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Kurzfassung

In den letzten Jahrzehnten gab es erhebliche Fortschritte im Bereich verschieden-
ster Quantentechnologien. Speziell so-genannte hybride Quantensysteme, die von
den Vorteilen ihrer verschiedenen Bestandteile profitieren, sind vielversprechende
Kandidaten für zukünftige Anwendungen wie Quanteninformationsverarbeitung in
Quanten-Computern. Ein sich rasant entwickelndes Forschungsfeld solcher hy-
brider Quantensysteme basiert auf Resonator-Quantenelekrodynamik. In den let-
zten Jahren wurde insbesondere die kollektive Wechselwirkung eines Einmoden-
Resonators mit einem inhomogen verbreiterten Spinensemble untersucht, das in
einem Festkörper eingeschlossen ist. Wenn Resonator und Spinensemble stark
miteinander gekoppelt sind, wird Anregungsenergie kohärent zwischen den bei-
den Bestandteilen ausgetauscht. Dies ist eine der wichtigsten Voraussetzungen
für Quanteninformationsprotokolle. Solche Systeme sind daher erfolgsversprechend
für potentielle Realisierungen zukünftiger Festkörper-Quantenspeicher. Deren tat-
sächliche Verwendbarkeit in skalierbaren Quantenschaltkreisen erfordert allerdings
vollständige Kontrolle über die dynamische Entwicklung kollektiver Systemvari-
ablen, damit jede Operation in optimierter und robuster Art und Weise ausge-
führt werden kann. In dieser Diplomarbeit entwickeln wir eine Theorie zur opti-
malen Kontrolle der Resonator-Amplitude und des Zustandes des Spinensembles,
wobei wir niedrige Anregungsenergien des Systems im Limes des absoluten Tem-
peraturnullpunktes betrachten. Wir verwenden für diesen Zweck schwache Ein-
gangssignale des Resonators, welche aus einigen wenigen Fourier-Moden bestehen
und deren Form wir durch die optimale Wahl der Fourier-Koeffizienten bestim-
men. Zur Demonstration der Kontrollmöglichkeiten dieser optimierten Pulse über
das hybride Quantensystem schlagen wir ein konkretes Protokoll vor, bei dem mit-
tels zweier Schreibpulse zwei verschiedene logische Zustände in das Spinensemble
codiert und für eine gewisse Zeit gespeichert werden können. Der Auslesevorgang
erfolgt durch einen optimierten Lesepuls der, abhängig vom zuvor präparierten
Zustand, zeitlich getrennten Signale der Resonator-Amplitude innerhalb vorher
definierter Zeitfenster erzeugt. Außerdem zeigen wir, dass durch Superposition der
Schreibpulse kohärente Superpositionen der logischen Zustände erzeugt und aus-
gelesen werden können und wir untersuchen, in welchem Maße die entsprechenden
kollektiven, niederenergetischen Anregungen vor Dekohärenz bewahrt werden kön-
nen. Zusammengefasst stellen unsere Ergebnisse einen weiteren Schritt in Richtung
eines voll-kontrollierbaren Festkörper-Quantenspeichers dar.
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Abstract

Quantum technologies have made considerable progress in the past few decades.
Particularly promising candidates for future applications, such as quantum comput-
ing and quantum information processing, are hybrid-quantum-systems that benefit
from the advantages and strengths of their different constituents. A very actively
developing research field of hybrid-quantum-systems is based on cavity quantum
electrodynamics. Specifically, the collective interaction of a single-mode cavity
with an inhomogeneously broadened spin ensemble embedded in a solid state host
material has been studied intensively in the past few years. In the strong cou-
pling regime between the cavity and the whole spin ensemble the energy can be
coherently transferred between the different constituents, which is one of the key
prerequisite for quantum information protocols. These systems thus hold promise
for the realization of future solid state quantum memories. However, their practical
applicability in scalable quantum circuits requires full control over the dynamical
evolution of collective system variables for any operation to be performed in an
optimized and robust fashion. In this diploma thesis we develop an optimal control
theory for the dynamics of a single-mode cavity strongly coupled with an inhomo-
geneously broadened spin ensemble in the low excitation limit at zero temperature.
Employing functional pulse shaping we search for smooth, weak cavity input sig-
nals consisting of only a few Fourier-modes to control the time evolution of the
cavity-amplitude and the state of the spin ensemble. To demonstrate the optimal
control capability of this system we suggest a specific protocol to encode and store
two different logical states in the inhomogeneously broadened spin ensemble by
applying optimized writing pulses to the cavity. In order to distinguish between
the two respective states in a predefined subsequent time-window, the readout is
performed with a single optimized readout pulse with the goal of generating two
time-separated responses of the cavity-amplitude, depending on which state has
initially been prepared. Moreover, we demonstrate the possibility to create super-
positions of the encoded logical states by superimposing the writing signals and we
investigate to which degree the corresponding collective low energy excitations can
be preserved from decoherence. Our findings mark a further step towards a fully
controllable solid-state quantum memory.
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Chapter 1

Introduction

The research field of cavity quantum electrodynamics (QED) has its origin in the
early 1980s [1]. Since then cavity QED attracted much attention and until now it is
an actively developing area of research with many perspectives in future technolo-
gies such as quantum computing and quantum information processing [2–4]. For
that purpose different quantum-mechanical elements are brought together to form a
hybrid-quantum-system; more precisely, single atoms or whole ensembles of emitters
are coupled to the quantized electromagnetic field of a cavity [1–3, 5]. Such hybrid-
quantum-systems are designed to benefit from the advantages and strengths of their
different constituents [3]. Recently the collective interaction between a single-mode
cavity and an inhomogeneously broadened spin ensemble embedded in a solid state
host material [6–10] moved into the spotlight in this context. Such systems are
promising candidates for the realization of a solid-state quantum memory in scal-
able quantum circuits [2, 4, 11–15]. The cavity is envisioned to play the role of a
quantum bus with which the state of the spin ensemble can be controlled by inject-
ing external control pulses into the cavity. The spin ensemble, in turn, is considered
to serve as a memory for quantum information [2, 3]. The individual spins, or equiv-
alently emitters, interact with the cavity via electric or magnetic dipole coupling
[5]. However, in realistic ensemble-based systems, every individual spin is coupled
with a slightly different strength and transition-frequency with the cavity which is
due to a non-negligible interaction of the individual emitters with their surrounding
environment [16]. Typically, this inhomogeneous broadening is, in fact, the main
source of decoherence in ensemble-based systems and is considered to be the bottle-
neck for their applicability in quantum-computation protocols [8–10, 16, 17]. The
absorption and emission of photons by the ensemble is a collective process provided
the whole ensemble is confined within a volume, where all constituents experience
the same cavity-field [5, 18–20]. The coupling between the cavity mode and the
whole ensemble of 𝑁 emitters is then collectively enhanced by the factor

√
𝑁 [5].

Consequently, for a large enough ensemble the collective coupling can exceed all
decoherence processes of the system and the so-called strong coupling regime can be
reached [5, 6, 21]. In this strong coupling regime the exchange of energy between
the different constituents of the hybrid-quantum-system takes place in the form
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of collective Rabi-oscillations [22]: a cavity photon is coherently converted into a
collective excitation of the spin ensemble which is then collectively released back
to the cavity before being absorbed again [5, 6, 22]. The strong coupling regime
has been successfully observed experimentally for the specific physical system of
an inhomogeneously broadened ensemble of negatively charged nitrogen-vacancy
defects in diamond (NV-centers), magnetically coupled to a superconducting high-
Q single-mode microwave transmission-line resonator [6–8, 23, 24]. In this thesis
we present numerical results for this specific physical system, which is sketched in
Fig. 1.1. We emphasize, however, that the derivations and protocols we discuss
here are valid for any inhomogeneously broadened spin ensemble strongly coupled
to a single-mode cavity in the limit of zero temperature and in the low excitation
regime.

Figure 1.1: Sketch of a high-Q transmission-line resonator (gray line) providing a single cavity
mode strongly coupled with an inhomogeneously broadened ensemble of spins (NV-centers,
red arrows) embedded in a synthetic diamond (black) [25].

The technological applicability of hybrid-quantum-systems requires full control
over the dynamical evolution of collective system variables for any operation to be
performed in an optimized and robust fashion [26–28]. An unavoidable prerequisite
for a quantum system to be controllable is some kind of communication with an
external controllable quantity. Typically such a control is obtained by exposing
the hybrid-quantum-system to external control pulses [26]. In cavity-QED these
control pulses are simply injected into the cavity and the transmission of the cavity-
field is a measure for the physical processes occurring inside the coupled system.
Optimal control theories aim to find such control pulses which drive a quantum
system towards any desired target state with high accuracy and robustness against
experimental perturbations [26–28]. More precisely, optimal control pulses are char-
acterized such that if the transition from an initial state to a desired target state is
performed with an optimized pulse, an objective functional obtains an extremum
[26–28]. Such an objective functional is typically a quality statement of the transi-
tion process like minimal duration, maximal robustness or optimal fidelity [28, 29].
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In this thesis we demonstrate how to achieve optimal control over a single-mode cav-
ity strongly coupled to a large, inhomogeneously broadened spin ensemble (in our
case 𝑁 ≈ 1012) by controlling the evolution of the cavity-amplitude in the low ex-
citation regime [30], a quantity which is experimentally accessible. Specifically, we
apply the concept of functional pulse shaping to smooth, weak cavity input-signals
which are composed of only a few Fourier modes [28, 29, 31, 32]. In the frame-
work of the semi-classical approach the cavity-amplitude completely characterizes
the dynamical evolution of both the cavity-mode and the spin ensemble [23, 24].
Consequently, by controlling the cavity-amplitude of the coupled system we also
gain full control over the state of the spin ensemble, which is not directly assessable
[33]. The inhomogeneity in the transition-line of the ensemble causes, however, a
rather fast dephasing of collective excitations in the spin ensemble. Thus, the main
challenge for the optimal control pulses is to excite the spin ensemble in such a way,
that the collective emission of photons from an excited ensemble into the cavity is
fully controllable.
We further demonstrate the capability of this real-world physical system as a

storage device, which we show is very well controllable by smooth-optimal-control
pulses. Specifically we suggest a protocol how to write two exclusive states ”0” and
”1” into the inhomogeneously broadened spin ensemble by injecting weak optimized
control pulses into the cavity. Moreover, we show that, depending on which state
has initially been prepared, the respective response of the cavity-amplitude to an
optimized unique readout pulse (and consequently the transmission through the
cavity) can be controlled to be well distinguishable. More precisely, the cavity-
responses of state ”0” and ”1” will be controlled in such a way, that they appear
in predefined, well-separable time-bins. Fig. 1.2 depicts a sketch of this protocol.

Figure 1.2: Distinguishable, time-binned response of the cavity-amplitude 𝐴(𝑡) to a single
readout pulse in the time interval [𝑇2, 𝑇3] (gray region) whether the system was prepared in
state ”0” or in state ”1” in the preliminarily writing interval [𝑇1, 𝑇2].

The idea of time-binned cavity-responses is very similar to the concept of time-
binned quantum-bits (qubits), which have already been shown to be well applicable
in quantum-cryptography protocols and quantum-computing [34–39]. However, we
avoid the term qubit [40] on purpose, since the time-binned cavity-responses ”0”
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and ”1”, which we refer to as logical-states, are solely prepared by optimal control
pulses in the semi-classical regime. Nevertheless, the question if our protocol is
capable of encoding information into a system, which dynamical evolution is deter-
mined by quantum mechanics, seems worth investigating. We therefore address the
question how to create coherent superpositions of the two exclusive states ”0” and
”1” in terms of smooth optimal control pulses. Further we demonstrate that such
a superposition can be reconstructed to a very high accuracy solely by measuring
the cavity-response in a predefined readout-interval. We also investigate to which
degree the concept of smooth optimal control pulses in combination with the cavity
protection effect [10, 17, 23–25] can prevent such collective low energy excitations
from dephasing. This question is very important since it determines if the infor-
mation about a superposition of the states ”0” and ”1” can be stored inside the
hybrid-quantum-system before the readout is performed.
To conclude this introduction we want to emphasize that our findings mark a

further step towards a fully controllable solid-state quantum memory, applicable in
linear quantum networks [2, 3].



Chapter 2

Model

2.1 The Driven Tavis-Cummings Model

The physical system under study consists of a large inhomogeneously broadened
ensemble of two level atoms, or equivalently spins, strongly coupled via electric or
magnetic dipole coupling to a single-mode cavity with resonance frequency 𝜔𝑐 and
a dissipative loss rate 𝜅 [6, 41]. Specifically, we will align our choice of parameters
with a recent set of experiments [7, 8, 23, 24], which were found to be accurately
characterized by these parameters. The individual spins are assumed to be confined
within a small volume, where they experience the same cavity field, but at the
same time are spatially well separated from each other such that the dipole-dipole
interaction between the spins can be neglected. In realistic ensemble-based systems
the 𝑘th spin is individually coupled to the cavity-mode with a coupling strength 𝑔𝑘
and a transition-frequency 𝜔𝑘, which can be detuned from the mean transition-
frequency of the ensemble 𝜔𝑠 [7, 8, 16]. Every individual spin exhibits a dissipative
loss rate of 𝛾 [41]. The system is schematically presented in Fig. 2.1.

Figure 2.1: Schematics of a cavity (blue mirrors) of resonance frequency 𝜔𝑐 and a loss-rate
𝜅 providing a single cavity-mode (light-green) which is coupled to an ensemble of two-level-
atoms (red arrows) which obtain an individual transition frequency 𝜔𝑘 and a loss-rate 𝛾. 𝜂(𝑡)
denotes the input-field of the cavity.



6 Chapter 2 Model

It has been shown [8, 10, 20] that such a system can be modeled with the Tavis-
Cummings Hamiltonian [42]

ℋ = 𝜔𝑐 𝑎
†𝑎+

1

2

𝑁∑︁
𝑘=1

𝜔𝑘 𝜎
𝑧
𝑘 + i

𝑁∑︁
𝑘=1

[︀
𝑔𝑘 𝜎

−
𝑘 𝑎

† − 𝑔*𝑘 𝜎
+
𝑘 𝑎
]︀

−i
[︀
𝜂(𝑡) 𝑎†e−i𝜔𝑝𝑡 − 𝜂(𝑡)*𝑎 ei𝜔𝑝𝑡

]︀
(2.1)

where ~ = 1 and the following commutation relations are fulfilled:

[ 𝑎 , 𝑎† ] = 1, [𝜎+
𝑘 , 𝜎

−
𝑗 ] = 𝛿𝑘𝑗 𝜎

𝑧
𝑗 , [𝜎±

𝑘 , 𝜎
𝑧
𝑗 ] = ∓𝛿𝑘𝑗 𝜎±

𝑗 . (2.2)

The operators 𝑎 and 𝑎† are the standard creation and annihilation operators of
the single cavity-mode with resonance frequency 𝜔𝑐, respectively. 𝜎

𝑧
𝑘 and 𝜎±

𝑘 are,
respectively, the Pauli-𝑧 operator and the Pauli spin-flip operators for the 𝑘th spin,
which has a transition frequency 𝜔𝑘 and is coupled to the cavity with the coupling
strength 𝑔𝑘. The first and the second term in Eq. (2.1) represent the energy of
the bare cavity with resonance frequency 𝜔𝑐 and the energy of the 𝑁 unperturbed
spins of the ensemble with mean transition frequency 𝜔𝑠, respectively. The third
term describes the coupling between the cavity and each individual spin within
the ensemble: the expression 𝑔𝑘 𝜎

−
𝑘 𝑎

† converts an excitation of the 𝑘th spin into
a cavity photon with a rate given by the respective coupling strength 𝑔𝑘, while
𝑔*𝑘 𝜎

+
𝑘 𝑎 describes the opposite process. Typically in ensemble-based systems an in-

dividual spin is only weakly coupled to the cavity 𝑔𝑘 ≪ 𝜅, 𝛾 [41]. However, if the
whole ensemble interacts collectively with the cavity-mode the effective coupling

Ω =
√︁∑︀𝑁

𝑘=1 |𝑔𝑘|
2 is collectively enhanced by the factor

√
𝑁 , where 𝑁 is the num-

ber of spins in the ensemble [5, 43]. Provided the ensemble is large enough the
collective coupling Ω exceeds all decoherence rates of the system giving rise to the
strong coupling regime between the cavity-mode and the inhomogeneously broad-
ened ensemble as a whole [5, 8]. The relevant dynamical processes of the system
variables 𝑎(𝑡) and 𝜎±

𝑘 (𝑡) in terms of their expectation values occur at the time-scale
1/Ω, where Ω is the aforementioned collective coupling strength [22]. In the strong
coupling regime Ω ≪ 𝜔𝑐 is much smaller than the cavity-resonance frequency [22].
Thus, the Hamiltonian governed by Eq. (2.1) is written in the rotating wave approx-
imation, where fast counter rotating terms 𝜎−

𝑘 𝑎 and 𝜎+
𝑘 𝑎

† operating at time scales
1/𝜔𝑐 ≪ 1/Ω are neglected [42]. The last term in Eq. (2.1) specifies the coupling of
the cavity-mode 𝑎 (and 𝑎†) to a classical incoming field with a carrier- or probe-
frequency 𝜔𝑝 and an arbitrarily shaped, slowly varying envelope 𝜂(𝑡) compared to
the timescale 1/𝜔𝑝, which we assume of the same order as 1/𝜔𝑐 [20].

2.1.1 Equations of Motion for the Expectation Values

Following [8, 24] we start our analysis by deriving the equations of motion for
the cavity mode operator 𝑎(𝑡), the Pauli-lowering operator 𝜎−

𝑘 (𝑡) and the Pauli-𝑧
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operator 𝜎𝑧𝑘(𝑡) in the Heisenberg picture. In general the system under study is an
open quantum system and the coupling of the cavity field and the spin ensemble
to a thermal environment needs to be taken into account in the description of the
system dynamics [20]. At finite temperatures especially thermal photons leak into
the cavity and contribute to undesired noise in the system [20]. To correctly describe
this situation one would have to derive the corresponding Lindblad master equation
[20, 44]. However, we aim to derive the equations of motion for the expectation
values of 𝑎(𝑡), 𝜎−

𝑘 (𝑡) and 𝜎𝑧𝑘(𝑡) in the semi-classical regime in the limit of zero (or
negligible) temperature, where the thermal energy is considered to be much lower
than the energy of the unperturbed cavity 𝑘𝐵𝑇 ≪ ~𝜔𝑐 [24]. For this purpose it is
sufficient to included the dissipative cavity loss-rate 𝜅 and individual spin loss-rate
𝛾 phenomenologically in the Heisenberg equations of motion [41]

�̇� = i[ ℋ , 𝑎 ] − 𝜅 𝑎, �̇�−
𝑘 = i[ ℋ , 𝜎−

𝑘 ] − 𝛾 𝜎−
𝑘 , �̇�𝑧𝑘 = i[ ℋ , 𝜎𝑧𝑘 ], (2.3)

where we introduce the short-hand notation �̇�(𝑡) ≡ 𝑑 𝑜(𝑡)
𝑑𝑡

for the time-derivative
for time-dependent quantities 𝑜(𝑡). For simplicity we dropped the explicit time
dependence of the operators 𝑎(𝑡) ≡ 𝑎, 𝜎−

𝑘 (𝑡) ≡ 𝜎−
𝑘 and 𝜎𝑧𝑘(𝑡) ≡ 𝜎𝑧𝑘 in Eq. (2.3). It

should be noted that in the case of ensembles of NV-centers, which we consider in
this thesis, the spin relaxation time 𝑇1 ≈ 45 s greatly exceeds current experimental
time-scales of 100 ns−10 𝜇s and consequently no dissipative term is included in the
Heisenberg equation of motion for 𝜎𝑧𝑘(𝑡) [7]. Inserting the Hamiltonian governed
by Eq. (2.1) into Eq. (2.3) and making use of the commutation relations given by
Eq. (2.2) yields a set of coupled differential equations for the operators 𝑎(𝑡), 𝜎−

𝑘 (𝑡)
and 𝜎𝑧𝑘(𝑡). After transforming the cavity-mode operator 𝑎(𝑡) = �̃�(𝑡) e−i𝜔𝑝𝑡 and the
Pauli-lowering operator 𝜎−

𝑘 (𝑡) = �̃�−
𝑘 (𝑡) e−i𝜔𝑝𝑡 into the frame rotation with the carrier

frequency 𝜔𝑝, we find

˙̃𝑎(𝑡) = − [𝜅+ i∆𝑐] �̃�(𝑡) +
𝑁∑︁
𝑘=1

𝑔𝑘 �̃�
−
𝑘 (𝑡) − 𝜂(𝑡), (2.4)

˙̃𝜎−
𝑘 (𝑡) = − [𝛾 + i∆𝑘] �̃�

−
𝑘 (𝑡) + 𝑔*𝑘 �̃�(𝑡)𝜎𝑧𝑘(𝑡), (2.5)

�̇�𝑧𝑘(𝑡) = −2
[︀
𝑔𝑘 𝜎

−
𝑘 (𝑡) 𝑎†(𝑡) + 𝑔*𝑘 𝜎

+
𝑘 (𝑡) 𝑎(𝑡)

]︀
, (2.6)

where we introduced the detuning factors ∆𝑐 = 𝜔𝑐−𝜔𝑝 and ∆𝑘 = 𝜔𝑘−𝜔𝑝. Next we
treat the problem semi-classically by writing a set of equations for the expectation
values of Eq. (2.4), Eq. (2.5) and Eq. (2.6). To keep the number of excitations
in the system small compared to the size of the ensemble we only consider weak
input fields 𝜂(𝑡). This restriction allows us to make use of the Holstein-Primakoff
approximation ⟨𝜎𝑧𝑘(𝑡)⟩ ≈ −1 [30] and directly implies �̇�𝑧𝑘(𝑡) = 0. Further, we assume
the correlation function ⟨�̃�(𝑡)𝜎𝑧𝑘(𝑡)⟩ occurring from Eq. (2.5) to factorize according
to ⟨�̃�(𝑡)𝜎𝑧𝑘(𝑡)⟩ ≈ ⟨�̃�(𝑡)⟩ ⟨𝜎𝑧𝑘(𝑡)⟩ ≈ − ⟨�̃�(𝑡)⟩, where we used ⟨𝜎𝑧𝑘(𝑡)⟩ ≈ −1 in the last
step. With all these simplifications we arrive at the coupled equations of motion
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for the cavity-amplitude 𝐴(𝑡) ≡ ⟨�̃�(𝑡)⟩ and the amplitude of the 𝑘th spin-wave
𝐵𝑘(𝑡) =

⟨︀
�̃�−
𝑘 (𝑡)

⟩︀
in the 𝜔𝑝-rotating frame

�̇�(𝑡) = − [𝜅+ i∆𝑐]𝐴(𝑡) +
𝑁∑︁
𝑘=1

𝑔𝑘 𝐵𝑘(𝑡) − 𝜂(𝑡), (2.7)

�̇�𝑘(𝑡) = − [𝛾 + i∆𝑘]𝐵𝑘(𝑡) − 𝑔*𝑘 𝐴(𝑡). (2.8)

Eq. (2.7) and Eq. (2.8) provide a very accurate description of the system dynamics
in the low excitation regime [41, 44, 45] for which case a very good agreement
between theory and experiment has meanwhile been demonstrated [23, 24].

2.1.2 Continuous Limit of Emitter

The spins of the ensemble exhibit individual transition frequencies 𝜔𝑘 and individual
coupling strengths 𝑔𝑘 to the single-mode cavity. In the limit of a large number 𝑁 of
emitters we assume the individual spin transition frequencies 𝜔𝑘 to be continuously
distributed around the mean transition frequency of the ensemble 𝜔𝑠. It turns out
that such an inhomogeneously broadened transition line of the ensemble can be
described by a continuous spectral spin distribution [8]

𝜌(𝜔) =
1

Ω2

𝑁∑︁
𝑘=1

|𝑔𝑘|2 𝛿(𝜔 − 𝜔𝑘), (2.9)

which is normalized
∫︀∞
0
𝑑𝜔 𝜌(𝜔) = 1. The normalization constant Ω =

√︁∑︀𝑁
𝑘=1 |𝑔𝑘|

2

denotes the collectively enhanced effective coupling strength. With Eq. (2.9) the
transition to the continuous limit of frequencies can be performed for the following
class of frequency dependent functions

𝑁∑︁
𝑘=1

|𝑔𝑘|2 𝐹 (𝜔𝑘) → Ω2

∞∫︁
0

𝑑𝜔 𝜌(𝜔)𝐹 (𝜔). (2.10)

The explicit functional profile of 𝜌(𝜔) encounters the frequency dependent coupling
𝑔𝑘 of the individual spins, which, in addition to the spectral width of the ensemble,
highly affects the system’s coherence properties [6, 17]. The derivations in this
thesis are not restricted to a particular shape or width of the spectral spin density
𝜌(𝜔), they enter phenomenologically in our formalism.

