

DIPLOMARBEIT

Ordered equilibrium structures of soft particles in layered systems

Ausgeführt am Institut für Theoretische Physik der Technischen Universität Wien unter der Anleitung von Ao. Univ. Prof. Dipl.-Ing. Dr. G. Kahl

durch Mario Kahn Nörenach 37, 9772 Dellach im Drautal

23. Mai 2008

Abstract

Inspired by various work about confined condensed matter systems we investigate ordered equilibrium structures formed by soft particles, interacting via Gauss potential, that are confined betweeen two parallel hard walls of variable distance. Using search strategies that are based on ideas of genetic algorithms, the energetically most favourable particle arrangements are identified. We obtain a detailed phase diagram of the system, that includes transition lines between the emerging structures and the number of layers that the system forms between the walls. Inspired by experiments, we put particular effort to gain a deeper insight into the phase transition mechanisms, i.e., the buckling and the prism phase transition. Furthermore, very large wall distances are considered, where the transition from the confined system to the bulk system is investigated.

Contents

1.	Intro	roduction				
2.	The	Mode	l	5		
	2.1.	The G	aussian Core Model	5		
	2.2.	The Layered System				
		2.2.1.	The System	6		
		2.2.2.	Parametrization	8		
3.	The	ory		11		
	3.1.	Geneti	ic Algorithms (GAs)	11		
		3.1.1.	Introduction	11		
		3.1.2.	Basic Concepts	12		
		3.1.3.	Algorithm	13		
	3.2.	Statist	tical Mechanics	20		
		3.2.1.	Basic Concepts	20		
		3.2.2.	Free Energy	23		
		3.2.3.	Lattice Sum	23		
	3.3.	Two-d	imensional Bravais Lattices	24		
		3.3.1.	Square lattice	24		
		3.3.2.	Hexagonal lattice	25		
		3.3.3.	Rectangular lattice	25		
		3.3.4.	Centered Rectangular lattice	25		
		3.3.5.	Oblique lattice	26		
4.	Impl	ement	ation of the GA	29		
	4.1.	GA in	layered systems	29		
		4.1.1.	Data representation	29		
		4.1.2.	Lattice Unification	30		
		4.1.3.	Lattice Sum	33		

		4.1.4. Steepest Descent $\ldots \ldots 34$	4
	4.2.	NVT Ensemble	õ
		4.2.1. Implementation of System Parameter	õ
		4.2.2. Evaluation Function $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 33$	7
		4.2.3. Fitness Function $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3$	7
5.	Res	lts 39	9
	5.1.	Phase diagram	9
		5.1.1. Layer transition $\ldots \ldots 40$)
		5.1.2. Structure transition $\ldots \ldots 43$	3
	5.2.	Free energies	õ
		5.2.1. Coinciding layers $\ldots \ldots 4$	õ
		5.2.2. Non monotonicity in the energy $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 40$	ô
	5.3.	Structures $\ldots \ldots 4$	9
	5.4.	Bulk limit	9
		5.4.1. fcc stacking $\ldots \ldots 59$	9
		5.4.2. Buckling \ldots	3
6.	Sum	mary 69	9
Α.	Nun	erical Details 71	L
В.	Refe	rence Data 73	3
	B.1.	Reference data of the described structures	3
	B.2.	Reference data of the bulk limit section	3
	B.3.	Reference data of the buckling section)

1. Introduction

The search for ordered equilibrium structures in condensed matter physics is one of the most impressing stories in the history of science. Already *Johannes Kepler* has given an important contribution in this field of research in the year 1611. In the monograph, entitled "Strena, Seu de Nive Sexangula" (A New Year's Gift of Hexagonal Snow) he suggested a hexagonal symmetry of snowflakes, leading to the known *Kepler conjecture* statement for closest packing of hard spheres [1].

Almost two centuries later, based on the work of Nicolas Steno about crystal symmetries [2], René Just Haüy suggested for the first time that crystals are a regular three-dimensional array of particles with a repeating unit cell along three directions that are, in general, not perpendicular. In the nineteenth century further work about symmetries of crystal structures was done by Auguste Bravais et al [3]. Due to the discovery of x-rays, by Conrad Röntgen in 1895, the theoretical prediction then could be verified by means of x-ray diffraction, pioneered by the remarkable work of Lawrence Bragg and his father Henry Bragg [4, 5]. Shortly afterward Erwin Schrödinger and others formulated the non-relativistic quantum mechanics in 1926. Together with Bloch's theorem, that characterizes the wavefunctions of electrons in a periodic potential, the basis for a theoretical description and for the predictions of ordered structures in sold state physics was formed. For this reason its triumphal procession could not be impeded.

Over many decades, most of the progress in condensed matter physics was made in the field of atomic (hard) matter. Only recently, soft matter has emerged as a rapidly developing new field. The term "soft" stems from the fact that the rigidity of soft matter against mechanical deformations is by many orders of magnitude smaller than that of atomic systems. The systems that belong to soft matter are difficult to circumscribe; they cover a large range of mesoscopically sized particles ($\sim 1nm - 1\mu m$) such as dendrimers, polymeres, or microgels, but also vesicles or membranes. Examples of such materials include biological substances (proteins, viruses, DNA), as well as industrial matrials like mesoscopic polymer-chains. Often the interaction potential between soft particle potentials diverge only weakly, at the origin, or sometimes remain finite at full overlap of the particles. For a general overview see [6, 7, 8]. Similar as hard matter systems, soft matter systems, also solidify and arrange in periodic structures. In this thesis I investigate this procedure for a paticular class of systems, which is confined in one direction, formed thereby layers. The model, that we consider is the *Gaussian Core Model* (GCM), which approximates the effective interaction [9] between the centers of mass of two polymer chains, known as the Flory-Krigbaum potential [10].

Although the thermodynamic properties of crystalline solids can be calculated within concepts of different levels of sophistication, such as simple lattice sums [11], cell models [12, 13, 14, 15] or density functional theory [16, 17, 18, 19, 20], an approach, to optimize the search for stable crystal structures, is still missing. Basically this search can be formulated as an optimization problem.

The problem of finding maxima and minima of functions with respect to their variables is certainly one of the most important questions in maths. In the 17th century *Leibnitz* and *Newton* developed the integral and differential calculus which has brought along a breakthrough in this topic. For the very first time finding the (local) minima or maxima of a function could be realized in an analytic way by calculating the first derivative. One might say that then the scientific field of optimization strategies was born. Ever since increasingly powerful techniques have been developed to solve optimization problems. Depending on the conceptual approach most of the strategies can be classified as *deterministic*, *stochastic*, and *heuristic* applications. Each of these strategies has both advantages and disadvantages in different applications. Therefore the decision which method to choose depends essentially on the specific problem. For example, methods like steepest descent or simplex methods are doomed to fail for NP (non deterministic polynomial time)-complete optimization problems [21]. A famous representative of NP-complete problems is the *traveling* salesman¹. In this thesis ordered equilibrium structures of soft particles are identified, a task which reduces to an *energy minimization* problem. To identify the energetically most favorable particles arrangements, search strategies which are based on ideas of *genetic algorithms* (GAs) will be applied. The work presented here dwells on the remarkable founding work of *Dieter Gottwald* [22, 23].

In recent years soft matter systems have been investigated in the bulk phase in exper-

¹The general form of the traveling salesman problem has been first studied by mathematicians, during the 1930s in Vienna and at Harvard, notably by Karl Menger.

iment or in theory [24, 23, 25, 26, 27]. The situation gets more intricate when systems in confining geometries are considered. Due to the absence of periodic boundary conditions, in at least one direction, the identification of ordered equilibrium structures becomes possibly even more complex than in the bulk.

Remarkable experimental work on this topic was done by Pansu *et al.* [28] and *Bechinger et al* [29], who investigated sequences of structural transitions of hard spheres in a layered confined systems. This thesis is dedicated to follow the same line, with a theoretical approach, with the aim to help to unveil this exciting behavior in nature.

The thesis is organized in the following chapters:

- Chapter 2 presents the pair interaction potential of a system as well as the parameter of the system.
- Chapter 3 gives an overview over genetic algorithms, the basics of statistical mechanics, and lattice structures.
- Chapter 4 specifies how genetic algorithms can be applied to search for ordered equilibrium structures of minimal energy in condensed matter physics, whereby the implementation for a layered system will be described in detail.
- Results are presented in chapter 5; a detailed phase diagram of the system with the emerging structures will be provided. Furthermore, the three-dimensional bulk limit and the buckling mechanism will be discussed.

2. The Model

The system which I consider in this thesis are N soft particles in a volume V, which is confined by two parallel horizontal walls separated by a distance D; in this volume the particles arrange in n_l ordered layers. To describe the interaction between the particles the Gaussian core model (GCM) is used. Calculations are carried out for variable distance D and number-density $\rho = N/V$ at temperature T = 0. At zero temperature the free energy F reduces to the internal energy E which can be calculated via the lattice sum.

2.1. The Gaussian Core Model

The Gaussian core model (GCM) is a standard model system within the class of ultra-soft bounded potentials. Particular for *bounded* potentials is the fact, that they remain finite for the whole range of interaction distances. This holds even at zero separation, i.e., at full overlap between particles. In the context of atomic systems such potentials violate the Pauli principle, where full particle overlap is forbidden due to the repulsion between the electrons. Nevertheless the GCM has become a realistic model for a particular class of mesoscopic macro-molecules such as ploymer chains: For example, the effective interaction between two polymer chains can be approximated very well by the GCM, as has been confirmed in several studies, e.g. by *Krüger et al.* [30]. There, $\Phi_{\rm GCM}(r)$ represents a reliable form of the *effective interaction*, between the centers of mass of two such macromolecules.

The GCM was introduced originally by Frank H. Stillinger in 1976 [31]; its interaction potential is given by

$$\Phi_{\rm GCM}(r) = \epsilon e^{-(\frac{r}{\sigma})^2}.$$
(2.1)

The parameter ϵ defines the energy scale and σ defines the length scale. Furthermore, the system is characterized by a number density ρ . In general we use standard reduced units, i.e., $\rho^* = \rho \sigma^3$. Its potential $\Phi(r)$ is depicted in figure 2.1.

Figure 2.1.: The interaction potential $\Phi_{\text{GCM}}(r/\sigma)$, of the Gaussian Core Model (GCM) as a function of r/σ .

Phase diagram Meanwhile, the phase diagram of the GCM bulk system is very well documented; its determination has been first carried out by Stillinger [31, 32, 33] and later in detail by A. Lang *et al*. [34]. It is depicted in figure 2.2.

Important for the present work is the isobar at T = 0. The detailed calculations of [34] reveal the following: At low temperatures the *fcc* structure is favoured, for $0.1794 \le \rho^* \le 0.1798$ an *fcc* and a *bcc* phase coexist, while for $\rho^* > 0.1798$ the GCM solidifies in a *bcc* structure.

2.2. The Layered System

2.2.1. The System

The system I investigate in this thesis are Gaussian particles immersed in a volume confined by two horizontal walls separated by a distance D. We consider ordered equilibrium structures of minimum energy. The system consists of n_l layers parallel

Figure 2.2.: The phase diagram of the GCM in the $T - \rho$ space, where T is in units of $k_B T$; taken from [34].

to the confining walls, which are assumed to lie in the (x, y)-plane and are thus perpendicular to the z axis. The layers are parallel to each other and all of them are assumed to have the same two-dimensional lattice structure. The parametrization of the ordered structures within the layers will be described in section 2.2.2. The origins of two neighbouring layers are connected via so called inter-layer vectors \mathbf{c}_i with $i = 1, \ldots, n_l - 1$. Thus the inter-layer vector \mathbf{c}_i connects the origins of the *i*-th layer to the one of the (i + 1)th layer, i.e., of two equivalent two-dimensional structures.

The z components of all inter-layer vectors sum up to the distance D.

Walls: To avoid misunderstandings concerning the walls, it is necessary to emphasise that in fact, we identify the first (i = 1) and the last layer $(i = n_l)$ as the confining walls. For this reason no *wall-particle interactions* are considered in this thesis. Thus D denotes the distance between the first and the last layer.

Density: We distinguish between the bulk number density ρ and the area number density η . The relation between these two parameters is given via

$$\eta = \frac{\rho D}{n_l}.\tag{2.2}$$

2.2.2. Parametrization

Two-dimensional lattice: The two-dimensional lattice in each layer is described via two primitive vectors **a** and **b**. They are parametrized via the ratio $x = |\mathbf{b}|/|\mathbf{a}|$ and the angle φ between them. **a** and **b** can therefore be expressed via:

$$\mathbf{a} = a \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \mathbf{b} = a \begin{pmatrix} x \cos \varphi\\ x \sin \varphi \end{pmatrix}$$
(2.3)

with the constraints

$$0 \le x \le 1, \quad 0 < \varphi \le \pi/2. \tag{2.4}$$

I emphasize that the representation of the lattice via the vectors \mathbf{a} and \mathbf{b} is not unique. Above parametrization ensures that \mathbf{a} is the largest vector. Its length, $a = |\mathbf{a}|$ is given via:

$$a = \left(\frac{n_b}{\eta x \sin \varphi}\right)^{1/2},\tag{2.5}$$

where n_b is the number of basis particles in the unit cell. *a* is measured in units of σ .

