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Focusing and sorting of ellipsoidal magnetic particles in microchannels

Daiki Matsunaga, Fanlong Meng, Andreas Zöttl, Ramin Golestanian, and Julia M. Yeomans∗

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

1 Keble Road, Oxford, OX13NP

(Dated: November 20, 2017)

We present a simple method to control the position of ellipsoidal magnetic particles in microchan-
nel Poiseuille flow at low Reynolds number using a static uniform magnetic field. The magnetic
field is utilized to pin the particle orientation, and the hydrodynamic interactions between ellipsoids
and channel walls allow control of the transverse position of the particles. We employ a far-field
hydrodynamic theory and simulations using the boundary element method and Brownian dynam-
ics to show how magnetic particles can be focussed and segregated by size and shape. This is of
importance for particle manipulation in lab-on-a-chip devices.

Nowadays microscopic lab-on-a-chip devices have be-
come powerful tools to analyse, manipulate and control
droplets [1–5], biological particles [6–8] and active col-
loids [9–11]. Different particle types can be separated in
microfluidic channels where a steady Poiseuille flow is im-
posed [12, 13]. In particular, positional control along the
transverse direction of the channel is desirable in order
to transport particles to outlets at different target posi-
tions. Under high Reynolds number flow, inertial forces
lead to a migration of particles towards stable positions
[14, 15] which can be manipulated by feedback-control
[16]. In contrast, at low Reynolds number, which is the
usual regime at the micron scale, spherical and elongated
particles cannot achieve net transverse motion in the ab-
sence of external forces [17–20]. In this work, we focus
on this low Reynolds number regime.

In lab-on-a-chip devices, magnetic forces are commonly
used to manipulate the position of microscopic particles
[21–23] or artificial microswimmers [24, 25]. For example,
the segregation of different particle types can be realized
by applying an external magnetic field gradient, which es-
sentially acts as a body force [22]. Although this method
can be used to segregate different types of particles, it
can not be used to focus particles to a specific transverse
target position. When a uniform magnetic field is applied
instead of a gradient field, the particle will only experi-
ence a torque but no force, i.e. a uniform field is useful to
change the orientation of the particle [26], but it is not an
intuitive way to achieve translation. Interestingly, Zhou
et al. [27] recently showed that paramagnetic ellipsoidal
particles can be focussed to the channel center by apply-
ing a static uniform magnetic field perpendicular to the
flow. They managed to achieve net motion away from the
wall by breaking the symmetry of cyclic up-down motion
[19] of the ellipsoid.

Here we show that the particle position can be con-
trolled not only to the channel center, but to arbitrary
target channel positions by using a static uniform mag-
netic field to pin the orientation of the magnetic parti-
cles. Firstly, we show that the particle will continuously
move either towards or away from the wall, purely by
hydrodynamic particle-wall interactions. Secondly, we

demonstrate that the ellipsoidal particle can be focused
to arbitrary transverse target positions just by a simple
manipulation of the magnetic field.
We consider a permanent magnetic particle with pro-

late shape of volume 4πa3/3, suspended in a Newtonian
fluid of viscosity η and density ρ. The particle has mag-
netization M , and it is assumed to be neutrally buoyant
for simplicity. It has one semi-axis of length b1 = aα2/3

and two of length b2 = aα−1/3, where α is the par-
ticle’s aspect ratio α = b1/b2 > 1. The particle has
a magnetic moment m = (m cosφp,m sinφp, 0) where
m = 4πa3M/3 is the magnetic moment parallel to the
particle’s major axis and φp is the particle orientation
angle [Fig. 1(a)-(b)]. The particle is initially placed a
distance y0 away from a infinite plane wall located at
y = 0, and it experiences a magnetic torque Tm = m×B

due to a uniform external field B applied to the whole
domain. We assume that B is oriented in (x, y)-plane,
B = (B cosφB, B sinφB , 0), where B is the strength and
φB the orientation of the field which are both kept con-
stant [Fig. 1(a)]. Note that we only consider in-plane
motion of the particle in this paper, because a strong
magnetic field will orient the major axis of the particle
in-plane [28]. We introduce a non-dimensional parame-
ter β that describes the strength of the magnetic torque
compared to the hydrodynamic torque as

