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Nonlinear dynamics of a microswimmer in Poiseuille flow
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We study the three-dimensional dynamics of a spherical microswimmer in cylindrical Poiseuille
flow which can be mapped onto a Hamiltonian system. Swinging and tumbling trajectories are iden-
tified. In 2D they are equivalent to oscillating and circling solutions of a mathematical pendulum.
Hydrodynamic interactions between the swimmer and confining channel walls lead to dissipative
dynamics and result in stable trajectories, different for pullers and pushers. We demonstrate this
behavior in the dipole approximation of the swimmer and with simulations using the method of
multi-particle collision dynamics.

PACS numbers: 47.63.Gd, 47.63.mf, 47.61.-k

Microswimmers often have to respond to fluid flow and
confining boundaries, like sperm cells in the Fallopian
tubes [1] or pathogens in blood vessels [2]. Artificial mi-
croswimmers constructed with the vision to act as drug-
deliverers in the human body [3] would have to swim in
narrow channels like arteries. Two properties influence
the swimming in microchannels. On the one hand, vor-
tices in flow reorient the swimming direction of microor-
ganisms. In simple shear flow, for example, microswim-
mers tumble due to a constant flow vorticity [4]. Vortices
in Poiseuille flow in combination with bottom-heaviness
due to gravitation lead to stable orientations of swim-
ming algae cells [5]. On the other hand, microorganisms
swimming near surfaces are trapped by hydrodynamic
interactions [6] and ultimately escape with the help of
rotational diffusion [10]. Finally, bacteria in Poiseuille
flow show a net-upstream flux at the walls due to the
interplay of confinement and flow vorticity [7, 8]. All
these examples show there is genuine interest in under-
standing generic features of microorganisms and artificial
swimmers in Poiseuille flow.

In this letter we demonstrate that the dynamics of a
simple spherical microswimmer in a cylindrical Poiseuille
flow can be mapped onto a conservative dynamical sys-
tem with the Hamiltonian as a constant of motion. In
analogy to the oscillating and circling solutions of a math-
ematical pendulum, we discuss in detail the swinging and
tumbling motion of the microswimmer in 2D and gener-
alize them to three dimensions. Hydrodynamic interac-
tions with the channel wall treated in the dipole approx-
imation introduce dissipation and the microswimmer as-
sumes specific stable swimming trajectories depending on
its type as puller or pusher.

We first introduce the geometry. We consider a point-
like microswimmer that moves with a constant intrinsic
swimming speed v0 in a cylindrical microchannel where
a Poiseuille flow is imposed. Using a cylindrical coordi-
nate system (ρ, ϕ, z) with the coordinate basis (ρ̂, ϕ̂, ẑ),
the flow is given by vf = vf (1−ρ2/R2

Ch
)ẑ, where vf is

the maximum flow speed in the center of the channel
[Fig. 1(a)]. In the absence of noise the equations of mo-

Figure 1. Swimmer in Poiseuille flow. (a) Flow profile
vf (ρ), cylindrical coordinate system with coordinate basis
(ρ̂, ϕ̂, ẑ) and orientation angle Ψ for the projected orienta-
tion into the ρ-z-plane. When eϕ = sinΘ = 0, the motion is
two-dimensional. Note that the sign of vorticity Ωf changes
when crossing the centerline. (b) Cross section of the mi-
crochannel. The orientation in ϕ-direction defines the angle
Θ.

tion for the swimmer position r and orientation ê are
given by

d

dt
r = v0ê+ vf ,

d

dt
ê =

1

2
Ωf × ê (1)

where Ωf = ∇×vf = vfρ/R
2

Ch
ϕ̂ is the flow vorticity.

The swimmer orientation ê = eρρ̂+ eϕϕ̂+ ezẑ has the
components

eρ = − cosΘ sinΨ, eϕ = sinΘ, ez = − cosΘ cosΨ, (2)

where Ψ∈{−π, π} is the angle in the ρ-z-plane [Fig. 1(a)]
and Θ∈{−π/2, π/2} measures the orientation in the az-
imuthal ϕ-direction [Fig. 1(b)]. We note that |Ψ|<π/2
means upstream and |Ψ|>π/2 downstream orientation,
respectively. In the following we use rescaled units,
ρ/RCh → ρ ∈ {0, 1}, z/RCh → z and t/t0 → t with
t0 = RCh/v0. We also introduce the dimensionless flow
speed v̄f = vf/v0, which is the only essential parameter
in our problem.
First, we discuss 2D solutions of Eqs. (1) since they

already capture many aspects of the swimmer dynam-
ics. When Θ = 0, the trajectories of the swimmer are
restricted to two dimensions, for example, to the x-z-
plane, x∈{−1, 1}. Due to the translational symmetry in
z-direction, only the equations for x and Ψ are coupled,
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and Eqs. (1) give ẋ = − sinΨ, Ψ̇ = v̄fx. Eliminating x
results in