Basis particles: Additional particles in the unit cell can be located at positions \mathbf{B}_i , with $i = 1, \ldots, n_b$. Without loss of generality the basis vector of the first particle is given as

$$\mathbf{B}_1 = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

For the other basis particle $(2 \le i \le n_b)$ the representations of the \mathbf{B}_i are given as linear combinations of the primitive vectors, i.e.,

$$\mathbf{B}_i = \alpha_i \mathbf{a} + \beta_i \mathbf{b} \qquad i = 2, \dots, n_b,$$

with the constraints

$$0 \leqslant \alpha_i < 1, \quad 0 \leqslant \beta_i < 1. \tag{2.6}$$

This parametrization ensures that all particles lie within the primitive cell.

Inter-layer vector: As introduced above the displacement between two, neighbouring layers is characterized via the vectors \mathbf{c}_i , $i = 1, ..., n_l - 1$. The setup is visualized in figure 2.3. The \mathbf{c}_i are parametrized as follows:

$$\mathbf{c}_{i} = \alpha_{i}^{c} \mathbf{a} + \beta_{i}^{c} \mathbf{b} + h_{i} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \qquad i = 1, \dots, n_{l} - 1.$$
(2.7)

The vertical distance between two neighbouring layers is parametrized via the h_i , which have to fulfill the following constraints:

$$h_i \ge 0$$
 $i = 1, \dots, n_l - 1,$
 $\sum_{i=1}^{n_l - 1} h_i = D.$ (2.8)

Figure 2.3.: Sketch of a layered system.

Figure 2.4.: Projection of a system with two layers onto the (x, y)-plane. **a** and **b** denote the primitve vectors, **c** is the interlayer-vector. Red particles belong to first and blue particle to the second layer.

3. Theory

3.1. Genetic Algorithms (GAs)

3.1.1. Introduction

Genetic algorithms: Genetic algorithms (GAs) are a subset of evolutionary algorithms. With respect to their search strategies, they belong to the stochastic search algorithms. GAs use features from natural evolutionary processes like survival of the fittest, reproduction and mutation, first described by Darwin [35]. The concept of GAs was introduced to engeneering problems by J.H. Holland in 1975 [36]. Further developments and improvements were carried out by Goldberg [37] and Michalewicz [38]. One benefit of genetic algorithms is that they search for globally optimized solutions. The danger to be trapped in locally optimal solutions is drastically reduced due to mechanisms, such as recombination and mutation. Another advantage of GAs is that they do not require derivatives of the function to be optimized. Therefore GAs are very effectiv in rough, complex search spaces. An interesting feature is the possibility to develop very fast and parallel implementations¹ of GAs [39, 40]. Nevertheless, GAs are not able to provide exact convergence to the optimal solution.

Though GAs were used successfully in various fields, such as for gene expression profiling analysis [39] or protein folding [41], they have not received due acknowledgement in physics for a long time. However, in recent years convincing evidence has been given that genetic algorithms are able to provide a powerful tool even in the field of condensed matter physics, i.e., laser pulse control [42] or cluster formation [43].

The genetic algorithm, that is used in this thesis, is fundamentally based on the work of D. Gottwald [22].

¹The parallel feature is not implemented in this thesis

3.1.2. Basic Concepts

As in natural evolution, a *population* of individuals evolves in time, using principles such as inheritance, selection, recombination and mutation, towards better biological entities. Thus genetic algorithm use practically the same terminology as described as follows:

Data Representation

One of the main problems in implementation of evolutionary algorithms is the representation of the system variables, which shall be optimized during the GA. The different ways of encoding have been and still are widely discussed [44, 45]. In the following I will present the coding which is used in this thesis and I will describe furthermore some terms and definitions.

Gene: The most basic entity in GAs is the gene, its value is called *allele*. Allele can take the value of a certain alphabet $\mathcal{A} = \{a_1, \ldots, a_k\}$. In most cases the set of binary numbers is used as alphabet with $\mathcal{A}^{binary} = \{0, 1\}$. In this thesis we use the definition where a single gene g_i takes the allele [0, 1].

I have to mention that the definition of a gene in GAs is not unique, in some applications sequences of binary numbers are defined as genes.

- **Genetic divison:** A genetic division² m_{ξ} is a series of genes g_i . In the section 4 I will identify a genetic division as the genetic encoding of one system parameter. $m_{\xi} \in [0, \ldots, 2^l - 1]$, with $\xi \in \{x, \varphi, \ldots\}$.
- **Genotype:** The genotype is the encoded version of all parameters of a single candidate solution. Synonyms for the genotype are *chromosome* or *genome*. Schematic representation of a genotype using the binary alphabet:

where x and φ are the system parameter of the two-dimensional layer (see section 2.2.2)

Phenotype or individual The phenotype stands for a candidate solution and represents therefore one point in search space. In this context a genotype is the

 $^{^{2}}$ The term "genetic division" is choosen by the author, there is no correspondent in the literature.

abstract representations of a phenotype. An interchangeably used synonym for phenotype is *individual*.

- **Population and generation:** According to nature, we deal with sets of individuals, a so called population P. A population at a given time, or at its evolutional level, is called generation P_i , identified by the generation number i with $i = 0, \ldots, i_m$. The size of a population depends on the problem which is examined. Typically it contains several hundreds, sometimes thousands of individuals. The population size in each generation is constant.
- **Fitness:** The fitness of an individual is a meassure for its quality. A higher fitness value indicates a better problem solution (see section 3.1.3).

3.1.3. Algorithm

As in the abiogenesis, the question of the origin of life, genetic algoritms start with a kind of primordial soup. The evolution starts from a population of randomly generated individuals, the generation with index i = 0. In each generation, the fitness of all individuals in the population is evaluated. Several individuals are statistically selected from the current population according to their fitness, forced to marry, to produce a new population. In each generation some individuals are "modified" by means of mutation. In the subsequent generations the newly created population forms the starting point of a new iteration, until a maximum number of generations has been produced or another termination condition is met.

In literature there exist many different, problem-depended, implementations of genetic algorithms but in their skeletal structure they ressemble each other. A *canonical* pseudo code for a genetic algorithm could read as:

begin

$$\begin{split} i = 0 \\ initialize(P(i)) \\ evaluate(P(i)) \\ \textbf{while (not (termination-condition or imax)) do} \\ i = i + 1 \\ fitness(P(i - 1)) \\ Q(i) = select(P(i - 1)) \\ R(i) = recombine(Q(i)) \\ P(i) = mutate(R(i)) \end{split}$$

```
evaluate(P(i))
done
end
```

The main parts of a genetic algorithms rest in the subroutines which are denoted in *italics*. The following section shall describe them in detail.

Initialization

Initially the individuals, i.e., solution candidates, of the first population are created randomly via stochastically distributed binary numbers. In general the random numbers are distributed *uniformly* in the entire search space but in some cases, it can be useful to "seed" the individuals in regions where optimal solutions are expected. In comparison to *Monte Carlo simulations* states could be weighted with $1/k_BT$.

Encoding

As a first step, the individual has to be encoded into its phenotype. This encoding procedure has to be *bijective* and therefore invertible.

Evaluation function

The evaluation function $g(\mathcal{I})$ assigns a number e_i to each individual \mathcal{I} . Therewith e_i is a measure for the quality of \mathcal{I} . The evaluation number is problem dependent, see section 4.

Fitness function

The fitness, i.e., fitness for survival, of an individual is expressed via the so-called fitness number f. The fitness function $f(e_i)$ defines the probability that a single individual is chosen for reproduction. In general f is a function of $g(\mathcal{I})$. In many cases the distinction between the fitness and the evaluation is not made, therefore f becomes $f = e_i$. Although there are no special requirements on the fitness function it is commonly assumed that the fitness number is positive and that individuals with a higher fitness number have a higher probability to be selected for reproduction. Continuity or the strong causality to Rechemberg [45] is not a priori called for f.

The choice of the fitness function is problem-specific as well. Nevertheless there exist several "standard" functions, as listed below.

Linear fitness: The linear fitness function can be defined via $f_{\text{lin}} = 1/((\sum_{i=1}^{N} e_i) - e_i)$.

Proportional fitness: The most commonly used method is the proportional fitness function f_{prop} with $f_{\text{prop}} = e_i / \sum_{i=1}^{N_i} e_i$ where N_i is the number of individuals in the population. Thus individuals obtain a fitness proportional to their evaluation number e_i . (Compare the roulette wheel selection probability in the selection paragraph)

The fitness function, which is used in this thesis, will be introduced in section 4.

Constraints If the solutions have to fulfill a certain number of constraints it is advisable to consider them in the parametrization of the model or in the encoding transformation between genotype and phenotype. If this is not possible, individuals, that violate the constraints have to be suppressed in their propagation, by assigning a low fitness number (e.g. f = 0). That in turn leads to leads to convergence problems due to the fact that too many individuals have the same fitness number. To overcome this problem one can introduce a set of penalty functions $\psi_i(\mathcal{I})$ and associated weights r_i for each of the *n* constraints. The redefined fitness function f^* would then have the following form:

$$f^*(\mathcal{I}) = f(\mathcal{I}) - \sum_{i=1}^n r_i \psi_i(\mathcal{I}).$$

Selection

In the selection phase of the genetic algorithm the parents of subsequent populations will be chosen by a *selection method*. According to natural selection, individuals with higher fitness number, i.e., in this thesis individuals with higher e_i , will be preferred as parents. For the selection procedure exist different schemata have been proposed in the literature:

Linear Ranking Selection The selection probability of individuals does not depend on the fitness value itself. In fact it depends on the ranking of individuals according to their fitness. The ranking of an individual could be, e.g., the sort position according to their fitness. In the linear ranking method the number of offsprings, that the highest ranked individual is allowed to procreate, is limited via a constant α_{max} . The number of offsprings for the subsequent individual, according to their quality, decreases linearly. This selection process prohibits that individuals with very high fitness number are chosen too often for reproduction.

- **Tournament Selection** In this selection mode a few individuals contest in a "tournament": k individuals are selected at random from the population, the one with the highest fitness value wins the tournament and will be chosen for reproduction. With the value k the so called *selection pressure* can be adjusted. For smaller k values individuals with lower fitness have a higher probability to be selected for reproduction.
- **Roulette-Wheel Selection** The roulette-wheel selection defines a selection probability proportional to the individuals fitness value. Thus individuals with a higher fitness value are preferred. The probability p_i that the *i*-th individual will be selected is given by

$$p_i = \frac{f(\mathcal{I}_i)}{\sum_{i=1}^n f(\mathcal{I}_j)}$$

Similar as in the case of a roulette wheel each individual represents a slot on the wheel with a slot size appropriate to the selection probability. A pseudocode could read:

begin

```
f = fitness(P(i))

\hat{f} = normalize(f)

\bar{f} = accumulate(\hat{f})

i=1

while (i leq N/2) do

x = random(0,1)

p1(i) = find(x, \bar{f}, P(i))

x = random(0,1)

p2(i) = find(x, \bar{f}, P(i))

done
```


Here \hat{f} is the probability density function and \bar{f} the distribution function which are used to define the slot interval for each individual. The step *find* selects the first individual, for which $x \leq \bar{f}(\mathcal{I}_i)$ is valid, i.e. the first individual whose distribution function is greater than x.

In literature the roulette-wheel selection is also known as *fitness proportional* selection.

For this thesis the roulette-wheel selection has been implemented and applied as the selection method.

Recombination

In this step the new population P_{i+1} is created through pairwise *crossover* of selected parents from the generation P_i . In each step two parents are combined to produce two new offspring. Thus a child solution typically shares many of the characteristic features of its parents.

Different recombination techniques are listed below and have been implemented:

• One-point crossover

A single crossover point on both parent genotypes is determined at random. The genes at the left and at the right of that point are exchanged and recombined to form the childern; see figure 3.1.

Figure 3.1.: Schematic representation of a one-point crossover process.

• Two-point crossover

Two crossover points on both parent genotypes are determined at random. The genes located between these points are exchanged and recombined; see figure 3.2.

• Random crossover

Several exchange points, represented via the exchange pattern X, on both parent genotypes are determined at random. Genes at positions with an according

Figure 3.2.: Schematic representation of a two-point crossover process.

'0' in X remain unchanged and genes at positions with an according '1' in X are exchanged between the parents. In a technical notation the genes of the

Figure 3.3.: Schematic representation of a random crossover process.

children are calculated via the following logical expressions:

C1 = (P1 AND X) OR (P2 AND NOT X)C2 = (P2 AND X) OR (P1 AND NOT X)

For a schematic view see figure 3.3.