β(y) =
mB

ηa3γ̇(y)
=

4πMB

3ηγ̇(y)
(1)

where γ̇(y) is the local shear rate of the flow around the
particle. For example, when we assume that the particle
magnetization µ0M = 10−3 T where µ0 = 4π × 10−7

N/A2 is the permeability of free space, particle size a =
10−5 m, water viscosity η = 10−3 Pa · s, water density
ρ = 103 kg/m3, shear rate γ̇ = 102 s−1 and magnetic
field B = 1.0−4 − 10−2 T, the particle Reynolds number
is Re ≈ 10−2 and β ≈ 100 − 102.
We use the boundary element method [29–31] to solve

for particle trajectory. When inertial effects are negli-
gible, the flow field v of a given point x under Stokes
flow can be described using a boundary integral formula-
tion [29]: vi(x) = v∞i (x) − (1/8πη)

∫

A Gij(x,y)qj(y)dA

http://arxiv.org/abs/1705.03665v2
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FIG. 1. (a)-(b) 2D schematic showing the problem geometry
where m = (m cos φp,m sinφp, 0) is the magnetic moment
of the ellipsoidal magnet and B = (B cosφB , B sinφB , 0) is
the applied uniform magnetic field. Circles on the particle
show the direction of the magnetic moment. (c) Schematic of
particle movement with different pinned orientations φ∗

p. (d)
Stresslet S∞

yy as a function of pinned orientation φ∗

p. The inset
shows the magnitude of the coefficients of Eq. (4), and particle
schematics show the direction of the transverse movement. (e)
Comparison of far-field theory Eq. (3) and boundary element
simulations for the lift velocity Uy of an ellipsoidal particle
with α = 3 and β = 100.

where G is the Green’s function, v∞ is the background
flow, and q is the viscous traction acting at a point y

on the particle surface. The Blake tensor [32] is used
for the Green’s function Gij to account for the walls.
Integrating the traction force q on the surface of el-
lipsoid A gives the hydrodynamic force Fh and torque
Th acting on the particle. As the system is force- and
torque-free, these satisfy Fh =

∫

A qdA = 0, Th +Tm =
∫

A{q × (x − x0)}dA +m × B = 0, where x0 is the hy-
drodynamic centre of the particle [33]. A given surface
material point xs on the ellipsoid moves with a velocity
v(xs) = U+Ω× (xs − x0), where U, Ω are the transla-
tional and rotational velocity of the particle, respectively.
The surface of the ellipsoid is divided into NE = 512 tri-
angular elements and NN = 258 nodes. The velocities
are obtained by solving the dense matrix Ax = b with a
known vector b = (v∞,Fh,Th) and an unknown vector
x = (q,U,Ω), and A is a matrix with size (3NN + 6)
based on equations above [30]. The particle position is
updated using the first-order Euler method with a time
step γ̇∆t = 0.01. The software is written in CUDA and
all processes are parallelized [34].
First, we show that transverse motion can be manip-

ulated by pinning the rotational motion of the particle
in shear flow, v∞x = γ̇y (γ̇(y) = const). The rotational
motion of an ellipsoidal particle subjected to shear and a
magnetic field was discussed in Ref. [28], in the absence
of a wall. The authors showed that the particle moves in

the shear plane for sufficiently large β and reaches a sta-
ble angle φ∗

p where it is pinned by the magnetic field. The
general expression for the in-plane rotational velocity is

1

γ̇(y)
φ̇p =

β(y)

8π
F (α) sin(φB − φp)−

1

2
(1− J(α) cos 2φp),

(2)
and φ∗

p is obtained by solving φ̇p = 0. Note that the first
term of Eq. (2) is due to the magnetic torque aligning
the particle towards the field orientation φB , and the
second term is simply Jeffrey’s rotation of an ellipsoid
in flow [35] with J(α) = (α2 − 1)/(α2 + 1) and F (α) =

3
2(α2−α−2){ 2α−α−1

√
α2−1

ln(α+
√
α2 − 1)− 1} [36].