Ψ̈ = v̄f sinΨ, (3)

which is the equation of motion of the mathematical pen-
dulum. Since in this analogy x plays the role of velocity,
we can immediately write down the 2D Hamiltonian

H2D =
1

2
v̄fx

2 + 1− cosΨ (4)

as a conserved quantity. Fig. 2 shows the x-Ψ phase space
and typical trajectories z(x) for several flow strengths
v̄f . In analogy to the pendulum two swimming states
exist. The flow vorticity rotates the upstream oriented
microswimmer always towards the center. Hence, the
swimmer performs a swinging motion around the cen-
terline of the channel for H2D < 2 which corresponds to
the oscillating solution of the pendulum [e. g. blue tra-
jectory of Fig. 2(a)]. For small amplitudes (Ψ≪ 1) the
swinging frequency is ω0=

√
v̄f . When the upstream ori-

ented swimmer moves exactly in the center of the chan-
nel (stable fixed point), the Hamiltonian is zero. Down-
stream swimming along the centerline (Ψ=π) is an un-
stable fixed point. After a slight disturbance of x = 0,
vorticity rotates the swimmer away from the centerline.
The swimmer performs a tumbling motion (H2D > 2)
which corresponds to the circling solution of the pen-
dulum [green trajectory of Fig. 2(c)]. At H2D = 2, the
separatrix x2 =2(cosΨ+1)/v̄f divides the swinging and
tumbling region in phase space [red curves in the phase
portraits of Fig. 2]. Since the Poiseuille flow is bounded
by the channel walls, tumbling motion only occurs for
v̄f >4 [Fig. 2(c)]. Meaning sufficiently strong vorticity to
prevent the swimmer from crossing the centerline.

If we only consider steric interactions of the swimmer
with the channel wall, the swimmer crashes into the wall
at |x|=1 for H2D>v̄f/2, reorients due to the flow vortic-
ity towards the upstream orientation, and leaves the wall
at Ψ=0 with Hmax

2D
= v̄f/2. The swimmer then performs

a swinging motion between the walls with maximum am-
plitude |x|= 1 for v̄f < 4 [green trajectory in Fig. 2(a)].
So for v̄f <4 the swimmer always enters a swinging mo-
tion oriented upstream, at the latest after contact with
the wall, whereas it tumbles close to the wall for v̄f >4.

To determine the full 2D trajectory in the microchan-
nel, we solve the dynamic equation for z(t),

ż = v̄f [1− x(t)2]− cosΨ(t). (5)

A careful analysis reveals the following. The swimmer al-
ways moves upstream (ż <0), when v̄f <1−H2D, as shown
in Fig. 2(a). When the flow is strong (v̄f >1+2H2D), the
swimmer always drifts downstream (ż >0), while swing-
ing or tumbling [Fig. 2(c)]. In between, mixed up- and
downstream segments within one trajectory [Fig. 2(b)]

Figure 2. Phase spaces x-Ψ (left) and typical trajectories
z(x) (right) for several flow strengths v̄f . All trajectories start
at z=0. (a) upstream motion, (b) intermediate motion and
(c) downstream motion. Note the various scales for the z-axis.
The arrows indicate the orientation vector ê of the swimmer.

exist but a net upstream motion only occurs for v̄f .

1+H2D/2 [blue line in Fig. 2(b)].
For a non-zero azimuthal component, eϕ = sinΘ 6=

0, the swimmer trajectory is three-dimensional. Using
Eqs. (1) and Eqs. (2), we obtain three coupled equations
for Ψ, Θ and ρ,

ρ̇ = − cosΘ sinΨ

Ψ̇ = v̄fρ− sinΘ tanΘ cosΨ/ρ

Θ̇ = sinΘ sinΨ/ρ.