2.1.3 Volterra Integral Solution for the Cavity-Amplitude

The individual spin-amplitude 𝐵𝑘(𝑡) =
⟨︀
�̃�−
𝑘 (𝑡)

⟩︀
can immediately be solved by first

transforming Eq. (2.8) into the frame 𝐵𝑘(𝑡) = �̃�𝑘(𝑡) e
−[𝛾+iΔ𝑘]·(𝑡−𝑇1), integrating in
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time and transforming back [24]

𝐵𝑘(𝑡) = 𝐵𝑘(𝑇1) e
−[𝛾+iΔ𝑘]·(𝑡−𝑇1) − 𝑔*𝑘

𝑡∫︁
𝑇1

𝑑𝜏 𝐴(𝜏) e−[𝛾+iΔ𝑘]·(𝑡−𝜏), (2.11)

where 𝐵𝑘(𝑇1) denotes the initial conditions for the state of the spin ensemble.
Once the cavity-amplitude 𝐴(𝑡) is known, the evolution of every individual spin-
amplitude in the ensemble is fully determined by Eq. (2.11). To derive the time
evolution of the cavity-amplitude 𝐴(𝑡) we follow [24] and start with eliminating
𝐵𝑘(𝑡) in Eq. (2.7) by substituting Eq. (2.11). The equation of motion for the
cavity-amplitude becomes a linear integro-differential equation and after going to
the continuous limit of frequencies with Eq. (2.10) we find

�̇�(𝑡) = − [𝜅+ i∆𝑐]𝐴(𝑡) − Ω2

∞∫︁
0

𝑑𝜔 𝜌(𝜔)

𝑡∫︁
𝑇1

𝑑𝜏 𝐴(𝜏) e−[𝛾+iΔ(𝜔)]·(𝑡−𝜏) − 𝜂(𝑡)

+
𝑁∑︁
𝑘

𝑔𝑘 𝐵𝑘(𝑇1) e
−[𝛾+iΔ𝑘]·(𝑡−𝑇1), (2.12)

where we used the continuous detuning factor ∆𝑘 = 𝜔𝑘 − 𝜔𝑝 → 𝜔 − 𝜔𝑝 = ∆(𝜔).
Still following [24] we can solve Eq. (2.12) in terms of a Volterra integral equation,
which is separable in different time intervals [𝑇𝑛, 𝑇𝑛+1]. In this thesis we will always
use the notation of indicating the respective interval [𝑇𝑛, 𝑇𝑛+1] by a superscript
(𝑛) in the time dependent quantities, see Fig. 2.2. To solve Eq. (2.12) for an
initially completely unexcited spin ensemble 𝐵𝑘(𝑇1) = 0, we first transform into the
frame 𝐴(𝑡) = 𝐴(𝑡) e−[𝜅+iΔ𝑐]·(𝑡−𝑇1), then we integrate in time and finally transform
back. After some algebra this procedure yields the solution of the cavity-amplitude
𝐴(𝑛)(𝑡), which takes the form of a Volterra integral equation

𝐴(𝑛)(𝑡) =

𝑡∫︁
𝑇𝑛

𝑑𝜏 𝒦(𝑡− 𝜏)𝐴(𝑛)(𝜏) + 𝒟(𝑛)(𝑡) + ℱ (𝑛)(𝑡), (2.13)

where 𝐴(𝑛)(𝑡) depends on all its previous values 𝐴(𝑛)(𝑇𝑛 ≤ 𝜏 ≤ 𝑡) [24]. This non-
Markovian feedback is established by the kernel function 𝒦(𝑡− 𝜏)

𝒦(𝑡− 𝜏) = Ω2

∞∫︁
0

𝑑𝜔 𝜌(𝜔)
e−[𝛾+iΔ(𝜔)]·(𝑡−𝜏) − e−[𝜅+iΔ𝑐]·(𝑡−𝜏)

[𝛾 + i𝜔] − [𝜅+ i𝜔𝑐]
, (2.14)

which does only depend on time-differences 𝑡− 𝜏 and can thus be efficiently evalu-
ated numerically. The driving term 𝒟(𝑛)(𝑡)

𝒟(𝑛)(𝑡) = −
𝑡∫︁

𝑇𝑛

𝑑𝜏 𝜂(𝑛)(𝜏) e−[𝜅+iΔ𝑐]·(𝑡−𝜏), (2.15)
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includes an arbitrarily shaped, weak incoming-pulse 𝜂(𝑛)(𝑡), defined in the time
interval [𝑇𝑛, 𝑇𝑛+1]. The memory function ℱ (𝑛)(𝑡)

ℱ (𝑛)(𝑡) =

⎧⎨⎩ 𝐴(𝑛−1)(𝑇𝑛) e−[𝜅+iΔ𝑐]·(𝑡−𝑇𝑛)

+ Ω2

∞∫︁
0

𝑑𝜔 𝜌(𝜔)
e−[𝛾+iΔ(𝜔)]·(𝑡−𝑇𝑛) − e−[𝜅+iΔ𝑐]·(𝑡−𝑇𝑛)

[𝛾 + i𝜔] − [𝜅+ i𝜔𝑐]
· ℐ(𝑛)(𝜔)

⎫⎬⎭ (2.16)

takes care of the non-Markovian feedback to the cavity-mode 𝐴(𝑛)(𝑡) from the
former time interval [𝑇𝑛−1, 𝑇𝑛] with the recursive expression

ℐ(𝑛)(𝜔) = ℐ(𝑛−1)(𝜔) e−[𝛾+iΔ(𝜔)]·(𝑇𝑛−𝑇𝑛−1) +

𝑇𝑛∫︁
𝑇𝑛−1

𝑑𝜏 𝐴(𝑛−1)(𝜏) e−[𝛾+iΔ(𝜔)]·(𝑇𝑛−𝜏), (2.17)

and the initial conditions ℐ(0)(𝜔) = ℐ(1)(𝜔) = 0 ↔ 𝐵𝑘(𝑇1) = 0 and 𝐴(0)(𝑡 < 𝑇1) = 0.

As schematically depicted in Fig. 2.2 the cavity-amplitude 𝐴(𝑛)(𝑡) of the 𝑛th in-
terval can be evaluated solely from the corresponding input pulse 𝜂(𝑛)(𝑡) and the
cavity-amplitude of the previous interval 𝐴(𝑛−1)(𝑡). This will allow us to perform
numerical calculations for arbitrarily long time-scales while keeping the time-steps
small enough. Moreover, the separation of the cavity-amplitude in different time-
intervals enables us to treat the dynamical evolution of the cavity-amplitude sepa-
rately for successive, subsequent input pulses.

Figure 2.2: Schematics of the time-divisions of the cavity-amplitude 𝐴(𝑛)(𝑡) defined by
Eq. (2.13). The input field 𝜂(𝑛)(𝑡) is applied to the system in the time interval [𝑇𝑛, 𝑇𝑛+1]
and drives the corresponding cavity-amplitude 𝐴(𝑛)(𝑡) (indicated by vertical blue arrows). The
non-Markovian feedback from former time intervals [𝑇𝑛−1, 𝑇𝑛] is indicated by horizontal green
arrows and enters the formalism via Eq. (2.16).
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2.1.4 Specific Physical System

Throughout this thesis we present numerical results considering one specific physical
realization based on an inhomogeneously broadened ensemble of negatively charged
nitrogen-vacancy defects (NV-centers) in diamond, magnetically coupled to a high-
Q superconducting single-mode microwave transmission-line resonator (see Fig. 1.1)
[6–8, 23, 24]. However, the derivations and protocols suggested in this thesis are
not restricted to this particular choice.
The ground state of an individual NV-center is a spin one triplet (𝑆 = 1) where

the degenerate𝑚 = ±1 states are vacuum shifted from the𝑚 = 0 state by 2.88GHz
[16, 46]. One of the two 𝑚 = ±1 states is Zeeman-tuned into resonance with the
cavity resonance frequency 𝜔𝑐, while the other one is far off-resonance giving rise
to a small dispersive contribution only. Therefore, the individual NV-center can
effectively be described by a two-level-system coupled to the single-mode cavity [8].
Specifically we consider a microwave cavity with resonance frequency 𝜔𝑐 = 2.6915

GHz and a dissipative damping rate of 𝜅 = 2𝜋 ·0.8MHz. The individual dissipative
spin loss-rate 𝛾 ≪ 𝜅 is much smaller than the cavity dissipation so that the effect
of spin dissipation can be neglected on the time scales of present experiments ∆𝑡 ≈
100 ns − 10 𝜇s. The coupling strength of an individual NV-center to the single-
mode cavity 𝑔𝑘 ≈ 2𝜋 · 12Hz ≪ 𝜅 is rather weak but by coupling a large ensemble
of 𝑁 ≈ 1012 NV-centers to the cavity, the collectively enhanced effective coupling
strength Ω ≈ 𝑔 ·

√
𝑁 ≈ 2𝜋 · 10MHz gives rise to the strong coupling regime [8].

In fact, an effective coupling strength of Ω = 2𝜋 · 8.56MHz has been achieved in
the experiment [7, 8, 23, 24]. However, the transition-line of a whole ensemble of
NV-centers is inhomogeneously broadened around the mean transition frequency
𝜔𝑠 because individual spins experience different local environments [7, 8, 16]. This
inhomogeneously broadened transition-line, which is the main source of decoherence
in ensemble based systems [10, 17, 23], is modeled by a spectral density distribution
𝜌(𝜔) of finite width by Eq. (2.9) [8]. Almost perfect agreement of theory and
experiment has been achieved by modeling 𝜌(𝜔) by a q-Gaussian distribution [8,
23, 24]

𝜌(𝜔) = 𝒩 ·
[︂
1 − (1 − 𝑞)

(𝜔 − 𝜔𝑠)
2

∆2

]︂ 1
(1−𝑞)

, (2.18)

where the factor 𝑞 = 1.39 defines the shape of the distribution, 𝛾𝑞 = 2∆

√︂
2𝑞 − 2

2𝑞 − 2
is the full width at half maximum and the constant 𝒩 ensures the normalization
of the spin density distribution. Fig. 2.3 depicts the q-Gaussian spin distribution
with a full width at half maximum 𝛾𝑞 = 2𝜋 · 9.4MHz, which we use in this thesis.
We further only consider the resonance case 𝜔𝑐 = 𝜔𝑠 = 𝜔𝑝 of the cavity resonance
frequency, the ensemble mean frequency and the carrier frequency.
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Figure 2.3: The normalized spectral spin distribution 𝜌(𝜔) defined by Eq. (2.9) of an inho-
mogeneously broadened spin ensemble modeled by a q-Gaussian distribution Eq. (2.18) of full
width at half maximum 𝛾𝑞.

In Fig. 2.4 we show the time-evolution of the cavity-amplitude given by Eq. (2.13)

for an initially completely relaxed system 𝐴(1)(0) = 0 and 𝐵
(1)
𝑘 (0) = 0 probed with

a constant driving pulse 𝜂(1)(𝑡) = 𝜂0 in the interval [𝑇1, 𝑇2] = [0 𝜇s, 0.9 𝜇s], which
is switched off 𝜂(2)(𝑡) = 0 in the subsequently interval [𝑇2, 𝑇3] = [0.9 𝜇s, 1.2 𝜇s]. We
consider the parameters from above.
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Figure 2.4: The evolution of the cavity-amplitude 𝐴(𝑡) (green) defined by Eq. (2.13) in
the resonance case 𝜔𝑠 = 𝜔𝑐 = 𝜔𝑝 for an initially completely relaxed system 𝐴(0) = 0 and
𝐵𝑘(0) = 0. The vertical cut separates the first interval [𝑇1, 𝑇2] = [0 𝜇s, 0.9 𝜇s], where a
constant pulse 𝜂(𝑡) = 𝜂0 is applied, from the second interval [𝑇2, 𝑇3] = [0.9 𝜇s, 1.2 𝜇s], where
the pulse is switched off.

After an initial oscillatory behavior in the interval [0 𝜇s,≈ 0.5 𝜇s] the cavity-

amplitude depicted in Fig. 2.4 settles at a stationary plateau of |𝐴(1)
𝑠𝑡 (𝑡)|2 ≈ 0.2.

As soon as the driving field is turned off at 𝑇2 = 0.9 𝜇s we observe damped Rabi-
oscillations of the cavity-amplitude, where the first peak is larger than the station-
ary amplitude before the switch off. This overshoot stems from the energy, which
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is transferred into the spin ensemble during the interval [𝑇1, 𝑇2]. After the driving
field is switched off this energy is collectively released back into the cavity such
that the cavity-amplitude obtains a maximum. Subsequently the cavity-photons
are reabsorbed again by the ensemble, which is denoted by the successive minimum
of the cavity-amplitude. This process repeats itself but without the driving field,
the cavity-amplitude in the undriven, second interval [𝑇2, 𝑇3] experiences a rather
fast decay with the decoherence rate Γ ≈ 2𝜋 · 3MHz, which is mainly caused by
the inhomogeneous broadening of the spin ensemble [24].

2.1.5 Stationary Transmission Analysis

When the cavity is driven with a constant pulse 𝜂(𝑡) = 𝜂0 for long enough the cavity-
amplitude will settle at a stationary value due to simultaneous gain (by the driving
pulse) and loss (by different decoherence processes). This steady state solution
can be evaluated by setting �̇�(𝑡) = 0 and �̇�𝑘(𝑡) = 0 in Eq. (2.7) and Eq. (2.8),
respectively. The stationary cavity-amplitude as a function of the driving field
carrier frequency 𝜔𝑝 reads

𝐴s𝑡(𝜔𝑝) =
i 𝜂0

𝜔𝑐 − 𝜔𝑝 − i𝜅− Ω2
∞∫︀
0

𝑑𝜔 𝜌(𝜔)
𝜔−𝜔𝑝−i 𝛾

. (2.19)

The stationary transmitted probe field 𝜂T(𝜔𝑝) = 𝜅𝐴s𝑡(𝜔𝑝) is directly proportional
to the cavity-amplitude [8, 10, 17]. The complex valued transmission function
𝑇 (𝜔𝑝) = 𝜂T(𝜔𝑝)/𝜂0, normalized to the input pulse amplitude 𝜂0, thus takes the
form

𝑇 (𝜔𝑝) =
i𝜅

𝜔𝑐 − 𝜔𝑝 − i𝜅− Ω2
∞∫︀
0

𝑑𝜔 𝜌(𝜔)
𝜔−𝜔𝑝−i 𝛾

. (2.20)

Fig. 2.5 depicts the stationary transmission through the cavity 𝑇 (𝜔𝑝) for our spin-
cavity system depicted in Fig. 1.1. The transmission spectrum shows two well
separated resonance peaks of characteristic width Γ located at 𝜔𝑐 ± Ω𝑅, where Ω𝑅

is the Rabi-frequency of the system. In a simplified picture the cavity-mode and
the spin ensemble can be thought of as two resonantly coupled harmonic oscillators
of resonance frequencies 𝜔𝑐 = 𝜔𝑠 [5, 30]. If there was no coupling 𝑔𝑘 = 0 between
the spins and the cavity, only one peak of width 2𝜅 would be visible at 𝜔𝑐, that is
the bare transmission through the cavity. In the strong coupling regime, however,
the eigenstates of the cavity-mode and the inhomogeneously broadened spin en-
semble hybridize into so-called polaritonic-states, which obey an avoided crossing
of their eigen-energies 𝜔𝑐±Ω𝑅 at resonance [22]. The two resonance peaks depicted
in Fig. 2.5 exactly resemble this level splitting and are consequently referred to as
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polaritonic peaks [7, 8]. The broadening Γ of the resonance peaks denotes the total
decoherence rate of the system, which is mainly caused by the spectral width 𝛾𝑞
of the inhomogeneously broadened spin ensemble but also by the cavity losses 𝜅
and the individual spin losses 𝛾 [8, 10, 17]. Thus, in realistic systems the inho-
mogeneously broadened transition line of the ensemble affects the ability to reach
the strong coupling regime [9, 10, 17, 21]. We can see, however, that in our case
the level-splitting exceeds the peaks’ broadening giving rise to Rabi-oscillations of
the cavity-amplitude of frequency Ω𝑅 which are damped by the decoherence rate
Γ as can be seen in Fig. 2.4 after the switch-off of the constant driving field at
𝑇2 [5, 17, 24]. With the current set of parameters we have Γ ≈ 2𝜋 · 3.3MHz and
Ω𝑅 = 2𝜋 · 9.73MHz [24].
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Figure 2.5: Stationary transmission 𝑇 (𝜔𝑝) defined by Eq. (2.20) of a constant probe field
transmitted through a single-mode cavity strongly coupled to an inhomogeneously broadened
ensemble of NV-centers. The two resonance peaks are separated by 2 · Ω𝑅, where Ω𝑅 is the
Rabi-frequency, and their characteristic width is denoted by Γ. The system-parameters are the
same as in Fig. 2.4.

2.1.6 Collective Variables and Dephasing

The cavity-amplitude 𝐴(𝑡) described by Eq. (2.13) is a complete description of
the dynamical evolution of the system under study in the low excitation regime
[23, 24]. Once 𝐴(𝑡) is known we can in principle evaluate the evolution of every
individual spin-wave amplitude with Eq. (2.11). Assuming an initially fully relaxed
spin ensemble 𝐵𝑘(𝑇1) = 0 we find the relation

𝐵𝑘(𝑡) = −𝑔*𝑘

𝑡∫︁
𝑇1

𝑑𝜏 𝐴(𝜏) e−[𝛾+iΔ𝑘]·(𝑡−𝜏), (2.21)
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where 𝑔*𝑘 and ∆𝑘 = 𝜔𝑘 − 𝜔𝑝 are the respective individual spin coupling strength
and the detuning from the carrier frequency 𝜔𝑝. The collective counter-parts to the

cavity-amplitude 𝐴(𝑡) are, however, the collective Dicke-modes defined by 𝑆+ ≈
1
Ω

∑︀𝑁
𝑘=1 𝑔

*
𝑘 𝜎

+
𝑘 and 𝑆− ≈ 1

Ω

∑︀𝑁
𝑘=1 𝑔𝑘 𝜎

−
𝑘 [5, 10, 20, 43]. Following [24] we can evaluate

the expectation value of the collective downward ladder operator in the 𝜔𝑝-rotating
frame. For an initially fully relaxed spin ensemble 𝐵𝑘(𝑇1) = 0 we find

𝑆−(𝑡) =
1

Ω

𝑁∑︁
𝑘

𝑔𝑘 𝐵𝑘(𝑡),

= − 1

Ω

𝑁∑︁
𝑘

|𝑔𝑘|2
𝑡∫︁

𝑇1

𝑑𝜏 𝐴(𝜏) e−[𝛾+iΔ𝑘]·(𝑡−𝜏),

= −Ω

∞∫︁
0

𝑑𝜔 𝜌(𝜔)

𝑡∫︁
𝑇1

𝑑𝜏 𝐴(𝜏) e−[𝛾+iΔ(𝜔)]·(𝑡−𝜏), (2.22)

where we first identify 𝐵𝑘(𝑡) ≡
⟨︀
�̃�−
𝑘 (𝑡)

⟩︀
, substitute Eq. (2.21) and finally apply the

transition to the continuous limit with Eq. (2.10). Within the Holstein-Primakoff
approximation ⟨𝜎𝑧𝑘⟩ ≈ −1 [30], which we used in our derivations, the collective
inversion 𝑆𝑧 = 1

2

∑︀𝑁
𝑘=1 ⟨𝜎𝑧𝑘⟩ ≈ −𝑁

2
is a constant of motion and the collective spin

is restricted to the vicinity of the south pole of the Bloch-sphere [43]. For the
case of a purely real-valued driving-pulse 𝜂(𝑡) the cavity-amplitude 𝐴(𝑡) is also
purely real-valued if the resonance condition 𝜔𝑝 = 𝜔𝑐 = 𝜔𝑠 is satisfied and the spin-
distribution 𝜌(𝜔) is symmetrical around 𝜔𝑠. Consequently, the collective spin-wave
amplitude 𝑆−(𝑡) = 𝑆𝑥(𝑡) defined by Eq. (2.22) is purely real, since the imaginary
part is an odd function with respect to 𝜔𝑠 and thus cancels by the 𝜔-integration
[24]. In Fig. 2.6 we present the collective spin-wave amplitude 𝑆𝑥(𝑡) together with
the cavity-amplitude 𝐴(𝑡), taken from the reference case Fig. 2.4.
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Figure 2.6: The same as Fig. 2.4 except for the additionally presented spin-wave amplitude
𝑆𝑥(𝑡) = 𝑆−(𝑡) (red) defined by Eq. (2.22).
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The cavity-amplitude and the collective spin-wave amplitude undergo collec-
tive but phase-shifted Rabi-oscillations after the driving field is switched off at
𝑇2 = 0.9 𝜇s. The energy is coherently exchanged between the cavity-amplitude
and the collective spin-wave amplitude and, moreover, an excitation can solely be
present in the cavity (maxima of 𝐴(𝑡)) or in a collectively excited state of the spin
ensemble (maxima of 𝑆𝑥(𝑡)). These oscillations illustrate the collective absorption
and emission processes of a cavity photon by the ensemble [5, 24]. However, the
inhomogeneity in the transition-line of the ensemble causes a rather fast dephasing
of the collective quantities 𝐴(𝑡) and 𝑆±(𝑡). After four to five oscillations, which
last for a time-interval of 200 ns, the collective excitations are completely gone.
This dephasing process can be understood by the dynamics of the individual

spin-wave amplitudes 𝐵𝑘(𝑡). From Eq. (2.21) we can learn, that every individual
spin-amplitude uniformly depends on 𝐴(𝑡) but is weighted by its own coupling
strength 𝑔*𝑘 and is modulated with its own oscillatory phase e−iΔ𝑘·(𝑡−𝜏). For the
case of the cavity-amplitude 𝐴(𝑡) depicted in Fig. 2.4 we present in Fig. 2.7(a) the
evolution of every individual spin-wave amplitude ⟨𝜎𝑥𝑘(𝑡)⟩.

(a) All spin-wave amplitudes
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0.00

-0.04

0.50

0.25
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0.00

-0.04

(b) Selected spin-waves

Figure 2.7: (a): The evolution of every individual spin-wave amplitude ⟨𝜎𝑥𝑘(𝑡)⟩ = Re[𝐵𝑘(𝑡)]
defined in Eq. (2.21) (surface-color) with transition frequency 𝜔𝑘 (vertical axis) during the
time-interval [0, 1.6 𝜇s] (horizontal axis) based on the evolution of the cavity-amplitude 𝐴(𝑡)
taken from Fig. 2.4. The dotted, dashed and dotted-dashed horizontal cuts correspond to
the three selected spin-wave amplitudes depicted in (b) from top to bottom with transition
frequencies 𝜔𝑘1 ≈ 2𝜋 · 2.7GHz, 𝜔𝑘2 = 𝜔𝑐 = 2𝜋 · 2.6915GHz and 𝜔𝑘3 ≈ 2𝜋 · 2.68GHz.
The vertical cuts denote the end of the constant driving pulse 𝜂0 at 𝑡 = 0.9 𝜇s in all panels,
respectively.

In contrast to the collective quantity 𝑆𝑥(𝑡) = 𝑆−(𝑡), the individual spin-wave
amplitudes 𝐵𝑘(𝑡) obtain both, a real-part corresponding to ⟨𝜎𝑥𝑘(𝑡)⟩ = Re[𝐵𝑘(𝑡)]
and an imaginary part corresponding to ⟨𝜎𝑦𝑘(𝑡)⟩ = −Im[𝐵𝑘(𝑡)]. Fig. 2.7 shows that
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the inhomogeneous broadening forces neighboring spins to run out of phase and
after the driving field is switched off (after the vertical cut) the collective quantities
disappear due to destructive interference. The quasi-continuum of all 𝑁 ≈ 1012

inhomogeneously distributed and hence de facto incommensurable transition fre-
quencies 𝜔𝑘 → 𝜔 consequently prevents a rephasing of all the spins (or at least
of a significant part of them) and a collective reemission of the stored energy into
the cavity will not take place on realistic time-scales. However, even long after the
collective quantities have completely vanished, there can still be a huge amount
of energy stored inside the spin ensemble as is emphasized in Fig. 2.7(b) for three
selected individual spin-wave amplitudes. Remarkably, the system does not lose its
energy anymore via the cavity and, as a consequence, the spin-wave excitations are
very well preserved from dissipation. In cases where the inhomogeneous broaden-
ing can be controlled (which however is not the case for the studied setup with the
NV-centers), the dephasing of the spin-wave amplitudes may be reversed, giving
rise to controlled revivals of the collective variables 𝐴(𝑡) and 𝑆±(𝑡). Such a system
is also considered to be a promising candidate for the realization of a solid state
quantum memory with storage-times limited only by the individual spin loss-rates
𝛾 [4, 47].
In this thesis we propose a contrary approach for the realization of a solid state

memory device solely based on the coherence properties of the hybrid-quantum-
system under study, which we describe linearly by the Volterra integral formalism.





Chapter 3

Methods

3.1 Optimal Control with the Volterra Integral

Equation

Coherent control of quantum systems is a very active research field since it paves
the way to efficiently make quantum effects available in technological applications
[27]. Controllable hybrid-quantum-systems can be used for high precision sensors,
are promising candidates for quantum information applications and are used to test
the nature of the underlying physics [2–4, 11–15, 29, 34–40, 47–51].
An unavoidable prerequisite for a quantum system to be controllable is some kind

of communication with a tunable external quantity [27]. This can be achieved, for
instance, by dipole coupling between the electric (or magnetic) dipole operator of
a quantum system with a tunable external electric (or magnetic) field [27]. In the
case of the driven Tavis-Cummings model [42], which we consider in this thesis, the
cavity-mode 𝑎(𝑡) can be controlled by the input-field 𝜂(𝑡), where the interaction is
expressed by the term 𝜂(𝑡) 𝑎† ei𝜔𝑝𝑡 + 𝜂*(𝑡) 𝑎 e−i𝜔𝑝𝑡 in Eq. (2.1). Further, excitations
can be coherently transferred between the cavity-mode and the spin ensemble due
to the strong collective coupling between these two quantum systems. This is a key
prerequisite for quantum information protocols, which makes these systems very
attractive: The cavity plays the role of a quantum bus for the input and output
of energy, or information, whereas the ensemble is intended to store the absorbed
energy in the form of a collective excitation [11–15].
Optimal control theories enable experimentalists to drive quantum systems into

any desired state with high accuracy and robustness against different kinds of per-
turbations and consequently promote technological advances in the use of quantum
systems [26–28]. New technologies, in turn, enable proof of concept experiments
for a variety of theories and their results lead to a better understanding of the un-
derlying physical processes, which enables more detailed and sophisticated optimal
control schemes. The interplay of scientific research and technological progress in
optimal control theory is thus very important [27]. The goal of optimal control
theories is to search for control pulses 𝜂(𝑡) which allow experimentalists to drive
controllable quantum systems towards any desired target state in an optimized
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and robust fashion [26–28]. More precisely, optimal control pulses are character-
ized such that if the transition from an initial state to a desired target state is
performed with an optimized pulse 𝜂o𝑝𝑡(𝑡), an objective functional ℱ [𝜂] obtains an
extremum [26–28]

𝛿ℱ [𝜂]

𝛿𝜂

⃒⃒⃒⃒
𝜂o𝑝𝑡

= 0.