Figure 1(c) is a schematic of the motion of an ellip-
soid in shear flow at different β, now in the presence of
a surface. In the absence of a magnetic field (β = 0) the
particle rotates and oscillates along the y-direction, but
has no net displacement along y [19]. However, when
the magnetic field is strong enough to pin the orienta-
tion, the ellipsoid either continuously travels upwards or
downwards. The transverse motion can be explained by
hydrodynamic interactions between the pinned ellipsoid
and the wall. The wall can be considered to act as an im-
age stresslet [37–39], and the leading order contribution
to the lift velocity Uy arises from the stresslet component
Syy [32] evaluated for the stable angle φ∗

p:

Uy(y, φ
∗
p) = − 9

64πη
P (y)Syy(φ

∗
p) (3)

where P (y) = 1/y2, and to leading order it is sufficient
to approximate Syy(φ

∗
p) by S∞

yy(φ
∗
p) , which is its value in

free space y → ∞ [33], given by

S∞
yy(φ

∗
p)

ηa3γ̇
= A(α) sin 2φ∗

p +B(α) sin 4φ∗
p (4)

where A(α) = πα2(5XM − 5ZM + 12Y H)/6, B(α) =
−5πα2(3XM −4Y M +12ZM)/12 and XM , Y M , ZM , Y H

are shape functions [33, 40] that are only a function of
the eccentricity e =

√
1− α−2. Since |A(α)| ≫ |B(α)|

[see inset of Fig. 1(d)], the stresslet changes its sign only
for sin 2φ∗

p = 0 as shown in Fig. 1(d). Therefore, the
particle moves away from the wall Uy > 0 for sin 2φ∗

p > 0,
while it moves towards the wall Uy < 0 for sin 2φ∗

p < 0.
Figure 1(e) shows simulation and theoretical results for
the lift velocity under strong orientational pinning β =
100 for different distances of the particle from the surface.
Very good agreement is obtained for y/a >∼ 4. Deviations
occur close to the wall where higher order terms in Eq.
(3) play a role. We also ignored the fact that the stresslet
Syy itself is modified due to the presence of the wall.
Next we show that the magnetic particle can be fo-

cused to an arbitrary transverse position under Poiseuille
flow between two walls. This geometry is an approxi-
mation for high aspect ratio rectangular channels away
from side walls. The background velocity profile is
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FIG. 2. Focusing under Poiseuille flow: (a)-(c) Stable angle φ∗

p and transverse velocity Uy as a function of the particle (α = 3)
position y for a magnetic field βw = 60 and φB = (a) π/2, (b) 0 and (c) −0.4π and channel width H/a = 20. Lines: prediction
from far-field theory; dots in (c): results from boundary element simulations. (d) Time history of particle position y(t) from
boundary element simulations under the conditions of (c). The gray dotted curves show trajectories in a rectangular channel
of aspect ratio Hz/Hy = 4 for different initial conditions z0 = {0.5Hz , 0.8Hz}. The inset shows stable fixed point y∗/H for
ellipsoids (α = 3) as a function of the magnetic field βw and φB obtained by far-field theory. White lines are isolines for every
0.1. (e) Distribution of focussed particles under Poiseuille flow with γ̇w = 100 s−1 and channel width H/a = 20 after 10s, from
Brownian dynamics simulations with particle size a = 10 µm. Inset: theoretical predictions (lines) and Brownian dynamics
simulation (dots) for the standard deviation of the distribution σ/a. Dotted horizontal line indicates separations a >

∼ 2 µm.