(6)

Due to translational symmetry in z-direction and rota-
tional symmetry about the channel axis, Eqs. (6) do not
depend on z and ϕ. We are able to identify two constants
of motion,

Lz = ρ sinΘ

H =
1

2
v̄fρ

2 + 1− cosΨ cosΘ,
(7)

where Lz is proportional to the angular momentum of
the swimmer in z-direction. Due to this constant the
sign of Θ along a swimmer trajectory does not change.
Eliminating Θ from Eqs. (6), reduces the equations of
motions to ∂H

∂Ψ
=−ρ̇, ∂H

∂ρ
=Ψ̇. So, H again plays the role

of a Hamiltonian for the conjugate variables Ψ and ρ.
The intersection of the two constants of motion

gives the orbit of the swimmer in ρ-Ψ-Θ phase space
[Fig. 3(a,b)]. The stable fixed points of Eqs. (6) lie on the
fixed-point line (ρ∗=

√

sinΘ∗ tanΘ∗/v̄f , Ψ
∗=0), drawn

in Fig. 3(a). Swimming at a fixed point corresponds to
a helical trajectory [Fig. 3(c)]. The swimmer moves up-
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Figure 3. ρ-Ψ-Θ phase space. The intersection between Lz=
const. (orange) and H=const. (green) gives the phase space
trajectory. (a) helical-like swinging motion (blue intersection
curve) for Lz = 0.2, H = 1. Black curve: fixed-point line
corresponds to helical trajectories. (b) helical-like tumbling
motion (blue intersection curve) for Lz = 0.2, H = 3. (c-e)
sketch of trajectories in the channel for helical motion (c),
helical-like motion (d) and tumbling motion (e).

stream for v̄f < 1/ cosΘ∗, either on a left-handed he-
lix (Θ > 0) or a right-handed helix (Θ < 0). Closed
orbits around the fixed-point line correspond to swing-
ing motion around a helical path [Fig. 3(d)] and open
orbits [Fig. 3(b)] are complicated tumbling trajectories
[Fig. 3(e)].

Now we consider hydrodynamic interactions of the mi-
croswimmer with the bounding channel wall. The flow
field for neutrally buoyant swimmers in a bulk fluid is
in leading order a force dipole, v(r)= p

8πηr2
[3(r̂·ê)2−1]r̂

where r̂ = r/r and η is the viscosity of the fluid. For
positive dipole strength, p> 0, the propelling apparatus
of the swimmer is typically at the back (pusher), and for
p < 0 in the front (puller). Ref. [6] treated the swim-
mer close to a plane wall. The authors showed that hy-
drodynamic interactions between the swimmer and the
wall lead to re-orientation due to the wall-induced vor-
ticity ΩW and to attraction/repulsion. For example, a
pusher swimming parallel to the wall is attracted and re-
mains trapped at the wall, while a puller is repelled from
the wall. We note that close to a wall the force-dipole
approximation for ΩW is no longer valid. Instead, ge-
ometric details of the swimmer and thereby near fields
become important for ΩW . Combining flow and wall ef-
fects, the total angular velocity of a swimmer near a wall
is Ω(x,Ψ)=ΩW (x,Ψ)+Ωf (x). Recent work showed that
hydrodynamic re-orientation is almost negligible for bac-
teria swimming near walls [9, 10] but rotates the swim-
mer at the wall. For a sufficiently weak Poiseuille flow
field, stable orientations ΨW for swimming at the wall
exist when ΩW (RCh,ΨW )+Ωf (RCh) = 0 [11]. Thermal
fluctuations will, however, reorient the swimmer so that
it leaves the wall [10].

In narrow channels a microswimmer experiences hy-

drodynamic interactions with the wall all the time. To
capture the basic idea, we concentrate on 2D-trajectories
and consider instead of the cylindrical channel wall, two
parallel plates located at x=1 and x=−1. We calculate
the wall-induced translational and angular velocities us-
ing the force-dipole approximation of Ref. [6] and obtain
the equations of motion,

ẋ = − sinΨ− 3p̄(3 sin2 Ψ− 1)

64π

(

1

(1− x)2
− 1

(1 + x)2

)

Ψ̇ = v̄fx− 3p̄ sinΨ cosΨ

64π

(

1

(1− x)3
+

1

(1 + x)3

)

(8)

where p̄= p/(ηv0) is the reduced dipole strength. Fig. 4
shows typical phase space plots generated from Eqs. (8)
for a puller (a) and pusher (b). The swinging motion
of an upstream oriented puller becomes damped and an
attractive fixed point in the center exists. Repelled by
both walls, the puller swims upstream along the center-
line. On the other hand, a puller tumbling near the wall
is attracted, on average, by the wall and stays near to it.
This is indicated by the green stable trajectory. All tra-
jectories outside the unstable red limit cycle or separatrix
converge to it. However, due to thermal fluctuations the
puller may cross the separatrix. A pusher behaves differ-
ently, it is attracted by the wall when oriented upstream
in the center of the channel, but it is pushed away from
the wall when tumbling near the wall. So, all trajectories
converge towards a swinging motion about the centerline,
characterized by a stable limit cycle in the x-Ψ-plane.
To test our findings we simulate the motion of a spher-

ical microswimmer in Poiseuille flow using the method of
multi-particle collision dynamics (MPCD) [12]. It solves
the Navier-Stokes equations on a coarse-grained level and
calculates the flow field around the swimmer in the cylin-
drical microchannel taking into account both hydrody-
namic interactions and thermal noise. In every simula-
tion step randomly distributed point-particles of mass m
at temperature kBT first move ballistically for a time
∆t and then they are sorted into cubic cells of length a.
They interact with all other particles in the cell with a
specific collision rule such that momentum is conserved
locally. The density of the fluid is mNc/a