Such an objective functional is in general a quality statement of the transition
process as for instance minimal duration of the transition, maximal robustness
against experimental imperfections or optimal fidelity of the acquired target state
[28, 29]. Multiple control pulse in multiple time intervals may contribute to a single
functional and multiple constraints may be satisfied simultaneously.
However, considering ensemble-based systems of an enormous size (in our case

𝑁 ≈ 1012) existing optimal control procedures reach their limits [27, 32]. Especially
the evaluation and the control over the evolution-operator and the full state-vector
is difficult to realize [27]. As we will show in the following, the cavity-amplitude
𝐴(𝑡) ≡ ⟨𝑎(𝑡)⟩ in systems consisting of a single-mode cavity strongly coupled to an
inhomogeneously broadened spin ensemble in the low excitation regime can effi-
ciently be controlled by smooth optimal control pulses [28, 29] within the linear
Volterra integral framework [23, 24]. Since the cavity-amplitude uniquely deter-
mines the evolution of the spin-wave amplitudes of the spin ensemble in this linear
regime [23, 24] we consequently achieve control over the entire hybrid-quantum-
system under study.

3.1.1 Harmonic Control Field

The capability of optimal control theories is remarkable [26–29, 31, 32]. However,
some of the optimal control pulses may obtain a large number of parameters or a
complicated structure, which makes it difficult, in addition to possible experimental
challenges in the pulse preparation, to determine the essential parts of the pulses [28,
29]. The idea we are putting forward here is to optimally control the time evolution
of the cavity-amplitude 𝐴(𝑡) with weak cavity input signals 𝜂(𝑡), which are solely
composed of Fourier modes [28, 29, 31, 32]. Despite their analytical functionality
such pulses turned out to be very robust against experimental imperfections and,
additionally, obtain a simple and smooth shape [28, 29]. Their weak intensities, in
turn, have the benefit of resulting in purely linear dynamics of the cavity-amplitude,
which can be described with the Volterra integral formalism. This is in contrast to
other non-linear control-techniques of spin ensemble-based systems like 𝜋-pulses,
Hahn-echo or controlled reversible inhomogeneous broadening [4, 33, 39, 47–51].
Since the cavity mode 𝐴(𝑛)(𝑡) is defined as a sequential function in time by

Eq. (2.13) [23, 24] we can easily construct subsequent control intervals. We es-
pecially think of a writing section followed by a readout section. The superscript
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(𝑛) indicates the 𝑛th time interval [𝑇𝑛, 𝑇𝑛+1], see Fig. 2.2 for details. With this we
define the sequential harmonic optimal control pulses by

𝜂(𝑛)(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑁𝑛∑︀
𝑘=1

𝛼
(𝑛)
𝑘 sin

(︁
𝑘 𝜔

(𝑛)
0 (𝑡− 𝑇𝑛)

)︁
⏟  ⏞  

𝜂
(𝑛)
𝑘 (𝑡)

𝑡 ∈ [𝑇𝑛, 𝑇𝑛+1]

0 otherwise

(3.1)

where 𝑁𝑛 is the number of harmonic components and 𝜔
(𝑛)
0 is the fundamental

frequency of the driving field in the 𝑛th time interval. The Fourier-coefficients 𝛼
(𝑛)
𝑘

describe the relative amplitude of the 𝑘th harmonic component 𝜂
(𝑛)
𝑘 (𝑡) of the optimal

control pulse, respectively.

It should be noted that, because of the linear regime of the Volterra integral
equation, an arbitrarily shaped pulse of the form 𝜂(𝑛)(𝑡) can be rescaled by a global
factor inducing a corresponding rescaling of the cavity-amplitude 𝐴(𝑛)(𝑡) [24]. Con-
sequently, all control pulses 𝜂(𝑛)(𝑡) can be evaluated in arbitrary units and the limit
of weak intensities can always be reached by rescaling the solutions afterward.

3.1.2 Harmonic Expansion of the Cavity-Amplitude

The Volterra integral equation Eq. (2.13) in the time interval [𝑇1, 𝑇2] for an initially
empty cavity 𝐴(0)(𝑡 ≤ 𝑇1) = 0 and an initially fully unexcited spin ensemble 𝐵𝑘(𝑡 ≤
𝑇1) = 0 takes the form

𝐴(1)(𝑡) =

𝑡∫︁
𝑇1

𝑑𝜏 𝒦(𝑡− 𝜏)𝐴(1)(𝜏) + 𝒟(1)(𝑡) (3.2)

with the kernel function 𝒦(𝑡− 𝜏) and the driving term 𝒟(1)(𝑡) given by Eq. (2.14)
and Eq. (2.15), respectively. In this section we work out the details of how the

harmonic ansatz for the driving field 𝜂(1)(𝑡) =
∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝜂

(1)
𝑘 (𝑡) given by Eq. (3.1)

affects the description of the cavity-amplitude 𝐴(1)(𝑡), if we only consider this single
time interval [𝑇1, 𝑇2]. Substituting the harmonic ansatz of the driving field 𝜂(1)(𝑡)
into the driving term 𝒟(1)(𝑡) yields a linear separation in terms of the Fourier

coefficients 𝛼
(1)
𝑘

𝒟(1)(𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 𝑑

(1)
𝑘 (𝑡), (3.3)
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where the 𝑘th component of the driving term 𝑑
(1)
𝑘 (𝑡) is defined similar to Eq. (2.15)

but only includes the 𝑘th component of the driving field 𝜂
(1)
𝑘 (𝑡)

𝑑
(𝑛)
𝑘 (𝑡) = −

𝑡∫︁
𝑇𝑛

𝑑𝜏 𝜂
(𝑛)
𝑘 (𝜏) e−[𝜅+iΔ𝑐]·(𝑡−𝜏), (3.4)

generally presented here for the 𝑛th time interval. We then make the ansatz of
linearly expanding the cavity-amplitude in terms of the Fourier-coefficients 𝛼

(1)
𝑘

𝐴(1)(𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 𝑎

(1)
𝑘 (𝑡). (3.5)

Inserting Eq. (3.3) and Eq. (3.5) into the Volterra integral solution of the cavity-
amplitude governed by Eq. (3.2) yields

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 𝑎

(1)
𝑘 (𝑡) =

𝑡∫︀
𝑇1

𝑑𝜏 𝒦(𝑡− 𝜏)
∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝑎

(1)
𝑘 (𝜏) +

∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝑑

(1)
𝑘 (𝑡), (3.6)

which can be rearranged with respect to the coefficients 𝛼
(1)
𝑘

0 =
∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘

{︃
𝑡∫︀
𝑇1

𝑑𝜏 𝒦(𝑡− 𝜏) 𝑎
(1)
𝑘 (𝜏) + 𝑑

(1)
𝑘 (𝑡) − 𝑎

(1)
𝑘 (𝑡)

}︃
. (3.7)

Eq. (3.7) has to be satisfied for every (arbitrary) choice of the coefficients 𝛼
(1)
𝑘 .

This can only be true if the expression in the curly brackets vanishes separately for
every 𝑘. Hence the 𝑘th component of the 𝑁1 cavity-amplitudes 𝑎

(1)
𝑘 (𝑡) must itself

be described by the following Volterra integral equation

𝑎
(1)
𝑘 (𝑡) =

𝑡∫︁
𝑇1

𝑑𝜏 𝒦(𝑡− 𝜏) 𝑎
(1)
𝑘 (𝜏) + 𝑑

(1)
𝑘 (𝑡), 𝑘 ∈ {1, 2, . . . , 𝑁1}, (3.8)

which, separately for every 𝑘, describes the dynamics of an initially empty cavity
𝑎
(1)
𝑘 (𝑇1) = 0 and an initially unexcited spin ensemble, driven only with the 𝑘th com-

ponent 𝜂
(1)
𝑘 (𝑡) = sin(𝑘 𝜔

(1)
0 (𝑡−𝑇1)) of the harmonic control field. These 𝑁1 functions

𝑎
(1)
𝑘 (𝑡) can be evaluated for a given time arrangement [𝑇1, 𝑇2] without specifying the

coefficients 𝛼
(1)
𝑘 . Consequently, we can evaluate the full time-dependence 𝑎

(1)
𝑘 (𝑡) of

the cavity-amplitude 𝐴(1)(𝑡) =
∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝑎

(1)
𝑘 (𝑡), while the relative weights 𝛼

(1)
𝑘 can

be defined later. This provides a very efficient way to functionally evaluate optimal
control pulses 𝜂(1)(𝑡) =

∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝜂

(1)
𝑘 (𝑡) by simply varying the coefficients 𝛼

(1)
𝑘 in

order to establish a certain functional shape of the cavity-amplitude 𝐴(1)(𝑡).
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3.1.3 The Cavity-Amplitude in Two Subsequent Intervals

Here we study how the previously introduced harmonic ansatz for the cavity-
amplitude given by Eq. (3.2) has to be modified, if the cavity is probed with

two subsequent optimal control pulses 𝜂(1)(𝑡) =
∑︀𝑁1

𝑘 𝛼
(1)
𝑘 𝜂

(1)
𝑘 (𝑡) and 𝜂(2)(𝑡) =∑︀𝑁2

𝑙 𝛼
(2)
𝑙 𝜂

(2)
𝑙 (𝑡) defined by Eq. (3.1). We again start from trivial initial condi-

tions 𝐴(0)(𝑡 ≤ 𝑇1) = 0 and 𝐵𝑘(𝑡 ≤ 𝑇1) = 0 at the onset of the first time in-
terval [𝑇1, 𝑇2]. The description of the cavity-amplitude 𝐴(1)(𝑡) in this section is
already given by Eq. (3.5), that is to say by the linearly separable cavity-amplitude

𝐴(1)(𝑡) =
∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝑎

(1)
𝑘 (𝑡). It is composed of 𝑁1 coefficients 𝛼

(1)
𝑘 and the time-

dependent functions 𝑎
(1)
𝑘 (𝑡), which are only defined in the first time interval by

Eq. (3.8). Compared to Eq. (3.2) we have to deal with a slightly more complicated
form of the Volterra integral equation in the second time interval [𝑇2, 𝑇3], namely

𝐴(2)(𝑡) =

𝑡∫︁
𝑇2

𝑑𝜏 𝒦(𝑡− 𝜏)𝐴(2)(𝜏) + 𝒟(2)(𝑡) + ℱ (2)(𝑡), (3.9)

because of the non-Markovian feedback ℱ (2)(𝑡) from the first to the second time

interval defined by Eq. (2.16). With the harmonic pulse 𝜂(2)(𝑡) =
∑︀𝑁2

𝑙=1 𝛼
(2)
𝑙 𝜂

(2)
𝑙 (𝑡)

the driving term 𝒟(2)(𝑡) =
∑︀𝑁2

𝑙=1 𝛼
(2)
𝑙 𝑑

(2)
𝑙 (𝑡) can again be linearly separated in a way

similar to Eq. (3.3). However, the correct separation of the memory function ℱ (2)(𝑡)

in terms of the variational coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 needs some investigation. The

memory function in the second time interval [𝑇2, 𝑇3] can be evaluated, according
to the trivial initial conditions of the first time interval [𝑇1, 𝑇2], using the recursive
relations Eq. (2.16) and Eq. (2.17). We can learn from these relations that ℱ (2)(𝑡)
is linear in the cavity-amplitude of the first time interval 𝐴(1)(𝑡). Therefore, we
substitute Eq. (3.5) into Eq. (2.16), rearrange the expression with respect to the

coefficients 𝛼
(1)
𝑘 and obtain

ℱ (2)(𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 𝑓

(2)
𝑘 (𝑡), (3.10)

where we defined the 𝑘th component of the memory function 𝑓
(2)
𝑘 (𝑡) by

𝑓
(2)
𝑘 (𝑡) = Ω2

∞∫︁
0

𝑑𝜔 𝜌(𝜔)
e−[𝛾+iΔ(𝜔)]·(𝑡−𝑇2) − e−[𝜅+iΔ𝑐]·(𝑡−𝑇2)

[𝛾 + i𝜔] − [𝜅+ i𝜔𝑐]
(3.11)

×
𝑇2∫︁
𝑇1

𝑑𝜏 𝑎
(1)
𝑘 (𝜏) e−[𝛾+iΔ(𝜔)]·(𝑇2−𝜏) + 𝑎

(1)
𝑘 (𝑇1) e

−[𝜅+iΔ𝑐]·(𝑡−𝑇2).
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Eq. (3.11) is linear in the 𝑘th component of the cavity-amplitude 𝑎
(1)
𝑘 (𝑡). We there-

fore need to consider the 𝑁1+𝑁2 coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 of both time intervals for

the ansatz of the cavity-amplitude in the second, subsequent time interval [𝑇2, 𝑇3]

𝐴(2)(𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 𝜓

(2)
𝑘 (𝑡) +

𝑁2∑︁
𝑙=1

𝛼
(2)
𝑙 𝑎

(2)
𝑙 (𝑡), (3.12)

where we introduced the corresponding partial cavity-amplitudes 𝜓
(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡).

These 𝑁1 + 𝑁2 functions 𝜓
(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡) are defined only in the second time

interval and respectively satisfy the following set of Volterra integral equations

𝜓
(2)
𝑘 (𝑡) =

𝑡∫︁
𝑇2

𝑑𝜏 𝒦(𝑡− 𝜏)𝜓
(2)
𝑘 (𝜏) + 𝑓

(2)
𝑘 (𝑡), 𝑘 ∈ {1, 2, . . . , 𝑁1}, (3.13)

𝑎
(2)
𝑙 (𝑡) =

𝑡∫︁
𝑇2

𝑑𝜏 𝒦(𝑡− 𝜏) 𝑎
(2)
𝑙 (𝜏) + 𝑑

(2)
𝑙 (𝑡), 𝑙 ∈ {1, 2, . . . , 𝑁2}, (3.14)

which are derived very similarly to Eq. (3.8) as can be seen in detail in Ap-

pendix A.1. The undriven functions 𝜓
(2)
𝑘 (𝑡) continue the evolution of the respective

𝑘th cavity-amplitude of the former time interval 𝑎
(1)
𝑘 (𝑡) via the memory function

𝑓
(2)
𝑘 (𝑡) defined above by Eq. (3.11). In analogy to Eq. (3.8) the functions 𝑎

(2)
𝑙 (𝑡)

describe the dynamics of an initially empty cavity 𝑎
(2)
𝑙 (𝑡 ≤ 𝑇2) = 0 and an initially

fully unexcited spin ensemble, driven with the 𝑙th component 𝜂
(2)
𝑙 (𝑡) of the har-

monic driving field 𝜂(2)(𝑡). The corresponding 𝑙th driving term 𝑑
(2)
𝑙 (𝑡) is defined by

Eq. (3.4). For fixed time-divisions [𝑇1, 𝑇2] and [𝑇2, 𝑇3] we can evaluate all dynami-

cal quantities 𝑎
(1)
𝑘 (𝑡), 𝜓

(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡) independently from the coefficients 𝛼

(1)
𝑘 and

𝛼
(2)
𝑙 . With this we can efficiently evaluate two subsequent optimal control pulses
𝜂(1)(𝑡) and 𝜂(2)(𝑡) by varying the complex valued coefficients for both time intervals
simultaneously, such that the cavity-amplitudes 𝐴(1)(𝑡) and 𝐴(2)(𝑡) satisfy any de-
sired functional behavior. Consequently, the separation approaches Eq. (3.5) and
Eq. (3.12) pave the way to control the dynamics of a single-mode cavity strongly

coupled to a spin ensemble by manipulating the Fourier-coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙

of two subsequent harmonic control fields 𝜂(1)(𝑡) and 𝜂(2)(𝑡) given by Eq. (3.1).
Moreover, we achieve control over the collective spin-wave amplitude 𝑆−(𝑡) defined
in Eq. (2.22) and, to a certain degree, over the individual spin-wave amplitudes
𝐵𝑘(𝑡) ≡

⟨︀
�̃�−
𝑘 (𝑡)

⟩︀
given by Eq. (2.11), since their dynamics linearly depend on the

cavity-amplitude.
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3.1.4 Optimal Control over the Cavity-Amplitude

Above we demonstrate how the structure of the Volterra integral equation describ-
ing the cavity-amplitude of the system is modified when control pulses composed
of Fourier modes are used. In this section we use this method to present a simple
protocol, how the response of the cavity-amplitude to a readout pulse in a second
time interval [𝑇2, 𝑇3] can functionally be controlled, after the cavity was driven
with a non-trivial pulse in the first time interval [𝑇1, 𝑇2]. According to Eq. (3.1)
we introduce the two subsequent pulses

𝜂(1)(𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 sin

(︁
𝑘 𝜔

(1)
0 (𝑡− 𝑇1)

)︁
, (3.15)

𝜂(2)(𝑡) =

𝑁2∑︁
𝑙=1

𝛼
(2)
𝑙 sin

(︁
𝑙 𝜔

(2)
0 (𝑡− 𝑇2)

)︁
, (3.16)

where 𝜂(1)(𝑡) and 𝜂(2)(𝑡) are only defined in their respective intervals (denoted by
the superscript (1) and (2)) and are zero elsewhere, respectively. The 𝑁1 + 𝑁2

Fourier-coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 in the first and second interval will later play the

role of variational-coefficients in the optimization procedure. 𝜔
(1)
0 and 𝜔

(2)
0 are the

fundamental frequencies of the two pulses. Because of the linear ansatz Eq. (3.15)
and Eq. (3.16) of the driving fields, the cavity-amplitudes in the first and in the
second time interval can be written in the form Eq. (3.5) and Eq. (3.12), that is

𝐴(1)(𝑡) =
∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝑎

(1)
𝑘 (𝑡) and 𝐴(2)(𝑡) =

∑︀𝑁1

𝑘=1 𝛼
(1)
𝑘 𝜓

(2)
𝑘 (𝑡) +

∑︀𝑁2

𝑙=1 𝛼
(2)
𝑙 𝑎

(2)
𝑙 (𝑡). We

aim to functionally evaluate the best choice of coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 such that

the cavity-amplitude |𝐴(2)(𝑡)|2 obtains a controlled response during a functional
interval ∆𝜏 ≡ [𝜏, 𝜏 ′] within the readout section [𝑇2, 𝑇3]. Therefore we introduce
the following two objective functionals to be minimized by variations of the control
pulses 𝜂(1)(𝑡) and 𝜂(2)(𝑡)

ℳ𝒩
[︀
𝜂(1), 𝜂(2); 𝜏

]︀
=

⃒⃒
𝐴(2)(𝜏)

⃒⃒2 −𝒩 , (3.17)

ℒ𝒜
[︀
𝜂(1), 𝜂(2); ∆𝜏

]︀
=

𝜏 ′∫︁
𝜏

𝑑𝑡
⃒⃒
𝐴(2)(𝑡)

⃒⃒2 −𝒜, (3.18)

where we omit the time-dependence of the control pulses in the argument of the
objective functionals. Controlling the value of the cavity-amplitude |𝐴(2)(𝜏)|2 = 𝒩
with Eq. (3.17) is closely related to controlling the number of photons inside
the cavity. If initially a single photon resides in the cavity |1⟩ and, simultane-
ously, the spin ensemble is in its ground-state |𝐺⟩, this analogy becomes exact
|𝐴(𝑡)|2 = ⟨1, 𝐺| 𝑎†(𝑡) 𝑎(𝑡) |1, 𝐺⟩ in the case of zero driving [10, 17, 24]. Further, the
functional Eq. (3.18) controls the cavity-amplitude during the whole time-interval∫︀ 𝜏 ′
𝜏
𝑑𝑡 |𝐴(2)(𝑡)|2 = 𝒜.
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As a minimal example we define a protocol to completely suppress the cavity-
amplitude 𝐴(2)(𝑡) in the functional interval ∆𝜏0 ≡ [𝜏0, 𝜏

′
0], which we define as

a subset of the readout section [𝑇2, 𝑇3], after the cavity was driven with a non-
trivial pulse in the first time interval [𝑇1, 𝑇2]. Such a protocol may be used to
prevent an excited system from losing photons via the cavity during the interval
∆𝜏0 by coherently feeding back the necessary energy with the pulse 𝜂

(2)(𝑡). For that
purpose we use Eq. (3.17) and Eq. (3.18) and set the constants 𝒩 = 0 and 𝒜 = 0
to zero. The complete functional to be minimized by a simultaneous variation of
the writing and the readout pulse 𝜂(1)(𝑡) and 𝜂(2)(𝑡) then takes the form

ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
=

𝜏 ′0∫︁
𝜏0

𝑑𝑡
⃒⃒
𝐴(2)(𝑡)

⃒⃒2 − 𝜆𝒯
⃒⃒
𝐴(2)(𝜏0)

⃒⃒2
. (3.19)

The integral objective functional given by Eq. (3.18) plays the role of the functional
which is constrained by the penalty function defined by Eq. (3.17) using the method
of Lagrange-multiplier 𝜆𝒯 . The constraint has the purpose of stabilizing the nu-
merical results of the cavity-amplitude at the beginning of the functional interval
|𝐴(2)(𝜏0)|2 = 0. We mentioned before that the complete information about the
time evolution of the cavity-amplitudes 𝐴(1)(𝑡) and 𝐴(2)(𝑡) is given by the partial

cavity-amplitudes 𝑎
(1)
𝑘 (𝑡), 𝜓

(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡) defined by Eq. (3.8), Eq. (3.13) and

Eq. (3.14). Moreover, for fixed time-divisions [𝑇1, 𝑇2] and [𝑇2, 𝑇3] these functions
do not change in the evaluation of ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
; they can be evaluated inde-

pendently of the coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 before the optimization procedure has

even started. The functional ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
can thus be efficiently minimized

simply by varying the 𝑁1 +𝑁2 complex valued coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙

𝛿ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
𝛿𝜂(𝑛=1,2)(𝑡)

≡
𝛿ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
𝛿𝛼

(𝑛=1,2)
𝑘

→ 0. (3.20)

The optimal set of coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 then minimizes ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
and

uniquely defines the optimal control pulses 𝜂(1)(𝑡) and 𝜂(2)(𝑡) given by Eq. (3.15)
and Eq. (3.16).

With the integral functional ℒ𝒜
[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
it is easily possible to simulta-

neously establish a controlled suppression of the cavity-amplitude in the interval
∆𝜏0 ≡ [𝜏0, 𝜏

′
0] ⊆ [𝑇2, 𝑇3] followed by a controlled non-zero response to the same

reading pulse 𝜂(2)(𝑡) in a subsequent interval ∆𝜏1 ≡ [𝜏1, 𝜏
′
1] ⊆ [𝑇2, 𝑇3]. To describe

the situation mathematically, the functional ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
has to be extended

such that the cavity-amplitude 𝐴(2)(𝑡) versus time obtains a certain non-zero area
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𝒜 = const during the interval ∆𝜏1. With this we find

ℱ𝒜
[︀
𝜂(1), 𝜂(2); 𝜏𝑠,∆𝜏0,∆𝜏1

]︀
=

𝜏 ′0∫︁
𝜏0

𝑑𝑡
⃒⃒
𝐴(2)(𝑡)

⃒⃒2 − 𝜆𝒯
⃒⃒
𝐴(2)(𝜏𝑠)

⃒⃒2

− 𝜆Δ𝒯

⎛⎜⎝ 𝜏 ′1∫︁
𝜏1

𝑑𝑡
⃒⃒
𝐴(2)(𝑡)

⃒⃒2 −𝒜

⎞⎟⎠ , (3.21)

for which we formally introduce the Lagrange-multiplier 𝜆Δ𝒯 . This protocol is very
important in the following sections about time-binned cavity-responses and thus
the situation is presented in detail in Fig. 3.1. Physically such a scheme is possible
because of the interference between the cavity-field residing in the system from the
preliminarily applied writing pulse 𝜂(1)(𝑡) and the cavity-field contribution from the
subsequent reading pulse 𝜂(2)(𝑡). Again, the search for the optimal control pulses

𝜂(1)(𝑡) and 𝜂(2)(𝑡) is performed by variation of the complex valued coefficients 𝛼
(1)
𝑘

and 𝛼
(2)
𝑙 such that the functional ℱ𝒜

[︀
𝜂(1), 𝜂(2); 𝜏𝑠,∆𝜏0,∆𝜏1

]︀
is minimized.

