the zero 	l0
 moments of the �l distribution�
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L 

�l=1

� l�l

�l�l
=

1

X
, �15�

where we have substituted, by summing the geometric series
over all chain lengths, �l=1

� l�l=� and �l=1
� �l=�X. Thus, using

Eq. �10�,

L =
1 + �1 + 8��

2
. �16�

At low T, L��2�� and hence L grows in density as �� �if
the density dependence of � can be neglected43� and in T as
L�exp��u0 /2�.

The potential energy of the system coincides with the
number of bonds �times −u0�. Hence, the energy per particle
E /N is

E/N = − u0
�l=1

� �l − 1��l

�l=1
� l�l

= − u0�1 − X� = − u0pb. �17�

The energy approaches its ground state value �Egs /N=−u0�
as

E − Egs

N
= u0X � u0�2���−1/2, �18�

i.e., with an Arrhenius law with activation energy u0 /2 in the
low-T limit, a signature of independent bonding sites.44–46

From Eq. �17� it is possible to calculate the �constant
volume� specific heat CV as

CV = C
X2e�u0�

�1 + 8��T2
, �19�

where C=8�u0
2��

�+�gHS�r�S�r�r2dr. In the low T and � re-
gimes, the specific heat becomes CV�X /2T2. At each �, the
specific heat shows a maximum at a finite T �see Fig. 2�,
which defines a line of specific heat extrema in the T-�
plane. The location of the maximum in the specific heat has
been utilized to estimate the polymerization temperature
TCV

max.16–18,26,47,48

Within the theory, it is also possible to evaluate the ex-
tent of polymerization �, defined as the fraction of particles
connected in chains �chain length larger than 1�, i.e.,

� =
�l=2

� l�l

�l=1
� l�l

= 1 −
�1

�
= 1 − X2, �20�

where we have used Eq. �14�. � plays the role of order
parameter for the polymerization transition. The density and
temperature dependence of � are shown in Fig. 3. The cross-
over from the monomeric state at high T ���0� to the poly-
meric thermodynamic state at low T ���1� takes place in a
progressively smaller T window on decreasing �.

For each �, a transition temperature T� can be defined as
the inflection point of � as a function of T.16–18,47,48 The
locus T���� provides an estimate of the polymerization line
in the phase diagram. The location of the inflection point of
the energy E and of � are different since dE /dT�dX /dT
�Eq. �17��, while d� /dT�−XdX /dT �Eq. �20��. In other
models of equilibrium polymerization, incorporating thermal
activation or chemical initiation, T� and TCV

max coincide.47,49

Another estimate of the transition line of this rounded
thermodynamic transition can be defined as the locus in the
T-� plane at which �=0.5; i.e., half of the particles are in
chain form �the analog of the critical micelle
concentration50�, i.e., �1�T1/2 ,��=� /2. The corresponding
temperature T1/2 is then given by the solution of the equation
X=�0.5 or, equivalently,

�� = 1 − �0.5. �21�

In the present model, the �=0.5 locus is a line at constant
pb, corresponding to a constant value of the product
��exp��u0�−1�.

To provide a global view of the polymerization transi-
tion, we show in Fig. 4 the Wertheim theory predictions for

FIG. 2. �Color online� W-TPT predictions for the T dependence of the
specific heat CV for different values of densities � �Eq. �19��. The inset
shows the value of the specific heat at the maximum CV

max.

FIG. 3. �Color online� Extent of polymerization � vs temperature T �a� and
density � �b�. Symbols are GC simulation data.
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the specific heat maximum and polymerization transition
lines. Curves become progressively more and more similar
on cooling. As clearly shown by the simple expression for
T1/2 �Eq. �21��, the quantity �� is constant, which implies
that ln ��1/T. This behavior is also approximatively found
for the loci defined by the inflection point of � and E, as
shown in Fig. 4.