3 where Nc is
the average number of particles per cell. Depending on
the parameters and the specific collision rule, the viscos-
ity η of the fluid can be calculated [12, 18].
As a model microswimmer we use a spherical squirmer

of radius RS [13, 14]. It propels itself by a static,
axisymmetric and tangential velocity field on its sur-
face, vs(r̂s, ê)= (B1+(ê·r̂s)B2) [(ê·r̂s)r̂s−ê] where r̂s is
the radial unit vector pointing from the center of the
squirmer to the surface. The first mode B1 determines
the swimming speed v0=2B1/3 and the second mode the
strength of the force dipole p/η =−4πB2R

2

S , so B2 > 0
models a puller and B2 < 0 a pusher. The squirmer has
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Figure 4. Phase space trajectories for a microswimmer in a
narrow channel for v̄f = 10 for a puller (left) and a pusher
(right). Green and red indicate, respectively, stable and un-
stable trajectories. (a) and (b) are obtained from Eqs. (8)
and (c) and (d) from MPCD simulations where we used the
parameters B1 = 0.045, β =B2/B1 =±5, RS = 6, RCh = 18,
Nc = 30, ∆t = 0.02 setting a = m = kBT = 1 and the colli-
sion rule MPC-AT-a [18]. Each trajectory was obtained by
averaging over 10 individual runs.

already been used to investigate hydrodynamic interac-
tions between several swimmers [14, 15] and between a
swimmer and a wall [16] and has been realized in exper-
iments quite recently [17]. To implement the squirmer
in the MPCD fluid, we follow previous work [15, 19].
Figs. 4(c)-(d) show simulated trajectories for several ini-
tial conditions for a puller (c) and a pusher (d). Our
parameters are listed in the caption of Fig. 4. Although
near field effects and the large extent of the swimmer play
a role in the simulated dynamics, the qualitative behav-
ior arising from hydrodynamic interactions between the
swimmer and the cylindrical channel wall follows the an-
alytical model.

In order to learn about typical relaxation times in
which swimmers approach their stable trajectories, we
linearize Eqs. (8) around the fixed point in the cen-
ter. We obtain a harmonic oscillator equation for Ψ
with a friction coefficient γ linear in the dipole strength,
γ = −3p/(64πηR3

Ch
). For the squirmer, the estimated

relaxation time for swinging motion becomes γ−1 =
t0 · 32R̄3/(9β), where β = B2/B1, R̄ = RCh/RS, and
t0=RCh/v0≈1 s is a characteristic time scale for narrow
microchannels. Typical values for β range from −1 to +1
for existing microswimmers [20]. So experiments should
be able to observe that microswimmers approach their

stable trajectories within seconds in sufficiently narrow
channels. Similar estimates apply to the E. coli bac-
terium where p≈ 0.8pNµm was measured recently [10].
Although hydrodynamic interactions between a small mi-
croswimmer and a single wall may play no significant role,
they become important in channels when the channel di-
ameter is only few times the size of the swimmer.

In conclusion, through a formal mapping onto a Hamil-
tonian dynamical system we have shown that spheri-
cal microswimmers perform either an upstream oriented
swinging or a tumbling motion when moving in Poiseuille
flow. Hydrodynamic interactions of the swimmer with
the wall stabilizes the upstream orientation of pullers in
the center of the channel whereas a pusher performs sta-
ble oscillations around the centerline with a specific am-
plitude.

Spherical artificial swimmers with different locomotion
mechanisms have been constructed and studied recently
[21]. Investigating them in microfluidic channels under
Poiseuille flow, the generic features presented in this ar-
ticle should be accessible in experiments.
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E 84, 031105 (2011).
[5] J. O. Kessler, Nature (London) 313, 218 (1985).
[6] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Phys.

Rev. Lett. 101, 038102 (2008).
[7] J. Hill, O. Kalkanci, J. L. McMurry, and H. Koser, Phys.

Rev. Lett. 98, 068101 (2007).
[8] R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates,

Phys. Rev. Lett. 104, 258101 (2010).
[9] G. Li and J. X. Tang, Phys. Rev. Lett. 103, 078101

(2009).
[10] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and

R. E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940
(2011).
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