Figure 3.1: Schematics of a functionally suppressed cavity-amplitude 𝐴(2)(𝑡) (red) in the time
interval Δ𝜏0 ≡ [𝜏0, 𝜏

′
0] with a simultaneously controlled value 𝒜 of the (gray) area of 𝐴(2)(𝑡)

during the time interval Δ𝜏1 ≡ [𝜏1, 𝜏
′
1]. The goal is to find a combination of optimized control

pulses 𝜂(1)(𝑡) and 𝜂(2)(𝑡) applied in the time interval [𝑇1, 𝑇2] and [𝑇2, 𝑇3], respectively, which
minimizes the functional ℱ𝒜

[︀
𝜂(1), 𝜂(2); 𝜏𝑠,Δ𝜏0,Δ𝜏1

]︀
given by Eq. (3.21).

To ensures that the penalty functionals given by Eq. (3.17) and Eq. (3.18) are
satisfied after the optimization procedure, the functionals governed by Eq. (3.19)
and Eq. (3.21) must exhibit an extremum with respect to variations of the Lagrange-
multipliers 𝜆𝒯 and 𝜆Δ𝒯 . This can formally be written in the following way

𝛿ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
𝜆𝒯

→ 0,
𝛿ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
𝜆Δ𝒯

→ 0. (3.22)

In practice we have used the open-source python-library scipy.optimize to mini-
mize the constrained functionals ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
and ℱ𝒜

[︀
𝜂(1), 𝜂(2); 𝜏𝑠,∆𝜏0,∆𝜏1

]︀
.

A detailed analytical treatment of the functionals of this section is presented in
Appendix B, which also is very instructive for numerically purposes.
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3.1.5 Penalty Functional for the Pulse Power

In order to rigorously control the power of the writing and the readout pulse 𝜂(1)(𝑡)
and 𝜂(2)(𝑡) defined by Eq. (3.15) and Eq. (3.16) to obtain physically meaningful

values, we define the average net power per fundamental period 𝑇
(𝑛)
0 ≡ 2𝜋/𝜔

(𝑛)
0 as

𝒫(𝑛) =
1

𝑇
(𝑛)
0

𝑇
(𝑛)
0∫︁
0

𝑑𝑡
⃒⃒
𝜂(𝑛)(𝑡)

⃒⃒2
=

1

2

𝑁𝑛∑︁
𝑘=1

|𝛼(𝑛)
𝑘 |2, (3.23)

respectively for both time intervals 𝑛 = 1 and 𝑛 = 2, where 𝑁𝑛 is the number of
coefficients in the 𝑛th interval. The sum over the variational coefficients in Eq. (3.23)
can be used to define the functionals

ℳ𝒫(𝑛)

[︀
𝜂(𝑛)
]︀

=
𝑁𝑛∑︁
𝑘=1

|𝛼(𝑛)
𝑘 |2 − 2𝒫(𝑛) → min, (3.24)

ℳ𝒰(𝑛)

[︀
𝜂(𝑛)
]︀

:=
𝑁𝑛∑︁
𝑘=1

|𝛼(𝑛)
𝑘 |2 ≤ 2𝒰 (𝑛). (3.25)

Including Eq. (3.24) or Eq. (3.25) in the minimization procedure of the functionals
ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
and ℱ𝒜

[︀
𝜂(1), 𝜂(2); 𝜏𝑠,∆𝜏0,∆𝜏1

]︀
given by Eq. (3.19) and Eq. (3.21)

as penalty functions allows us to constrain the power of the pulses 𝜂(1)(𝑡) and 𝜂(2)(𝑡)
to equal a predefined value of 𝒫(1) and 𝒫(2) or to obtain an upper limit of 𝒰 (1) and
𝒰 (2), respectively. A very instructive treatment of ℳ𝒫(𝑛) [𝜂(𝑛)] and ℳ𝒰(𝑛) [𝜂(𝑛)] is
presented in Appendix B.2.



Chapter 4

Results

4.1 Time-Binned Cavity-Responses

In the previous chapter we demonstrate how to achieve optimal control over the am-
plitude of a single-mode cavity strongly coupled to an inhomogeneously broadened
spin ensemble of enormous size by the concept of functional pulse shaping of smooth,
low intensity control pulses, which are composed of Fourier modes [28, 29, 31, 32].
Besides being experimentally accessible, the cavity-amplitude also characterizes the
dynamical evolution of the spin ensemble in the Volterra integral formalism, which
thus is also controllable with our methods [23, 24].
In this part of the thesis we suggest a protocol how to prepare two exclusive

(logical) configurations ”0” or ”1” of the spin ensemble by the use of two different

optimal control pulses 𝜂
(1)
”0”(𝑡) or 𝜂

(1)
”1”(𝑡), respectively. Subsequently, we aim to

perform a readout by applying a single optimized readout pulse 𝜂
(2)
ℛ (𝑡), which is

the same regardless of the configuration in which the system has been prepared.
The superscripts (1) and (2) denote the writing and the readout interval [𝑇1, 𝑇2] and
[𝑇2, 𝑇3], respectively. The cavity-amplitude is the only quantity, which is accessible

Figure 4.1: Distinguishable sooner ”0” (blue, top row)and later ”1” (red, bottom row) time-

binned responses of the cavity-amplitude 𝐴(𝑡) to the readout pulse 𝜂
(2)
ℛ (𝑡) in the time interval

[𝑇2, 𝑇3] (gray region) whether the writing pulse 𝜂
(1)
”0”(𝑡) or 𝜂

(1)
”1”(𝑡) was applied in the first time

interval [𝑇1, 𝑇2].
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in the experiment. We therefore demand for the corresponding state-dependent
cavity-amplitudes 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) to be uniquely distinguishable in the readout-

section. More precisely, the responses 𝐴
(2)
”0”(𝑡) or 𝐴

(2)
”1”(𝑡) of the cavity-amplitude

should appear in a respective sooner or in a well-separated later time-interval (or
time-bin), depending on which state ”0” or ”1” has initially been prepared. The
protocol is schematically depicted in Fig. 4.1.
This concept of time-binned cavity-responses is very similar to the idea of time-

binned qubits, which has been put forward in [34]. A qubit (quantum-Bit) is a
quantum mechanical two-level-system |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |0⟩, which is capable of car-
rying information about the complex-valued amplitudes 𝛼 and 𝛽 with |𝛼|2+|𝛽|2 = 1
[40]. It is the quantum mechanical generalization of a classical Bit, which can only
take one of the two discrete values 0 or 1 [40]. A time-binned qubit is defined as a
single photon being de-localized in two well distinguishable time-intervals |sooner⟩
and |later⟩ prepared by, for instance, a Mach-Zehnder interferometer as depicted
in Fig. 4.2. If the relative amplitude and phase ratio 𝑟 and 𝜑 of the time-binned
pulses is fully controllable, the state of the photon can be described as a vector
in a two-dimensional Hilbert space |𝜓⟩ = 𝑟 |sooner⟩ +

√
1 − 𝑟2 𝑒𝑖𝜑 |later⟩. This is

true provided the time-separation between the pulses 𝛿𝑡 is much larger than the
pulse-widths ∆𝑡 [34]. It should be noted that the time-binned encoding of quibts in
telecommunication fiber networks is very robust against decoherence as compared
to polarization-encoding. [48, 49]. Further, time-binned qubits are considered to
be applicable in linear quantum-computing [38], quantum cryptography and quan-
tum teleportation [48, 49]. It has been demonstrated that the state of time-binned
qubits can be stored inside optical materials and retrieved with high fidelity at later
times [35, 36, 39].

Figure 4.2: A Mach-Zehnder interferometer with a coupling ratio 𝑟 between the short and
the long arm and a phase-shifter 𝜑 in the long arm for the preparation of a time-binned qubit
|𝜓⟩ = 𝑟 |sooner⟩ +

√
1− 𝑟2 𝑒𝑖𝜑 |later⟩ (right) from a single photon pulse (left). The time-

binned pulses (right) are separated by 𝛿𝑡 and have a width of Δ𝑡. The figure is reproduced
from [34].
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In what follows we demonstrate how to evaluate the optimal control pulses 𝜂
(1)
”0”(𝑡),

𝜂
(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡) numerically by the methods of Sec. 3.1.4 such that they fulfill

the requirements of the time-binned cavity-response protocol described above. We
highlight the similarities and the differences between time-binned qubits depicted
in Fig. 4.2 and the cavity-responses 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) sketched in Fig. 4.1. For

simplicity we equivalently refer to the time-binned cavity-amplitudes 𝐴
(2)
”0”(𝑡) and

𝐴
(2)
”1”(𝑡) as "logical states", "time-binned states" or simply as "states" ”0” and ”1”.

However, when speaking of the time-binned states ”0” and ”1” we simply address
the situation if the cavity-response appears in the sooner ”0” first half or in the later
”1” second half of a predefined functional time-interval, which is denoted by the
gray area in Fig. 4.1. This terminology may be a little misleading but we would like
to emphasize that the (logical-) states ”0” and ”1” should neither be confused with
quantum states nor are they equivalent to the basis states |𝑠𝑜𝑜𝑛𝑒𝑟⟩ and |𝑙𝑎𝑡𝑒𝑟⟩
of a time-binned qubit. It is an open question and is left to further studies to
determine if the logical states ”0” and ”1” follow quantum statistics. However,
we demonstrate that our protocol is indeed capable of encoding information into
the coupled system by superimposing the two writing pulses 𝜂

(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡).

Moreover, we investigate, to which degree this information can be retrieved by solely
evaluating the corresponding cavity-responses in the entire functional interval, even
if this functional interval is significantly delayed from the end of the writing interval.

4.1.1 Analysis of Time-Binned Cavity-Responses

The two writing pulses 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡), which are injected into the cavity in the

writing interval [𝑇1, 𝑇2] to prepare the system either in the state ”0” or ”1” are
defined by

𝜂
(1)
”0”(𝑡) =

𝑁1∑︁
𝑘=1

𝛼”0”
𝑘 sin

(︁
𝑘 𝜔

(1)
0 (𝑡− 𝑇1)

)︁
, (4.1)

𝜂
(1)
”1”(𝑡) =

𝑁1∑︁
𝑘=1

𝛼”1”
𝑘 sin

(︁
𝑘 𝜔

(1)
0 (𝑡− 𝑇1)

)︁
, (4.2)

in analogy to Eq. (3.15), respectively. The 2 · 𝑁1 harmonic coefficients 𝛼”0”
𝑘 and

𝛼”1”
𝑘 correspond to the coefficients 𝛼

(1)
𝑘 of the writing pulse Eq. (3.15) and 𝜔

(1)
0 is

the fundamental frequency of the pulses. The respective cavity-amplitudes in the
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writing interval can be separated into harmonic components according to Eq. (3.5)

𝐴
(1)
”0”(𝑡) =

𝑁1∑︁
𝑘=1

𝛼”0”
𝑘 𝑎

(1)
𝑘 (𝑡), (4.3)

𝐴
(1)
”1”(𝑡) =

𝑁1∑︁
𝑘=1

𝛼”1”
𝑘 𝑎

(1)
𝑘 (𝑡), (4.4)

where the coefficients 𝛼”0”
𝑘 and 𝛼”1”

𝑘 are the same as for 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡), re-

spectively. The 𝑁1 time dependent functions 𝑎
(1)
𝑘 (𝑡) are the same for both cavity-

amplitudes 𝐴
(1)
”0”(𝑡) and 𝐴

(1)
”1”(𝑡) and are determined by Eq. (3.8) independently of

the variational coefficients 𝛼”0”
𝑘 and 𝛼”1”

𝑘 . The subsequent unique readout pulse

𝜂
(2)
ℛ (𝑡) =

𝑁2∑︁
𝑙=1

𝛼ℛ
𝑙 sin

(︁
𝑙 𝜔

(2)
0 (𝑡− 𝑇2)

)︁
(4.5)

is defined in analogy to Eq. (3.16) and is applied in the readout interval [𝑇2, 𝑇3].

The 𝑁2 coefficients 𝛼ℛ
𝑙 correspond to the harmonic coefficients 𝛼

(2)
𝑙 of the readout

pulse governed by Eq. (3.16) and 𝜔
(2)
0 is the fundamental frequency. Because of the

linear ansatz of the control pulses the cavity-amplitudes in the second time interval
can be written in the form Eq. (3.12), that is

𝐴
(2)
”0”(𝑡) =

𝑁1∑︁
𝑙=0

𝛼”0”
𝑙 · 𝜓(2)

𝑙 (𝑡)⏟  ⏞  
𝐴

(2)
”0”(𝑡)

+

𝑁2∑︁
𝑘=0

𝛼𝑅𝑘 · 𝑎(2)𝑘 (𝑡)⏟  ⏞  
𝐴

(2)
𝑅 (𝑡)

, (4.6)

𝐴
(2)
”1”(𝑡) =

𝑁1∑︁
𝑙=0

𝛼”1”
𝑙 · 𝜓(2)

𝑙 (𝑡)⏟  ⏞  
𝐴

(2)
”1”(𝑡)

+

𝑁2∑︁
𝑘=0

𝛼𝑅𝑘 · 𝑎(2)𝑘 (𝑡)⏟  ⏞  
𝐴

(2)
𝑅 (𝑡)

. (4.7)

The 𝑁1 +𝑁2 time dependent functions 𝜓
(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡) are defined by Eq. (3.13)

and Eq. (3.14), again, independently of the variational coefficients 𝛼”0”
𝑘 , 𝛼”1”

𝑘 and

𝛼ℛ
𝑙 . The partial amplitudes 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) contain the information about

which state ”0” and ”1” has been prepared in the writing interval [𝑇1, 𝑇2], whereas
the readout pulse of the second interval [𝑇2, 𝑇3] gives rise to the partial readout

amplitude 𝐴
(2)
𝑅 (𝑡), which is the same for 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡).

We now define the functional time-interval ∆𝑇ℱ ≡ [𝑇ℱ , 𝑇
′
ℱ ], which may also be a

subset of the entire readout interval ∆𝑇ℱ ⊆ [𝑇2, 𝑇3]. The cavity-amplitudes 𝐴
(2)
”0”(𝑡)

and 𝐴
(2)
”1”(𝑡) of the states ”0” and ”1” have to be uniquely separable in exactly this

functional interval in terms of time-binned cavity-responses. Therefore we define
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the corresponding sooner time-bin by the first half ∆𝜏0 and the later time-bin by
the second half ∆𝜏1 of the functional interval [𝑇ℱ , 𝑇

′
ℱ ], respectively. A detailed

sketch of all relevant time-divisions is presented in Fig. 4.3.

Figure 4.3: Time-divisions of the optimization scheme for the time-binned cavity-responses
sketched in Fig. 4.1. The writing interval [𝑇1, 𝑇2] is followed by the readout interval [𝑇2, 𝑇3]
which contains the functional interval [𝑇ℱ , 𝑇

′
ℱ ] (gray area). The first half Δ𝜏0 ≡ [𝜏0, 𝜏

′
0]

and the second half Δ𝜏1 ≡ [𝜏1, 𝜏
′
1] of the functional interval define the sooner and the later

time-bin of the states ”0” and ”1”, respectively.

It should be noted that this definition of the functional interval allows to imple-
ment a storage protocol for the states ”0” and ”1” simply by delaying the functional
interval (and consequently the time-binned cavity-responses) from the end of the
writing interval 𝑇2 < 𝑇ℱ .
In order to meet the time-binned behavior, we demand for the cavity-amplitudes

𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) to obtain a controllable, finite value during their corresponding

time-interval ∆𝜏0 and ∆𝜏1 while being fully suppressed in the other time-bin ∆𝜏1
and ∆𝜏0, respectively. Consequently, 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) are well separated and,

moreover, orthogonal functions in the functional interval ∆𝑇ℱ if they exhibit this
property. To evaluate the optimal control pulses 𝜂

(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡), which

cause the desired time-evolution of the cavity-amplitudes 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) when

being applied to the cavity, we can directly use Eq. (3.21) for our purposes. In fact,

the functional ℱ𝒜[𝜂
(1)
”1”, 𝜂

(2)
ℛ ;𝑇ℱ ,∆𝜏0,∆𝜏1] defined by Eq. (3.21) exactly corresponds

to the desired behavior of 𝐴
(2)
”1”(𝑡) using the time-divisions sketched in Fig. 4.3 (com-

pare Fig. 3.1 with the bottom row of Fig. 4.1). The cavity-amplitude 𝐴
(2)
”0”(𝑡) should

show a finite response in the first interval ∆𝜏0 followed by a completely suppressed
response in the interval ∆𝜏1. This situation can also be described by Eq. (3.21),

more precisely by ℱ𝒜[𝜂
(1)
”0”, 𝜂

(2)
ℛ ;𝑇ℱ ,∆𝜏1,∆𝜏0], where we simply exchanged the time-

intervals ∆𝜏0 ↔ ∆𝜏1. It should be noted that both cavity-amplitudes 𝐴
(2)
”1”(𝑇ℱ) = 0

and 𝐴
(2)
”1”(𝑇ℱ) = 0 are forced to be zero at the beginning of the functional interval

𝑇ℱ with the implicit usage of Eq. (3.17) in Eq. (3.21). This, in turn, implies that
the entire information about the state of the system ”0” or ”1” is encoded in the
spin ensemble at 𝑡 = 𝑇ℱ . Because of the common readout pulse 𝜂

(2)
ℛ the two writ-

ing pulses 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡) will not be independent of each other. Therefore we
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minimize the combined constrained functional

ℱ”0,1”
𝒜

[︁
𝜂
(1)
”0”, 𝜂

(1)
”1”, 𝜂

(2)
ℛ ; ∆𝑇ℱ

]︁
= ℱ𝒜[𝜂

(1)
”0”, 𝜂

(2)
ℛ ;𝑇ℱ ,∆𝜏1,∆𝜏0]

+ ℱ𝒜[𝜂
(1)
”1”, 𝜂

(2)
ℛ ;𝑇ℱ ,∆𝜏0,∆𝜏1], (4.8)

by a simultaneous variation of all three control pulses. In reality the power 𝒫(1) and
𝒫(2) of the control pules 𝜂

(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡) has to be finite. Consequently,

we have to introduce constraints to ensure this physically motivated requirement
and following Sec. 3.1.5 we constrain ℱ”0,1”

𝒜 [𝜂
(1)
”0”, 𝜂

(1)
”1”, 𝜂

(2)
ℛ ; ∆𝑇ℱ ] with the following

two penalty functionals

ℳ𝒫(1)

[︁
𝜂
(1)
”𝑖”

]︁
=

𝑁1∑︁
𝑘=1

⃒⃒
𝛼”𝑖”
𝑘

⃒⃒2 − 2𝒫(1), (4.9)

ℳ𝒫(2)

[︁
𝜂
(2)
ℛ

]︁
=

𝑁2∑︁
𝑙=1

⃒⃒
𝛼ℛ
𝑙

⃒⃒2 − 2𝒫(2), (4.10)

for ”𝑖” = ”0”, ”1”. The task of finding the optimal writing and reading pulses
𝜂
(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡) for this protocol is to find the best set of 2 · 𝑁1 + 𝑁2

complex valued harmonic coefficients 𝛼”0”
𝑘 , 𝛼”1”

𝑘 and 𝛼ℛ
𝑙 which minimize the func-

tional ℱ”0,1”
𝒜 [𝜂

(1)
”0”, 𝜂

(1)
”1”, 𝜂

(2)
ℛ ; ∆𝑇ℱ ] under the constraints ℳ𝒫(1) [𝜂

(1)
”0”], ℳ𝒫(1) [𝜂

(1)
”1”] and

ℳ𝒫(2) [𝜂
(2)
ℛ ]. The complete constrained functional can be evaluated and minimized

very efficiently with the methods presented in Appendix B. In practice the mini-
mization was performed by numerical variation of the harmonic coefficients by using
the python library scipy.optimize.

4.1.2 Numerical Solutions of Time-Binned Cavity-Responses

In this section we present numerical results for the optimal control pulses 𝜂
(1)
”0”(𝑡),

𝜂
(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡), given by Eq. (4.1), Eq. (4.2) and Eq. (4.5), and the corresponding

time-binned cavity-amplitudes 𝐴
(𝑛)
”0”(𝑡) and 𝐴

(𝑛)
”1”(𝑡), given by Eq. (4.3) and Eq. (4.4)

in the writing region 𝑛 = 1 and by Eq. (4.6) and Eq. (4.7) in the readout region 𝑛 =
2. The optimized coefficients 𝛼”0”

𝑘 , 𝛼”1”
𝑘 and 𝛼ℛ

𝑙 for all numerically evaluated writing
and readout pulses in the document are listed in Tbl. B.1 and Tbl. B.2. From here
on we use the system-parameters which are listed in Sec. 2.1.4 with the collective
coupling strength Ω = 8.56MHz (as used in Fig. 2.4). The natural frequency of the
system under study is the Rabi-frequency Ω𝑅 = 2𝜋 ·9.73MHz with a period of 𝑇𝑅 =
2𝜋/Ω𝑅 ≈ 102.8 ns [23, 24]. In Fig. 4.4 we chose the length of the writing sequence to
be half a Rabi-period [𝑇1, 𝑇2] = [0, 𝑇𝑅/2] ≈ [0, 51.4 ns] and we present the numerical
results for two different time-divisions of the subsequent reading section, that is
half a Rabi-period [𝑇2, 𝑇3] = [𝑇𝑅/2, 𝑇𝑅] ≈ [51.4 ns, 102.8 ns] in Fig. 4.4(a) and a full
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Rabi-period [𝑇2, 𝑇3] = [𝑇𝑅/2, 3 · 𝑇𝑅/2] ≈ [51.4 ns, 154.2 ns] in Fig. 4.4(b). Here the
functional interval and the readout section coincide [𝑇ℱ , 𝑇

′
ℱ ] = [𝑇2, 𝑇3], respectively.

In both cases one indeed observes a sooner cavity-response 𝐴
(2)
”0”(𝑡) which is well

separated from the later one 𝐴
(2)
”1”(𝑡). In Fig. 4.4(a) the contribution of state ”1”

in the first half (and of state ”0” in the second half) of the functional interval
[𝑇ℱ , 𝑇

′
ℱ ] is almost completely suppressed except for the small overlap at the center

(𝑇ℱ +𝑇 ′
ℱ)/2 ≈ 77.1 ns. For the longer functional interval depicted in Fig. 4.4(b) we

find a small but finite amplitude of state ”0” in the second half of [𝑇ℱ , 𝑇
′
ℱ ], which

is caused by decoherence effects in the readout section. It should be noted that
this longer functional interval already significantly exceeds the decoherence time of
the system 1/Γ ≈ 50 ns [23, 24] but still the results look very good. In fact, the
time-binned separation of the respective cavity-amplitudes seems best pronounced
for this larger functional interval depicted in Fig. 4.4(b) as compared to Fig. 4.4(a).
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Figure 4.4: First and Second row: The smooth optimal writing pulses 𝜂
(1)
”0”(𝑡) (real part: blue,

imaginary part: cyan) and 𝜂
(1)
”1”(𝑡) (real part: red, imaginary part: orange) followed by the same

optimal readout pulse 𝜂
(2)
ℛ (𝑡) (real part: black, imaginary part: gray) defined by Eq. (4.1),

Eq. (4.2) and Eq. (4.5). Third row: The corresponding cavity-amplitudes 𝐴
(𝑛=1,2)
”0” (𝑡) (blue)

and 𝐴
(𝑛=1,2)
”1” (𝑡) (red) given by Eq. (4.3) and Eq. (4.4) in the writing region (𝑛 = 1) and by

Eq. (4.6) and Eq. (4.7) in the readout region (𝑛 = 2). The dashed vertical cut separates the
writing interval [0, 51.4 ns] in column (a) from a shorter readout interval [51.4 ns, 102.8 ns] and
in column (b) from a longer readout interval [51.4 ns, 154.2 ns], respectively. The functional
interval (gray area in last row) and the readout interval coincide, respectively.

To generate the numerical results depicted in Fig. 4.4, we chose the following
configuration for the optimal control pulses: The writing pulses consist of 𝑁1 = 8
and the readout pulses consist of 𝑁2 = 16 components, respectively. (In fact, we use



36 Chapter 4 Results

this configuration for every pulse combination in the entire thesis.) The respective

fundamental frequencies of the first and the second time interval are 𝜔
(1)
0 = Ω𝑅

and 𝜔
(2)
0 = Ω𝑅/2. Consequently, the even frequency components 2𝑘 · 𝜔(2)

0 of the

readout-pulse correspond to the frequency components 𝑘 ·𝜔(1)
0 of the writing pulses,

whereas the odd components (2𝑘−1) ·𝜔(2)
0 only appear in the readout section. 𝜔

(1)
0

and 𝜔
(2)
0 are defined such that the lowest frequency component of the respective

pulses cover the entire writing and readout region in Fig. 4.4(b) without a node,
respectively. The respective amplitudes of the writing pulses are chosen to be
twice as large as the amplitude of the readout pulse, which we achieve by setting
𝒫(2) = 𝒫(1)/4 in the net-power constraints Eq. (4.9) and Eq. (4.10). The writing
pulses then correspond to short but "strong" initial kicks of the system with the
purpose of providing enough energy during the writing interval. Due to the linearity
of the Volterra description the pulse-amplitudes as well as the cavity-amplitudes
can always be rescaled, therefore we normalize all powers to the writing-pulse power
𝒫(1). Additionally, it is sufficient for our purposes to soften the constraint Eq. (4.10)
for the readout-pulse such that 𝒫(2) < 𝒰 (2) = 𝒫(1)/4 describes an upper limit for
the readout-pulse power as described by Eq. (3.25).