It is interesting to estimate the value of the average de-
gree of polymerization L along the polymerization transition
line. This information helps in estimating the polymerization
transition itself, but it is also relevant for the recently pro-
posed analogies between polymerizing systems and glass-
forming liquids.51 As shown in Fig. 5, the transition takes
place for L�2, consistent with previous findings �compare
with the inset of Fig. 7 in Ref. 27 for the Stockmayer fluid�.
The fact that L�2 near T� provides a way to estimate the
polymerization transition temperature when experimental �or
numerical� data are noisy.30

A final relevant consideration concerns the expression

for the bonding free energy. Under the assumption of an
ideal state of chains, the system free energy A can be written
as28

�A/V = �
l=1

�

�l�ln �l − 1 + �l − 1�ln Kb� , �22�

which accounts for the translational entropy of the clusters as
well as for the bond free energy ln Kb, which is assumed to
be linear in the number of bonds. At high T only monomers
are present, �l=��l1, and hence �A /V=��ln �−1�. The bond-
ing part of the free energy �Abond can thus be evaluated as
the difference of �A and the corresponding high-T limit, i.e.,

�Abond/V = �
l=1

�

�l�ln �l − 1 + �l − 1�ln Kb� − ��ln � − 1� .

�23�

Inserting the Wertheim cluster size distribution �Eq. �14��,
summing over all cluster size and using the definition Kb


2� �Eq. �11��, one exactly recovers the Wertheim bonding
free energy �Eq. �2��. The Wertheim theory can thus be con-
sidered as a mean-field theory of chain associations, with the
hard-sphere free energy as its high-T limit. Differently from
other mean-field approaches,28,43,47,52 the theory provides a
well-defined prescription for calculating the equilibrium con-
stant as well as the energy and the entropy of assembling,
which partially account for the structure of the reference
hard-sphere fluid via the gHS�r� contribution in Kb. It is this
special feature that makes the theory fully predictive.

V. MONTE CARLO SIMULATION

We have performed numerical simulations of the model
in the grand-canonical �GC� ensemble53 for several values of
T and of activities to evaluate the structural properties of the
system as a function of density and temperature. We have
performed two types of grand-canonical simulations: particle
and chain insertion/removal.

The first method �particle� is a classical GC MC simula-
tion where monomers are individually added to or eliminated
from the system with insertion and removal probabilities
given by

Pinsertion = min�1,
zV

N + 1
e−��E� , �24�

Premoval = min�1,
N

V

e��E

z
� , �25�

where N is the number of monomers, �E is the change in the
system energy upon insertion �or removal�, and z is the cho-
sen activity. We have simulated for about 2�106 MC steps,
where a MC step has been defined as 50 000 attempts to
move a particle and 100 attempts to insert or delete a par-
ticle. A move is defined as a displacement in each direction
of a random quantity distributed uniformly between ±0.05�
and a rotation around a random axis of a random angle dis-
tributed uniformly between ±0.1 radiant. The box size has
been fixed to 50�. With this type of simulations we have

FIG. 4. �Color online� Specific heat maxima and polymerization transition
lines, as predicted by the Wertheim theory, in the T-� plane. The inset shows
the linear scale. Observe the similarity of the data in Figs. 2–4 to that of
Figs. 4–6 in Ref. 29 corresponding to equilibrium polymerization in the
Stockmayer fluid, a Lennard-Jones particle with a superimposed point
dipole.

FIG. 5. �Color online� Value of the average chain length along the polymer-
ization lines T���� �solid line� and TCV

max��� �dotted line�, according to the
Wertheim theory.
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studied three temperatures �T=0.08, 0.09, and 0.1� and sev-
eral densities ranging from 0.001 up to 0.2 �corresponding to
number N of particles ranging from N�1000 to N�20 000�.

The second method is grand-canonical simulations
where we add and remove chains of particles �see, for ex-
ample, Ref. 29�. The insertion and removal probabilities for a
chain of length l are

Pinsertion = min�1,
zle−�l−1��fbV

Ni + 1
e−��E� , �26�

Premoval = min�1,
Nl

V

e��E

zle−�l−1��fb
� , �27�

where Nl is the number of chains of size l, �E is the change
in energy, and �fb is the ln of the integral of the Boltzmann
factor over the bond volume, i.e.,

�fb = �u0 − ln�2Vb� . �28�

The activity of a chain of l particles is thus written as zl

=zle−�l−1��fb or, equivalently, in terms of chemical potential
�l= l�− �l−1�fb, where � is the monomer chemical poten-
tial. Using the chain insertion algorithm, we have followed
the system for about 105 MC steps, where a MC step has
now been defined as 50 000 attempts to move a particle �as
in the previous type� and 100 attempts to insert or delete a
chain of randomly selected length. The geometry of the chain
to be inserted is also randomly selected. The box size was
varied from 50� to 400�, according to density and tempera-
ture, to guarantee that the longest chain in the system was
always shorter than the box size. At the lowest T, N
�50 000. Using chain moves, we have been able to equili-
brate and study densities ranging from 10−6 up to 0.2 for four
low temperatures �T=0.05, 0.055, 0.6, and 0.7� where chains
of length up to 400 monomers are observed. We have also
studied the same three temperatures �T=0.08, 0.09, and 0.1�
examined with the particle insertion/removal method to com-
pare the two MC approaches.