• Random crossover with inversion

This method is similar to the random crossover, described above. However, there the second child is obtained from the first by exchanging '1's by '0' and vice versa. In a technical notation the genes of the two children are calculated via the following logical expression:

$$C1 = (P1 \text{ AND } X) \text{ OR } (P2 \text{ AND } \text{ NOT } X)$$
$$C2 = \text{ NOT } C1$$

For a schematic view see figure 3.4.

In this thesis random crossover and random crossover with inversion have been applied.

Figure 3.4.: Schematic representation of a random crossover procedure with inversion.

Mutation

In analogy to biology mutation, genetic algorithms use mutation to keep genetic diversity from one generation to the next and avoids inbreeding as well. Mutation should occur rather rarely, the probability p_{mutate} for a gene to mutate, is about 0.5%. Gene mutation cause a change of the allele to another value of the alphabet \mathcal{A} .

Figure 3.5.: Schematic representation of a mutation of a gene.

Convergence

Genetic algorithms are not deterministic, since they use stochastic numbers to find the optimum solution. Thus genetic algorithm do not converge in the sense of:

$$||x_{k+1} - x^*|| \leq C ||x_k - x^*||^p.$$
(3.1)

||.|| measures the distance, which is problem depended, between the exact problem solution x^* and the approximate solution x_i in the *i*-th iteration step, whereas C > 0 and p > 0.

3.2. Statistical Mechanics

In this chapter I shall give a brief introduction into the principles of statistical mechanics required for this thesis. The aim is to show how the free energy F, as all-dominant element in this thesis, can be derived from the microscopic particle behaviour. A comprehensive introduction to the subject can, for instance, be found in references [46, 47].

3.2.1. Basic Concepts

On a microscopic level, the state of a thermodynamic system consisting of N particles, is given via the particle positions $\mathbf{x} = \{x_1, \ldots, x_N\}$ and their momenta $\mathbf{p} = \{p_1, \ldots, p_N\}$. At a given time, these quantities are combined to \mathbf{z}_t which represents one particle in the 6N-dimensional phase space Π . Under the influence of Newton's laws, the particle positions and momenta evolve in time $\mathbf{z}_0 \to \mathbf{z}_t$, via the Hamilton equations of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathbf{p}_t \\ \mathbf{x}_t \end{pmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{z}_t = \sigma \frac{\partial H}{\partial \mathbf{z}} (\mathbf{z}_t) = \sigma \begin{pmatrix} \frac{\partial H(\mathbf{z}_t)}{\partial p} \\ \frac{\partial H(\mathbf{z}_t)}{\partial x} \end{pmatrix}$$
(3.2)

with

$$\sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tag{3.3}$$

and the Hamiltion function H for conservative systems:

$$H(\mathbf{z}_t) = \mathbf{p}^2 / 2m + V(\mathbf{x}); \tag{3.4}$$

 $V(\mathbf{x})$ denotes the potential and \mathbf{z}_0 represents the particle's initial condition at t = 0

Ensemble

A statistical ensemble is resented by a large number of trajectories \mathbf{z}_t in phase space. While each trajectory differs from each other, due to different initial conditions, they all refer to the same macroscopic, thermodynamic state of the system. Different macroscopic external constraints lead to different types of ensembles. For instance in the *microcanonical ensemble*, the system is characterized by fixed volume V, particle number N, and energy E. In the *canonical ensemble* we consider systems of N particles confined in a volume V at constant temperature T. Therefore sometimes it is called the NVT-ensemble. To keep the system at constant temperature, it is considered to be in contact with a heat-bath with temperature T.

Partition functions

The partition function allows the calculation of thermodynamic properties out of the microscopic behaviour of the particles. Each statistical ensemble is characterized by its own partion function:

The microcanonical partition function Using the microcanonical distribution function f_E , that gives the probability for a given state \mathbf{z} in phase space, the microcanonical partition function can be written as follows:

$$f_E(\mathbf{z}) = \delta(H[\mathbf{z}] - E) \tag{3.5}$$

with

$$Z(N, V, E) = \int_{\Pi} f_E(\mathbf{z}) dz, \quad \Pi = \Pi(V, N)$$
(3.6)

The canonical partition function In the canonical ensemble, the partition function is given by

$$Z(N, V, T) = \int_{\Pi} f_T(\mathbf{z}) \mathrm{d}z$$
(3.7)

with the canonical distribution function

$$f_T(\mathbf{z}) = \exp\left\{-\frac{H(\mathbf{z})}{k_B T}\right\}.$$
(3.8)

where k_B is the *Boltzmann's constant* and the entropy $S = k_B \Phi^{(3)}$. The link between the microcanonical and the canonical ensemble is given via:

$$Z(N,V,T) = \int_{-\infty}^{+\infty} Z(N,V,N) \exp\left\{-\frac{E}{k_B T}\right\} dE$$
(3.9)

$$= \int_{\Pi(V,N)} f_T(\mathbf{z}) \mathrm{d}z \tag{3.10}$$

In this thesis, we have used the canonical ensemble.

For the sake of completness, in literature the partition function appears very often with another prefactor, namely $\hbar^{-3N}/N!$, where $\hbar = h/2\pi$ is the *Plank constant* and N! accounts for the in-distinguishability of the particles. Because prefactors only are relevant for the evaluation of distribution functions, they have no relevance for ensemble averages.

Observable

The connection between the microscopic description within statistical mechanics and the macroscopic physical properties, is realized via averages over observables. With the time evolution of \mathbf{z}_t the observable $A(\mathbf{z}_t)$ changes along the trajectory. To obtain a macroscopic quantity for A one has to calculate the time average $\langle A \rangle_t$ along the time evolution of \mathbf{z}_t . Under the assumption of ergodicity, the trajectory passes each point in phase space; with this hypothesis (which actually connot be proven) the average is identical to the so called ensemble average:

$$\langle A \rangle_E = \frac{1}{Z} \int_{\Pi} A(z) f(\mathbf{z}) d\mathbf{z}.$$
 (3.11)

Thermodynamic potentials

All thermodynamic properties of the system are completely determined by the thermodynamic potentials. They can be calculated via suitable partial derivatives from the according potentials with respect to their natural variables. Each ensemble type has its according thermodynamic potentials Φ . Analogous, to the situation, in changing from one partion function to another, thermodynamic potentials can be transformed mutually via the so called *Legendre transformation*.

For historical reasons, thermodynamic potentials are not represented via their Φ^i , for instance $\Phi^{(1)}$, the potential of the canonical ensemble, is represented via the *internal* energy E, with the transformation:

$$k_B \ln Z(N, V, E) = k_B \Phi^1(N, V, E) = S(N, V, E)$$
(3.12)

$$\Rightarrow E = E(S, V, N) \tag{3.13}$$

3.2.2. Free Energy

For the canonical ensemble the appropriate thermodynamic potential is the *Helmholz* free energy. It contains the total information about the thermodynamic properties of the system in the canonical ensemble and is given as a function of its natural variables N, V, and T via

$$F(N, V, T) = -k_B T \ln Z(N, V, T).$$
(3.14)

All other thermodynamic properties can be calculated via suitable derivative of F with respect to its variables. Between T and the internal energy E, the following relationship is given:

$$E = F - TS. \tag{3.15}$$

In this thesis I consider only systems at zero temperature, thus F = E. For an ordered system the latter is given by the lattice sum.

3.2.3. Lattice Sum

The *lattice sum* is the sum over all interactions between the particles arranged in an ordered lattice. Thus the internal energy E for a simple lattice, i.e., a lattice with just one basis particle, is given by

$$E = \frac{1}{2} \sum_{\{\mathbf{R}_i\}} \Phi(R_i) \tag{3.16}$$

where $\{\mathbf{R}_i\}$ is the set of all lattice positions and $\Phi(r)$ is the pair potential between the particles; the prime indicates that the term $\mathbf{R} = (0, 0, 0)$ is omitted. For a threedimensional lattice with the primitive vectors \mathbf{a} , \mathbf{b} and \mathbf{c} the lattice sum can be written as

$$E = \frac{1}{2} \sum_{ijk} {}^{\prime} \Phi(|i\mathbf{a} + j\mathbf{b} + k\mathbf{c}|) = \frac{1}{2} \sum_{ijk} {}^{\prime} \Phi(|\mathbf{v}_{ijk}|).$$
(3.17)

where the \mathbf{v}_{ijk} denote the lattice vectors.

Lattices with basis particles require an additional term in the lattice sum, i.e.,

$$E = \frac{1}{2} \sum_{ijk} \Phi(|\mathbf{v}_{ijk}|) + \frac{1}{n_b} \sum_{ijk} \sum_{l>m}^{n_b} \Phi(|\mathbf{v}_{ijk} + \mathbf{B}_m - \mathbf{B}_l|).$$
(3.18)

where \mathbf{B}_l and \mathbf{B}_m represent the basis particle positions within the primitve cell.

The lattice vectors \mathbf{v}_{ijk} , considered in this thesis are given by:

$$\mathbf{v}_{ijk} = i\mathbf{a} + j\mathbf{b} + \sum_{g=1}^{k-1} \mathbf{c}_g \tag{3.19}$$

where k is the number of the layer with index k and where \mathbf{c}_g is the inter-layer vector as given in equation (2.7).

Furthermore, the free energy per particle at zero temperature of the considered system, is given by

$$\frac{F}{N} = \frac{E}{N} \tag{3.20}$$

Thus the search problem in this thesis is to find appropriate values for the basis vectors \mathbf{a} , \mathbf{b} and \mathbf{c}_g such that the lattice sum has the lowest free energy.

As the system is built up via two-dimensional layers, a brief introduction into the expected two-dimensional *Bravais lattices* is given in the following.

3.3. Two-dimensional Bravais Lattices

This section gives an overview about the five existing two-dimensional Bravais lattices. The parametrization is the one introduced in section 2.2.2; it is, of course, not unique.

The following two-dimensional bravais lattices are represented via the vectors \mathbf{a} , \mathbf{b} and the angle *phi* between them.

3.3.1. Square lattice

Primitive vectors:

$$\mathbf{a} = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$

 $|\mathbf{a}| = |\mathbf{b}|$ and $\varphi = \pi/2$.

Area of the unit cell:

$$A_c = a^2$$

The symmetry operation of the square lattice is a four-fold rotation axis.

3.3.2. Hexagonal lattice

Primitive vectors:

$$\mathbf{a} = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} a/2 \\ \sqrt{3}a/2 \end{pmatrix}$$

 $|\mathbf{a}| = |\mathbf{b}|$ and $\varphi = \pi/4$

Area of the unit cell:

$$A_c = \frac{\sqrt{3}a^2}{2}.$$

The symmetry operation of the square lattice is a six-fold rotation axis.

3.3.3. Rectangular lattice

Primitive vectors:

$$\mathbf{a} = \left(\begin{array}{c} a\\ 0 \end{array}\right) \quad \mathbf{b} = \left(\begin{array}{c} 0\\ b \end{array}\right)$$

 $|\mathbf{a}| \neq |\mathbf{b}|$ and $\varphi = \pi/2$.

Area of the unit cell:

$$A_c = ab$$

The symmetry operations of the square lattice are two perpendicular mirror axes.

3.3.4. Centered Rectangular lattice

Primitive vectors:

$$\mathbf{a} = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} a/2 \\ b/2 \end{pmatrix}$$

 $|\mathbf{a}| \neq |\mathbf{b}|$ and $\varphi = \pi/2$.

Area of the unit cell:

$$A_c = \frac{ab}{2}$$

The symmetry operations of the square lattice are two perpendicular mirror axes.

3.3.5. Oblique lattice

Primitive vectors:

$$\mathbf{a} = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} b\cos\varphi \\ b\sin\varphi \end{pmatrix}$$

 $|\mathbf{a}| \neq |\mathbf{b}|$ and $\varphi \neq \pi/2$.

Area of the unit cell:

 $A_c = ab\sin\varphi$

The oblique lattice has no symmetry elements.

As we can see, the rectangular and the centered rectangular lattices posses the same symmetry elements and refer therefore to the same symmetry group. The table 3.1 gives an overview over all of the two dimensional Bravais lattices.

Table 3.1.: Bravais lattices in two dimensions.

4. Implementation of the GA

This section contains details how the genetic algorithm is implemented for the problem of a layered system. Part of the implementation was already done by Dieter Gottwald [22].

4.1. GA in layered systems

The genetic algorithm, that is implemented in this thesis, encodes the system parameters, as described in section 2.2.2, in the individuals. The ensemble dependent fitness function is designed in such a way that individuals evolve to solutions with lower energies. At the end the final result is improved via a steepest descent algorithm.

It has to be mentioned, that strictly speaking, the implemented algorithm is a modified version of real genetic algorithms. The best solution is the best solution in the last generation. In our algorithm, generally this is not the case. Instead, we retain the best solution during all generation steps and take it as the final result.