v∞x (y) = γ̇wy(H − y)/H , with γ̇w the shear rate at the
wall andH the distance between the two walls [Fig. 1(b)].
β [Eq. (1)] can be locally defined as β(y) = βw/(1−2y/H)
with βw = mB/(ηa3γ̇w) describing the value at the wall.
Since the rotational motion is much faster than the trans-
lational motion, the particle angle φp can be assumed to
be quasi-static for a given position y. Hence the far-
field approximation of the position-dependent stable an-
gle φ∗

p(y) follows by simply solving φ̇p = 0 [Eq. (2)]
at each y. As shown in Fig. 2(a)-(c), the angle φ∗

p in-
creases with y because the local vorticity of the Poiseuille
flow ωz = γ̇w(2y/H − 1) monotonically increases with y
while the magnetic contribution is constant throughout
the space. Note that at the channel center φ∗

p(H/2) = φB

since the local shear rate is zero, and hence the angle
is only determined by the magnetic torque. Again, the
far-field approximation to the transverse velocity Uy is
obtained by stresslet images (3), but with revised posi-
tion factor P (y) = (1 − 2y/H)(1/y2 − 1/(H − y)2) to
take into account the effect of two walls. The velocity

Uy is shown in Fig. 2(a)-(c). Since P (y) is always pos-
itive, the sign of the stresslet Syy alone determines the
y-directional movement of the particle: equivalently, the
stable angle φ∗

p determines the direction [see Fig. 1(d)].

A stable fixed point y∗, which is determined by
Uy(y

∗) = 0 and ∂Uy/∂y|y=y∗ < 0, is required to focus the
particle to a specific position. When the magnetic field is
applied perpendicular to the flow direction (φB = π/2)
as shown in Fig. 2(a), the particles are focused to the
channel center because the change in sign of sin 2φ∗

p > 0
(y < H/2) to sin 2φ∗

p < 0 (y > H/2) gives the conditions
for a stable fixed point at y = H/2 [inset of Fig. 2(a)].
This relation is reversed when the magnetic field points
in the flow direction (φB = 0) [Fig. 2(b)], and all particles
move towards the walls. In general, a particle position y∗

satisfying φ∗
p(y

∗) = ±π/2 is a stable fixed point, while a
position with φ∗

p(y
∗) = 0 or π is an unstable fixed point.

Hence by changing the direction of the magnetic field
φB, it is possible to focus particles to arbitrary target
positions. The stable fixed point y∗ can be predicted
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solving φ̇p = 0 [Eq. (2)] for φ∗
p = ±π/2 as

y∗

H
(α, βw , φB) =

1

2
± βwF (α)

8π(1 + J(α))
cosφB (5)

where J(α) and F (α) are defined after Eq.(2). For exam-
ple, when a field is applied in direction φB = −0.4π with
βw = 60 [Fig. 2(c)], the stable fixed point of an ellipsoid
(α = 3) is y∗/H ≈ 0.32 and the particles are focused
to this position. This we also confirm by performing
boundary element simulations with different initial po-
sitions, shown in Fig. 2(d), and we observe that Uy(y)
and φ∗

p(y) obtained from simulations qualitatively agree
with the far-field results. Note that the hydrodynamic
contributions from the two walls are calculated consider-
ing the images of both walls [32] in the simulation, which
is enough for relatively large channels H/a = 20, while
higher order reflections are required for a much narrower
channel [40, 41]. Inset of Fig. 2(d) describes the stable
fixed point y∗/H [Eq. (5)] for ellipsoids (α = 3) with
−π/2 < φB < 0 . The figure shows y∗ shifts toward the
bottom wall with increasing βw or φB, and the particles
can be focused to arbitrary positions in the lower half
of the channel (y/H < 0.5). By symmetry, the particles
would be focused to the upper half of the channel for
0 < φB < π/2. Although the far-field theory predicts
that the particles cannot cross the center line because
Uy(H/2) = 0, in reality they can do so because of their
finite size, as confirmed by boundary element simulations
[Fig. 2(d)].
To see the effect of side walls, at z = 0 and z = Hz, on

the motion of the particles, we extended our simulation
scheme to a rectangular channel geometry by using a
triangular mesh both for the particles and the walls [40,
42–44]. When the particles are not too close to the walls
we observe very similar trajectories, focusing points y∗