4.1.3 Delayed Time-Binned Cavity-Responses

Above we demonstrate the possibility to create time-binned cavity-responses. We
distinguish between the states ”0” and ”1” by means of the time-binned cavity-
responses in the functional interval [𝑇ℱ , 𝑇

′
ℱ ]. However, this functional interval is

defined as a subset of the readout region [𝑇2, 𝑇3] and can therefore be shifted such
that there is a gap between the end of the writing section [𝑇1, 𝑇2] and the beginning
of the functional interval 𝑇2 < 𝑇ℱ , see Fig. 4.3. After the end of the writing inter-
val solely the readout pulse 𝜂

(2)
ℛ (𝑡) is applied during the whole second time-region

[𝑇2, 𝑇3]. This pulse, in turn, contains no information about which writing pulse

𝜂
(1)
”0”(𝑡) or 𝜂

(1)
”1”(𝑡) has been applied in the first interval [𝑇1, 𝑇2]. Consequently, re-

trieving the time-binned cavity-amplitudes in a delayed functional interval denotes
a storage protocol for the information, which was written into the system in the
first interval. The functional tools of Sec. 4.1.1 can hence be used in the state of
the art to describe a storage protocol.

Fig. 4.5 depicts numerical results for the time-binned responses and the corre-
sponding preparation and readout pulses with the same parameters as those which
are used in Fig. 4.4 except for a delayed functional interval by one Rabi-period
𝑇ℱ = 𝑇2 +𝑇𝑅. The corresponding coefficients of the writing pulses and the readout
pulses are listed in Tbl. B.1. The delayed time-binned cavity-responses depicted
in Fig. 4.5(a) for a short functional interval look very similar to the corresponding
solutions presented in Fig. 4.4(a). For the longer functional interval, delayed by
the same amount of time, depicted in Fig. 4.5(b) we obtain qualitatively the same
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behavior as for the reference case without delay, which is shown in Fig. 4.4(b).

However, there is an emerging overlap of the time-binned cavity-responses 𝐴
(2)
”0”(𝑡)

and 𝐴
(2)
”1”(𝑡) in Fig. 4.5(b) caused by the decoherence processes after the end of

the writing interval. In fact, solely the two partial cavity-amplitudes 𝐴
(2)
”0”(𝑡) and

𝐴
(2)
”1”(𝑡), defined in Eq. (4.6) and Eq. (4.7), carry the information about the writ-

ing region. In contrast to photon-echo protocols [33, 35, 39], the weak intensity

readout pulses 𝜂
(2)
ℛ (𝑡) we use in this thesis do not induce an echo of an excitation

stored in the spin ensemble. They induce a partial readout amplitude 𝐴
(2)
ℛ (𝑡), also

defined in Eq. (4.6) and Eq. (4.7), which is designed to interfere with the memory

contributions 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) such that the complete cavity-responses 𝐴

(2)
”0”(𝑡)

and 𝐴
(2)
”1”(𝑡) obtain a time-binned behavior in the functional interval. Since 𝐴

(2)
”0”(𝑡)

and 𝐴
(2)
”1”(𝑡) evolve freely in the interval [𝑇2, 𝑇3] they are exponentially damped with

the rate Γ. By increasing the delay or the length of the functional interval it be-
comes harder to find proper solutions for the time-binned cavity-amplitudes with
reasonable magnitude. However, the phase relation of 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) does not

suffer from these decoherence effects. Therefore, we can chose the magnitude of
the time-binned responses to be sufficiently low by adjusting the parameter 𝒜 in
Eq. (4.8) such that the damping of the amplitude is taken care of. The relative
overlap of the time-binned cavity-responses shown in Fig. 4.5(b) can hence be re-
duced by the expense of reducing their intensity. Another way to circumvent this
problem is presented in Sec. 4.1.3, where we make use of the cavity protection effect
[10, 17, 23–25] to significantly reduce the total damping rate Γ of the system.
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Figure 4.5: The same as Fig. 4.4(a) and Fig. 4.4(b) but with a delayed functional interval by
one Rabi-period 𝑇𝑅 ≈ 102.8 ns in (a) [154.2 ns, 205.6 ns] and (b) [154.2 ns, 257.0 ns] (respec-
tive gray area in last row). The writing interval [0, 51.4 ns] and the total readout section in
(a) [51.4 ns, 205.6 ns] and in (b) [51.4 ns, 257.0 ns] are separated by the vertical dashed cut,
respectively.
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This storage protocol is, however, rather implicit regarding the control pulses:
for every different storage time a specific set of optimal control pulses has to be
evaluated. We therefore investigate in Appendix C the capability of an independent
single storage pulse 𝜂

(2)
𝒮 (𝑡) of duration ∆𝑇𝒮 being applied in between the writing in-

terval and the readout interval (which is then delayed by ∆𝑇𝒮). This protocol aims
to store a snapshot of the entire configuration of the coupled system (cavity-mode
and spin-waves) at the end of the writing interval 𝑇2 to reestablish it at the end of

the storage interval 𝑇2 + ∆𝑇𝒮 , independently of which pulse 𝜂
(1)
”0”(𝑡) or 𝜂

(1)
”1”(𝑡) was

initially used. Subsequently, the delayed but predefined readout pulse 𝜂
(2)
ℛ (𝑡−∆𝑇𝒮)

is applied. The cavity-response to this delayed readout pulse should be equivalent
to the time-binned cavity-response as if the readout pulse 𝜂

(2)
ℛ (𝑡) is directly applied

after the writing interval. We show in Appendix C that, besides a considerable
decrease in the amplitude of the restored time-binned responses compared to their
original shape, the time-binned nature and the relative amplitudes and phases are
restored with good accuracy. However, owing to decoherence processes the two
restored time-binned cavity-responses slightly begin to overlap. We can already
learn from Eq. (4.6) and Eq. (4.7), that the respective information-carrying part

of the cavity-amplitudes 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) after the writing interval evolve inde-

pendently of any cavity-field contribution arising from the readout-pulse or from a
storage pulse. Thus we can not manipulate or enhance 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) by such

a storage pulse in the linear regime. The delayed readout technique put forward in
this section gives better results with respect to the conservation of the amplitudes
and we therefore focus on this approach in the rest of the thesis.

4.2 Superposition of Time-Binned Responses

With our optimization procedure we are able to create two distinguishable time-
binned cavity-responses 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡), which carry information about the

preliminarily applied writing pulses 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡). A very important question

regarding quantum-information protocols is, if it is possible to encode coherent
superpositions of these writing pulses into the time-binned cavity-responses. The
cavity-amplitudes in the reading region 𝐴

(2)
”0”(𝑡) = 𝐴

(2)
”0”(𝑡) + 𝐴

(2)
𝑅 (𝑡) and 𝐴

(2)
”1”(𝑡) =

𝐴
(2)
”1”(𝑡) + 𝐴

(2)
𝑅 (𝑡) are solved by Eq. (4.6) and Eq. (4.7). We identify 𝐴

(2)
”0”(𝑡) and

𝐴
(2)
”1”(𝑡) in the functional interval as basis functions (or logical states) ”0” and ”1”.

4.2.1 Superimposing the Writing-Pulses

Since we prepared the states ”0” and ”1” by probing the system with the respective
pulses 𝜂

(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡) in the first place, we assume to create coherent superposi-

tions of the cavity-responses by simply superimposing the two writing pulses defined
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by Eq. (4.1) and Eq. (4.2) according to

𝜂(1)(𝑡; 𝛾, 𝛿) = 𝛾 𝜂
(1)
”0”(𝑡) + 𝛿 𝜂

(1)
”1”(𝑡)

=

𝑁1∑︁
𝑘=1

𝛼𝑘(𝛾, 𝛿) sin
(︁
𝑘 𝜔

(1)
0 (𝑡− 𝑇1)

)︁
, (4.11)

where we define the 𝑘-th superimposed harmonic coefficient 𝛼𝑘(𝛾, 𝛿) = 𝛾 𝛼”0”
𝑘 +

𝛿 𝛼”1”
𝑘 . Because of the linear appearance of the harmonic coefficients in the deriva-

tions of Sec. 3.1.2 and Sec. 3.1.3, we can write the resulting cavity-amplitude in the
writing and reading section analogously to Eq. (3.5) and Eq. (3.12) as

𝐴(1)(𝑡; 𝛾, 𝛿) =

𝑁1∑︁
𝑘=1

𝛼𝑘(𝛾, 𝛿) 𝑎
(1)
𝑘 (𝑡)

= 𝛾 𝐴
(1)
”0”(𝑡) + 𝛿 𝐴

(1)
”1”(𝑡) (4.12)

𝐴(2)(𝑡; 𝛾, 𝛿) =

𝑁1∑︁
𝑘=1

𝛼𝑘(𝛾, 𝛿)𝜓
(2)
𝑘 (𝑡) +

𝑁2∑︁
𝑙=1

𝛼ℛ
𝑙 𝑎

(2)
𝑙 (𝑡)

=
(︁
𝛾 𝐴

(2)
”0”(𝑡) + 𝛿 𝐴

(2)
”1”(𝑡)

)︁
+ 𝐴

(2)
ℛ (𝑡), (4.13)

using the superimposed coefficients 𝛼𝑘(𝛾, 𝛿). With 𝐴
(1)
”0”(𝑡) and 𝐴

(1)
”1”(𝑡) given by

Eq. (4.3) and Eq. (4.4) the cavity-amplitude in the first time interval 𝐴(1)(𝑡; 𝛾, 𝛿)
resembles the linear superposition of the respective writing pulse 𝜂(1)(𝑡; 𝛾, 𝛿). To de-

scribe 𝐴(2)(𝑡; 𝛾, 𝛿) we used the partial cavity-amplitudes 𝐴
(2)
”0”(𝑡), 𝐴

(2)
”1”(𝑡) and 𝐴

(2)
ℛ (𝑡).

With the preparation pulse 𝜂(1)(𝑡; 𝛾, 𝛿) all possible combinations of the superposi-
tion amplitudes 𝛾 and 𝛿 can be written into the system. The challenge is now to
identify the amplitudes 𝛾 and 𝛿 from the superimposed cavity-amplitude 𝐴(2)(𝑡; 𝛾, 𝛿)
in the functional interval.

4.2.2 Restricted Superposition, Encoding a Real-Bit

A problem we encounter in our analysis is that the cavity-amplitude in the reading
section 𝐴(2)(𝑡; 𝛾, 𝛿) is no longer a linear superposition of ”0” and ”1” with the rela-
tive amplitudes 𝛾 and 𝛿. Since our protocol was designed to use an optimized unique
readout-pulse 𝜂

(2)
ℛ (𝑡) such as to distinguish between the system configurations ”0”

and ”1”, the readout part 𝐴
(2)
ℛ (𝑡) in Eq. (4.13) does not change. Therefore, only the

part 𝛾 𝐴
(2)
”0”(𝑡)+𝛿 𝐴

(2)
”1”(𝑡) is superimposed in a proper way. A coherent superposition

of the total cavity-responses 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) in the functional interval

𝐴(2)
s𝑢𝑝(𝑡; 𝛾, 𝛿) = 𝛾 𝐴

(2)
”0”(𝑡) + 𝛿 𝐴

(2)
”1”(𝑡)

=
(︁
𝛾 𝐴

(2)
”0”(𝑡) + 𝛿 𝐴

(2)
”1”(𝑡)

)︁
+ (𝛾 + 𝛿) 𝐴

(2)
𝑅 (𝑡) (4.14)



40 Chapter 4 Results

would also require to correspondingly alter the readout pulse 𝜂
(2)
ℛ (𝑡) → (𝛾+𝛿) 𝜂

(2)
ℛ (𝑡).

Consequently we would always have to know in which state the system has initially
been prepared, to correctly readout the information. This protocol may be used
for the generation of time-binned responses similar to [51] but it falls short of the
demands one has on a memory protocol. However, for the following restricted
parametrization

𝛾 + 𝛿 = 1, (4.15)

which preserves the relative power and the relative phase between the writing pulse
and the reading pulse, the superposition of the solutions governed by Eq. (4.14) is
equal to the cavity-response𝐴(2)(𝑡; 𝛾, 𝛿) defined by Eq. (4.13), more precisely we find

𝐴
(2)
s𝑢𝑝(𝑡; 𝛾 = 1 − 𝛿, 𝛿) = 𝐴(2)(𝑡; 𝛾 = 1 − 𝛿, 𝛿). In the case of a qubit the superposition

amplitudes 𝛾 and 𝛿 have to be located on the complex unit-sphere |𝛾|2 + |𝛿|2 = 1
[40]. With our protocol we are able to encode one real-bit into the time-binned
cavity-responses, that is one real valued coefficient 𝛿, while 𝛾(𝛿) = 1 − 𝛿 is fixed.
The results of superimposing the two sets of basis states depicted in Fig. 4.5(a)
and Fig. 4.5(b) with this real-bit parametrization are presented in Fig. 4.6(a) and
Fig. 4.6(b), respectively. A smooth transition from state ”0” to state ”1” can be
performed by varying 𝛿 from 0 to 1.
Having prepared the system in a superposition state 𝐴(1)(𝑡; 𝛾, 𝛿), we aim to ex-

tract the relative amplitudes 𝛾 and 𝛿 of the writing pulse 𝛾 𝜂
(1)
”0”(𝑡) + 𝛿 𝜂

(1)
”1”(𝑡) solely

from the cavity-amplitude 𝐴(2)(𝑡; 𝛾, 𝛿) in the functional interval [𝑇ℱ , 𝑇
′
ℱ ]. The su-

perimposed cavity-response depends on 𝛾 and 𝛿 but in general we do not know these
two parameters in the readout section. To reevaluate the corresponding parame-
ters, we make use of the orthogonality of the time-binned basis functions 𝐴

(2)
”0”(𝑡)

and 𝐴
(2)
”1”(𝑡) in the functional interval [𝑇ℱ , 𝑇

′
ℱ ]. More precisely, we define the overlap

of 𝐴(2)(𝑡; 𝛾, 𝛿) with the cavity-responses 𝐴
(2)
”𝑖”(𝑡) as

𝒪𝑖 =

⃒⃒⃒⃒
⃒𝑇

′
ℱ∫︀

𝑇ℱ

𝑑𝑡𝐴(2)(𝑡; 𝛾, 𝛿) ·
(︁
𝐴

(2)
”𝑖”(𝑡))

)︁* ⃒⃒⃒⃒⃒
𝑇 ′
ℱ∫︀

𝑇ℱ

𝑑𝑡 |𝐴(2)
”𝑖”(𝑡)|2

, (4.16)

for 𝑖 = 1, 0, respectively. 𝒪𝑖 can be identified as a projection measure of 𝐴(2)(𝑡; 𝛾, 𝛿)

onto 𝐴
(2)
”𝑖”(𝑡) with an implicit dependence on the amplitudes 𝛾 and 𝛿, which we

dropped on the left hand side of Eq. (4.16). Moreover, for perfectly orthogonal
basis functions and for 𝛾 + 𝛿 = 1 we find that

𝛾ℛ = 𝒪0, 𝛿ℛ = 𝒪1 (4.17)

uniquely defines the relative amplitudes 𝛾ℛ = 𝛾 and 𝛿ℛ = 𝛿 of the writing pulse
𝛾 𝜂

(1)
”0”(𝑡) + 𝛿 𝜂

(1)
”1”(𝑡). Fig. 4.6(c) and Fig. 4.6(d) show the retrieved parameters
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𝛾ℛ = 𝒪0 and 𝛿ℛ = 𝒪1 as a function of the initial parameter 𝛿 ∈ [0, 1], evaluated
from the cavity-amplitudes depicted in Fig. 4.6(a) and Fig. 4.6(b), respectively.
Especially for the short functional interval shown in Fig. 4.6(c) the accuracy of the
retrieved parameters is (almost) perfect. For the longer functional interval we find
in Fig. 4.6(d) a significant bias of 𝛾ℛ and 𝛿ℛ from their initial values 𝛾 and 𝛿 due to

the finite overlap of the basis functions 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡), which are depicted in

Fig. 4.4(b). However, the retrieved parameters still show a strictly linear behavior,
which allows a unique mapping to the initial ones.

(a) Superposition in short interval (b) Superposition in long interval

0.0 0.5 1.0
δ

0.0

0.5

1.0

δ R
, 
γ
R

(c) Retrieval in short interval

0.0 0.5 1.0
δ

0.0

0.5

1.0

δ R
, 
γ
R

(d) Retrieval in long interval

Figure 4.6: (a) and (b) depict the normalized, superimposed cavity-amplitude
𝐴(2)(𝑡; 𝛾, 𝛿)/max[𝐴(2)(𝑡; 𝛾, 𝛿)] defined in Eq. (4.13) (z-axis) in the functional interval (x-
axis) as a function of the real-bit parameter 𝛿 according to Eq. (4.15) (y-axis) for two sets

of reference states ”0” and ”1” and optimal control pulses 𝜂
(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡) taken

from Fig. 4.5(a) and Fig. 4.5(b), respectively. Varying 𝛿 from 0 → 1 yields a continuous
transition from state ”0” to ”1” (indicated by the surface-color blue → red). The blue and
the red lines in (c) and (d) depict the retrieved amplitudes 𝛾ℛ and 𝛿ℛ, given by Eq. (4.17),
from the cavity-amplitudes depicted in (a) and (b) as a function of the parameter 𝛿 ∈ [0, 1],
respectively. The initial parameters 𝛿 and 𝛾 = 1− 𝛿 are denoted by the black dashed lines in
(c) and (d).

4.2.3 Retrieval of Two Real-Valued Parameters

As we pointed out above, the purpose of the readout-pulse is to generate time-
binned cavity-responses by interference of the partial readout contribution 𝐴

(2)
ℛ (𝑡)

with the partial cavity-amplitudes 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) such that 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡)
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are orthogonal in a predefined functional interval in terms of a time-binned sepa-
ration. An arbitrary superposition of the writing pulses 𝜂(1)(𝑡; 𝛾, 𝛿) = 𝛾 𝜂

(1)
”0”(𝑡) +

𝛿𝜂
(1)
”1”(𝑡) does, however, not prepare a corresponding superposition of the full time-

binned cavity-amplitudes 𝛾 𝐴
(2)
”0”(𝑡)+𝛿 𝐴

(2)
”1”(𝑡), since the readout part 𝐴

(2)
ℛ (𝑡) is fixed.

The corresponding cavity-response acquires the form 𝐴(2)(𝑡; 𝛾, 𝛿) = 𝛾 𝐴
(2)
”0”(𝑡) +

𝛿 𝐴
(2)
”1”(𝑡) + 𝐴

(2)
ℛ (𝑡). Consequently, the projection measure governed by Eq. (4.16)

does in general obtain non-vanishing cross terms of the different partial cavity-
amplitudes. Despite this drawback, the relative amplitudes of an arbitrarily super-
imposed writing pulse 𝜂(1)(𝑡; 𝛾, 𝛿) can, however, be rigorously extracted from the
evolution of the cavity-amplitude 𝐴(2)(𝑡; 𝛾, 𝛿) during the entire functional interval
[𝑇ℱ , 𝑇

′
ℱ ] such that a qubit of information can be stored in the ensemble. (Although

the strict picture of superimposed time-binned cavity-amplitudes does no longer
hold in general.)
To see this we explicitly project 𝐴(2)(𝑡; 𝛾, 𝛿) onto the two known cavity-amplitudes

𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) similar to Eq. (4.16) and we get

�̃�𝑖 =

𝑇 ′
ℱ∫︁

𝑇ℱ

𝑑𝑡𝐴(2)(𝑡; 𝛾, 𝛿) ·
(︁
𝐴

(2)
”𝑖”(𝑡)

)︁*
(4.18)

= 𝛾 · ℱ𝑖,0 + 𝛿 · ℱ𝑖,1 + ℱ𝑖,ℛ, (4.19)

where we introduced the overlap integrals

ℱ𝑖,𝑞 =

𝑇ℱ ′∫︁
𝑇ℱ

𝑑𝑡𝐴(2)
𝑞 (𝑡) ·

(︁
𝐴

(2)
”𝑖”(𝑡)

)︁*
(4.20)

for 𝑖 = 0, 1 and 𝑞 ∈ {”0”, ”1”,ℛ}. Every integral ℱ𝑖,𝑞 can be evaluated solely from

the partial cavity-amplitudes 𝐴
(2)
”0”(𝑡), 𝐴

(2)
”1”(𝑡) and 𝐴

(2)
ℛ (𝑡) for a specific solution

of time-binned cavity-responses. Further, given a corresponding cavity-amplitude
𝐴(2)(𝑡; 𝛾, 𝛿) with unknown parameters 𝛾 and 𝛿, the quantities �̃�0 and �̃�1 can be eval-
uated with Eq. (4.18). �̃�0 and �̃�1 implicitly depend on 𝛾 and 𝛿 but we do not indi-
cate them as arguments to emphasize that Eq. (4.18) describes a projection-measure
of an arbitrarily superimposed cavity-amplitude 𝐴(2)(𝑡; 𝛾, 𝛿). Using Eq. (4.19) then
yields two algebraic equations featuring the two unknown parameters 𝛾 and 𝛿,
which can be uniquely determined by

𝛾𝑅 =
(�̃�0 −ℱ0,ℛ)ℱ1,1 − (�̃�1 −ℱ1,ℛ)ℱ0,1

ℱ0,0ℱ1,1 −ℱ0,1ℱ1,0

, (4.21)

𝛿𝑅 =
(�̃�1 −ℱ1,ℛ)ℱ0,0 − (�̃�0 −ℱ0,ℛ)ℱ1,0

ℱ0,0ℱ1,1 −ℱ0,1ℱ1,0

. (4.22)
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The subscript 𝑅 denotes that 𝛾𝑅 and 𝛿𝑅 are retrieved parameters which are a
measure for the original contribution of 𝛾 and 𝛿 to the writing pulse 𝜂(1)(𝑡; 𝛾, 𝛿).
In order to demonstrate the capability of our approach to retrieve any superposi-

tion of the writing pulses 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡) from the corresponding superimposed

cavity-amplitudes 𝐴(2)(𝑡; 𝛾, 𝛿), we parametrize 𝛾 = cos(𝜗/2) and 𝛿 = sin(𝜗/2) ei𝜙

with 𝜗 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋] satisfying |𝛾|2+ |𝛿|2 = 1 [22]. By the use of Eq. (4.21)
and Eq. (4.22) we then retrieve 𝛾𝑅 and 𝛿𝑅 as a function of the initial parameters
𝜗 and 𝜙. The results of this procedure are presented in Fig. 4.7 and Fig. 4.8 with
reference data taken from Fig. 4.5(a) and Fig. 4.5(b), respectively.
To address the reliability of the retrieved quantities we introduce the absolute

error 𝜖𝛾 = |𝛾 − 𝛾𝑅| and 𝜖𝛿 = |𝛿 − 𝛿𝑅| between the initial parameters 𝛾 and 𝛿 and
the retrieved amplitudes 𝛾𝑅 and 𝛿𝑅. This error is shown in the last row of Fig. 4.7
and Fig. 4.8, respectively.

Figure 4.7: Retrieved parameters 𝛾𝑅 (left column) and 𝛿𝑅 (right column) obtained by
Eq. (4.21) and Eq. (4.22) from the superimposed cavity-amplitude 𝐴(2)(𝑡; 𝛾, 𝛿) given by
Eq. (4.13) with the parametrization 𝛾 = cos(𝜗/2) and 𝛿 = sin(𝜗/2) ei𝜙 for 𝜗 ∈ [0, 𝜋] and
𝜙 ∈ [0, 2𝜋]. The last row depicts the absolute error 𝜖𝛾 = |𝛾 − 𝛾𝑅| and 𝜖𝛿 = |𝛿 − 𝛿𝑅| between
the initial parameters 𝛾 and 𝛿 and the reconstructed amplitudes 𝛾𝑅 and 𝛿𝑅 as a function of 𝜗
and 𝜙, respectively, which is of the order 5 · 10−15 and resembles the numerical machine error.
The reference data to generate 𝐴(2)(𝑡; 𝛾, 𝛿) are taken from Fig. 4.5(a).
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Remarkably, with our method the superposition parameters 𝛾 = 𝛾𝑅 and 𝛿 = 𝛿𝑅,
which here describe one qubit of information, can be perfectly restored (up to the
machine error of the order 5 · 10−15). As can be seen in Fig. 4.8 this is even true
for the reference data taken from Fig. 4.6(b), where decoherence effects already

cause a significant overlap of the two basis functions 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡). Our

reconstruction procedure is only limited if the cavity-amplitudes are very small in
magnitude such that they are comparable to the level of noise. In a further study
one can think of phenomenologically including noise to the cavity-amplitude in
the optimization procedure of the control pulses such that the retrieval fidelity of
arbitrary superpositions is maximal.
It should be noted that, by making use of the Pauli-matrices �⃗� = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧)

𝑇 ,
the respective tuples of the initial and the reconstructed superposition parameters
|𝜒⟩ ̂︀=(𝛾, 𝛿)𝑇 and |𝜒𝑅⟩ ̂︀=(𝛾𝑅, 𝛿𝑅)𝑇 depicted in Fig. 4.7 and Fig. 4.8 can be mapped
to a three-dimensional real-valued vector �⃗� = ⟨𝜒|�⃗�|𝜒⟩ and �⃗�𝑅 = ⟨𝜒𝑅|�⃗�|𝜒𝑅⟩. This is
the so-called Bloch-vector �⃗� = (cos(𝜙) sin(𝜗), sin(𝜙) sin(𝜗), cos(𝜗))𝑇 [22].