As a result of the long simulations performed �about
three months of CPU time for each state point�, resulting
average quantities calculated from the MC data �L ,� ,E /N�
are affected by less than 3% relative error. Chain length dis-
tributions �l �whose signal covers up to six orders of magni-
tude� are affected by an error proportional to �ln��l�� which
progressively increases on decreasing �l, reaching 70% at the
smallest reported �l values.

VI. SIMULATION RESULTS

First, we begin by showing in Fig. 6 representative par-
ticle configurations both above and below the polymerization
transition temperature T�. Evidently, the particles are dis-
persed as a gas of monomers and as a gas of chains above
and below this characteristic temperature. The low-T con-
figuration is composed of semiflexible chains, with no rings.
Indeed, the short interaction range � introduces a significant
stiffness in the chain and a persistence length extending over
several monomers.

To quantify the linearity of the chains for the present
model we show in Fig. 7 the chain end-to-end squared

distance 	Re
2
 for isolated chains of chain length up to

l�O�103�. Single chains are generated by progressively add-
ing monomers to a preexisting chain in a bonding configu-
ration, after checking the possible overlap with all preexist-
ing monomers. Since the bond interaction is a well, all points
in the bond volume have the same a priori probability. As
shown in Fig. 7, the end-to-end chain distance scales as a
power law �	Re

2
� l2�� both at small and large l values, with
a crossing between two different behaviors around l
�O�10�. At small l, the chain is persistent in form and thus

FIG. 6. �Color online� Snapshots of a fraction of the simulated system at
��0.0035 and T=0.10 and T=0.055. At this density, the polymerization
transition is located at T��0.08. The length of the shown box edge is about
30�.
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is rodlike. For larger l, the best fit with a power law suggests
an apparent exponent 2��1.1, which is expected to
evolve—for very long chains—toward the self-avoiding
value 2��1.18.54,55 We recall that 2�=6/5 in the Flory self-
consistent field prediction56 and 2�=1 in the simple random
walk model.56

To provide evidence that the chain GC MC simulation
provides the correct sampling of the configurations �and
hence that the activity of the chain of length l is correctly
assigned�, we compare in Fig. 8 the chain length densities �l

calculated with the two methods at T=0.08. The distributions
calculated with the two different methods are identical. A
similar agreement is also found at T=0.09 and T=0.1. This
strengthens the possibility of using the chain MC method,
which does not significantly suffer from the slow equilibra-
tion process associated with the increase of the Boltzmann
factor exp��u0� on cooling. All the following data are based
on chain GC-MC simulations.

We next compare the chain length distributions calcu-
lated using the chain MC method with the predictions of the
Wertheim theory. We compare the simulation data with two
different approximations: in the first one we choose the ideal
gas as a reference state; i.e., we approximate the reference
radial distribution function as one. In the more realistic ap-
proximation, we use the small r expansion of the hard-sphere
radial distribution function �see Eq. �7��. A comparison be-
tween simulation data and theoretical predictions �note there
are no fitting parameters� is reported in Fig. 9 for two differ-
ent temperatures. At low densities �sampled at low T� the
approximation gHS�1 is already sufficient to properly de-
scribe �l. At higher densities �sampled at higher T�, the full
theory is required to satisfactory predict the chain length dis-
tributions.

Figure 10�a� compares the Wertheim theory predictions
for the average chain length with the corresponding simula-
tion results. In the entire investigated � and T ranges, the
Wertheim theory provides an accurate description of the
equilibrium polymerization process. The limiting growth law
in �� is clearly visible at the lowest temperatures. At the
highest temperatures, it is possible to access the region of
larger densities ���0.1� where the presence of other chains
cannot be neglected any longer and � becomes � dependent.
In this limit, the growth law L��� is no longer obeyed.43 As
a further check on the Wertheim theory, we collapse all the L
data to the universal functional form predicted by the Wer-
theim theory using the scaling variable 2�� �Fig. 10�b��.

As an ulterior confirmation of the predictive capabilities

FIG. 7. �Color online� Mean squared end-to-end distance 	Re
2
 for isolated

chains of length l built according to the model studied in this article.