4.1.1. Data representation

The system parameter $\{x, \varphi, \alpha_2, \ldots\}$ are encoded in a genetic division, represented as an integer number with length l_a and l_n which denote the parameter length for numbers and angles. Thus, the accuracy of the representation of each parameter can be varied via these two quantities. The maximum length of a genetic division is delimited by 32, i.e., the length of an integer variable in the memory. The parameter range of m_{φ} lies between $[0, \ldots, 2^{l_a} - 1]$, all other parameter lie between $[0, \ldots, 2^{l_n} - 1]$. It has to be pointed out, that this data representation leads to a discrete search space with its advantages and disadvantages.

Decoding and Encoding

The decoding and encoding method defines the mapping between system parameter in real space and their corresponding binary representation m_{ξ} . This mapping can be realized in different ways, e.g., one can do a non-uniform mapping, in a way that regions, where solution of system parameter are expected, are convered with higher density. This refers directly to the convergence behaviour of the genetic algorithm. For hard spheres and a square shoulder systems progressive work is currently done by Gernot Pauschenwein [48]. Nevertheless, the encoding in this thesis has to fulfill the constraints given in equations (2.4) and (2.6).

The decoding function is the inverse of the encoding function.

4.1.2. Lattice Unification

The representation of a given lattice via primitive vectors is not unique. This leads to infinitely many different but equivalent sets of primitive vectors that describe exactly the same lattice. The same ambiguity problem is encountered in the choice of basis vectors for $n_b > 1$. The following strategies, developed by Dieter Gottwald shall help to solve this problem partly.

Primitive Vectors

To avoid ambiguities we chose primitive vectors with respect to a minimal circumference of the primitive cell, spanned by the two vectors \mathbf{a} and \mathbf{b} . The following iterative algorithm is applied:

- 1. Start with the two primitive vectors $\mathbf{a}^*, \mathbf{b}^*$.
- 2. Calculate Σ^* , which prepresents the circumference of the primitve cell, spanned by $\mathbf{a}^*, \mathbf{b}^*$.
- 3. Assemble the following four sets of the primitive vectors:

$$\begin{aligned} &({\bf a}^*+{\bf b}^*,{\bf b}^*) \quad ({\bf a}^*,{\bf b}^*+{\bf a}^*) \\ &({\bf a}^*-{\bf b}^*,{\bf b}^*) \quad ({\bf a}^*,{\bf b}^*-{\bf a}^*). \end{aligned}$$
- 4. Calculate, for each of the above sets $\tilde{\Sigma}$, i.e. the circumference of the corresponding unit cell.
- 5. If for one of the four sets $\tilde{\Sigma}$ is smaller than Σ^* the corresponding sets represents the new set of primitive vectors, the algorithm is terminated.
- 6. Start again with step 1 while $\tilde{\Sigma}$ of one of the four sets is smaller than Σ^* .

Basis Vectors

For the case that there are more than one basis particles we also have to deal with a further ambiguity: The indices of the basis vectors \mathbf{B}_i can be permuted without changing the lattice. To overcome these ambiguities certain constraints on the basis vectors have to be imposed. In this work the following strategy was applied:

1. Create the sets

$$\{\tilde{\mathbf{B}}_i^{(j)}\} = \{\mathbf{B}_i - \mathbf{B}_j\}, \qquad j = 1, \dots, n_b$$

with

$$\tilde{\alpha}_{i}^{(j)}\mathbf{a}^{*} + \tilde{\beta}_{i}^{(j)}\mathbf{b}^{*} = \tilde{\mathbf{B}}_{i}^{(j)}$$
$$\tilde{\alpha}_{i}^{(j)} = \bar{\alpha}_{i} - \bar{\alpha}_{j}$$
$$\tilde{\beta}_{i}^{(j)} = \bar{\beta}_{i} - \bar{\beta}_{j}.$$

2. Calculate

$$\begin{array}{lll} \alpha_i^{(j)} & = & \tilde{\alpha}_i^{(j)} - [\tilde{\alpha}_i^{(j)}] \\ \beta_i^{(j)} & = & \tilde{\beta}_i^{(j)} - [\tilde{\beta}_i^{(j)}] \end{array}$$

where [x] denotes the largest integer smaller or equal x. Thus the resulting values of $\alpha_i^{(j)}$ and $\beta_i^{(j)}$ lie in the interval [0, 1).

3. Calculate $\Upsilon^{(j)}$ via

$$\Upsilon^{(j)} = \sum_{i=1}^{n_b} (\alpha_i^{(j)} + \beta_i^{(j)})$$

and find $\Upsilon^{(j^*)} = \min{\{\Upsilon^{(j)}\}}.$

4. Sort B_i^* first in ascending order by $\alpha_i^{(j^*)}$, then in ascending order by $\beta_i^{(j^*)}$. This ensures that the vector basis vector $B_1^* = (0,0)$ will always be first.

5. Calculate the new basis particle coordinates \mathbf{B}_{i}^{*} with the new uniquely defined set of basis vectors via

$$\mathbf{B}_i^* = \alpha_i^{(j^*)} \mathbf{a}^* + \beta_i^{(j^*)} \mathbf{b}^*, \qquad i = 1, \dots, n_b.$$

Vector orientation

In general the set of primitive vectors \mathbf{a} and \mathbf{b} , that emerge from lattice unification algorithm, do not match with the parametrization presented in section 2.2.2. Therefore, if necessary, the orientation of the vectors has to be modified with the following algorithm.

- 1. Order vectors via their magnitude so that $|\mathbf{a}| \ge |\mathbf{b}|$.
- 2. Rotate vectors that **a** is parallel to the x-axis and **b** lies in the x-y-plane.
- 3. Inversion of the vectors if necessary

The vector orientation necessitate the solution of equation

$$\bar{\alpha}_i \mathbf{a}^* + \bar{\beta}_i \mathbf{b}^* = \mathbf{B}_i$$

to obtain valid basis particle parameters $\bar{\alpha}_i$ and $\bar{\beta}_i$. Additionally, the same operation has to be performed for the interlayer-vectors \mathbf{c}_i , i.e., for the α_i^c and β_i^c .

The steps during the vector orientation are depicted in figure 4.1.

Figure 4.1.: Steps of a new vector orientation

Backward Projection into the Search Space

The primitive vectors \mathbf{a}^* , \mathbf{b}^* and the basis vectors $\{\mathbf{B}^*\}$ are in general not any longer elements of the discrete search space due to modifications during the lattice

unification operation. Therefore it is necessary to project them onto the closest element of the finite binary representation, which can be performed as follows:

1. Calculate the system parameters x and y from of the primitive vectors \mathbf{a}^* , \mathbf{b}^* via

$$x = \frac{|\mathbf{b}^*|}{|\mathbf{a}^*|}$$
$$\varphi = \arctan \frac{b_y^*}{b_x^*}$$

where b_x^* and b_y^* denote the x- and y-components of the primitive vector \mathbf{b}^* .

- 2. Encode parameter $\xi \in \{x, \varphi, \alpha_2, ...\}$ in the corresponding genetic division m_{ξ} (see section 4.2.1).
- 3. Decode m_{ξ} again and calculate the corresponding primitive vectors \mathbf{a}' and \mathbf{b}' .
- 4. The basis particle parameters α'_i and β'_i have to be adjusted, so that the binary values represent the closest real values of the parameters, as well. Therefore calculate new basis particle coordinates with equation:

$$\alpha'_i \mathbf{a}' + \beta'_i \mathbf{a}' = \mathbf{B}^*_i \quad i = 2, \dots, n_b$$

and do steps 2 and 3 for α'_i and β'_i .

5. Repeat the described procedure to project the parameters of the inter-layer vector c'_i onto the closest element of the finite binary representation.

4.1.3. Lattice Sum

Cutoff Radius For the cutoff radius r_{cut} we take the distance, beyond which the contribution to the lattice sum becomes smaller than some given ι and is defined via

$$F = \int_{r_{\rm cut}}^{\infty} \Phi(r) \mathrm{d}r - \delta \int_{0}^{\infty} \Phi(r) \mathrm{d}r < \iota$$

A typical value for ι is 10^{-8} which leads to a typical cutoff-radius of approximately 4.3σ .

The lattice sum, presented in equations (3.18) and (3.19), is calculated via the following steps:

1. Set the *cutoff radius*. This is done only once.

- 2. Calculate the real space z-coordinates for each layer via the inter-layer vectors.
- 3. Going through all of the n_l layers, consider for the current layer those layers that are within the cutoff radius.
- 4. Calculate the value for the pair potential considering all distances between pairs of particles within the cutoff radius and sum them up.
- 5. To obtain the final free energy, divide the sum by n_l .

4.1.4. Steepest Descent

Since, the search space in genetic algorithms is discrete, due to the finite binary representation of the parameters, the accuracy of the resolution is limited. Thus the solution \mathcal{I}^* proposed by the genetic algorithm lies, in general, close, but not exactly at the "true" solution. To account for this a multi-dimensional steepest descent hill climbing method has been applied [49].

We proceed as follows:

1. Decode the individual \mathcal{I}^* to obtain the system parameters

$$\mathbf{q} = (x, \varphi, \alpha_2, \dots) \tag{4.1}$$

where **q** identifies a complete parameter set and represents therefore an n_p -dimensional vector.

2. Set initial step size δ to

$$\delta = \left(\frac{1}{2}\right)^{\min\{l_n, l_a\}}.$$
(4.2)

3. For each system parameter ξ , with unit vector e_{ξ} , a small deviation \mathbf{q}_{ξ} with stepsize δ , from the starting point \mathbf{q}_{ξ} is calculated as follows:

$$\mathbf{q}_{\xi} \in \{\mathbf{q} \pm \delta \mathbf{e}_{\xi}\} \tag{4.3}$$

- 4. Calculate $F(\mathbf{q})$ and $F(\mathbf{q}^*) = \min\{F(\mathbf{q}_{\xi})\}.$
- 5. If $F(\mathbf{q})$ is lower than $F(\mathbf{q}^*)$ then \mathbf{q} is set to \mathbf{q}^* , otherwise δ will be decreased by a factor of 3.
- 6. Repeat with step 3., while $\delta > \delta_{\text{thresh}}$; here δ_{thresh} is a typical threshold of 10^{-10} . Otherwise the algorithm terminates.

The final crystal structure is then given by the last value of \mathbf{q}^* with $F(\mathbf{q}^*)$ as the lowest free energy.

4.2. NVT Ensemble

In the NVT-ensemble for each run the wall distance D, the number of layers n_l and number the density ρ are fixed. As we consider ordered equilibrium structures, the parametrization in section 2.2.2 leads to following parameters in the NVT-ensemble.

4.2.1. Implementation of System Parameter

The parameters ξ that describe the *NVT*-ensemble are

$$\{x,\varphi,\alpha_2,\beta_2,\ldots,\alpha_{n_b},\beta_{n_b},\alpha_2^{\rm c},\beta_2^{\rm c},\ldots,\alpha_{n_l}^{\rm c},\beta_{n_l}^{\rm c},z_1,\ldots,z_{n_l-2}\}$$

where z_i (described below) is introduced for the simple reason of an easier implementation of the h_i with respect to the constraint given in equation (2.8). The relation between the h_i and tze z_i is then given by

$$h_{1} = z_{1}D$$

$$h_{2} = z_{2}(D - h_{1})$$

$$\vdots$$

$$h_{i} = z_{i}\left(D - \sum_{j=1}^{i-1} h_{j}\right)$$

$$\vdots$$

$$h_{n_{l}} = D - \sum_{j=1}^{n_{l}-1} h_{j}.$$

Since $z_i \in [0, 1), i = 1, ..., n_l - 2$, they can be encoded directly in the individual, without external constraints.

The total number of parameters n_p that are used to describe the crystal lattice is given by

$$n_p = 2 + 2(n_b - 1) + 2(n_l - 1) + n_l - 2$$

= 2n_b + 3n_l - 4.

Two parameters are used for x and φ , $2(n_b - 1)$ parameters to describe the basis particles without **B**₀, $2(n_l - 1)$ parameter which denote the displacement in the (x, y)-direction, and $n_l - 2$ parameters which describe the displacement in the zdirection.

Decoding and Encoding in the NVT-ensemble

The decoding method performs the transformation between the real space system parameter and the binary representation of the parameters in the NVT-ensemble. The decoding functions that fulfill the constraints of equations (2.4) and (2.6), can be written as

$$x = \frac{m_x + 1}{2^{l_n}}$$
$$\varphi = \frac{\pi}{2} \frac{m_{\varphi} + 1}{2^{l_a}}$$
$$\alpha_i = \frac{m_{\alpha_i}}{2^{l_n}}$$
$$\beta_i = \frac{m_{\beta_i}}{2^{l_n}}$$
$$\alpha_i^c = \frac{m_{\alpha_i^c}}{2^{l_n}}$$
$$\beta_i^c = \frac{m_{\beta_i^c}}{2^{l_n}}.$$

The parameters l_a denote the length of the genetic division for angles and l_n for numbers.