Figure 4.8: The same as Fig. 4.7 but with reference data taken from Fig. 4.5(b).
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In the retrieval of the parameters 𝛾𝑅 and 𝛿𝑅 by Eq. (4.21) and Eq. (4.22), the

contribution of the partial readout amplitude 𝐴
(2)
ℛ (𝑡) is always eliminated and hence

one can think of completely omitting the readout pulse in this encoding scheme.
However, the readout-pulse is very well justified in terms of a time-delayed retrieval
of the information, as we show later in Sec. 4.3.2. Its purpose is to suppress the
cavity-response between the end of the writing section and the beginning of the
functional interval by destructive interference. An interesting approach, which can
be achieved with our optimal control tools, would be to functionally minimize to
readout contribution 𝐴

(2)
ℛ (𝑡) in the retrieval interval (but only in this interval).

Consequently there will be no interference terms between the readout part 𝐴
(2)
ℛ (𝑡)

and the partial cavity-amplitudes 𝐴
(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) in this interval. In order

to be well distinguishable regarding their overlap, we suggest the partial cavity-
amplitudes 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) to be orthogonal functions in functional interval (not

necessarily in a time-binned fashion). This protocol would then have the advantage
that two arbitrary superposition parameters could be determined directly (without
cross terms) in a similar way as with Eq. (4.17). A generalization to more than
two orthogonal cavity-amplitudes (or basis-functions) seems accessible with our
techniques leading to a multi-dimensional encoding scheme. This, in turn, is closely
related to the concept of continuous variable quantum information processing [52].

4.3 Enhanced Storage-Time by Cavity Protection

In the strong coupling regime the stationary transmission spectrum shows two res-
onance peaks, which are split by the Rabi-frequency Ω𝑅 and have a width of Γ, as
can be seen in Fig. 2.5. These resonance- or polaritonic peaks resemble the level
structure of the polaritonic eigenstates of the system, which are a hybridization
of the cavity-mode and the superradiant spin-wave modes [10, 24]. Due to this
hybridization the superradiant spin-wave modes are visible in transmission exper-
iments, which is why they are also called bright-states [10, 24]. The stronger the
coupling Ω the broader the level-splitting 2 · Ω𝑅 and the gap 2 · Ω𝑅 between the
resonance peaks in the transmission spectrum. In the presence of inhomogeneous
broadening, however, the polaritonic states (and peaks) spectrally overlap with the
inhomogeneously broadened ensemble 𝜌(𝜔) inducing a coupling of the polaritonic
states to a bath of subradiant spin-wave modes, which do not hybridize with the
cavity-mode and thus are referred to as dark-states [6, 10, 24]. This process, which
manifests itself in the broadening of the resonance peaks, acts as the main source
of decoherence in ensemble based systems [10]. In the limit of large values of the
coupling strength Ω ≫ Γ the total decoherence rate of the coupled system under
study can be estimated by

Γ ≈ 𝜅+ 𝜋Ω2 𝜌(𝜔𝑠 ± Ω) (4.23)
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either from the width of the polaritonic peaks in the stationary transmission spec-
trum [10, 17] or by Laplace-transform of the Volterra integral equation [23, 25]. In
fact, we can see that the inhomogeneously broadened transition line of the ensemble,
modeled by the spin density distribution 𝜌(𝜔), contributes to the total decoherence
rate via the second term 𝜋Ω2 𝜌(𝜔𝑠 ± Ω) [7, 8]. However, if the spectral tails of the
spin-distribution 𝜌(𝜔𝑠 ± Ω) fall off faster than 1/Ω2 the product Ω2 𝜌(𝜔𝑠 ± Ω) van-
ishes, provided the collective coupling strength Ω is sufficiently large [10, 17, 23].
The spectral density of the considered NV-center-ensemble, which is depicted in
Fig. 2.3, exhibits a q-Gaussian shape and thus satisfies this prerequisite [7, 8]. Phys-
ically, this can be explained as follows: By increasing the coupling strength, the
level-splitting grows and the transmission peaks get shifted apart from each other
while 𝜌(𝜔) remains unchanged. Therefore, the polaritonic states get energetically
decoupled from the bath of dark-states and become protected from decoherence
[10, 17]. Intuitively, we can think of the inhomogeneously broadened ensemble to
become spectrally decoupled from the polaritonic peaks by increasing the collec-
tive coupling such that 𝜌(𝜔) effectively becomes a sharp transition line (provided
the spectral tails drop faster than 1/𝜔2). The system then is naturally protected
against decoherence and this effect is known as "cavity protection" [10, 17].

It should be noted that the lowest possible value for the decoherence rate Γ = 𝜅
lies below the total loss rate of the bare cavity, which is 2𝜅. This is a consequence
of the periodic exchange of energy between the cavity and the spin ensemble in the
form of collective Rabi-oscillations as depicted in Fig. 2.6: Only half of the time
the energy is present in the cavity, where it decays with the rate 2𝜅 [24].

4.3.1 Reduced Decoherence by Increasing the Coupling

Due to the cavity protection effect the total decoherence rate of the system can
be reduced by going to large values of the collective coupling strength. Conse-
quently, the quality of the time-binned cavity-responses with a delayed readout
can significantly be increased. In Fig. 4.9(a) we present the results for delayed
time-binned responses similar to Fig. 4.5(a) but with a collective coupling strength
Ω = 2𝜋 · 17.12MHz, which is twice as large as before. Fig. 4.9(b) shows the

real-bit superposition of the cavity-responses 𝛾 𝐴
(2)
”0”(𝑡) + 𝛿 𝐴

(2)
”1”(𝑡) with the restric-

tion 𝛾 + 𝛿 = 1. The enhanced coupling affects the Rabi-frequency of the system
Ω𝑅 ≈ 18.08MHz (or the Rabi-period 𝑇 ′

𝑅 = 55.32 ns). Therefore we adjust the fun-

damental frequencies of the writing-pulses and the readout-pulse by 𝜔
(1)
0 = Ω𝑅/2

and 𝜔
(2)
0 = Ω𝑅/4 to get a similar structure of the control pulses as before. The other

system-parameters are the same as in Fig. 4.4. The harmonic pulse-coefficients are
listed in Tbl. B.2 and the corresponding time-divisions can be found in the caption
of Fig. 4.9. The time-binned responses 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡) are almost perfectly

orthogonal regarding their overlap in the functional interval and, although the
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functional interval is delayed by approximately 170 ns, the retrieval of the real-bit
parameters governed by Eq. (4.17) is almost perfect as can be seen in Fig. 4.9(c).
Also the retrieval of two arbitrary parameters put forward in Sec. 4.2.3, which we
do not explicitly present here, can be performed with an equivalent accuracy as
presented in Fig. 4.7 and Fig. 4.8. In Fig. 4.9(a) we see that at the end of the writ-
ing section both cavity-amplitudes are exactly zero. Thus the information about
the preliminarily applied writing pulse is solely stored inside the spin ensemble at
this moment of time.
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Figure 4.9: Numerical results for (a) the delayed time-binned cavity-responses, (b) for the
real-bit encoding and (c) the retrieved real-bit parameters 𝛾𝑅 (blue) and 𝛿𝑅 (red) similar
to Fig. 4.5(a), Fig. 4.6(a) and Fig. 4.6(c) except for a doubled collective coupling strength
Ω = 2𝜋 · 17.12MHz and the adjusted time-divisions of the writing interval [0, 55.3 ns], the
readout interval [55.3 ns, 276.6 ns] and the functional interval [221.2 ns, 276.6 ns] ((b) and gray
area in (a)).

The value of the collective coupling strength is close to the limit of what is exper-
imentally reachable today and, moreover, the corresponding total decoherence rate
Γ of the system approaches its limiting value 𝜅 [24]. Due to this reduced damping
of the cavity-amplitude it takes longer until the cavity-amplitude is comparable to
the noise-level as for previous results. By making use of the cavity protection effect
the method of a delayed functional interval of Sec. 4.1.3 is therefore much better
suited to store information about the writing pulses as compared to the refocusing
technique of Appendix C.



48 Chapter 4 Results

4.3.2 Micro-Second Storage by Spectral Hole-Burning

An alternative way to suppress the decoherence rate of the system at modest values
of the coupling strength Ω = 2𝜋 ·8.56MHz is to modify the spectral spin-density at
judiciously chosen frequencies by spectral hole burning [25]. Taking the expression
for the total decoherence rate Γ literal, that is Eq. (4.23), one can eliminate the
second term 𝜋Ω2 𝜌(𝜔𝑠±Ω) by assuming a spin-density, which is zero in the vicinity
of 𝜔𝑠 ± Ω (and remains unchanged elsewhere) [25].

Remarkably, a decoherence rate of the entire system of Γ = 0.42𝜅 has numerically
been evaluated in [25] for Gaussian holes with a width of 2𝜋 · 1.4MHz. This is all
the more surprising, since this value even lies significantly below 𝜅, which was
identified as the limiting lowest value attainable for the total decoherence rate in
recent studies [10, 17, 23, 25]. However, recent experimental results confirm this
behavior [53]. The presence of holes at 𝜔𝑠 ± Ω in the spin distribution give rise to
very sharp and very high resonance peaks in the stationary transmission analysis,
which lie on top of the polaritonic peaks depicted in Fig. 2.5 [25]. Moreover,
these additional sharp resonances in the stationary transmission spectrum can be
explained, similar to the discussion in Sec. 4.3, with the concept of polaritonic
states, which are spectrally located in the vicinity of the hole-center-frequencies
𝜔𝑠 ± Ω [53]. If the width of the holes exceeds the width of the sharp polaritonic
peaks, the corresponding polaritonic states decouple (almost) completely from the
bath of subradiant (dark) states [25, 53], which gives rise to a slow asymptotic
behavior in the dynamical regime [25]. From the mathematical point of view this
drastically decreased decoherence rate Γ and the corresponding slow asymptotic
behavior is associated with the contribution of two poles in the Laplace transform
of Eq. (2.7) [24], which appear when the holes in 𝜌(𝜔) reach a certain depth [25].
The holes in the spin-density have been experimentally realized by applying a strong
microwave pulse, modulated with spectral components at 𝜔𝑠 ± Ω and the life-time
of the holes has been estimated to be approximately given by 20 𝜇s in [53].

The spin-density 𝜌(𝜔) enters the Volterra integral equation phenomenologically.
Therefore we use a modified spin-density 𝜌ℎ(𝜔) in our calculations, featuring two
Gaussian holes of width ∆ℎ = 2𝜋 ·0.7MHz located at the frequencies 𝜔𝑠±Ω, which
is assumed to be prepared before the writing pulses are applied to the cavity. Since
the life-time of the holes greatly exceeds all time-intervals we consider above, which
are of the order of 100 ns, we further assume the holes in the spin-density to remain
unchanged during our protocol.

To demonstrate the efficiency of the hole burning effect, we redefine the writing
interval [𝑇1, 𝑇2] = [0, 102.8 ns], the readout interval [𝑇2, 𝑇3] = [102.8 ns, 1.33 𝜇s] and
the functional interval [𝑇ℱ , 𝑇

′
ℱ ] = [1.22 𝜇s, 1.33 𝜇s], which is delayed from the end

of the writing sequence by 1.12 𝜇s, compared to all former results. Due to this long
delay, we functionally suppress the cavity-amplitude in the interval [𝑇2, 𝑇ℱ ] for both

states ”𝑖” = ”0”, ”1” by additionally including the constraint
∫︀ 𝑇ℱ
𝑇2

𝑑𝑡 |𝐴(2)
”𝑖”(𝑡)|2 → 0
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in the minimization of Eq. (4.8). Otherwise large values of the cavity-amplitude
(and consequently of the transmission) in this interval would drastically reduce the
efficiency for the readout of the time-binned responses in the functional interval.
The corresponding optimal control pulses and the time-binned cavity-responses are
depicted in Fig. 4.10, where we further present the modified spin-distribution 𝜌ℎ(𝜔)
as an inset.
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Figure 4.10: Numerical results for the time-binned cavity-responses similar to Fig. 4.5(a) but
with a modified spin-density 𝜌ℎ(𝜔) with two holes of width Δℎ = 2𝜋 ·0.7MHz at 𝜔𝑠±Ω (inset
of the lower panel) and adjusted time-divisions of the writing interval [0, 102.8 ns], the readout
interval [102.8 ns, 1.33 𝜇s] and the functional interval [1.22 𝜇s, 1.33 𝜇s] (gray area). The gap
between the end of the writing section (vertical dashed cut) and the functional interval (gray
area) is approximately 1.12 𝜇s.

The time-binned cavity-responses are separated almost perfectly as can be seen
in Fig. 4.11(a) and the retrieved parameters 𝛾𝑅 and 𝛿𝑅 of the real-bit encoding
depicted in Fig. 4.11(b) excellently agree with the initial values of 𝛾 and 𝛿.
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Figure 4.11: Numerical results for (a) the real-bit encoding and (b) the retrieval of the real-bit
parameters 𝛾𝑅 (blue) and 𝛿𝑅 (red) similar to Fig. 4.6(b) and Fig. 4.6(d) but with reference
data taken from Fig. 4.10, respectively.
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Similar to Fig. 4.7 and Fig. 4.8 the retrieval of two complex-valued parameters
is depicted in Fig. 4.12 and the accuracy of this retrieval-procedure, again, is only
limited by the level of noise. The increased coherence properties greatly improve
the storage-time of both encoding schemes due to the drastically reduced damping
of the cavity-amplitude.

Figure 4.12: The same as Fig. 4.7 but with reference data taken from Fig. 4.10.

The harmonic pulse-coefficients are listed in Tbl. B.2 and the fundamental fre-
quencies of the writing and the readout pulses are given by 𝜔

(1)
0 = Ω𝑅/2 and

𝜔
(2)
0 = Ω𝑅/4. The power of the reading pulse relative to the writing pulse power

is adjusted to 𝒫(2) < 𝒫(1)/2 according to the modified time divisions compared to
Sec. 4.1.2. All the other parameters used here are the same as in Fig. 4.4.
We would like to emphasize that the parameters 𝛾𝑅 and 𝛿𝑅 in Fig. 4.11 and

Fig. 4.12 are retrieved solely from the cavity-amplitude in the functional interval
(gray area in Fig. 4.10), which is delayed by 1.12𝜇s from the end of the writing
section (dashed cut in Fig. 4.10). In this sense we believe that we have developed
a protocol to store real- and complex-valued parameters for a significant time-
interval into the cavity-responses 𝐴

(2)
”0”(𝑡) and 𝐴

(2)
”1”(𝑡). Moreover the information

can be reconstructed with a very high precision. In the experiment storage times
of several 𝜇s should be achievable since the only limits for this encoding scheme are
the level of noise and the life-time of the holes of approximately 20 𝜇s.



Summary

In this thesis we start with the Volterra integral equation to describe the dynamical
evolution of the amplitude of a single-mode cavity strongly coupled to an inhomo-
geneously broadened spin ensemble at low temperatures and in the low excitation
regime [24]. We then introduce a novel way to optimally control the dynamical
evolution of the cavity-amplitude of such a hybrid-quantum-system using the con-
cept of pulse shaping [28]. More precisely we use weak control pulses, which are
composed of no more than 16 Fourier modes and numerically optimize the relative
amplitudes of these different harmonic components [31, 32].
Employing the Volterra integral equation we suggest a protocol, solely based on

optimal control pulses, which allows us to write complex-valued parameters into the
spin-cavity system and to retrieve this information at predetermined later times.
Specifically, we design two optimized writing pulses, which drive the system either
into the configuration ”0” or ”1” such that they are well-separable in time in the
subsequent readout section under the action of the same optimized readout pulse.
In a next step we create coherent superpositions of the two system configura-

tions simply by superimposing the two optimized writing pulses and applying the
combined pulse to the cavity. In this sense our approach is capable of encoding
information into the spin ensemble while the readout is performed with the same
optimized pulse as before. Specifically, we suggest two different protocols: The
first one can be used to encode one real-valued parameter into the system such
that the corresponding cavity-responses in the readout section are very similar to
the concept of time-binned qubits [34]. The second protocol slightly deviates from
the picture of the time-binned cavity-responses but, although relying on the same
optimized control pulses as before, it allows us to encode and retrieve two arbitrary
complex-valued parameters, which is one qubit of information, with a precision only
limited by the level of noise. Moreover, we show that the time of retrieval for both
protocols can be significantly varied such that we can use the hybrid-quantum-
system as a memory device for the information, which was initially written into the
system.
We would like to emphasize that our description is purely linear and is based

on interference effects of the field residing in the spin-cavity system with the weak
optimal control pulses in contrast to other techniques based on stimulated photon
echoes [35], where a combination of high-intensity and low-intensity pulses is used
to store information in an optical memory and to retrieve it later on.
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The applicability of our protocols can be further improved by enhancing the
coherence properties of the system. This can be achieved for the hybrid-quantum-
system under study by means of the cavity protection effect [10, 17], which states
that certain systems can naturally be protected against decoherence if the collective
coupling strength of the cavity to the whole ensemble is sufficiently large. An
alternative way to drastically suppress the total decoherence rate of the system at
modest values of the collective coupling strength is to modify the spectral spin-
density at judiciously chosen frequencies by spectral hole burning [25]. This effect
gives rise to a slow asymptotic behavior with a total decoherence rate, which is
even below the fundamental lowest limit attainable by the cavity protection effect.
In particular, we demonstrate that with this concept of spectral hole burning [25]
storage times of ≥ 1 𝜇s can easily be reached.
To conclude we have developed a novel protocol to optimally control a hybrid-

quantum-system in the framework of linear cavity-QED, featuring a single-mode
cavity strongly coupled to a large, inhomogeneously broadened spin ensemble. We
especially demonstrate the applicability of such systems as a solid-state memory-
devices in linear quantum circuits [2] and we believe that our approach paves the
way for future applications.
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Appendix A

Harmonic Expansion of the

Cavity-Amplitude

A.1 Two Subsequent Intervals

With Eq. (3.3) and Eq. (3.10) the Volterra integral equation Eq. (3.9) of the cavity-
amplitude in the second time-interval [𝑇2, 𝑇3] yields

𝐴(2)(𝑡) =

𝑡∫︁
𝑇2

𝑑𝜏 𝒦(𝑡− 𝜏)𝐴(2)(𝜏) +

𝑁2∑︁
𝑙=1

𝛼
(2)
𝑙 (𝑡) 𝑑

(2)
𝑙 (𝑡) +

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘 𝑓

(2)
𝑘 (𝑡). (A.1)

Substituting the ansatz Eq. (3.12) for 𝐴(2)(𝑡) and 𝐴(2)(𝜏) on the left- and right
hand side of Eq. (A.1), respectively, and rearranging everything with respect to the

harmonic coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 yields

𝑁1∑︁
𝑘=1

𝛼
(1)
𝑘

⎧⎨⎩𝜓(2)
𝑘 (𝑡) −

𝑡∫︁
𝑇2

𝑑𝜏 𝒦(𝑡− 𝜏)𝜓
(2)
𝑘 (𝜏) − 𝑓

(2)
𝑘 (𝑡)

⎫⎬⎭ =

−
𝑁2∑︁
𝑙=1

𝛼
(2)
𝑙

⎧⎨⎩𝑎(2)𝑙 (𝑡) −
𝑡∫︁

𝑇2

𝑑𝜏 𝒦(𝑡− 𝜏) 𝑎
(2)
𝑙 (𝜏) − 𝑑

(2)
𝑙 (𝑡)

⎫⎬⎭ . (A.2)

Eq. (A.2) can only be satisfied for every (arbitrary) choice of the coefficients 𝛼
(1)
𝑘

and 𝛼
(2)
𝑙 if both sides are equal to zero. Moreover, this can only be true if both

expressions in the curly brackets vanish separately for every 𝑘 ∈ {1, 2, . . . , 𝑁1}
and 𝑙 ∈ {1, 2, . . . , 𝑁2}. This leads to the Volterra integral description of the

harmonic components of the cavity-amplitudes 𝜓
(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡) introduced earlier

by Eq. (3.13) and Eq. (3.14).





Appendix B

Derivations of Time-Binned

Objective Functionals

B.1 Vector Notation of Variational Coefficients

Here we introduce a shorthand vector notation for the sets of complex valued coef-
ficients 𝛼

(1)
𝑘 and 𝛼

(2)
𝑙 defined in Eq. (3.15) and Eq. (3.16) as

⟨𝛼(𝑛)| =
(︁
𝛼
(𝑛)
1 , 𝛼

(𝑛)
2 , . . . 𝛼

(𝑛)
𝑁𝑛

)︁
, (B.1)

with whom the different functionals in Sec. 3.1.4 and Sec. 3.1.5 can be written
very instructively. The complex valued Fourier-coefficients 𝛼

(𝑛)
𝑘 play the role of

variational coefficients in the optimization procedures, which is why we also re-
fer to ⟨𝛼(𝑛)| as the coefficient- or variational-vector. Analogous we introduce the

amplitude-vectors for the sets of complex valued harmonic cavity-amplitudes 𝑎
(𝑛)
𝑘 (𝑡)

and 𝜓
(𝑛)
𝑘 (𝑡) given by Eq. (3.8), Eq. (3.13) and Eq. (3.14), respectively, as

|𝑎(𝑛)(𝑡)⟩ =
(︁
𝑎
(𝑛)
1 (𝑡), 𝑎

(𝑛)
2 (𝑡), . . . 𝑎

(𝑛)
𝑁𝑛

(𝑡)
)︁𝑇

, (B.2)

|𝜓(𝑛)(𝑡)⟩ =
(︁
𝜓

(𝑛)
1 (𝑡), 𝜓

(𝑛)
2 (𝑡), . . . 𝜓

(𝑛)
𝑁𝑛

(𝑡)
)︁𝑇

, (B.3)

where (.)𝑇 is the transposed vector. We use the Dirac-bracket notation to conve-
niently express the hermitian conjugate of the coefficient- and amplitude-vectors
⟨.| ≡ |.⟩†. With this the cavity-amplitudes 𝐴(1)(𝑡) and 𝐴(2)(𝑡) of the form Eq. (3.5)
and Eq. (3.12) can be expressed as a scalar product of the form

𝐴(1)(𝑡) = ⟨𝛼(1) | 𝑎(1)(𝑡)⟩ , (B.4)

𝐴(2)(𝑡) = ⟨𝛼(1) |𝜓(2)(𝑡)⟩ + ⟨𝛼(2) | 𝑎(2)(𝑡)⟩ , (B.5)

which will be very useful to express the essential structure of the functionals intro-
duced above.
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B.2 Vector Notation of Functionals

In this section we summarize the short-hand vector notations of all functionals in
Sec. 3.1.4 and Sec. 3.1.5. The net-power penalty functions governed by Eq. (3.24)
and Eq. (3.25) can be rewritten in the following way with the vector notation given
by Eq. (B.1)

ℳ𝒫,1
[︀
𝜂(𝑛)
]︀

= ⟨𝛼(𝑛) |𝛼(𝑛)⟩ − 2𝒫(𝑛) → min, (B.6)

ℳ𝒰 ,2
[︀
𝜂(𝑛)
]︀

:= ⟨𝛼(𝑛) |𝛼(𝑛)⟩ ≤ 2𝒰 (𝑛), (B.7)

which is equivalent to constraining the length of the coefficient vector ⟨𝛼(𝑛)|, which
components are the Fourier-coefficients of the control pulse 𝜂(𝑛)(𝑡). We can also
rewrite the two basic functionals defined by Eq. (3.17) and Eq. (3.18) very instruc-
tively

ℳ𝒩
[︀
𝜂(1), 𝜂(2); 𝜏

]︀
= ⟨𝛼|ℋ𝒯 [𝜏 ] |𝛼⟩ − 𝒩 , (B.8)

ℒ𝒜
[︀
𝜂(1), 𝜂(2); ∆𝜏

]︀
= ⟨𝛼|ℋΔ𝒯 [∆𝜏 ] |𝛼⟩ − 𝒜, (B.9)

with the extended, complex valued coefficient-vector |𝛼⟩ defined by Eq. (B.23) and
the two hermitian matrices ℋ𝒯 [𝜏 ] and ℋΔ𝒯 [∆𝜏 ] of dimension 𝑁1 + 𝑁2 ×𝑁1 + 𝑁2

given by Eq. (B.22) and Eq. (B.27), which contain the entire information about the
time-evolution of the system. Details of the derivation of Eq. (B.8) and Eq. (B.9)
from Eq. (3.17) and Eq. (3.18) can be found in Sec. B.3 and Sec. B.4. With Eq. (B.8)
and Eq. (B.9) the suppression-functional given by Eq. (B.10) takes the form

ℱ0

[︀
𝜂(1), 𝜂(2); ∆𝜏0

]︀
= ⟨𝛼|ℋΔ𝒯 [∆𝜏0] |𝛼⟩ − 𝜆𝒯 ⟨𝛼|ℋ𝒯 [𝜏0] |𝛼⟩ . (B.10)

and the non-zero response functional given by Eq. (3.21) becomes

ℱ𝒜
[︀
𝜂(1), 𝜂(2); 𝜏𝑠,∆𝜏0,∆𝜏1

]︀
= ⟨𝛼|ℋΔ𝒯 [∆𝜏0] |𝛼⟩ − 𝜆𝒯 ⟨𝛼|ℋ𝒯 [𝜏𝑠] |𝛼⟩

− 𝜆Δ𝒯 (⟨𝛼|ℋΔ𝒯 [∆𝜏1] |𝛼⟩ − 𝒜) , (B.11)

where, again, the extended coefficient vector ⟨𝛼| is defined by Eq. (B.23) and the
matrices ℋ𝒯 [𝜏0], ℋΔ𝒯 [∆𝜏0] and ℋΔ𝒯 [∆𝜏1] are given by Eq. (B.22) and Eq. (B.27),
respectively.
The essential argument we want to emphasize by writing Eq. (B.6) - Eq. (B.11)

in this vector notation is, that the complete information about the time evolution of
the system for fixed time divisions [𝑇1, 𝑇2] and [𝑇2, 𝑇3] is determined by the matrices
ℋ𝒯 [𝜏 ] and ℋΔ𝒯 [∆𝜏 ]. They are, in turn, completely independent of the variational
coefficients ⟨𝛼|. Even the integration in Eq. (3.18) can be performed without spec-
ifying the coefficients. All functionals are reduced to simple vector-matrix-vector
multiplications, where the matrices ℋ𝒯 [𝜏 ] and ℋΔ𝒯 [∆𝜏 ] are solely composed of
complex numbers. This procedure is numerically very efficient, since a variation of
the complex valued coefficient vector ⟨𝛼| = (𝛼