and focusing times as without side walls [40] [Fig. 2(d)].
Moreover migration in z direction is negligible.
Finally we show how a static magnetic field can be

used to separate particles of different aspect ratio α even
in the presence of thermal fluctuations. The particles
are initially uniformly distributed in the lower half of the
channel [13], and we consider the same magnetic field and
channel height as discussed above (βw = 60, φB = −0.4π,
H/a = 20), wall-shear rate γ̇w = 100 s−1, and viscosity
of water (η = 10−3 Pa · s). We use Brownian Dynamics
simulations at room temperature, solving the equations

ṙ = Up +H · ξ, (6)

ṅ = (Ωp +
√

2Drξ
r)× n (7)

for different particle size a and aspect ratio α. Here
Up = v∞x x̂ + Uyŷ, and Ωp = Ωφφ̂ + Ωθθ̂ is
the full 3D particle reorientation rate for the par-
ticle orientation n = (sin θp cosφp, sin θp sinφp, cos θp)
with Ωφ = γ̇w{β(y)F (α) sin(φB − φp)/(8π sin θp) −
(1 − J cos 2φp)/2}, Ωθ = γ̇w{β(y)F (α) cos θp cos(φB −

φp)/(8π) + J sin 2θp sin 2φp/4} [28]. H is calculated
from the translational diffusion tensor D(φp, θp) =
D̄1 + 1

2∆DM(φp, θp) = 1
2H · HT where M(φp, θp) is

a symmetric 3x3 matrix [40] and D̄ = (D1 + D2)/2,
∆D = D1 − D2 where D1 = kBTa

−1η−1K1(α) and
D2 = kBTa

−1η−1K2(α) are the respective longitu-
dinal and transverse diffusion coefficients of an ellip-
soid of aspect ratio α with shape functions K1(α) >
K2(α) [33, 40, 45–47]. The rotational diffusion constant
Dr = kBTa

−3η−1Kr(α) with the shape function Kr(α)
[33, 36, 40]. The random numbers ξi and ξri model Gaus-
sian white noise with zero mean and 〈ξiξj〉 = 〈ξri ξrj 〉 = δij
(i = x, y, z).

Distributions for 1000 particles of size a = 10 µm for
α = {2, 3, 4} after t = 10s are shown in Fig. 2(e). Our
results clearly show that particles of different shape can
be separated to different target positions y∗(α), given by

Eq. (5), by applying a static magnetic field. 50% of
the particles reach the target region y∗(α) ± a in exper-

imentally feasible times [7s (α = 4) to 20s (α = 2)]
and traveling distances (< 30 mm). Note, the focus-
ing times are even smaller for higher confinement [40].
Efficient separation is only possible for particles of size
a >∼ 2 µm, where the width of the steady state distri-
bution σ [48] is smaller than the distance between two
peaks [see inset of Fig. 2(e)]. We find an approximate
analytic expression for σ by linearizing the drift veloc-
ity around the fixed point y∗, Uy = −k(y − y∗) where k
only depends on the system parameters [40]. We solve
for the steady state distribution p(y) ∼ exp[−V/kBT ]
where we introduced a potential V = γ1k(y − y∗)2/2
with γ1 = kBT/D1 which keeps the particle near its tar-
get position y∗. Since k ∼ s−1 and γ1 ∼ ηa we obtain
σ/a ∼ a−3/2η−1/2(kBT )

1/2.