An encoding function is the inverse of decoding function with an additional rounding of the m_{ξ} to the next integer

$$m_{x} = round \left[x * 2^{l_{n}} - 1\right]$$

$$m_{\varphi} = round \left[\varphi * \frac{2}{\pi} 2^{l_{n}} - 1\right]$$

$$m_{\alpha_{i}} = round \left[\alpha_{i} 2^{l_{n}}\right]$$

$$m_{\beta_{i}} = round \left[\beta_{i} 2^{l_{n}}\right].$$

$$m_{\alpha_{i}^{c}} = round \left[\alpha_{i}^{c} 2^{l_{n}}\right]$$

$$(4.4)$$

$$m_{\beta_i^c} = round \left[\beta_i^c 2^{l_n}\right]. \tag{4.5}$$

4.2.2. Evaluation Function

The evaluation function, in the *NVT*-ensemble, is given via the free energy per particle $F = E(x, \varphi, \alpha_2, \beta_2, \ldots, \alpha_{n_b}, \beta_{n_b}, \alpha_2^c, \beta_2^c, \ldots, \alpha_{n_l}, \beta_{n_l}, z_1, \ldots, z_{n_l-2})$ at temperature T = 0 as discussed above.

4.2.3. Fitness Function

As we search for crystal structures with the lowest free energy, lattices with lower energy are preferred. For this reason the fitness function increases with decreasing free energy. Our choice for the fitness function in the *NVT*-ensemble reads as

$$f(\mathcal{I}) = \exp\left(1 - \frac{F(\mathcal{I})}{F_{\text{cubic}}}\right)$$
(4.6)

where $F(\mathcal{I})$ is the free energy per particle for the crystal structure represented by the individual \mathcal{I} , F_{cubic} is the free energy per particle of a cubic crystal structure.

5. Results

The aim of the investigations in this thesis is to study the ordered particle arrangements between two and three dimensional crystal structures. The volume is infinitely extended in the (x, y)-direction and confined in z direction by two horizontal walls. The first and last layers are located directly in the walls (for details see section 2.2.2). Since T = 0, the free energy reduces to the lattice sum. We assume, that the lattices in all layers are identic. All calculations where performed under the assumption, that the lattice in each layer is a simple lattice, i.e. $n_b = 1$. This assumption is based on detailed calculations that give evidence, that non simple lattices can be created via two or more layers of zero seperation (coinciding layers see section (5.2.1)). This section is organized as follows:

- First, we will introduce the phase diagram of system as the main result in this thesis. This is done in an effort to provide a first overview over the results for the reader.
- Next, we present curves for the free energies as a function of D and ρ , on which the phase diagram is based.
- Then, the emerging structures, that appear in the phase diagram will be studied in detail and the transition from the confined volume into the bulk phase will be discussed. At last, we investigate and visualize the buckling transition mechanism for a transition where an arrangement of three layers becomes energetically more favourable than a two layer system.

5.1. Phase diagram

To identify the energetically most favorable particles arrangements we perform independent runs for each fixed layer number n_l and distance D, varying ρ^* . For a given density and distance, the system with the lowest free energy is considered to be the stable structure. The calculations were performed on a grid with $\Delta \rho = 0.25\sigma$ and $\Delta D = 0.25$ varied from $D = \sigma$ to $D = 10\sigma$ and $\rho^* = 0.05$ to $\rho^* = 0.65$. The number of layers ranges from two to nine.

The phase diagram allows the location of the transition lines between the emerging structures and the number of layers that the system forms. The phase diagram in its simplest version, i.e., without identifying the emerging structure is depicted in figure 5.1, the phase diagram that allows to identify the emerging structure is depicted in figure 5.2.

5.1.1. Layer transition

At low distances $D \lesssim 3.5\sigma$ and for all densities, the system is characterized by two layers. Of course the area density increases at fixed n_l with increasing D due to the relation $\eta = \rho D/n_l$. Only if η becomes too high, the formation of a new layer can lower the energy and we observe a transition from an n_l to an $(n_l + 1)$ -layer system.

Figure 5.1.: Phase diagram of a system in (D, ρ^*) -space. Regions where the system forms n_l layers are identified. The lines are added as a guide to the eye.

Figure 5.2.: Phase diagram of our system in $(D, \rho^*$ -space. Regions where the system forms n_l layers are identified; lines are added as a guide to the eye. In addition, for each state point the corresponding stable structure is characterized by a symbol (see inset).

5.1.2. Structure transition

Structure transition for $ho^* \sim 0.05$

Considering the system at a very low density $\rho^* = 0.05$ and at wall distance $D = \sigma$ all particles are separated by distances longer than the cutoff-radius $r_c \sim 4.3\sigma$. Thus the free energy of this configuration is lower than the numerical accuracy (10⁻⁸) and is therefore considered to be zero.

With increasing D, a wide region is found, where a rectangular structure is stable, which then transforms to a square lattice at $\rho^* \sim 0.05$ and $D \sim 2.5\sigma$. At this densities we observe at fixed layer number n_l a sequence of square lattices, followed by an hexagonal lattice; sometimes an intermediate rectangular structure is observed.

The transition to a system with $(n_l + 1)$ layers is accompanied by the morphological transition which follows the well known transition relation [50]:

$$n_l \Delta \longrightarrow (n_l + 1) \Box \longrightarrow (n_l + 1) \Delta$$
 (5.1)

where n_l is the number of layers, \Box and \triangle correspond to layers of quadratic and hexagonal symmetry.

Considering the bulk system, that solidifies at this density into an fcc crystal, the sequence can be understood, via a closest packing scenario, considering the different ways to build up an fcc crystal via a stacking of layers. The height of an fcc stack with square (100) layers is smaller than that of the corresponding hexagonal (111) stack. Thus, with increasing cell height, the (100) stacked fcc structure fits first between the walls and is later replaced by the corresponding (111) phase in order to optimize the packing density.

Structure transition for $0.05 < \rho^* \le 0.1$

Starting again at very small wall separation $D \sim \sigma$ and low volume-number densities $\rho^* \sim 0.075$, one can observe, with increasing D, the following sequence of twodimensional Bravais lattices: First the lattice is rectangular, being followed by a square lattice via a continuous transformation, as has been confirmed via further calculations. For wall distances $D \gtrsim 2\sigma$ the particles arrange in a hexagonal lattice up to the layer transition line $2n_l \longrightarrow 3n_l$, at which a layer transition and a structural transition emerge simultaneously. Then, with further increasing D we observe a sequence of two-dimensional Bravais lattices which starts from a square, followed by a hexagonal lattice; again, via a layering transition it becomes square. The situation is basically described via the following relation:

$$2 \square \longrightarrow 2 \square \longrightarrow 2 \triangle \longrightarrow 3 \square \longrightarrow 3 r \longrightarrow 3 \triangle \longrightarrow 4 r \longrightarrow 4 \triangle \dots$$
(5.2)

where \Box , \Box , r and \triangle correspond to layers of rectangular, quadratic, centered rectangular and hexagonal symmetry.

The sequence of appearing structures at $\rho^* = 0.1$ is similar to the situation at $\rho^* = 0.075$ where the structural behaviour is similar to the one, described above, with the exceptions of an intervening centered rectangular lattices at wall distances 6σ and 9.75σ .

Structure transition for $ho^* \sim 0.2$

The phase region $0.2 \le \rho^* \le 0.3$ is similar to the situation with $\rho^* = 0.1$. First, for $n_l = 2$ and $D = \sigma$, the structure is rectangular which transform continuously to a square lattice. As the wall distance increases, the lattice structure becomes hexagonal until an additional layer is formed. Then the layers are built up by a square lattice structure again, followed by a centered rectangular lattice and a hexagonal layer. For $n_l > 3$ the square structure vanishes. This morphological transitions can be identified again as the transition relation, given in equation 5.2.

Structure transition for $0.3 \le \rho^* \le 0.4$

This region is similar to the region at $\rho \sim 0.2$ with the exception, that at small *D*-values the rectangular phase does not appear, but the system forms rather a square lattice.

Structure transition for $\rho^* > 0.5$

At such densities the bulk system solidifies in a *bcc* lattice. For $n_l > 2$ the square structure does not emerge any longer; we can identify a distinct transition from a square to a rectangular structure at $n_l = 2$. The sequence of transitions looks as follows:

$$2\Box \longrightarrow 2r \longrightarrow 2\triangle \longrightarrow 3r \longrightarrow 3\triangle \longrightarrow 4r \longrightarrow 4\triangle \dots$$
(5.3)

where \Box , r and \triangle correspond to layers of quadratic, centered rectangular and hexagonal symmetry.

Although the stacking of the appearing layers with their according structures do not correspond exactly to their respective bulk phase, the arrangement of the particles in the layers is strongly influenced by the stable bulk crystal structure but not completely dominated by it. For instance the centered rectangular Bravais structure, that hints to a *bcc* bulk phase, does in fact appear rather frequently at regions where the stable bulk phase solidifies in *bcc*.

The following two sections, where we consider in detail the energy curves and the structures, shall give a deeper insight into the results that were discussed above.

5.2. Free energies

In the following we present the reduced free energy per particle, $F/(N\epsilon)$, of a layered systems as a function of wall distance D and ρ . Each of the following figures, 5.3, 5.4, 5.5, 5.6, correspond to a different bulk density ρ^* . In each of these figures, the different curves correspond to a different number of layers n_l . These figures provide an insight, how the layer formation mechanism works. As the wall distance D increases, more particles have to arrange in each layer. However, a higher area densites causes an increase of the free energy per particle which can only be lowered by the insertion of a new layer. Therefore more and more layers appear in system as D increases.

5.2.1. Coinciding layers

The approach presented in section 2.2.2 allows to treat particular systems with different but equivalent parametrization. For instance, a system at a given state point that is composed by two layers, can equally well be parametrized, for instance, by four layers, where two pairs of layers have the same z-coordinate. This fact offers a good possibility to check the internal consistency of the approach, since both parametrizations should lead to the same energy.

In addition, the fact that our application allows coinciding layers offers the approach to study another intresting phenomena. Let us focus in figure 5.4 at the region $D \sim 3\sigma$. Here the curves for two and three layer arrangements are intersected by a curve of six layer arrangements that have a lower free energy. This gives evidence for an additional phase, known in literature as buckling or prism phase, as suggested by Pansu *et al.* [28] and Bechinger *et al.* [29]. With respect to that result the phase diagram presented in figure 5.2 has to be modified. A more detailed discussion of this phenomena will be given in section 5.4.2.

5.2.2. Non monotonicity in the energy

For particular configurations [e.g. $\rho^* = 0.05, n_l = 3, D = 5.25\sigma$; $\rho^* = 0.05, n_l = 4, D = 7.5\sigma$ or $\rho = 0.10, n_l = 4, D = 6\sigma$], as depicted in figures 5.3 and 5.4, the energy shows as a function D a non monotonistic behaviour. These humps result obviously from a structural transition; a more detailed investigation shows that with increasing D the lattice structure is first centered rectangular, then hexagonal and then again centered rectangular. However, since the energy curves are expected to be concave, this might be a hint for a hidden structure, with even higher complexity at these state points. Additional calculations or another parametrization are necessary to verify this.

Figure 5.3.: $F/(N\epsilon)$ of a layered system at bulk density $\rho^* = 0.05$ vs. D/σ . Different curves correspond to different number of layers n_l (see inset).

Figure 5.4.: $F/(N\epsilon)$ of a layered system at bulk density $\rho^* = 0.1$ vs. D/σ . Different curves correspond to different number of layers n_l (see inset).

Figure 5.5.: $F/(N\epsilon)$ of a layered system at bulk density $\rho^* = 0.2$ vs. D/σ . Different curves correspond to different number of layers n_l (see inset).

Figure 5.6.: $F/(N\epsilon)$ of a layered system at bulk density $\rho^* = 0.4$ vs. D/σ . Different curves correspond to different number of layers n_l (see inset).

Figure 5.7.: $F/(N\epsilon)$ of a layered system at bulk density $\rho^* = 0.6$ vs. D/σ . Different curves correspond to different number of layers n_l (see inset).

5.3. Structures

This section cotains the details about the structures of the layered configurations described above.

In all systems, the layers were found to be equally spaced (within numerical accuracy) between the walls, $h_i = D/(n_l - 1)$.

The following tables provide the structural details. The explicit data sets are compiled in appendix B.

