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Are there localized saddles behind the heterogeneous
dynamics of supercooled liquids?
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PACS. 64.70.Pf – Glass transitions.
PACS. 61.20.Lc – Time-dependent properties; relaxation.
PACS. 61.20.Ja – Computer simulation of liquid structure.

Abstract. – We numerically study the interplay between heterogeneous dynamics and prop-
erties of negatively curved regions of the potential energy surface in a model glassy system.
We find that the unstable modes of saddles and quasi-saddles undergo a localization transition
close to the Mode-Coupling critical temperature. We also find evidence of a positive spatial
correlation between clusters of particles having large displacements in the unstable modes and
dynamical heterogeneities.

The dynamics of supercooled liquids is often described as a complex trajectory across their
Potential Energy Surface (PES) [1]. This approach traces its origin back to the pioneering
work of Goldstein [2], who argued that at low temperature these systems get trapped in the
basins of attraction of local minima of the PES and hence the atomic dynamics is slowed
down. In the last decade, several authors have addressed a quantitative study of the PES
through numerical simulations of model systems. The original picture has evolved into a
refined description of the dynamics in terms of collections of local minima (metabasins [3])
and transitions between them [4–6].

Other works have focused on the properties of the Hessian matrix of the potential energy,
revealing even a more complex scenario, where not only local minima but also higher-order
stationary points (saddles) and more general points characterizing regions of negative cur-
vature of PES (quasi-saddles) play an important role in the structural slowing-down of the
liquid [4–15]. Indeed, it has been shown [12, 13] that some information about the liquid-like
diffusive dynamics is encoded in the imaginary spectrum of the Hessian matrix: the num-
ber of unstable modes nim of saddles is correlated with the diffusivity of supercooled model
systems and decreases as the liquid is cooled. Attempts have been made [10–13] to identify
the temperature at which the thermal average of nim extrapolates to zero with the critical
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temperature Tc where the purely dynamical Mode-Coupling Theory (MCT) [16, 17] predicts
a structural arrest of the liquid. The residual relaxation exhibited by both real and simulated
systems below Tc is to be attributed, within this scenario, to “activated processes”, i.e. rare
transitions over finite energy barriers, ignored in the mean-field approach of MCT.

However, the idea that the slowing-down of the liquid around Tc reflects a geometric tran-
sition [11] in the PES has been recently criticized. Careful studies have in fact put in doubt
the existence of a sudden change in the sampling of saddles at Tc [4, 15] and there are indi-
cations that saddles do not disappear completely below Tc [14, 18]. Most worrying, perhaps,
is that a saddle-based approach appears unsuitable [19] for the description of dynamical het-
erogeneities [20–22], i.e. rearrangements involving localized subsets of mobile particles, which
have been recognized in the last years as the hallmark of the supercooled dynamics and whose
evidence is hard to glimpse on a 3N -dimensional PES.

In this letter, we analyze the localization properties of the unstable modes of saddles and
quasi-saddles sampled by a supercooled Lennard-Jones (LJ) mixture. We provide quantitative
evidence that the spatial structure of these unstable modes change from extended to localized
around Tc. We establish for the first time the existence of a direct connection between saddles
and dynamical heterogeneities in a supercooled liquid. In fact, the regions of the system where
unstable modes are localized are statistically correlated with clusters of particles which are
highly mobile on the β-relaxation timescale. Our results thus indicate that a crossover in the
nature of the sampled saddles is indeed underlying the emergence of dynamical heterogeneities
and the failure of mean-field theories below Tc.

Our model is the binary LJ mixture introduced by Wahnstrom in [23]. This mixture has
been shown to be a good glass-former and its properties have been analyzed in-depth [9, 23],
especially as far as dynamical heterogeneities are concerned [24]. Our system is an equimolar
mixture of 500 particles interacting via the LJ potential uαβ(r) = 4εαβ [(σαβ/r)12 − (σαβ/r)6],
with α, β = 1, 2 indexes of species, and enclosed in a cubic box of side L = 7.2779σ11 with peri-
odic boundary conditions. Reduced units will be used in the following, assuming σ11, ε11, and
(m1σ

2
11/ε11)1/2 respectively as unit of distance, energy and time. The interaction parameters

are σ11 = 1.0, σ22 = 0.833, σ12 = 0.917, ε11 = ε22 = ε12 = 1.0. The masses are m1 = 1.0, m2 =
0.5. Two different cut-off schemes for the potential have been considered, cut and shifted (CS)
and cut and quadratically shifted (QS) at rc = 3.0. The QS cut-off is obtained adding a term
a+br2 with a and b determined to ensure continuity to both u(r) and its first derivatives at rc.
This cut-off scheme has been used to check any bias in the determination of the properties of
the PES due to discontinuities in the force at the cut-off [25]. Molecular Dynamics (MD) simu-
lations have been performed in the canonical ensemble using the Nosé-Poincaré thermostat [26,
27]. At the lowest temperature corresponding to an equilibrated supercooled liquid (T =
0.575), the length of the run was 2×107 time steps with δt = 0.008, equivalent to a total sim-
ulation time two orders of magnitude larger than the structural relaxation time. Our best esti-
mate of the MCT critical temperature, obtained from an analysis of the intermediate scattering
functions, is Tc = 0.55 ± 0.01, which is slightly lower than the previously reported ones [9].