We have shown that the transverse position of mag-
netic ellipsoidal particles in microchannel Poiseuille flow
can be controlled by a static magnetic field. This is due
to the hydrodynamic interactions of the ellipsoids with
the channel walls. Our method can be used to focus and
segregate magnetic particles which is of importance for
particle manipulation in lab-on-a-chip devices.
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TABLE OF SHAPE FUNCTIONS

Stresslet

Shape functions XM , Y M , ZH , Y H [33] appear in Eq. (4) are functions of eccentricity e =
√
1− α−2 as

XM (e) =
8

15
e5

1

(3− e2)L− 6e
, (8)

Y M (e) =
4

5
e5

2e(1− 2e2)− (1− e2)L

(2e(2e2 − 3) + 3(1− e2)L)(−2e+ (1 + e2)L)
, (9)

ZM (e) =
16

5
e5

1− e2

3(1− e2)2L− 2e(3− 5e2)
, (10)

Y H(e) =
4

3
e5

1

−2e+ (1 + e2)L
, (11)

L(e) = ln

(

1 + e

1− e

)

. (12)

Brownian dynamics

• matrix M in translational diffusion tensor

Mij =





−1 + 2 cos2 φp sin
2 θp sin 2φp sin

2 θp sin 2θp cosφp

sin 2φp sin
2 θp −1 + 2 sin2 φp sin

2 θp sin 2θp sinφp

sin 2θp cosφp sin 2θp sinφp cos 2θp



 (13)

• shape coefficients [33] for rotational diffusion

K1(α) =
1

6πα2/3XA(e)
=

1

6πα2/3

3(−2e+ (1 + e2)L)

8e3
(14)

K2(α) =
1

6πα2/3Y A(e)
=

1

6πα2/3

3(2e+ (3e2 − 1)L)

16e3
(15)

Kr(α) =
1

8πα2XC(e)
=

1

8πα2

3(2e− (1 − e2)L)

e3(1− e2)
(16)
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FIG. 3. Relative error ε of velocity Uy and rotational velocity Ωz compared to the analytical solution [18]. The variable h is
the distance between the sphere center and the plane wall.

VALIDATION OF BOUNDARY ELEMENT SIMULATION

In this section, we validate the accuracy of our software by calculating the translational velocity Uy and rotational
velocity Ωz of a sphere close to a wall where analytic expressions exist [18]. The problem setup is the same as the
schematic Fig.1(a) in the main text, but a sphere (radius a) with no magnetic moment is used for the validation.

Figure 3 shows that the velocities obtained have an error of less than 1% compared to the analytical solution [18]
for the values, h/a >∼ 2, used in the main text.

THEORY FOR STEADY STATE DISTRIBUTION σ

In the following we want to calculate how strongly a particle is trapped near a stable point, and compare it with
thermal fluctuations. Therefore we linearize Eq. (2) of the main text around φ∗

± and y∗± by taking φ = φ∗
± + δφ± and

y = y∗± + δy± and find the linearized stable solutions Ωφ(y
∗
± + δy±, φ

∗
± + δφ±) ≡ 0. Retaining only the linear terms

we obtain the relation

δφ±(y) = ∓ 1 + J(α)

2F (α)β(y)
− 1

tanφB
(17)

where we have substituted δy± by y−y∗± (note that y∗± drops out here). It can easily be checked that δφ±(y = y∗±) = 0.
Now we can calculate the velocity Uy near the fixed point as Uy(y

∗
±+ δy±, φ

∗
±+ δφ±) ≈ Uy(y, φ

∗
±+ δφ±), and linearize

it which results in U0
y = −k(y − y∗) with

k = 8γ̇wβw
cosφB

| tanφB |
a3H

(y∗+)
2(y∗−)

2

F (α)(A(α) − 2B(α))

1 + J(α)
(18)

where we skipped the dependence on α of the parameters A,B,F and J . Note that k > 0 and has dimension s−1. We
then write the effective Langevin equation for the motion of the ellipsoidal particle in the y direction near the fixed
point as

γ1ẏ = γ1U
0
y +

√

2γ1kBT = −dV

dy
+
√

2γ1kBT . (19)

Since the stable orientation is in the y direction the particle fluctuations in this direction are around its longitudinal
axis, hence we use here its longitudinal friction coefficient γ1 = kBT/D1. We also introduced a quadratic potential

V (y) =
1

2
γ1k(y − y∗)2 (20)
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FIG. 4. Effect of confinement H/a on the focusing velocity Uy. Conditions are same as Fig. 2(c) in the main text (α = 3,
βw = 60 and φB = −0.4π).

defined via γ1Uy = −dV/dy. The stationary solution of Eq. (19) is a Gaussian distribution [48]

p(y) ∼ exp[−V (y)

kBT
] = exp[−γ1k(y − y∗)2

2kBT
] (21)

with standard deviation σ =
√

kBT/γ1k. Since γ1 ∼ η a, k ∼ γ̇w we get the scaling σ/a ∼ a−3/2η−1/2(kBT )
1/2, see

inset of Fig. 2(f) of the main text.