D/σ	n_l	2-D	lattice	(x,y)	View into
		structures	parameter	displacement	< 1, 0, 0 >
1.00	2	oblique	$a/\sigma = 8.53$ $b/\sigma = 4.76$ $\varphi = 1.40$		•• •• ••
2.00	2	rectangular	$a/\sigma = 5.09$ $b/\sigma = 3.93$		• • • •
2.50	2	square	$a/\sigma = 4.00$		• • • •
3.25	2	hexagonal	$a/\sigma = 3.77$		•••

Structures at $\rho = 0.05$

4.00	3	rectangular	$a/\sigma = 4.14$ $b/\sigma = 3.62$	
4.75	3	square	$a/\sigma = 3.55$	
5.25	3	centered rectangular	$a/\sigma = 4.95$ $b/\sigma = 4.62$	
6.00	3	hexagonal	$a/\sigma = 3.40$	
7.00	4	square	$a/\sigma = 3.38$	
8.25	4	hexagonal	$a/\sigma = 3.35$	

9.00	5	square	$a/\sigma = 3.33$	
10.0	5	centered rectangular	$a/\sigma = 4.76$ $b/\sigma = 4.20$	

Table 5.1.: Structural details of the stable layered arrangements of a system with fixed bulk number density $\rho^* = 0.05$. Particles with the same color belong to the same layer.

Structures at $ho^* = 0.1$

D/σ	n_l	2-D	lattice	(x,y)	View into
		structures	parameter	displacement	< 1, 0, 0 >
1.00	2	rectangular	$a/\sigma = 5.68$ $b/\sigma = 3.52$		• • • • • • •
2.00	2	square	$a/\sigma = 3.16$		• • • •
2.50	2	hexagonal	$a/\sigma = 3.04$		
3.75	3	square	$a/\sigma = 2.83$		
4.50	3	hexagonal	$a/\sigma = 2.77$		
5.50	4	square	$a/\sigma = 2.70$		

6.00	4	centered rectangular	$a/\sigma = 3.93$ $b/\sigma = 3.39$	
6.50	4	hexagonal	$a/\sigma = 2.67$	
7.50	5	square	$a/\sigma = 2.58$	
8.50	5	hexagonal	$a/\sigma = 2.61$	

Table 5.2.: Structural details of the stable layered arrangements of a system with fixed bulk number density $\rho^* = 0.10$. Particles with the same color belong to the same layer.

Structure at $ho^* = 0.2$

D/σ	n_l	2-D	lattice	(x,y)	View into
		structures	parameter	displacement	< 1, 0, 0 >
1.00	2	rectangular	$a/\sigma = 3.79$ $b/\sigma = 2.64$		•••••
1.50	2	square	$a/\sigma = 2.58$		
2.00	2	hexagonal	$a/\sigma = 2.40$		
3.00	3	square	$a/\sigma = 2.24$		
3.25	3	centered rectangular	$a/\sigma = 3.49$ $b/\sigma = 2.65$		
4.00	3	hexagonal	$a/\sigma = 2.08$		

5.25	4	hexagonal	$a/\sigma = 2.10$	
6.25	3	centered rectangular	$a/\sigma = 3.28$ $b/\sigma = 2.44$	

Table 5.3.: Structural details of the stable layered arrangements of a system with fixed bulk number density $\rho^* = 0.20$. Particles with the same color belong to the same layer.

Structures at $ho^* = 0.4$

D/σ	n_l	2-D	lattice	(x,y)	View into
		structures	parameter	displacement	< 1, 0, 0 >
1.25	2	square	$a/\sigma = 2.00$		
1.75	2	hexagonal	$a/\sigma = 1.82$		
2.25	3	square	$a/\sigma = 1.83$		
2.75	3	centered rectangular	$a/\sigma = 2.87$ $b/\sigma = 1.90$		
3.50	3	hexagonal	$a/\sigma = 1.57$		
4.00	4	centered rectangular	$a/\sigma = 2.74$ $b/\sigma = 1.82$		

4.50	4 hexagonal	4.50	$a/\sigma = 1.60$		
------	-------------	------	-------------------	--	--

Table 5.4.: Structural details of the stable layered arrangements of a system with fixed bulk number density $\rho^* = 0.40$. Particles with the same color belong to the same layer.

Structures at $\rho^* = 0.6$

D/σ	n_l	2-D	lattice	(x,y)	View into
		structures	parameter	displacement	< 1, 0, 0 >
1.00	2	square	$a/\sigma = 1.83$		
1.25	2	centered rectangular	$a/\sigma = 2.84$ $b/\sigma = 1.87$		
1.75	2	hexagonal	$a/\sigma = 1.48$		
2.25	3	centered rectangular	$a/\sigma = 2.54$ $b/\sigma = 1.75$		
2.75	3	hexagonal	$a/\sigma = 1.45$		

Table 5.5.: Structural details of the stable layered arrangements of a system with fixed bulk number density $\rho^* = 0.60$. Particles with the same color belong to the same layer.

5.4. Bulk limit

If we increase D further, we expect that the system will form its stable bulk crystal structure. In this thesis we have investigated this behaviour of the system at $\rho^* = 0.1$ and wall distances up to $D = 100\sigma$. The zero-temperature solid phase of the Gaussian core model of the bulk system, at $\rho^* = 0.1$ indicates a stable *fcc* phase with a free energy per particle of 0.0173.

5.4.1. fcc stacking

The fcc lattice can be built up by stacked two-dimensional Bravais lattices, via one of the following ways:

- Square: The two-dimensional lattice is a square lattice with a lattice parameter a. The stacking sequence is ABAB... in the < 100 > direction. Each layer is displaced by (a/2, a/2) in the (x, y)-plane. The vertical distance between the two layers is $a/\sqrt{2}$. The corresponding fcc lattice constant is a.
- Rectangular: The two-dimensional lattice is a rectangular lattice with lattice parameters a and b. The stacking sequence is ABAB... in the < 11'0 > direction. Each layer is displaced by $(a/2, a/\sqrt{8})$ in the (x, y)-plane. The vertical distance between the two layers is $a/\sqrt{8}$. The corresponding fcc lattice constant is a.
- Hexagonal: The two-dimensional lattice is a hexagonal lattice with a lattice parameter a. The stacking sequence is ABCABC... in the < 111 > direction. Each layer is displaced by $(a/2, a/\sqrt{12})$ in the (x, y)-plane. The vertical distance between two layers is $\sqrt{2/3}a$. The corresponding fcc lattice constant is $\sqrt{2}a$.

To identify the layered system, as an fcc crystal, the particle and layer arrangement has to fulfill the conditions of one of the three cases.

Structures and free energy

For the considered system, the free energy curves are depicted in figure 5.8.

We can see, that with increasing D and n_l , the free energies of the systems approach the free energy of the fcc bulk phase.

Figure 5.8.: $F/(N\epsilon)$ of a layered system with bulk density $\rho^* = 0.10$ vs. D/σ with an enlargement of the for the region with a large number of particles layers, i.e., $47 \leq n_l \leq 50$. Different curves correspond to different number of layers n_l . Note the different scales of D in the figure.

The stable two-dimensional structures for all the investigated configurations are hexagonal structures. The layers were found to be equally spaced between the walls, i.e., $h_i = D/(n_l - 1)$. Furthermore the layer distances fulfill the condition of $\sqrt{2/3a}$ for an *fcc* crystal, formed by stacked hexagonal layers. Therefore one can assume, that in the bulk limit the system will converge to an *fcc* crystal.

The layer displacement in the (x, y)-direction is of course not unique. We have found layer displacements of $(a/2, a/\sqrt{12})$ and $(a, \sqrt{3})$; both lead to the same fcc crystal structure. In our results we have seen, that squences of equal layer displacements appear in blocks with stacking pattern ABCABC... Due to competing structures these fcc-like blocks become ABCBCABC... at the boundaries, which might be similar to a mechanism like stacking faults. For all these cases, the displacement in z direction remains constant. The reference data can be found in appendix B.

In the following table the above results are summerized in detail.

D/σ	n_l	lattice	2-D	layer	View into	(x,y)
		parameter	structure	distance	< 0, 0, 1 >	displacement
94.0	48	$a/\sigma = 2.43$	hexagonal	d/a=0.82		(1.21,0.70)
95.0	49	$a/\sigma = 2.44$	hexagonal	d/a=0.81		(1.22,0.70)
96.0	49	$a/\sigma = 2.43$	hexagonal	d/a=0.81		(2.43,1.40)
97.0	50	$a/\sigma = 2.44$	hexagonal	d/a= 0.82		(1.22,0.71)

Table 5.6.: Structural details of the stable layered arrangements of a system with fixed bulk number density $\rho^* = 0.10$ for large wall distances D. The number of layers is denoted by n_l . Particles with the same color belong to the same layer.

5.4.2. Buckling

The transition region, where with increasing D the insertion of an additional layer is energetically more favourable, is not a sharp transition as the phase diagram in figure 5.2 might suggest. To viusalize this, we consider a density $\rho^* = 0.10$. In a region $2.5\sigma \leq D \leq 3.4\sigma$ a six layer arrangement guarantees a lower energy than the two layer arrangement or the three layer arrangement. Here the buckling transition mechanism comes into play, first identified by Pansu *et al.* [28], and the occurrence of prism phases for transitions with higher n_l , introduced by Bechinger *et al.* [29].

In this thesis we have investigated the layer transitions between two and three layers at $\rho^* = 0.10$. The calculations have been performed taking advantage that also coinciding layers can be treated within our algorithm, as introduced in section 5.2.

Layer transition $2n_l \longrightarrow 3n_l$ at $ho^* = 0.10$

The system is calculated with $n_l = 6$. At wall distance $D = 2.90\sigma$ the system forms two layers with a hexagonal structure and eta = 0.145. As the wall distance becomes $D = 3.00\sigma$. One sublayer with $\eta = 0.0483$, separates from the bottom layer and, similarly a sublayer with $\eta = 0.0483$ from the the top layer. At this step pyramids can be identified where the top particle are element of the newly formed layer, while rectangular bases are element of the top and the base layer. A further increase of D leads to an increase in the height of the pyramid. At $D = 3.30\sigma$ the system changes the structure instantaneously and forms three layers with square structure. A presumption is, that one of the pyramid's side surfaces, the triangle with the longer edge, provides a right angle and could therefore be a structural proposal, that forces the system to change instantaneously in the direction perpendicular to the triangle. Further investigations are necessary to clarify that.

The z component of the interlayer vector 1 and 5 are zero. The transition of the structure is shown in table 5.7. Further insight comes from the free energy as a function of wall distance. One clearly sees that the six-layer arrangement represents for a small D-range the energetic most favourable ordered structure, representing thereby the above described transition from a two- to a three-layer system. The reference data to this results is summerized in appendix A.

Figure 5.9.: $F/(N\epsilon)$ of a layered system with bulk density $\rho^* = 0.10$ vs. D/σ with an enlargement of the transition region between $n_l = 2$ and $n_l = 3$. Different curves correspond to different number of layers n_l (see inset

Table 5.7.: Structural details of the layer transition from $n_l = 2$ to $n_l = 3$, at a fixed bulk number density $\rho^* = 0.10$. Particles with the same color belong to the same layer.

6. Summary

In this thesis we have studied ordered equilibrium structures of Gaussian particles confined between two parallel horizontal walls and separated by a distance D. Ordered structures are formed as layers and we studied how the formation of the layers takes place; as D and the number density ρ^* varies. Working in the canonical ensemble we have identified the energetically most favourable particle arrangements, obtained by minimizing the free energy. To find these configurations we have used search strategies, that are based on ideas of genetic algorithms. Thus we were able to provide the full phase diagram in (D, ρ^*) -space: it allows to locate the transition lines between the emerging structures and the number of layers that the system forms. For small number densities $\rho^* \leq 0.1$ and for wall distances $D > 2\sigma$ we have found that morphological transitions can be identified described via the well known transition relation [50]

$$n_l \Delta \longrightarrow (n_l + 1) \Box \longrightarrow (n_l + 1) \Delta,$$
 (6.1)

where n_l is the number of layers, \Box and \triangle correspond to layers of quadratic and hexagonal symmetry. In addition, a rectangular region for $D < 2\sigma$ could be identified.

For large number densities, $\rho^* > 0.5$, we have identified a transition sequence, that can be symbolically described as:

$$2\Box \longrightarrow 2r \longrightarrow 2\triangle \longrightarrow 3r \longrightarrow 3\triangle \longrightarrow 4r \longrightarrow 4\triangle \dots$$
(6.2)

where \Box , r, and \triangle correspond to layers of quadratic, centered rectangular and hexagonal symmetry.

Furthermore, we have considered the limit of large wall distances, knowing that for $\rho = 0.1$ and large *D*-values the layered system will convert into a *fcc* stacked bulk crystall. Indeed, we obtain a layered stack, with hexagonal symmetry and layer distances of $a/\sqrt{8}$. The stacking sequence could be identified to have the form ABCABC.... Finally we provided a deeper insight into the transition mechanism from a two to a three-layered system at $\rho^* = 0.10$ as D slowly increases. Taking benefit of the fact that our approach also allows for coinciding layers we were able to investigate this problem and to depict a detailed sequence of figures with increasing D, that represent the structural behaviour during the transition. Thus a transition from a hexagonal lattice via a structure, similar to a pyramid, with an instantaneous change to a lattice with squared structure at the end, could be verified.