FIG. 8. �Color online� Comparison of the chain length distributions �l at
T=0.08 obtained independently with the monomer �full symbols� and chain
�lines connecting open symbols� grand-canonical simulations for several
values of the monomer activity z. From left to right, the activity values are
10−3, 1.5�10−3, 2.4�10−3, 3�10−3, 5�10−3, and 6�10−3. A similar
agreement is also found at the other temperatures.

FIG. 9. �Color online� Chain length densities �l for several activity values at
two different temperatures, T=0.06 and T=0.09. Symbols are simulation
data. Lines are Wertheim theory predictions: dashed lines assume gHS=1
�Eq. �9� for ��, while full lines are based on the full radial dependence of
gHS �Eq. �8� for ��. At the lowest T �and average densities�, the ideal gas
approximation is sufficient to model the Monte Carlo data.
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of the Wertheim theory, we report a comparison between
simulations and theory for the density dependence of the
extent of polymerization � �Fig. 3� and for the energy per
particle �Fig. 11�. Both figures clearly show an excellent
agreement between the simulated and the predicted � depen-
dence of � and E at all T investigated.

As a test of the validity of the approach of the polymer-
izing system as an ideal gas of equilibrium chains, we com-
pare the monomer activity z and the monomer density �1 in
Fig. 12. The activity of a cluster of size l coincides with �l,
which is consistent with ideal gas scaling. In particular, the
activity of the single particle �the input in the MC grand-
canonical simulation� can be compared with the resulting
density of monomers �1. Data in Fig. 12 show that the ideal
gas law is well obeyed at low T and �, confirming that in the
investigated range, the system can be visualized as an ideal
gas mixture of chains of different lengths, distributed accord-
ing to Eq. �14�.

The existence of a large T-� window where an ideal
mixture of chains provides a satisfactory representation of
the system suggests that in this window, correlations between
different chains can be neglected. In this limit, the structure
of the system should be provided by the structure of a single
chain, weighted by the appropriate chain length distribution.
Specifically, we have

S�q� 
 � 1

N
�
i,j

e−iq·�ri−rj�� , �29�

where ri is the coordinate of particle i, the sum runs over all
N particles in the system, and the average 	¯
 is over equi-
librium configurations. In the ideal gas limit, correlations
between different chains can be neglected and S�q� can be
formally written as

S�q� =
�l=1

� �llSl�q�
�l=1

� �ll
, �30�

where Sl�q� is the structure factor �form factor� of a chain of
length l,

Sl�q� =
1

l��
i,j=1

l

e−iq·�ri−rj�� . �31�

Since the persistence length of the chains is �10–20 par-
ticles �see Fig. 7�, one can assume, as a first approximation,

FIG. 10. �Color online� Average chain length as a function of the density for
all studied temperatures. �a� Lines are the Wertheim theory predictions:
dashed lines assume gHS=1 �Eq. �9� for ��, while full lines are based on
the full radial dependence of gHS �Eq. �8� for ��. �b� Scaled representation
of L vs 2��. Symbols are simulation data. The line is the function L�x�
= �1+�1+2x� /2 �see Eq. �16��.

FIG. 11. �Color online� Energy per particle in unit of u0 as a function of the
density for all studied temperatures. Symbols are simulation data while lines
are the Wertheim theory predictions: dashed lines assume gHS=1 �Eq. �9� for
��, while full lines are based on the full radial dependence of gHS �Eq. �8�
for ��.

FIG. 12. �Color online� Relation between the activity z and the monomer
density �1 for all investigated temperatures. Line indicates the ideal gas law
z=�1.
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that in the investigated T-� region chains are linear. When
this is the case, averaging over all possible orientations of the
chain gives

Sl�q� = 1 +
1

l
�
j=1

l−1

2�l − j�
sin�jq��

jq�
. �32�

The small q expansion of Sl�q� is

Sl�q� � l −
l�l2 − 1�

36
�q��2. �33�

Correspondingly, S�q� behaves at small q as

S�q� �
	l2

	l
 �1 −

q2�2

36
� 	l4
 − 	l2


	l2

�� , �34�

where 	lm

�ll
m�l denotes the m moment of the cluster size

distribution �l. Figure 13 shows a comparison between the
S�q� calculated in the simulation and the theoretical S�q�
evaluated according to Eqs. �30� and �32� at a low T, where
the ideal gas approximation is valid. Deviations are only ob-
served at the highest density, suggesting that the ideal gas of
chains is a good representation of the structure of the system,
in agreement with the equivalence between activity and
monomer density shown in Fig. 12. This observation is par-
ticularly relevant since it suggests that �in the appropriate
T-� window� also a description of the dynamics of the model
based on the assumption of independent chains can be at-
tempted.