From each equilibrated run we extracted between 100 and 200 independent configurations
and minimized the mean-squared force W = 1/N

∑
i f2

i using the LBFGS algorithm [28] to
locate the nearest saddle. It has been recognized [12,14,25] that W -minimizations usually stop
near quasi-saddles, i.e. local minima of W , where the PES displays one inflection mode with
non-zero force, and that discontinuities in the cut-off can lead to incomplete minimizations [25].
While other numerical strategies have been proposed for accurately locating saddles [15], there
has also been evidence [12,13,29] that quasi-saddles do not differ significantly from true saddles
as far as the influence on the dynamics is concerned. In the following we will use the term
saddle in a wide sense, without distinction between quasi-saddles and saddles. The Hessian
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Fig. 1 – Gyration radius Lim
c (circles, left axes) and participation ratio pim (squares, right axes) as

a function of T , both in the supercooled liquid (black) and glass (white). Error bars represent one
standard deviation of the distribution of values. The horizontal dashed line is drawn at Lbox/2.

matrix at each saddle was diagonalized yielding the eigenvalues ν2
α and the eigenvectors eα

i ,
where α = 1, . . . , 3N is an index of mode and i = 1, . . . , N an index of particle. The order
nim of a saddle is then defined as the number of imaginary frequencies in its spectrum.

To have a better understanding of the localization properties of the unstable modes, we
consider the average

Eim
i

2
=

1
nim

nim∑
α=1

eα
i

2 (1)

of the squared displacements eα
i

2 of atom i over the nim unstable modes. The vector
Eim = (Eim

1 , . . . , Eim
N ) contains averaged information about the distribution in real space

of the instabilities associated with the saddle. By construction Eim is normalized so that we
can define a participation ratio for the unstable modes of a given saddle in the usual way [26],

pim =

(
N

N∑
i=1

Eim
i

4

)−1

. (2)

pim will be roughly 1 for extended instabilities and O(1/N) for a single, localized one. Further
insight can be gained considering the gyration radius [30]

Lim
c

2
=

N∑
i=1

|ri − rg|2Eim
i

2
, (3)

where rg =
∑

i riE
im
i

2. For extended instabilities Lim
c ≈Lbox/2. Both pim and Lim

c refer to a
given configuration and quantify the degree of localization of the unstable modes of a saddle
as a whole. They will overestimate the size of localized instabilities when the system is large
enough that several independent ones are present, but we will show that this should not be
the case for the mixture in consideration.

We show in fig. 1 the thermal average of the participation ratio pim and gyration radius
Lim

c as a function of T . At high T saddles are extended: pim tends to saturate around 0.7 and
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Fig. 2 – Plot a): distribution of average displacements Eim
i on the unstable modes of a saddle sampled

at T = 0.575. Plot b): normalized propensity of motion Ep
i of the MD configuration from which the

saddle in plot a) has been located. A sphere proportional to Eim
i and Ep

i is drawn around each
particle, in plot a) and b), respectively.

Lim
c approaches its limiting value of Lbox/2. In the landscape-influenced range [8], roughly

between Tc and 2Tc, the instabilities of saddles have a mixed character. In fact, while pim

decreases markedly, the gyration radius Lim
c still fluctuates around Lbox/2, indicating that

most of the instabilities of saddles are percolating through the system despite their enhanced
localization. On approaching Tc saddles become strongly localized and the average Lim

c de-
creases abruptly. Figure 1 thus shows that the localized nature of saddles becomes pronounced
exactly in the same temperature range where dynamical heterogeneities first appear [19] and
in correspondence to the break-down of mean-field approaches.

The degree of localization of the instabilities of saddles can be inspected directly in the
snapshot of fig. 2a, which displays the spatial distribution of Eim

i in the simulation box for a
saddle sampled at T = 0.575, slightly above our estimated Tc. A sphere of radius proportional
to Eim

i is drawn around each particle. We see that particles involved in the unstable modes,
i.e. those with a large Eim

i , are strongly clustered. As counterparts, extended regions of
stable particles are observed. The spatial structure of saddles like that in fig. 2a, for which
nim = 7, casts some new light on a common assumption about the nature of saddles sampled
by supercooled liquids, namely that saddles of low order may originate from non-interacting
subsystems, each experiencing a saddle of order one [13, 15, 31]. Figure 2a shows that the 7
unstable modes have a strong spatial overlap, being concentrated on a rather compact cluster
of particles. Similar features are present in the whole landscape-influenced range, while in the
hot liquid the fraction of extended unstable modes increases so that particles are essentially
involved in all of them. Thus, the independent subsystems interpretation does not seem to
hold for saddles sampled by LJ systems in the T > Tc range(1).