(1)
1 , . . . , 𝛼

(1)
𝑁1
, 𝛼

(2)
1 , . . . , 𝛼

(2)
𝑁2

) does not
change the matrices ℋ𝒯 [𝜏 ] and ℋΔ𝒯 [∆𝜏 ], once they have been evaluated.
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B.3 Equal-Time Products of Cavity-Amplitudes

To express Eq. (3.17) in terms of the variational coefficients 𝛼
(𝑛)
𝑘 of the control pulses

𝜂(𝑛)(𝑡) defined by Eq. (3.1) and to provide a convenient basis for the considerations
below, we here present the equal time product

𝐴
(1)
𝑖 (𝑡)

(︁
𝐴

(1)
𝑗 (𝑡)

)︁*
=

𝑁1∑︁
𝑘=1

𝛼
(1,𝑖)
𝑘 𝑎

(1)
𝑘 (𝑡)

(︃
𝑁1∑︁
𝑘′=1

𝛼
(1,𝑗)
𝑘′ 𝑎

(1)
𝑘′ (𝑡)

)︃*

,

=

𝑁1∑︁
𝑘=1

𝑁1∑︁
𝑘′=1

𝛼
(1,𝑖)
𝑘

(︁
𝑎
(1)
𝑘 (𝑡)

(︁
𝑎
(1)
𝑘′ (𝑡)

)︁*)︁(︁
𝛼
(1,𝑗)
𝑘′

)︁*
, (B.12)

of the two cavity-amplitudes

𝐴
(1)
𝑖 (𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1,𝑖)
𝑘 𝑎

(1)
𝑘 (𝑡), 𝐴

(1)
𝑗 (𝑡)

𝑁1∑︁
𝑘′=1

𝛼
(1,𝑗)
𝑘′ 𝑎

(1)
𝑘′ (𝑡), (B.13)

where the evolution of 𝑎
(1)
𝑘 (𝑡) is defined by Eq. (3.8). 𝐴

(1)
𝑖 (𝑡) and 𝐴

(1)
𝑗 (𝑡) are con-

trolled by the two independent pulses 𝜂
(1)
𝑖 (𝑡) and 𝜂

(1)
𝑗 (𝑡) with 𝑁1 coefficients 𝛼

(1,𝑖)
𝑘

and 𝛼
(1,𝑗)
𝑘′ each, which correspond to those of Eq. (3.15). In the last line of Eq. (B.12)

we can see that the product 𝐴
(1)
𝑖 (𝑡)(𝐴

(1)
𝑗 (𝑡))* can be treated as a matrix with ele-

ments 𝑎
(1)
𝑘 (𝑡)(𝑎

(1)
𝑘′ (𝑡))* sandwiched by the coefficient vectors (⟨𝛼(1,𝑖)|)𝑘 and (|𝛼(1,𝑗)⟩)𝑘′

defined by Eq. (B.1). With the Dirac notation Eq. (B.1)−Eq. (B.3) we define the
equal time matrix

𝒯
[︀
𝑏(𝑛), 𝑐(𝑚); 𝑡

]︀
=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑏
(𝑛)
1 (𝑡)

(︁
𝑐
(𝑚)
1 (𝑡)

)︁*
. . . 𝑏

(𝑛)
1 (𝑡)

(︁
𝑐
(𝑚)
𝑁𝑚

(𝑡)
)︁*

𝑏
(𝑛)
2 (𝑡)

(︁
𝑐
(𝑚)
1 (𝑡)

)︁*
. . . 𝑏

(𝑛)
2 (𝑡)

(︁
𝑐
(𝑚)
𝑁𝑚

(𝑡)
)︁*

...
. . .

...

𝑏
(𝑛)
𝑁𝑛

(𝑡)
(︁
𝑐
(𝑚)
1 (𝑡)

)︁*
. . . 𝑏

(𝑛)
𝑁𝑛

(𝑡)
(︁
𝑐
(𝑚)
𝑁𝑚

(𝑡)
)︁*

⎞⎟⎟⎟⎟⎟⎟⎠ (B.14)

≡ |𝑏(𝑛)(𝑡)⟩ ⟨𝑐(𝑚)(𝑡)| . (B.15)

as the dyadic-product of two sets of cavity-amplitudes |𝑏(𝑛)(𝑡)⟩ and ⟨𝑐(𝑚)(𝑡)| =

|𝑐(𝑚)(𝑡)⟩† defined in the time interval 𝑛 and𝑚, respectively Depending on the actual

problem the cavity-amplitudes 𝑏
(𝑛)
𝑘 (𝑡) and 𝑐

(𝑚)
𝑙 (𝑡), which form the matrix elements,

are determined by any of the harmonic cavity-amplitudes 𝑎
(1)
𝑘 (𝑡), 𝜓

(2)
𝑘 (𝑡) or 𝑎

(2)
𝑙 (𝑡)

governed by Eq. (3.8), Eq. (3.13) or Eq. (3.14), respectively. With Eq. (B.1) and
Eq. (B.14) we can bring Eq. (B.12) to the very instructive form

𝐴
(1)
𝑖 (𝑡)

(︁
𝐴

(1)
𝑗 (𝑡)

)︁*
= ⟨𝛼(1,𝑖)| 𝒯

[︀
𝑎(1), 𝑎(1); 𝑡

]︀⏟  ⏞  
|𝑎(1)(𝑡)⟩⟨𝑎(1)(𝑡)|

|𝛼(1,𝑗)⟩ . (B.16)
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Evaluating the equal time product in a second, subsequent time interval, regard-
ing Eq. (3.17), is slightly more complicated. Using two independently controllable
cavity-amplitudes determined analogous to Eq. (3.12) by

𝐴
(2)
𝑖 (𝑡) =

𝑁1∑︁
𝑘=1

𝛼
(1,𝑖)
𝑘 𝜓

(2)
𝑘 (𝑡) +

𝑁2∑︁
𝑙=1

𝛼
(2,𝑖)
𝑙 𝑎

(2)
𝑙 (𝑡),

𝐴
(2)
𝑗 (𝑡) =

𝑁1∑︁
𝑘′=1

𝛼
(1,𝑗)
𝑘′ 𝜓

(2)
𝑘′ (𝑡) +

𝑁2∑︁
𝑙′=1

𝛼
(2,𝑗)
𝑙′ 𝑎

(2)
𝑙′ (𝑡), (B.17)

we need to consider four control pulses 𝜂
(1)
𝑖 (𝑡), 𝜂

(2)
𝑖 (𝑡), 𝜂

(1)
𝑗 (𝑡) and 𝜂

(2)
𝑗 (𝑡) of the type

of Eq. (3.1) with 2 · (𝑁1 + 𝑁2) corresponding variational coefficients 𝛼
(1,𝑖)
𝑘 , 𝛼

(2,𝑖)
𝑙 ,

𝛼
(1,𝑗)
𝑘′ and 𝛼

(2,𝑗)
𝑙′ in general. The functions 𝜓

(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡) are determined by

Eq. (3.13) and Eq. (3.14) and are the same for both cavity-amplitudes 𝐴
(2)
𝑖 (𝑡) and

𝐴
(2)
𝑗 (𝑡). For the product of 𝐴

(2)
𝑖 (𝑡) and 𝐴

(2)
𝑗 (𝑡) we get

𝐴
(2)
𝑖 (𝑡)

(︁
𝐴

(2)
𝑗 (𝑡)

)︁*
=(︃

𝑁1∑︁
𝑘=1

𝛼
(1,𝑖)
𝑘 𝜓

(2)
𝑘 (𝑡) +

𝑁2∑︁
𝑙=1

𝛼
(2,𝑖)
𝑙 𝑎

(2)
𝑙 (𝑡)

)︃
⏟  ⏞  

𝐴
(2)
𝑖 (𝑡)≡⟨𝛼(1,𝑖) |𝜓(2)(𝑡)⟩+⟨𝛼(2,𝑖) | 𝑎(2)(𝑡)⟩

(︃
𝑁1∑︁
𝑘′=1

𝛼
(1,𝑗)
𝑘′ 𝜓

(2)
𝑘′ (𝑡) +

𝑁2∑︁
𝑙′=1

𝛼
(2,𝑗)
𝑙′ 𝑎

(2)
𝑙′ (𝑡)

)︃*

⏟  ⏞  (︁
𝐴

(2)
𝑖 (𝑡)

)︁*
≡⟨𝜓(2)(𝑡) |𝛼(1,𝑗)⟩+⟨𝑎(2)(𝑡) |𝛼(2,𝑗)⟩

.

(B.18)

With the Dirac notation for 𝐴
(2)
𝑖 (𝑡) and 𝐴

(2)
𝑗 (𝑡) given by Eq. (B.5) (which is indi-

cated in Eq. (B.18)) and after rearranging everything with respect to the variational
coefficients, Eq. (B.18) yields

𝐴
(2)
𝑖 (𝑡)

(︁
𝐴

(2)
𝑗 (𝑡)

)︁*
= ⟨𝛼(1,𝑖) |𝜓(2)(𝑡)⟩ ⟨𝜓(2)(𝑡) |𝛼(1,𝑗)⟩

+ ⟨𝛼(1,𝑖) |𝜓(2)(𝑡)⟩ ⟨𝑎(2)(𝑡) |𝛼(2,𝑗)⟩
+ ⟨𝛼(2,𝑖) | 𝑎(2)(𝑡)⟩ ⟨𝜓(2)(𝑡) |𝛼(1,𝑗)⟩
+ ⟨𝛼(2,𝑖) | 𝑎(2)(𝑡)⟩ ⟨𝑎(2)(𝑡) |𝛼(2,𝑗)⟩ , (B.19)

which can also be written with the equal-time matrix notation defined by Eq. (B.14).
For 𝑖 = 𝑗 we consider two subsequent pulses 𝜂(1)(𝑡) and 𝜂(2)(𝑡) with 𝑁1 + 𝑁2 coef-

ficients 𝛼
(1)
𝑘 = 𝛼

(1,𝑖)
𝑘 = 𝛼

(1,𝑗)
𝑘 and 𝛼

(2)
𝑙 = 𝛼

(2,𝑖)
𝑙 = 𝛼

(2,𝑗)
𝑙 . Consequently Eq. (3.17) can

be written in the form

ℳ𝒩
[︀
𝜂(1), 𝜂(2); 𝑡

]︀
= ⟨𝛼(1)| 𝒯

[︀
𝜓(2), 𝜓(2); 𝑡

]︀
|𝛼(1)⟩ (B.20)

+ ⟨𝛼(1)| 𝒯
[︀
𝜓(2), 𝑎(2); 𝑡

]︀
|𝛼(2)⟩

+ ⟨𝛼(2)| 𝒯
[︀
𝑎(2), 𝜓(2); 𝑡

]︀
|𝛼(1)⟩

+ ⟨𝛼(2)| 𝒯
[︀
𝑎(2), 𝑎(2); 𝑡

]︀
|𝛼(2)⟩ − 𝒩 . (B.21)
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where all time dependencies 𝒯 [. . . ; 𝑡] can be evaluated without specification of
the variational vectors ⟨𝛼(1)| and ⟨𝛼(2)|. Eq. (B.21) can even be written in a more
sophisticated way, that is

ℳ𝒩
[︀
𝜂(1), 𝜂(2); 𝑡

]︀
=

(⟨𝛼(1)| , ⟨𝛼(2)|)
(︂
𝒯
[︀
𝜓(2), 𝜓(2); 𝑡

]︀
𝒯
[︀
𝜓(2), 𝑎(2); 𝑡

]︀
𝒯
[︀
𝑎(2), 𝜓(2); 𝑡

]︀
𝒯
[︀
𝑎(2), 𝑎(2); 𝑡

]︀)︂⏟  ⏞  
ℋ𝒯 [𝑡]

(︂
|𝛼(1)⟩
|𝛼(2)⟩

)︂
−𝒩 (B.22)

where we introduce the extended coefficient vector

⟨𝛼| =
(︀
⟨𝛼(1)| , ⟨𝛼(2)|

)︀
=
(︁
𝛼
(1)
1 , . . . , 𝛼

(1)
𝑁1
, 𝛼

(2)
1 , . . . , 𝛼

(2)
𝑁2

)︁
(B.23)

and the extended equal-time matrix ℋ𝒯 [𝑡]. The variation of the two pulses 𝜂(1)(𝑡)

and 𝜂(2)(𝑡) are performed very efficiently by varying the coefficients 𝛼
(1)
𝑘 and 𝛼

(2)
𝑙 .

B.4 Time-Integrated Products of

Cavity-Amplitudes

Regarding Eq. (3.18) we integrate the equal time products defined by Eq. (B.12)

and Eq. (B.18) of two cavity-amplitudes 𝐴
(𝑛)
𝑖 (𝑡) and 𝐴

(𝑛)
𝑗 (𝑡) given by Eq. (B.13)

and Eq. (B.17) in the time interval 𝑛 = 1 and 𝑛 = 2, respectively. With Eq. (B.16)
and Eq. (B.19) we immediately find

𝜏 ′∫︁
𝜏

𝑑𝑡𝐴
(1)
𝑖 (𝑡)

(︁
𝐴

(1)
𝑗 (𝑡)

)︁*
= ⟨𝛼(1,𝑖)|

⎛⎝ 𝜏 ′∫︁
𝜏

𝑑𝑡 𝒯
[︀
𝑎(1), 𝑎(1); 𝑡

]︀⎞⎠ |𝛼(1,𝑗)⟩ , (B.24)

𝜏 ′∫︁
𝜏

𝑑𝑡𝐴
(2)
𝑖 (𝑡)

(︁
𝐴

(2)
𝑗 (𝑡)

)︁*
= ⟨𝛼(1,𝑖)|

⎛⎝ 𝜏 ′∫︁
𝜏

𝑑𝑡 𝒯
[︀
𝜓(2), 𝜓(2); 𝑡

]︀⎞⎠ |𝛼(1,𝑗)⟩

+ ⟨𝛼(1,𝑖)|

⎛⎝ 𝜏 ′∫︁
𝜏

𝑑𝑡 𝒯
[︀
𝜓(2), 𝑎(2); 𝑡

]︀⎞⎠ |𝛼(2,𝑗)⟩

+ ⟨𝛼(2,𝑖)|

⎛⎝ 𝜏 ′∫︁
𝜏

𝑑𝑡 𝒯
[︀
𝑎(2), 𝜓(2); 𝑡

]︀⎞⎠ |𝛼(1,𝑗)⟩

+ ⟨𝛼(2,𝑖)|

⎛⎝ 𝜏 ′∫︁
𝜏

𝑑𝑡 𝒯
[︀
𝑎(2), 𝑎(2); 𝑡

]︀⎞⎠ |𝛼(2,𝑗)⟩ . (B.25)
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The matrix elements of 𝒯 [ . , . ; 𝑡] defined in Eq. (B.14) are uniquely defined by

the evolution of 𝑎
(1)
𝑘 (𝑡), 𝜓

(2)
𝑘 (𝑡) and 𝑎

(2)
𝑙 (𝑡). Thus every single matrix element of

𝒯 [ . , . ; 𝑡] can be evaluated and moreover can be integrated before evaluating the

full expressions Eq. (B.24) and Eq. (B.25) by specifying the coefficient 𝛼
(𝑛,𝑖)
𝑘 and

𝛼
(𝑛,𝑗)
𝑘′ . We therefore define the following matrix, where all integrations in the interval

∆𝜏 ≡ [𝜏, 𝜏 ′] of the equal-time matrix are carried out

ℐ
[︀
𝑏(𝑛), 𝑐(𝑚); ∆𝜏

]︀
=

𝜏 ′∫︁
𝜏

𝑑𝑡 𝒯
[︀
𝑏(𝑛), 𝑐(𝑚); 𝑡

]︀
(B.26)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜏 ′∫︀
𝜏

𝑑𝑡 𝑏
(𝑛)
1 (𝑡)

(︁
𝑐
(𝑚)
1 (𝑡)

)︁*
. . .

𝜏 ′∫︀
𝜏

𝑑𝑡 𝑏
(𝑛)
1 (𝑡)

(︁
𝑐
(𝑚)
𝑁𝑚

(𝑡)
)︁*

𝜏 ′∫︀
𝜏

𝑑𝑡 𝑏
(𝑛)
2 (𝑡)

(︁
𝑐
(𝑚)
1 (𝑡)

)︁*
. . .

𝜏 ′∫︀
𝜏

𝑑𝑡 𝑏
(𝑛)
2 (𝑡)

(︁
𝑐
(𝑚)
𝑁𝑚

(𝑡)
)︁*

...
. . .

...
𝜏 ′∫︀
𝜏

𝑑𝑡 𝑏
(𝑛)
𝑁𝑛

(𝑡)
(︁
𝑐
(𝑚)
1 (𝑡)

)︁*
. . .

𝜏 ′∫︀
𝜏

𝑑𝑡 𝑏
(𝑛)
𝑁𝑛

(𝑡)
(︁
𝑐
(𝑚)
𝑁𝑚

(𝑡)
)︁*

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The dummy cavity-amplitudes 𝑏
(𝑛)
𝑘 (𝑡) and 𝑐

(𝑚)
𝑙 (𝑡) in Eq. (B.26) can be any of the

harmonic cavity-amplitudes 𝑎
(1)
𝑘 (𝑡), 𝜓

(2)
𝑘 (𝑡) or 𝑎

(2)
𝑙 (𝑡), respectively, depending on the

actual problem. Analogous to the functional ℳ𝒩
[︀
𝜂(1), 𝜂(2); 𝑡

]︀
above the functional

ℒ𝒜
[︀
𝜂(1), 𝜂(2); ∆𝜏

]︀
given by Eq. (3.18) can be rewritten with Eq. (B.26) as

ℒ𝒜
[︀
𝜂(1), 𝜂(2); ∆𝜏

]︀
= ⟨𝛼|

(︂
ℐ
[︀
𝜓(2), 𝜓(2); ∆𝜏

]︀
ℐ
[︀
𝜓(2), 𝑎(2); ∆𝜏

]︀
ℐ
[︀
𝑎(2), 𝜓(2); ∆𝜏

]︀
ℐ
[︀
𝑎(2), 𝑎(2); ∆𝜏

]︀)︂⏟  ⏞  
ℋΔ𝒯 [Δ𝜏 ]

|𝛼⟩ − 𝒜, (B.27)

where we use the extended coefficient vector ⟨𝛼| defined by Eq. (B.23) and we define
the matrix ℋΔ𝒯 [∆𝜏 ]. Optimization procedures involving Eq. (B.27) can thus be
performed very efficiently by variation of the coefficient vector ⟨𝛼|.

B.5 Numerical Results of Harmonic Coefficients

Tbl. B.1 and Tbl. B.2 list all coefficients of the optimal control pulses 𝜂
(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡)

and 𝜂
(2)
ℛ (𝑡) defined by Eq. (4.1), Eq. (4.2) and Eq. (4.5), which are presented in this

thesis.
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Fig. 4.4(a) Fig. 4.4(b) Fig. 4.5(a) Fig. 4.5(b)

𝛼”0”
1 −0.386 + 0.718 i 0.509 − 0.832 i −1.964 + 0.055 i 1.869 + 0.698 i
𝛼”0”
2 0.184 − 0.229 i 0.435 − 0.711 i 0.149 + 0.300 i −0.126 − 0.047 i
𝛼”0”
3 0.724 − 1.095 i 0.600 − 0.981 i −0.022 − 0.037 i 0.011 + 0.005 i
𝛼”0”
4 −0.208 + 0.329 i −0.053 + 0.086 i 0.015 + 0.120 i −0.001 − 0.001 i
𝛼”0”
5 0.477 − 0.745 i 0.417 − 0.681 i −0.009 − 0.020 i 0.003 + 0.000 i
𝛼”0”
6 −0.176 + 0.272 i −0.069 + 0.113 i 0.006 + 0.077 i 0.003 + 0.001 i
𝛼”0”
7 0.347 − 0.550 i 0.309 − 0.506 i −0.007 − 0.014 i 0.002 + 0.000 i
𝛼”0”
8 −0.134 + 0.218 i −0.061 + 0.099 i 0.003 + 0.057 i 0.003 + 0.001 i

𝛼”1”
1 −0.010 + 0.028 i −0.007 + 0.011 i 0.174 − 0.148 i −0.107 − 0.042 i
𝛼”1”
2 −0.229 + 0.504 i −0.322 + 0.527 i 1.043 + 0.238 i −0.627 − 0.309 i
𝛼”1”
3 −0.764 + 1.182 i −0.730 + 1.194 i 0.970 − 0.030 i 1.122 + 0.041 i
𝛼”1”
4 0.068 − 0.247 i 0.155 − 0.253 i 0.096 + 0.089 i −0.381 − 0.128 i
𝛼”1”
5 −0.560 + 0.810 i −0.504 + 0.824 i 0.837 − 0.016 i 1.019 + 0.023 i
𝛼”1”
6 0.042 − 0.225 i 0.142 − 0.232 i 0.721 + 0.057 i 0.112 − 0.083 i
𝛼”1”
7 −0.473 + 0.600 i −0.374 + 0.611 i 0.786 − 0.011 i 0.967 + 0.016 i
𝛼”1”
8 −0.083 − 0.185 i 0.117 − 0.191 i 0.022 + 0.042 i −0.282 − 0.061 i

𝛼ℛ
1 −0.063 + 0.106 i −0.159 + 0.259 i −0.178 − 0.032 i 0.475 + 0.177 i
𝛼ℛ
2 −0.112 + 0.207 i 0.170 − 0.278 i −0.166 − 0.002 i 0.209 + 0.078 i
𝛼ℛ
3 −0.098 + 0.179 i 0.043 − 0.071 i 0.321 + 0.059 i 0.018 + 0.007 i
𝛼ℛ
4 0.004 + 0.001 i −0.045 + 0.074 i 0.312 + 0.064 i −0.175 − 0.065 i
𝛼ℛ
5 0.079 − 0.151 i −0.032 + 0.053 i −0.099 + 0.042 i 0.030 + 0.011 i
𝛼ℛ
6 0.098 − 0.184 i 0.060 − 0.098 i 0.259 − 0.040 i 0.037 + 0.014 i
𝛼ℛ
7 0.089 − 0.162 i 0.022 − 0.036 i −0.227 + 0.036 i −0.045 − 0.017 i
𝛼ℛ
8 0.021 − 0.050 i −0.024 + 0.040 i 0.161 + 0.022 i −0.134 − 0.050 i
𝛼ℛ
9 −0.102 + 0.191 i −0.027 + 0.043 i 0.268 − 0.003 i −0.049 − 0.018 i
𝛼ℛ
10 −0.168 + 0.310 i 0.037 − 0.060 i −0.283 + 0.019 i −0.030 − 0.011 i
𝛼ℛ
11 −0.058 + 0.102 i 0.020 − 0.033 i 0.090 − 0.005 i −0.099 − 0.037 i
𝛼ℛ
12 0.055 − 0.096 i −0.018 + 0.029 i 0.119 + 0.010 i −0.141 − 0.053 i
𝛼ℛ
13 −0.006 + 0.002 i −0.024 + 0.040 i −0.008 + 0.022 i −0.103 − 0.039 i
𝛼ℛ
14 0.056 − 0.102 i 0.028 − 0.046 i 0.236 − 0.024 i −0.078 − 0.029 i
𝛼ℛ
15 0.295 − 0.547 i 0.019 − 0.031 i −0.495 + 0.041 i −0.148 − 0.055 i
𝛼ℛ
16 −0.205 + 0.373 i −0.018 + 0.029 i −0.305 + 0.025 i −0.151 − 0.056 i

Table B.1: Harmonic coefficients of the optimal control pulses 𝜂
(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡)

defined by Eq. (4.1), Eq. (4.2) and Eq. (4.5) for the time-binned cavity-responses depicted in
Fig. 4.4(a), Fig. 4.4(b), Fig. 4.5(a) and Fig. 4.5(b).
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Fig. 4.9(a) Fig. 4.10

𝛼”0”
1 0.551 − 0.132 i 0.121 + 0.093 i
𝛼”0”
2 1.219 − 0.120 i 1.228 + 0.637 i
𝛼”0”
3 −0.028 − 0.019 i 0.039 − 0.002 i
𝛼”0”
4 0.928 + 0.069 i 0.173 + 0.089 i
𝛼”0”
5 0.435 − 0.036 i −0.009 − 0.014 i
𝛼”0”
6 0.592 + 0.049 i 0.104 + 0.057 i
𝛼”0”
7 0.765 − 0.029 i −0.009 − 0.011 i
𝛼”0”
8 0.422 + 0.037 i 0.077 + 0.039 i

𝛼”1”
1 1.820 + 0.065 i −0.915 − 0.467 i
𝛼”1”
2 0.099 + 0.004 i 0.055 + 0.001 i
𝛼”1”
3 0.558 + 0.053 i 0.744 + 0.378 i
𝛼”1”
4 −0.105 − 0.039 i 0.177 + 0.091 i
𝛼”1”
5 0.456 + 0.033 i 0.323 + 0.168 i
𝛼”1”
6 0.159 − 0.027 i 0.093 + 0.052 i
𝛼”1”
7 0.308 + 0.024 i 0.209 + 0.112 i
𝛼”1”
8 0.129 − 0.020 i 0.066 + 0.037 i

𝛼ℛ
1 0.506 + 0.004 i −0.033 − 0.018 i
𝛼ℛ
2 −0.357 + 0.153 i 0.101 + 0.052 i
𝛼ℛ
3 −0.568 + 0.010 i −0.103 − 0.057 i
𝛼ℛ
4 −0.237 + 0.028 i 0.135 + 0.071 i
𝛼ℛ
5 −0.288 + 0.008 i −0.083 − 0.047 i
𝛼ℛ
6 −0.060 + 0.062 i 0.043 + 0.022 i
𝛼ℛ
7 0.135 − 0.033 i −0.055 − 0.028 i
𝛼ℛ
8 −0.054 − 0.008 i −0.020 − 0.008 i
𝛼ℛ
9 0.014 + 0.019 i −0.051 − 0.027 i
𝛼ℛ
10 0.085 + 0.008 i −0.001 + 0.001 i
𝛼ℛ
11 −0.175 − 0.010 i −0.064 − 0.032 i
𝛼ℛ
12 −0.184 + 0.045 i −0.045 − 0.021 i
𝛼ℛ
13 0.059 − 0.031 i −0.026 − 0.011 i
𝛼ℛ
14 −0.106 + 0.051 i −0.103 − 0.051 i
𝛼ℛ
15 −0.017 − 0.035 i −0.009 − 0.000 i
𝛼ℛ
16 0.086 + 0.013 i 0.002 + 0.004 i

Table B.2: Harmonic coefficients of the optimal control pulses 𝜂
(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡)

defined by Eq. (4.1), Eq. (4.2) and Eq. (4.5) for the time-binned cavity-responses depicted in
Fig. 4.9(a) and Fig. 4.10.