VII. CONCLUSIONS

In our pursuit of a fully predictive molecularly based
theory of self-assembly in terms of molecular parameters and
liquid state correlation functions, we have considered a direct
comparison of a liquid in which fluid particles have sticky
spots on their polar regions to the predictions of the Wer-
theim theory for the relevant properties governing the self-
assembly thermodynamics. In the investigated region of tem-
peratures and densities �which spans the polymerization

transition region�, the predictions of the Wertheim theory de-
scribe simulation data remarkably well �without the use of
any free parameters in these comparisons�.

On passing, we stress that we have not investigated state
points with ��0.1, where interactions between chains start
to play a role. A transition from an isotropic to a nematic
phase is indeed expected to take place on increasing
density.28,29 The approach to this transition will mark the
boundary where the Wertheim theory breaks down. We plan
to address this issue in a future work, despite the large com-
putational times involved.

The reported successful comparison means that we can
be confident in pursuing more complicated types of self-
assembly based on the foundation of the Wertheim theory.
For example, it is possible to extend the Wertheim theory
analysis in a direct way to describe the self-assembly of
branched chains having multifunctional rather than dipolar
symmetry interactions as in the present paper and to compare
these results in a parameter-free fashion to corresponding
MC simulations for these multifunctional interaction
particles.57 A recent work has shown that the Wertheim
theory describes the critical properties of these mutifunc-
tional interaction particles rather well.58 According to this
recent study, liquid phases of vanishing density can be gen-
erated once small fractions of polyfunctional particles are
added to chain-forming models like the one studied here.
With the new generation of nonspherical sticky colloids, it
should be possible to realize “empty liquids”58 and observe
equilibrium gelation,44,59,60 i.e., approach dynamical arrest
under equilibrium conditions.

The Wertheim theory has also been applied successfully
to the description of molecular associating liquids61–63 and to
the thermodynamics of hard-sphere polymer chains with
short-range attractive interactions.64,65 Thus, the theory could
be adapted to describe mutually associating polymers and the
formation of thermally reversible gels in these fluids upon
cooling.

In summary, the Wertheim theory provides a promising
framework for treating the thermodynamics of a wide range
of self-assembling systems. The development of this theory
and its validation by simulation and measurement should
provide valuable tools in the practical development of self-
assembly as a practical means of synthetic manufacturing.
This theory also offers the prospect of improving the existing
equilibrium association theories that are largely based on a
lattice fluid model framework. This could allow progress to
be made more rapidly since off-lattice computation often of-
fers computational advantages and because many problems
such as chemically initiated chain branching66 and thermally
activated assembly processes have already been considered
by a lattice model of associating fluids.48,67

The problem of estimating the entropy of association
�Sb in real self-assembling molecular and particle systems in
solution is a difficult problem that has been addressed by
many authors previously �Ref. 68 and references therein�. It
would clearly be interesting to extend the present work to
determine how well the Wertheim theory could predict en-
tropies of association for self-assembly processes that occur
in a solvent rather than in the gas phase. The most interesting

FIG. 13. �Color online� Comparison of the structure factor calculated from
the simulated configurations and from Eqs. �30�–�32� at T=0.055 for differ-
ent values of the activity.
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solvent in this connection, water, is a particular challenge
since water itself can be considered an associating fluid, so
that we are confronted with the problem of how the water
association couples to the particle self-assembly. The prob-
lem of understanding the common tendency of particle self-
assembly in aqueous solutions to occur upon heating requires
particular investigation. In the future, we look forward to
exploring these more complex mixtures of associating fluids,
which are so prevalent in real biological systems and in a
materials processing context.

As a final comment, we note that numerical work on this
class of simple models �playing with the particle interaction
symmetries� can help in understanding more complicated or-
dered structures �for example, sheetlike, nanotube, and
closed nanoshell structures�, as recently found when particles
have multipole interaction potentials.7,8,10,12 We also note
that the results discussed here apply to the growing field of
functionalized colloidal particles, colloidal particles with
specifically designed shapes and interaction sites.1–5,69
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