The emerging scenario seems to mirror the observations of dynamical heterogeneities [19].
The question arises naturally whether there is a direct mapping between saddles and dynamical
heterogeneities, i.e. whether unstable clusters like that in fig. 2a are also the mobile ones.

To address this issue we followed the approach of [33], who introduced the propensity of
motion of particles as a measure of dynamical heterogeneities. A configuration is selected

(1)Similar results were in fact obtained for the BMLJ of [32]. We have also checked that this is the case also
for the true saddles we have sampled, for which W ≈ 10−10.
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from the MD trajectory at a given temperature T . Then several short runs at the same T
are performed, monitoring the square displacements Δr2

i (t) from the reference configuration.
We evaluate the propensity of motion as 〈Δr2

i (t∗) 〉, where 〈 ... 〉 indicates an average over
independent sets of initial velocities and t∗ corresponds to the maximum of the non-Gaussian
parameter α2(t), which lies in the late β-relaxation regime and is a characteristic timescale for
dynamical heterogeneities [20]. Using this procedure it is possible to identify the dynamical
heterogeneities that a single configuration will, on average, give rise to. We have considered
up to 500 sets of initial velocities, drawn from the appropriate Maxwellian distribution. Since
the timescales for diffusion are slightly different for the two species (roughly a factor of 2),
we have also tried to choose different values of t according to the species, but the picture was
essentially unaltered, so we simply used the value of t∗ for the small particles.

Figure 2b shows the distribution in the simulation box of the normalized propensity of
motion:

Ep
i =

〈Δr2
i (t∗) 〉

(〈∑N
i=1(Δr2

i (t∗))2 〉)1/2
(4)

for the MD configuration whose nearby saddle is actually that of fig. 2a. By comparison
we see that the localization and essential morphology of the mobile cluster identified by the
propensity of motion of the MD configuration are well reproduced in the cluster of average
unstable displacements of the nearby saddle. To assess the statistical relevance of the cor-
relation we have analyzed 20 independent configurations at T = 0.575. We define as mobile
(immobile) those particles for which the normalized propensity of motion is larger (smaller)
than a threshold eh (el). Applying the same cut-off procedure to the average displacements
in the unstable modes Eim

i , we introduce an analogous separation in unstable and stable par-
ticles. The two threshold values eh and el could vary or even coincide without altering the
overall picture. With our choice el = 0.01, eh = 0.045, the fraction of particles belonging on
average to each subpopulation is around 25%.
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Fig. 3 – From top to bottom: radial distribution functions for mobile-unstable (MU), immobile-stable
(IS) and mobile-stable (MS) pairs of particles, compared with the total distribution function (dashed
lines) at T = 0.575 (see text for definitions). Data related to the IS and MU cases have been shifted
for clarity. Error bars represent one standard deviation.
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In fig. 3 we show the radial distribution functions at T = 0.575 for mobile-unstable (MU),
immobile-stable (IS) and mobile-stable (MS) pairs, compared with the total radial distribution
function g(r) = (g11(r)+2g12(r)+g22(r))/4. The significant enhancement of the first two coor-
dination shells in gMU (r) and gIS(r) clearly shows that particles with a high (low) propensity of
motion are surrounded, on average, by particles having large (small) displacements in the un-
stable modes of the closest saddle. Consistently with such correlation, the gMS(r) (identical to
gSM (r)) is lower than the total g(r). Moreover, as expected, the effect decreases by increasing
temperature. All this provides statistical evidence that dynamical heterogeneities have spatial
correlation with compact clusters of particles taking part in the unstable modes of nearby sad-
dles. Interestingly, fig. 3 also suggests that regions of immobile particles possess distinct struc-
tural properties, as evidenced by the deeper separation between the first and second shell of
neighbours and the enhanced splitting of the second peak in gIS(r) and in agreement with [21].

In summary, by performing MD simulations for a supercooled LJ mixture we have shown
that the relaxation channels associated with the unstable modes of saddles and quasi-saddles
sampled along the MD trajectory cross over from spatially extended to localized around Tc.
These localized unstable modes display non-trivial spatial correlations with the dynamical
heterogeneities identified by the propensity of motion [33] in the β-relaxation timescale. The
novel finding of such a correlation may represent a step ahead in the understanding of the
heterogeneous nature of the supercooled dynamics. Theoretical and computational tools that
have been developed for the study of the PES [34,35], may now reveal their utility in a direct
analysis of dynamical heterogeneities. We note that other observables, e.g. free volume, have
been recently addressed as possible origins of dynamical heterogeneities, but their spatial
correlation with local mobility has been either found to be poor [36] or investigated below
the glass transition [37]. In this perspective, our results point to a key role of saddles and
quasi-saddles in bridging the gap between the PES description of supercooled liquids and
approaches which focus more directly on the dynamics like the heterogeneity-based picture
proposed by Berthier et al. [19] or the mean-field MCT.
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