EFFECT OF CONFINEMENT

Figure 4 shows the focusing velocity Uy between two meshed walls, which take into account the higher order
reflections. If the distance between the two walls takes the value H/a = 20 used in the main text, the far-field theory
matches the simulation well. Hence this also validates the method of using two meshed walls. When the distance H
is decreased, the velocity starts to deviate from the far-field theory, and the true velocity is faster than the prediction.
Also note that the particle can easily cross the center-line for higher confinement. The focusing point shifts slightly
toward the channel center y/H = 0.5, but this effect is not large, in particular for H/a > 10.
Method The numerical method used here is based on previous studies [43? ], with the confinement effect taken

into account by using two meshed walls. Contrary to the mesh on the particle, no-slip boundary conditions are applied
for the walls. The dimensions of the two walls (12.5a× 12.5a - 50.0a× 50.0a) and the mesh size (0.25a− 1.00a ) were
changed depending on the confinement distance H .

EFFECT OF SIDE WALLS: FOCUSING IN A RECTANGULAR CHANNEL

Finally, we show particle focusing in a rectangular channel (width Hy, height Hz). Figure 5 shows cross-sectional
stream lines for two different channel aspect ratios (Hz/Hy = 2 and 4). In the case of two infinite planar walls, the
particle is focused to y∗/Hy = 0.32 as discussed in the main text. If the channel is rectangular, most particles still
focus to y∗/Hy = 0.32. However particles that are located distances less than ≈ 10a away from a side wall reach a
curved focusing region at y∗/Hy = 0.1−0.3 or the top (z = Hz) or bottom (z = 0) walls. This effect can be controlled
by increasing the channel aspect ratio Hz/Hy.
Method We conducted full 3D simulations based on a method used in previous studies [43? ]. The boundary

integral formulation in this system is

v(x) = v∞(x)− 1

8πη

{
∫

P

G · qdS(y) +
∫

W

G · qdS(y) + ∆P

∫

O

G · ndS(y)
}

(22)

where the notations P,W,O describe integrals over the ellipsoidal particle (P), side walls (W) and outlet cap (O)
respectively. v∞ is the Poiseuille velocity profile inside a rectangular channel [44], n is the normal vector pointing
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(a) (b)

FIG. 5. Stream lines (projected to the channel cross-section) of the particles under rectangular channel for two different
channel aspect ratios: Hz/Hy = (a) 2 and (b) 4. The flow is in +x-direction, and the external magnetic field is B =
(B cos φB , B sinφB , 0). Gray scale contours show the amplitude of the in-plane velocity Uyz =

√

U2
y + U2

z . Conditions are the
same as Fig. 2(c) in the main text (Hy/a = 20, α = 3, βw = 60 and φB = −0.4π). Blue lines show the focusing region for two
infinite planar walls (Hz → ∞), as discussed in the main text.

into the channel, and ∆P is a additional pressure drop due to the presence of the particle:

∆P =
1

Q

∫

P

v∞(x) · qdS(x) (23)

where Q is the flow rate. The characteristic shear rate γ̇w is defined at the wall in the two-wall system, while the
characteristic shear rate at (y/Hy, z/Hz) = (0, 0.5) is used in the rectangular channel. The channel length 100a and
mesh size 2a are used in the simulation. In order to avoid error arising from the coarse mesh, we kept the distance
between particle and walls larger than 3a. The accuracy of the simulation was validated in a cylindrical channel by
comparing with the analytical solution (data not shown).