Appendix C

Refocusing of Cavity-Amplitudes

and Spin-Waves

C.1 Concept, Results and Discussion

Based on the discussion of the time-binned cavity-responses of Sec. 4.1 we here

investigate the capability of a single storage pulse 𝜂
(2′)
𝒮 (𝑡) being applied in between

the writing interval [𝑇1, 𝑇2] and the readout interval [𝑇3′ , 𝑇4′ ] = [𝑇2+∆𝑇𝒮 , 𝑇3+∆𝑇𝒮 ],
which is delayed by a storage time ∆𝑇𝒮 . The primed quantities denote the adjusted
time-divisions because of the intermediate storage pulse; Fig. C.1 schematically
depicts this modified time-divisions.

Figure C.1: Time-divisions of the optimization scheme for the refocusing of time-binned
cavity-responses sketched in Fig. 4.1. The writing interval [𝑇1, 𝑇2] is followed by the storage
interval [𝑇2, 𝑇3′ ]. The other time-divisions are the same as depicted in Fig. 4.3 but delayed by
the storage time Δ𝑇𝒮 .

This protocol aims to restore a snapshot of the configuration of the coupled
system at the end of the writing interval 𝑇2 to restore it at the end of the storage
interval 𝑇3′ = 𝑇2 + ∆𝑇𝒮 , independently of which pulse 𝜂

(1)
”0”(𝑡) or 𝜂

(1)
”1”(𝑡) has initially

been applied. Subsequently, the delayed readout pulse 𝜂
(3′)
ℛ (𝑡) ≡ 𝜂

(2)
ℛ (𝑡 − ∆𝑇𝒮) is

applied, which corresponds to the two writing pulses 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡) by means of

the time-binned optimization procedure of Sec. 4.1.1. The cavity-response to this
delayed readout pulse should be equivalent to the time-binned cavity-response as if
the readout pulse 𝜂

(2)
ℛ (𝑡) is directly applied after the writing interval. To achieve this

behavior, we have to consider both, the cavity-amplitudes 𝐴
(1)
”𝑖”(𝑇2) as well as the
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spin-wave amplitudes 𝐵
(1)
”𝑖”,𝑘(𝑇2) defined by Eq. (2.11) for both states ”𝑖” = ”0”, ”1”

at time 𝑇2 (vertical dashed cut in Fig. 4.4(a) and Fig. 4.4(b)) and restore the
respective configuration at 𝑇2 + ∆𝑇𝒮 . The analytical and numerical treatment of
this protocol is carried out in detail in Appendix C.2 and Appendix C.3. We here
only define the storage pulse analogous to Eq. (3.1) as

𝜂
(2′)
𝒮 (𝑡) =

𝑁2′∑︁
𝑞=1

𝛼𝒮
𝑞 sin(𝑞 𝜔𝒮

0 (𝑡− 𝑇2)), (C.1)

with the fundamental frequency 𝜔𝒮
0 and the𝑁2′ harmonic coefficients 𝛼𝒮

𝑞 . Fig. C.2(a)

presents the results for the cavity-amplitudes 𝐴
(𝑛)
”0”(𝑡) and 𝐴

(𝑛)
”1”(𝑡), probed with the

predefined writing pulses 𝜂
(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡) in the first interval (𝑛 = 1), the opti-

mized storage pulse 𝜂
(2′)
𝒮 (𝑡) in the second interval (𝑛 = 2′) and the delayed, prede-

fined readout pulse 𝛽 𝜂
(3′)
ℛ (𝑡) in the third interval (𝑛 = 3′). The predefined writing

pulses and readout pulse are taken from Fig. 4.4(a). The parameter 𝛽 accounts
for a potential total damping and a global phase-shift of the reconstructed cavity-
amplitudes and spin-wave amplitudes at the end of the storage interval compared

to their initial values and is included in the functional evaluation of 𝜂
(2′)
𝒮 (𝑡) (see

Eq. (C.5) and Eq. (C.6) for details). The storage pulse presented in Fig. C.2(a)
contains 𝑁2′ = 16 harmonic components, which are listed in Tbl. C.1, has a funda-
mental frequency of 𝜔𝒮

0 = Ω𝑅/2 and its pulse power is limited by 𝒫(2′) < 𝒫(1)/2,
where 𝒫(1) is the power of the writing pulses. The storage interval of ∆𝑇𝒮 = 102.8 ns
is the same as for the delayed readout-time in Fig. 4.5(a). Further, in Fig. C.2(b) we
give a detailed presentation of the restored cavity-amplitudes in the delayed func-
tional interval [𝑇ℱ + ∆𝑇𝒮 , 𝑇

′
ℱ + ∆𝑇𝒮 ] (gray area in Fig. C.2(a)) and compare them

to their respective original shape 𝛽 𝐴
(2)
”0”(𝑡) and 𝛽 𝐴

(2)
”1”(𝑡) (gray area in Fig. 4.4(a)).

Besides a considerable decrease in amplitude of the restored time-binned responses
by a factor of 𝛽 = 0.3 + i0.03 compared to Fig. 4.4(a), the relative amplitudes
and phases are restored with good accuracy. Further we can see in the last line of
Fig. C.2(b) that the time-binned nature of the cavity-responses is preserved quite
well, although the two basis states slightly begin to overlap owing to decoherence
processes. It should be noted that in the evaluation of 𝜂

(1)
”0”(𝑡), 𝜂

(1)
”1”(𝑡) and 𝜂

(2)
ℛ (𝑡)

depicted in Fig. 4.4(a) we constrain the cavity-amplitudes for both states to vanish

at the end of the writing interval 𝐴
(1)
”0”(𝑇2) = 0 and 𝐴

(1)
”1”(𝑇2) = 0. Thus, at this

moment of time 𝑇2 the complete information about the writing pulses is hidden
in the spin ensemble and the restored states in Fig. C.2 are solely based on the
spin-wave-amplitudes 𝐵

(1)
”0”,𝑘(𝑇2) and 𝐵

(1)
”1”,𝑘(𝑇2). This is in contrast to Fig. 4.5(a),

where we also see a cavity content at 𝑡 = 𝑇2. However, we can already learn
from Eq. (4.6) and Eq. (4.7), that the respective information-carrying part of the

cavity-amplitude 𝐴
(𝑛>1)
”𝑖” (𝑡) after the writing interval (𝑛 = 1) can not be manip-

ulated by a readout-pulse or a storage pulse for any state ”𝑖” = ”0”, ”1” in the
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linear regime. The partial readout amplitude 𝐴
(𝑛>1)
ℛ (𝑡) (and equivalently the stor-

age amplitude 𝐴
(𝑛>1)
𝒮 (𝑡) defined in Eq. (C.2) and Eq. (C.10)) evolve separately from

𝐴
(𝑛>1)
”𝑖” (𝑡). Both the storage and the readout part interfere with 𝐴

(3′)
”𝑖” (𝑡) leading to

an optimized time-binned response in the respective time-interval but they can not
refocus or enhance the memory-part. This is where the damping of the amplitudes
in Fig. C.2 comes from, which thus limits the applicability of this procedure.
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Figure C.2: (a) is the same as Fig. 4.4(a) but with a rescaled and delayed readout pulse

𝛽 𝜂
(2)
ℛ (𝑡 −Δ𝑇𝒮) and an unique intermediate storage pulse 𝜂

(2′)
𝒮 (𝑡) given by Eq. (C.1) shown

in the upper two rows (real-part: green, imaginary-part: light green) applied between the

dashed vertical cuts, respectively. Panel (b) shows the time-binned responses 𝐴
(3′)
”𝑖” (𝑡) defined

by Eq. (C.10) in the functional interval (gray area in (a)) for ”𝑖” = ”0”, ”1” in detail. The real
part (first row), the imaginary part (second row) and the absolute value squared (third row) for
state ”0” (real-part: blue, imaginary-part: cyan) and state ”1” (real-part: red, imaginary-part:

orange) are compared to the rescaled reference amplitudes 𝛽 𝐴
(2)
”𝑖”(𝑡) from Fig. 4.4(a) (gray

lines in (b)), respectively.

C.2 Functional Analysis in Storage Interval

To restore a snapshot of the state of the coupled system from the end of the writ-
ing interval 𝑇2 at the end of the storage interval 𝑇3′ = 𝑇2 + ∆𝑇𝒮 regardless of
which pulse 𝜂

(1)
”0”(𝑡) or 𝜂

(1)
”1”(𝑡) has initially been applied, we have to consider the

cavity-amplitudes and the spin-wave amplitudes for both states ”𝑖” = ”0”, ”1”,
respectively. Analogous to Eq. (4.6) and Eq. (4.7) the cavity-amplitudes in the
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storage interval take the form

𝐴
(2′)
”𝑖” (𝑡) = 𝐴

(2′)
”𝑖” (𝑡) +

𝑁2′∑︁
𝑞=1

𝛼𝒮
𝑞 𝑎

(2′)
𝑞 (𝑡)⏟  ⏞  

𝐴
(2′)
𝒮 (𝑡)

(C.2)

for ”𝑖” = ”0”, ”1”. The partial cavity-amplitudes 𝐴
(2′)
”𝑖” (𝑡) are defined in Eq. (4.6)

and Eq. (4.7) and continue the evolution of the respective cavity-amplitude of

the first interval 𝐴
(1)
”𝑖”(𝑡) defined by Eq. (4.3) and Eq. (4.4). The partial storage

amplitude 𝐴
(2′)
𝒮 (𝑡) is similar to the partial readout amplitude 𝐴

(2)
ℛ (𝑡) defined in

Eq. (4.6) and Eq. (4.7), where the functions 𝑎
(2′)
𝑞 (𝑡) are defined by Eq. (3.14).

The spin-wave amplitudes 𝐵
(1)
”𝑖”,𝑘(𝑡) and 𝐵

(2′)
”𝑖”,𝑘(𝑡) of the first and the second time

interval are uniquely determined by the cavity-amplitudes 𝐴
(1)
”𝑖”(𝑡) and 𝐴

(2′)
”𝑖” (𝑡) for

both states ”𝑖” = ”0”, ”1”, respectively. Following Eq. (2.11) we find

𝐵
(1)
”𝑖”,𝑘(𝑡) = −𝑔*𝑘

𝑡∫︁
𝑇1

𝑑𝜏 𝐴
(1)
”𝑖”(𝜏) e−[𝛾+iΔ𝑘]·(𝑡−𝜏) (C.3)

𝐵
(2′)
”𝑖”,𝑘(𝑡) = 𝐵

(1)
”𝑖”,𝑘(𝑇2) e

−[𝛾+iΔ𝑘]·(𝑡−𝑇2) − 𝑔*𝑘

𝑡∫︁
𝑇2

𝑑𝜏 𝐴
(2′)
”𝑖” (𝜏) e−[𝛾+iΔ𝑘]·(𝑡−𝜏), (C.4)

where 𝑔𝑘 is the coupling strength of the 𝑘
th spin to the cavity-mode, respectively. In

Sec. C.4 we show how to numerically evaluate 𝑔𝑘 from the continuous spin density
𝜌(𝜔). To restore the cavity-amplitudes 𝐴

(1)
”𝑖”(𝑇2) of both states ”𝑖” = ”0”, ”1” we

define the functional

ℳ”𝑖”

[︁
𝜂
(2)
𝒮 , 𝛽; ∆𝑇𝒮

]︁
=
⃒⃒⃒
𝛽 𝐴

(1)
”𝑖”(𝑇2) − 𝐴

(2′)
”𝑖” (𝑇2 + ∆𝑇𝒮)

⃒⃒⃒
, (C.5)

where we introduced the additional variational coefficient 𝛽. This parameter ac-
counts for a potential global phase-shift and a total damping of the cavity-amplitude
during the storage interval. To minimize the deviation of all 𝑁 spin-wave ampli-
tudes at the beginning 𝑇2 and at the end of the storage interval 𝑇2+∆𝑇𝒮 , we define
the least-mean-square functional

ℒ𝜒2

[︁
𝜂
(2)
𝒮 , 𝛽; ∆𝑇𝒮

]︁
=
∑︁
𝑖=0,1

𝑁∑︁
𝑘=1

⃒⃒⃒
𝛽 𝐵

(1)
”𝑖”,𝑘(𝑇2) −𝐵

(2′)
”𝑖”,𝑘(𝑇2 + ∆𝑇𝒮)

⃒⃒⃒2
→ min (C.6)

simultaneously for both basis states ”0” and ”1”. 𝐵
(1)
”𝑖”,𝑘(𝑇2) is an invariant function

of the transition frequencies 𝜔𝑘 and is prepared by the respective writing pulse
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𝜂
(1)
”𝑖”(𝑡). The individual spin-waves 𝐵

(2′)
”𝑖”,𝑘(𝑇2+∆𝑇𝒮) can be controlled by the storage

pulse 𝜂
(2′)
𝒮 (𝑡) to a certain degree. In order to avoid unphysical solutions of the

storage pulse it is sufficient to define an upper boundary of its power by

ℳ𝒰

[︁
𝜂
(2′)
𝒮

]︁
:=

𝑁2∑︁
𝑞=1

⃒⃒
𝛼(2,𝒮)
𝑞

⃒⃒2
< 𝒫(2′)/2 (C.7)

according to Eq. (3.25). A potential trivial solution should also not be excluded.
Further we define an upper and a lower boundary for the phase-parameter 𝛽

𝛽m𝑖𝑛 ≤ |𝛽| ≤ 𝛽m𝑎𝑥. (C.8)

C.3 Functional Analysis in Delayed Readout

Interval

However, minimizing Eq. (C.6) under the constraints given by Eq. (C.5), Eq. (C.7)
and Eq. (C.8) proved to be numerically unstable. We therefore include the delayed
readout section [𝑇3′ , 𝑇4′ ] into the optimization procedure. At this point, we should
be very careful with the parameter 𝛽. After the optimization procedure for the
time-binned cavity-responses ”0” and ”1” the writing pulses 𝜂

(1)
”0”(𝑡) and 𝜂

(1)
”1”(𝑡) and

the reading pulse 𝜂
(2)
ℛ (𝑡) exhibit a definite phase and power relation. In Eq. (C.5)

and Eq. (C.6) we see that the cavity-amplitudes 𝐴
(2′)
”𝑖” (𝑇2 + ∆𝑇𝒮) = 𝛽 𝐴

(1)
”𝑖”(𝑇2) and

the spin-wave amplitudes 𝐵
(2′)
”𝑖”,𝑘(𝑇2 + ∆𝑇𝒮) = 𝛽 𝐵

(1)
”𝑖”,𝑘(𝑇2) after the storage interval

may reconstruct the initial states ”𝑖” = ”0”, ”1” up to the complex valued factor
𝛽. Due to linearity we can think of 𝛽 𝐴

(1)
”𝑖”(𝑇2) and 𝛽 𝐵

(1)
”𝑖”,𝑘(𝑇2) to be prepared with

the scaled writing pulse 𝛽 · 𝜂(1)”𝑖”(𝑡). Thus the delayed readout pulse

𝜂
(3′)
ℛ (𝑡) ≡ 𝛽 𝜂

(2)
ℛ (𝑡− ∆𝑇𝒮) (C.9)

has to be rescaled accordingly. With a straight forward approach to Sec. 3.1.3 and
Sec. A.1 the cavity-amplitude in the delayed readout interval takes the form

𝐴
(3′)
”𝑖” (𝑡) = 𝐴

(3′)
”𝑖” (𝑡) +

𝑁2∑︁
𝑞=1

𝛼𝒮
𝑞 𝜓

(3)
𝑞 (𝑡)⏟  ⏞  

𝐴
(3′)
𝒮 (𝑡)

+𝐴
(3′)
ℛ (𝑡), (C.10)

where the undriven partial amplitudes 𝐴
(3′)
”𝑖” (𝑡) continue the evolution of 𝐴

(2′)
”𝑖” (𝑡)

from the storage interval defined in Eq. (C.2), which, in turn, solely carries the

information about the respective writing pulse 𝜂
(1)
”𝑖”(𝑡) from the first time interval.
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In fact, 𝐴
(3′)
”𝑖” (𝑡) is already solved by 𝐴

(2)
”𝑖”(𝑡) defined in Eq. (4.6) and Eq. (4.7) by

expanding the time-divisions of the former readout interval [𝑇2, 𝑇3] → [𝑇2, 𝑇3 +

∆𝑇𝒮 ]. The 𝑁2′ functions 𝜓
(3)
𝑞 (𝑡) are described by the set of undriven Volterra

integral equations defined by Eq. (3.13), continuing the evolution of 𝑎
(2)
𝑞 (𝑡) defined

in Eq. (C.2), respectively. The common last term 𝐴
(3′)
ℛ (𝑡) ≡ 𝛽 𝐴

(2)
ℛ (𝑡−∆𝑇𝒮) denotes

the delayed readout part of the cavity-amplitudes defined by Eq. (4.6) and Eq. (4.7)
scaled by 𝛽; the time-argument needs to be shifted by ∆𝑇𝒮 according to the delayed

readout. In order to address the quality of the restored cavity-amplitudes 𝐴
(3′)
”𝑖” (𝑡)

in the delayed functional interval [𝑇ℱ +∆𝑇𝒮 , 𝑇
′
ℱ +∆𝑇𝒮 ] with respect to the original

time-binned responses 𝐴
(2)
”𝑖”(𝑡), we introduce the fidelity objective functional

ℒ”𝑖”
F𝑖𝑑

[︁
𝜂
(2′)
𝒮 , 𝛽; ∆𝑇𝒮

]︁
= 1 −

⃒⃒⃒⃒
⃒𝑇

′
ℱ+Δ𝑇𝒮∫︀

𝑇ℱ+Δ𝑇𝒮

𝑑𝑡𝐴
(3′)
”𝑖” (𝑡) ·

(︁
𝛽 𝐴

(2)
”𝑖”(𝑡− ∆𝑇𝒮)

)︁* ⃒⃒⃒⃒⃒
𝑇 ′
ℱ+Δ𝑇𝒮∫︀

𝑇ℱ+Δ𝑇𝒮

𝑑𝑡
⃒⃒⃒
𝛽 𝐴

(2)
”𝑖”(𝑡− ∆𝑇𝒮)

⃒⃒⃒2 (C.11)

to be minimized for both states ”𝑖” = ”0”,= ”1”. The fidelity is insensitive to re-
gions where the original time-binned cavity-amplitudes 𝐴

(2)
”𝑖”(𝑡) are negligible small.

This is why we additionally minimize the overlap of the cavity-amplitudes in the
delayed reading section

ℒO𝑙𝑎𝑝

[︁
𝜂
(2′)
𝒮 , 𝛽; ∆𝑇𝒮

]︁
=

⃒⃒⃒⃒
⃒⃒⃒ 𝑇

′
ℱ+Δ𝑇𝒮∫︁

𝑇ℱ+Δ𝑇𝒮

𝑑𝑡𝐴
(3′)
”0”(𝑡) ·

(︁
𝐴

(3′)
”1”(𝑡)

)︁* ⃒⃒⃒⃒⃒⃒⃒→ min . (C.12)

Eq. (C.11) and Eq. (C.12) can both be treated by the methods of Sec. B.4. The full
functional for the storage procedure is composed of the quadratic deviation func-

tional ℒ𝜒2 [𝜂
(2)
𝒮 , 𝛽; ∆𝑇𝒮 ] and the overlap functional ℒO𝑙𝑎𝑝[𝜂

(2′)
𝒮 , 𝛽; ∆𝑇𝒮 ] constrained

with ℳ”𝑖”[𝜂
(2)
𝒮 , 𝛽; ∆𝑇𝒮 ], ℳ𝒰 [𝜂

(2′)
𝒮 ] and 𝛽m𝑖𝑛 ≤ |𝛽| ≤ 𝛽m𝑎𝑥. Similar to Sec. 4.1.1 the

constrained functional of the storage procedure is minimized by numerical variation

of the harmonic coefficients 𝛼𝒮
𝑞 of the storage pulse 𝜂

(2′)
𝒮 (𝑡) and the scaling factor

𝛽, for which we used the python library scipy.optimize.

C.4 Coupling Strength of Individual Spins

In our numerical calculation we approximate all integrals with the trapezoid for-
mula, hence our numerical "exact" solutions are restricted to small but finite fre-
quency steps ∆𝜔. If we want to evaluate Eq. (C.3) or Eq. (C.4) we have to know,
how the coupling coefficients 𝑔𝑘 of the individual spins depend on the frequency
grid ∆𝜔 and on the spin distribution function 𝜌(𝜔) defined by Eq. (2.9). We first
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integrate 𝜌(𝜔) over one "numerical spin" of transition frequency 𝜔𝑘 in the interval
𝜔𝑘 ± ∆𝜔/2

𝜔𝑘+Δ𝜔/2∫︁
𝜔𝑘−Δ𝜔/2

𝑑𝜔 𝜌(𝜔) =
1

Ω2

𝜔𝑘+Δ𝜔/2∫︁
𝜔𝑘−Δ𝜔/2

𝑑𝜔
𝑁∑︁
𝑙=1

|𝑔𝑙|2 𝛿(𝜔 − 𝜔𝑙)

=
1

Ω2

𝑁∑︁
𝑙=1

|𝑔𝑙|2 𝛿𝑙𝑘

∆𝜔 · 𝜌(𝜔𝑘) ≈ 1

Ω2
|𝑔𝑘|2 , (C.13)

which we approximate with ∆𝜔 · 𝜌(𝜔𝑘). Eq. (C.13) can be rewritten as 𝑔𝑘 =
Ω
√︀

∆𝜔 · 𝜌(𝜔𝑘) assuming a positive and read-valued coupling strength |𝑔𝑘| = 𝑔𝑘 .

We then perform the summation over all spin degrees of freedom
∑︀𝑁

𝑘=1 ∆𝜔 · 𝜌(𝜔𝑘)

and with Ω2 =
∑︀𝑁

𝑘=1 |𝑔𝑘|
2 we find ∆𝜔 = (

∑︀𝑁
𝑘=1 𝜌(𝜔𝑘))

−1 for the step-size and
consequently for the coupling strength

𝑔𝑘 = Ω

√︃
𝜌(𝜔𝑘)∑︀𝑁
𝑙=1 𝜌(𝜔𝑙)

. (C.14)

C.5 Numerical Results of Storage Coefficients

Tbl. C.1 lists the harmonic coefficients of the optimized storage pulse 𝜂
(2′)
𝒮 (𝑡) defined

by Eq. (C.1), which is depicted in Fig. C.2.

𝛼𝒮
1 −0.212 − 0.025 i 𝛼𝒮

9 0.164 − 0.055 i
𝛼𝒮
2 −0.088 + 0.049 i 𝛼𝒮

10 −0.144 + 0.033 i
𝛼𝒮
3 −0.646 + 0.139 i 𝛼𝒮

11 0.133 − 0.045 i
𝛼𝒮
4 −0.579 + 0.056 i 𝛼𝒮

12 −0.116 + 0.028 i
𝛼𝒮
5 0.270 − 0.108 i 𝛼𝒮

13 0.112 − 0.038 i
𝛼𝒮
6 −0.290 + 0.053 i 𝛼𝒮

14 −0.098 + 0.024 i
𝛼𝒮
7 0.211 − 0.070 i 𝛼𝒮

15 0.097 − 0.033 i
𝛼𝒮
8 −0.192 + 0.041 i 𝛼𝒮

16 −0.084 + 0.021 i

Table C.1: Harmonic coefficients of the optimized storage pulse 𝜂
(2′)
𝒮 (𝑡) defined by Eq. (C.1)

for the restored time-binned cavity-responses depicted in Fig. C.2. The parameter 𝛽 = 0.33+
i0.025.
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