A. Numerical Details

Most of the GA calculations in this thesis were carried out with the following values for the parameters (for definitions carried from chapter 4)

Parameter	Value
l _n	12
la	6
$p_{ m mutate}$	0.35%
number of individuals n	500
number of populations	1200
$\delta_{ m thresh}$	1×10^{-10}
$r_{ m cut}$	$\sim 4.3\sigma$

B. Reference Data

This chapter contains the referece data of the described configurations in this thesis.

B.1. Reference data of the described structures

wall distance= 1.00000000 rho= 0.0500000 minimal free energy = 0.00000000 name: 2D oblique, a=8.53076 b=4.75898 gamma=1.39899 number density: 0.050000 area density: 0.025000 number of layers: 2 lattice vectors: a: 8.530757 b: 0.813604 0.000000 4.688916 inter-layer vectors 1 4.242852 1.562590 1.000000 wall distance= 2.0000000 0.05000000 rho= minimal free energy = 0.00000138 name: 2D rectangular, a=5.09402 b=3.92617 number density: 0.050000 area densitv: 0.050000 number of lavers: 2 lattice vectors: a: 5.094022 0.000000 0.000000 3.926170 b: inter-laver vectors 1 2.547011 1.963085 2.000000 _____ ----wall distance= 2.50000000 0.05000000 rho= minimal free energy = 0.00000152 name: 2D square, a=4.00000 0.050000 number of layers: 2 lattice vectors: 4.000000 0.000000 a: 4.000000 0.00000 b: inter-layer vectors 1 2.000000 2.000000 2.500000 ----wall distance= 3.25000000 rho= 0.05000000 minimal free energy = 0.00000236 name: 2D hexagonal, a=3.76984 number density: 0.0500 area density: 0.081250 0.050000

number of layers: 2 lattice vectors: a: 3.769841 0.000000 3.264778 b: 1.884920 inter-layer vectors 1 1.884920 1.088259 3.250000 ---------wall distance= 4.00000000 rho= 0.05000000 minimal free energy = 0.00002733 name: 2D rectangular, a=4.13794 b=3.62499 0.050000 number of layers: lattice vectors: a: 4.137940 0.000000 b: 0.000000 3.624993 inter-layer vectors 1 2.068970 1.812496 2.000000 2 2.068970 1.812496 2.000000 ----wall distance= 4.75000000 rho= 0.05000000 minimal free energy = 0.00002365 name: 2D square, a=3.55409 number density: 0.050000 area density: 0.079167 number of layers: 3 lattice vectors: a: 3.554093 b: 0.000000 0.000000 3.554093 inter-layer vectors 1 1.777047 1.777047 2.375000 2 1.777047 1.777047 2.375000 1.777047 2.375000 ----wall distance= 5.25000000 rho= 0.05000000 minimal free energy = 0.00003070 name: 2D centered rectangular, a=4.94825 b=4.61923 number density: 0.05000 area density: 0.087500 0.050000 number of layers: 3 lattice vectors: a: 3.384617 0.000000 3.376621 b: 0.232514 inter-layer vectors 1 1.808566 1.688311 2.625000 2 1.808566 1.688311 2.625000 ----wall distance= 6.00000000 0.05000000 rho= minimal free energy = 0.00003425 name: 2D hexagonal, a=3.39809 number density: 0.05000 area density: 0.100000 0.050000 number of layers: 3 lattice vectors: a: 3.398089 0.000000 1.699044 2.942831 b: inter-layer vectors 1 1.699044 0.980944 2 3.398089 1.961887 3.000000

3.000000

_____ wall distance= 7.00000000 rho= 0.05000000 minimal free energy = 0.00006451 name: 2D square, a=3.38062 number density: 0.050000 area density: 0.087500 number of lavers: 4 lattice vectors: a: 3.380617 0.000000 0.000000 3.380617 b: inter-layer vectors 1 1.690308 1.690309 2 1.690308 1.690308 2.333333 2.333333 3 1.690308 1.690309 2.333333 _____ wall distance= 8.25000000 0.05000000 rho= 0.00006912 minimal free energy = name: 2D hexagonal, a=3.34621 number density: 0.05000 area density: 0.103125 0.050000 number of layers: 4 lattice vectors: a: 3.346206 0.000000 2.897900 1.673103 b: inter-layer vectors 1 3.346206 1.931933 2 3.346206 1.931933 2.750000 3.3462061.9319332.7500003.3462061.9319332.750000 3 ----wall distance= 9.00000000 0.05000000 rho= minimal free energy = 0.00010820 name: 2D square, a=3.33333 number density: 0.050000 area density: 0.090000 number of layers: 5 lattice vectors: 0.00000 a: 3.333333 h٠ 0.000000 3.333333 inter-layer vectors 1 1.666667 1.666667 2.250000 2 1.666667 1.666667 2.250000
 2
 1.666667
 1.666667
 2.250000

 3
 1.666667
 1.666667
 2.250000

 4
 1.666667
 1.666667
 2.250000
 _____ wall distance= 10.0000000 rho= 0.05000000 minimal free energy = 0.00013213 name: 2D centered rectangular, a=4.76386 b=4.19828 number density: 0.050000 area density: 0.100000 number of layers: 5 lattice vectors: a: 3.174897 0.000000 h · 0.399136 3.149708 inter-layer vectors 1 1.787016 1.574854 2.500000 2.500000
 2
 1.787016
 1.574854
 2.500000

 3
 1.787016
 1.574854
 2.500000

 4
 1.787016
 1.574854
 2.500000
 1.787016 _____ wall distance= 1.00000000 rho= 0.10000000 minimal free energy = 0.00001454 name: 2D rectangular, a=5.68228 b=3.51971 number density: 0.100000 area density: 0.050000 number of lavers: 2 lattice vectors: a: 5.682284 0.000000 0.000000 3.519711 b: inter-layer vectors 1 2.841142 1.759856 1.000000

_____ wall distance= 2.00000000 0.10000000 rho= minimal free energy = 0.00033762 name: 2D square, a=3.16228 name: 20 54-number density: 0.10000 0.100000 number of layers: 2 lattice vectors: a: 3.162278 0.000000 0.000000 3.162278 b: inter-layer vectors 1 1.581139 1.581139 2.000000 wall distance= 2.5000000 rho= 0.10000000 minimal free energy = 0.00042513 name: 2D hexagonal, a=3.039340.100000 number of layers: lattice vectors: a: 3.039343 b: 1.519671 0.000000 2.632148 inter-layer vectors 1 1.519671 0.877383 2.500000 ----wall distance= 3.75000000 0.1000000 rho= minimal free energy = 0.00212344 name: 2D square, a=2.82843 number density: 0.100000 area density: 0.125000 number of layers: 3 lattice vectors: a: 2.828427 0.000000 b: 0.000000 2.828427 inter-layer vectors 1 1.414214 1.414214 2 1.414214 1.414214 1.875000 1.875000 ----wall distance= 4.50000000 rho= 0.1000000 minimal free energy = 0.00233442 name: 20 no.... number density: 0.10000 -*+w: 0.150000 name: 2D hexagonal, a=2.774530.100000 number of layers: 3 lattice vectors: a: 2.774528 0.000000 b: 1.387264 2.402811 inter-layer vectors 1 1.387264 0.800937 2 1.387264 0.800937 2 250000 2.250000 ----wall distance= 5.5000000 0.1000000 rho= minimal free energy = 0.00413268 name: 2D square, a=2.69680 number density: 0.100000 area density: 0.137500 number of layers: 4 lattice vectors: a: 2.696799 0.000000 2.696799 b: 0.000000 inter-layer vectors 1.833249 1 1.348400 1.348400 2 1.348400 1.348400 3 1.348400 1.348400 1.833503 1.833249 ----wall distance= 6.0000000 0.1000000 rho= minimal free energy = 0.00450234 name: 2D centered rectangular, a=3.93039 b=3.39237 number density: 0.100000

area density: 0.150000 number of layers: 4 lattice vectors: a: 2.595965 0.000000 b: 0.379415 2.568088 inter-layer vectors 1 1.487690 1.284044 2 1.487690 1.284044 1.999992 2.000015 3 1.487690 1.284044 1.999992 ----wall distance= 6.50000000 0.10000000 rho= minimal free energy = 0.00438880 name: 2D hexagonal, a=2.66568 number density: 0.10000 area density: 0.162500 0.100000 number of layers: 4 lattice vectors: 2.665680 1.332840 0.000000 a: h: 2.308547 inter-layer vectors 1 1.332840 0.769516 2.166667 1.539031 2.166667 1.539031 2.166666 2.665680 2 3 2.665680 ----wall distance= 7.50000000 0.1000000 rho= minimal free energy = 0.00594277 name: 2D square, a=2.58199 0.100000 number of layers: 5 lattice vectors: a: 2.581989 0.000000 b: 0.000000 2.581989 inter-layer vectors 1 1.290994 1.290994 1.874943 2 1.290994 1.290994 1.875057 3 1.290994 1.290994 1.875057 31.2909941.2909941.87505741.2909941.2909941.874943 _____ wall distance= 8.5000000 rho= 0.1000000 minimal free energy = 0.00609779 name: 2D hexagonal, a=2.60621 0.100000 number of layers: 5 lattice vectors: a: 2.606215 0.000000 b: 1.303107 2.257048 inter-layer vectors 1 1.303107 0.752349 2.124999
 2
 1.303107
 0.752349
 2.125001

 3
 2.606215
 1.504699
 2.125001

 4
 2.606215
 1.504699
 2.124999
 _____ wall distance= 1.00000000 rho= 0.20000000 minimal free energy = 0.00450678 name: 2D rectangular, a=3.78992 b=2.63858 number density: 0.200000 area density: 0.100000 number of lavers: 2 lattice vectors: a: 3.789920 0.000000 b: 0.000000 2.638578 inter-layer vectors 1 1.894960 1.319289 1.000000 ----wall distance= 1.5000000 0.20000000 rho= minimal free energy = 0.01006855 name: 2D square, a=2.58199 number density: 0.200000

area density: 0.150000 number of layers: 2 lattice vectors: a: 2.581989 0.000000 b: 0.000000 2.581989 inter-layer vectors 1 1.290994 1.290994 1.500000 wall distance= 2.00000000 rho= 0.2000000 minimal free energy = 0.01334889 name: 2D hexagonal, a=2.402810.200000 number of lavers: 2 lattice vectors: a: 2.402811 0.000000 2.080896 b: 1.201406 inter-layer vectors 1 2.402811 1.387264 2.000000 _____ wall distance= 2.75000000 rho= 0.20000000 minimal free energy = 0.03509677 name: 2D square, a=2.33550 number density: 0.200000 area density: 0.183333 number of layers: lattice vectors: a: 2.335497 0.000000 b: 0.000000 2.335497 inter-layer vectors 1 1.167748 1.167748 1.375000 2 1.167748 1.167748 1.375000 _____ wall distance= 3.00000000 0.20000000 rho= minimal free energy = 0.03668223 name: 2D square, a=2.23607 number density: 0.200000 area density: 0.200000 number of layers: 3 lattice vectors: a: 2.236068 b: 0.000000 0.000000 2.236068 inter-layer vectors 1 1.118034 1.118034 1.500000 2 1.118034 1.118034 1.500000 1.118034 1.500000 wall distance= 4.00000000 rho= 0.2000000 minimal free energy = 0.04827120 name: 2D hexagonal, a=2.08090number density: 0.200000 area density: 0.266667 number of layers: 3 lattice vectors: a: 2.080896 b: 1.040448 0.000000 1.802109 inter-layer vectors 1 2.080896 1.201406 2.000000 2 1.040448 0.600703 2.000000 _____ wall distance= 5.25000000 rho= 0.2000000 minimal free energy = 0.06147409 name: 20 hor-5 number density: 0.20000 -*+v: 0.262500 name: 2D hexagonal, a=2.097350.200000 number of lavers: 4 lattice vectors: a: 2.097346 b: 1.048673 0.000000 1.048673 1.816355 inter-layer vectors 1 1.048673 0.605452 1.749964

75

2 2.097346 1.210903 1.750071 3 1.048673 0.605452 1.749964 _____ wall distance= 6.25000000 0.20000000 rho= minimal free energy = 0.07434312 name: 2D centered rectangular, a=3.28246 b=2.43719 number density: 0.200000 0.250000 area density: number of lavers: 5 lattice vectors: 0.000000 a: 2.044167 0.591273 1.956787 b: inter-laver vectors 1 1.317720 0.978394 1.562022 2 1.317720 0.978394 1.562978 1.3177200.9783941.5629781.3177200.9783931.562022 3 4 _____ wall distance= 1.25000000 0.4000000 rho= minimal free energy = 0.09407613 name: 2D square, a=2.00000 number density: 0.400000 0.250000 area density: number of layers: lattice vectors: a: 2.000000 0.000000 0.00000 2.000000 b: inter-layer vectors 1 1.000000 1.000000 1.250000 -----_____ wall distance= 1.75000000 0.40000000 rho= minimal free energy = 0.13518630 name: 2D hexagonal, a=1.81635 name: 20 nearco number density: 0.400000 0.350000 0.400000 number of layers: 2 lattice vectors: a: 1.816355 0.000000 b: 0.908177 1.573009 inter-layer vectors 1 0.908177 0.524336 1.750000 wall distance= 2.25000000 0.4000000 rho= minimal free energy = 0.21874645 name: 2D square, a=1.82574 number density: area density: 0.400000 0.300000 number of layers: 3 lattice vectors: 0.000000 1.825742 a: 1.825742 0.000000 b: inter-layer vectors 1 0.912871 0.912871 2 0.912871 0.912871 1.125000 1.125000 _____ wall distance= 2.75000000 0.4000000 rho= minimal free energy = 0.23973816 name: 2D centered rectangular, a=2.87649 b=1.89625 number density: 0.400000 area density: 0.366667 number of layers: 3 lattice vectors: a: 1.722641 0.00000 0.00. 1.583193 0.678965 b: inter-laver vectors 1 1.200804 0.791596 1.375000 2 1.200803 0.791596 1.375000 ----wall distance= 3.5000000 rho= 0.40000000

minimal free energy = 0.29963718 name: 2D hexagonal, a=1.57301 number density: 0.400000 area density: 0.466667 number of layers: 3 lattice vectors: a: 1.573009 0.000000 b: 0.786505 1.362266 inter-layer vectors
 1
 0.786505
 0.454089
 1.750000

 2
 0.786505
 0.454089
 1.750000
 ---------wall distance= 4.0000000 rho= 0.4000000 minimal free energy = 0.32237138 name: 2D centered rectangular, a=2.73945 b=1.82519 number density: 0.400000 area density: 0.400000 number of layers: 4 lattice vectors: a: 1.645894 0.000000 1.518931 0.633890 b: inter-layer vectors 1 1.139892 0.759465 1.331475 2 1.139892 0.759465 1.3 2 1.139892 0.759465 1.337050 3 1.139892 0.759466 1.331475 ----wall distance= 4.50000000 0.4000000 rho= minimal free energy = 0.34184728 name: 2D hexagonal, a=1.60187 number density: 0.400000 area density: 0.450000 number of layers: lattice vectors: a: 1.601874 0.000000 b: 0.800937 1.387264 inter-layer vectors
 1
 1.601874
 0.924843

 2
 1.601874
 0.924843

 3
 0.800937
 0.462421
 1.499630 1.500686 1.499684 _____ wall distance= 1.00000000 0.6000000 rho= name: 2D square, a=1.82574 number docnumber density: 0.600000 area density: 0.300000 area density: number of layers: 2 lattice vectors: a: 1.825742 b: 0.000000 0.000000 1.825742 inter-layer vectors 1 0.912871 0.912871 1.000000 wall distance= 1.25000000 rho= 0.6000000 minimal free energy = 0.25656791 name: 2D centered rectangular, a=2.84478 b=1.87478 number density: 0.600000 area density: 0.375000 number of layers: 2 lattice vectors: a: 1.703495 0.000000 1.565409 b: 0.671853 inter-layer vectors 1 1.187674 0.782705 1.250000 ----wall distance= 1.75000000 rho= 0.60000000 minimal free energy = 0.37542024 name: 2D hexagonal, a=1.48305 number density: 0.600000 area density: 0.525000 number of layers:

```
lattice vectors:
a: 1.483047 0.000000
b: 0.741524 1.284357
inter-layer vectors
rho= 0.6000000
minimal free energy =
                               0.49529192
name: 2D centered rectangular, a=2.53673 b=1.75204
number density: 0.600000
area density: 0.450000
number of layers:
                                   3
lattice vectors:
a: 1.541479
b: 0.545801
                     0.000000
                     1.441617
inter-layer vectors

        1
        1.043640
        0.720808
        1.125000

        2
        1.043640
        0.720808
        1.125000

wall distance=
                      2.75000000
rho= 0.60000000
minimal free energy =
                                0.54699284
name: 2D hexagonal, a=1.44895
number density: 0.600000
area density: 0.550000
 number of layers:
                                  3
lattice vectors:
a: 1.448950 0.000000
b: 0.724475 1.254827
                     0.000000
inter-layer vectors
1 0.724475 0.418276 1.375000
2 1.448950 0.836551 1.375000
```

B.2.	Reference data of			
	the bulk limit section			

		04 000000	
wall	aistance-	94.00000	100
rno=	0.10000	(01500672
minin	al iree energ	sy = 0	0.01560675
name	2D nexagonal	, a=2.42024	1
numbe	dongitu.	0.100000	
area	density:	0.195655	10
nume	ber of layers		40
Latti	o Apenao	0 000000	
a: h.	2.420239	0.000000	
b.	1.214110	2.102310	
1	2 428230	1 101011	1 000003
2	2.420239	1 401944	1 999996
3	2.428230	1 401044	1 000006
4	2.428239	1.401944	2.000001
5	1.214119	0.700972	2.000001
6	1.214119	0.700972	2.000001
7	2.428239	1.401944	2.000006
8	1.214119	0.700972	2.000006
9	2.428239	1.401944	2.000006
10	1.214119	0.700972	2.000001
11	1.214119	0.700972	1.999996
12	1.214119	0.700972	1,999996
13	1.214119	0.700972	2.000001
14	2.428239	1.401944	2.000006
15	1.214119	0.700972	2.000001
16	1.214119	0.700972	1.999996
17	1.214119	0.700972	1.999996
18	1.214119	0.700972	1.999996
19	1.214119	0.700972	2.000001
20	2.428239	1.401944	2.000001
21	2.428239	1.401944	1.999996
22	2.428239	1.401944	1.999996
23	2.428239	1.401944	1.999996
24	2.428239	1.401944	1.999996
25	2.428239	1.401944	1.999996
26	2.428239	1.401944	1.999996
27	2.428239	1.401944	1.999996
28	2.428239	1.401944	1.999996
29	2.428239	1.401944	2.000001
21	1.214119	1 401044	2.000000
32	2.420239	1.401944	2.000001
33	1.214119	0.700972	2.000006
34	2.428239	1.401944	2.000006
35	1.214119	0.700972	2.000006
36	2.428239	1.401944	2.000001
37	2.428239	1.401944	2.000001
38	1.214119	0.700972	2.000006
39	2.428239	1.401944	2.000001
40	2.428239	1.401944	1.999996
41	2.428239	1.401944	2.000001
42	1.214119	0.700972	2.000001
43	1.214119	0.700972	2.000001
44	2.428239	1.401944	2.000006
45	1.214119	0.700972	2.000001
46	1.214119	0.700972	1.999996
47	1.214119	0.700972	1.999993
wall	distance=	95.000000	100
rno=	U.IUUUU	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01582471
	. 2D hevedorel	a=2 //0/6	
numbe	er density:	0.100000	
area	densitv:	0.193878	
numb	per of layers	:	49
latti	ce vectors:		
a:	2.440456	0.000000	
b:	1.220228	2.113496	

	-layer vecto	rs		
1	1.220228	0.704499	1.979156	
2	1.220228	0.704499	1.979167	
3	2.440456	1.408998	1.979174	
4	1.220228	0.704499	1.979168	
5	1.220228	0.704499	1.979161	
6	1.220228	0.704499	1.979167	
7	2.440456	1.408998	1.979168	
8	2.440456	1.408998	1.979167	
9	1.220228	0.704499	1.979167	
10	1.220228	0.704499	1.979167	
11	2.440456	1.408998	1.979174	
12	1.220228	0.704499	1.979174	
13	2.440456	1.408998	1.979167	
14	2.440456	1.408998	1.979167	
15	1.220228	0.704499	1.979174	
16	2.440456	1.408998	1.979174	
17	1.220228	0.704499	1.979167	
18	1.220228	0.704499	1.979161	
19	1.220228	0.704499	1.979161	
20	1.220228	0.704499	1.979161	
21	1.220228	0.704499	1.979161	
22	1 220228	0 704499	1 979161	
23	1.220228	0.704499	1.979161	
24	1.220228	0.704499	1.979168	
21	2 440456	1 409009	1.070174	
20	1 220228	0 704400	1.979174	
20	1.220228	0.704499	1.979174	
21	2.440456	1.408998	1.979167	
28	2.440456	1.408998	1.979167	
29	1.220228	0.704498	1.979174	
30	2.440456	1.408998	1.979168	
31	2.440456	1.408998	1.979161	
32	2.440456	1.408998	1.979161	
33	2.440456	1.408998	1.979167	
34	1.220228	0.704499	1.979167	
35	1.220228	0.704499	1.979161	
36	1.220228	0.704499	1.979167	
37	2.440456	1.408998	1.979174	
38	1.220228	0.704499	1.979174	
39	2.440456	1.408998	1.979167	
40	2.440455	1.408998	1.979161	
41	2.440456	1.408998	1.979161	
42	2.440456	1.408998	1.979167	
43	1.220228	0.704499	1.979174	
44	2.440456	1.408998	1.979167	
45	2.440456	1.408998	1.979167	
46	1.220228	0.704499	1.979167	
47	1.220228	0.704499	1.979161	
48	1.220228	0.704499	1.979156	
wall d				
	listance=	96.00000	000	•
rho=	listance= 0.1000	96.00000	000	•
rho= minima	listance= 0.1000	96.00000	000	•
rho= minima	listance= 0.1000 al free ener	96.00000 90000 gy = 0	000	-
rho= minima name: numbor	listance= 0.1000 1 free ener 2D hexagona	96.00000 999 = (1, a=2.42771	000 0.01583766	-
rho= minima name: number	distance= 0.1000 1 free ener 2D hexagona density:	96.00000 99.0000 99.000 1, a=2.42771 0.100000 0.105012	000 0.01583766	-
rho= minima name: number area c	distance= 0.1000 al free ener 2D hexagona density: density:	96.000000 990 99 9 90 1, a=2.42771 0.100000 0.195918	000	-
rho= minima name: number area c numbe	distance= 0.1000 al free ener 2D hexagona density: density: er of layers	96.000000 99000 99y = (1), a=2.42771 0.100000 0.195918 .:	000 0.01583766 	-
rho= minima name: number area o numbe lattio	distance= 0.1000 11 free ener 2D hexagona density: lensity: er of layers e vectors:	96.00000 agy = (1) 1, a=2.42771 0.100000 0.195918 	000 0.01583766 49	-
rho= minima name: number area c numbe lattic a:	distance= 0.1000 11 free ener 2D hexagona density: density: er of layers ce vectors: 2.427712	96.00000 999 = (1) 1, a=2.42771 0.100000 0.195918 0.000000	000 0.01583766 49	-
rho= minima name: number area o numbe lattio a: b:	distance= 0.1000 al free ener 2D hexagona density: lensity: or of layers te vectors: 2.427712 1.213856	96.00000 gy = (1) 1, a=2.42771 0.100000 0.195918 :: 0.000000 2.102460	000 0.01583766 49	-
rho= minima name: number area o numbe lattic a: b: inter-	listance= 0.1000 11 free ener 2D hexagona density: Proflayers: 2.427712 1.213856 Player vector	96.00000 gy = (1, a=2.42771 0.100000 0.195918 :: 0.000000 2.102460 ors	000 0.01583766 49	-
rho= minima name: number area o number lattic a: b: inter- 1	listance= 0.1000 cll free ener 2D hexagona density: er of layers 2.427712 1.213856 clayer vector 2.427712	96.00000 gy = (1, a=2.42771 0.100000 0.195918 :: 0.000000 2.102460 ors 1.401640	000 0.01583766 49 1.999993	-
rho= minima name: number area o number lattic a: b: inter- 1 2	listance= 0.1000 (1 free ener 2D hexagona density: er of layers :e vectors: 2.427712 1.213856 (-layer vector 2.427712 2.427712	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 0.000000 2.102460 1.401640 1.401640	000 0.01583766 49 1.999993 1.999996	-
rho= minima name: number area c numbe lattic a: b: inter- 1 2 3	listance= 0.1000 ll free ener 2D hexagona density: er of layers e vectors: 2.427712 1.213856 layer vecto 2.427712 2.427712 2.427712	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 : 0.000000 2.102460 1.401640 1.401640 1.401640	000 0.01583766 49 1.999993 1.999996 2.000001	-
rho= minima name: number area o lattic a: b: inter- 1 2 3 4	listance= 0.1000 (1 free ener 2D hexagona density: er of layers :e vectors: 2.427712 1.213856 (1ayer vector 2.427712 2.427712 1.213856	96.00000 gy = (1) 1, a=2.42771 0.100000 0.195918 :: 0.000000 2.102460 Irs 1.401640 1.401640 1.401640 0.700820	000 0.01583766 49 1.999993 1.999996 2.00001 2.00001	-
rho= minima name: number area of numbe lattic a: b: inter- 1 2 3 4 5	listance= 0.1000 1 free ener 2D hexagona density: er of layers 2.427712 1.213856 layer vector 2.427712 2.427712 1.213856 1.213856	96.00000 gy = (1) 1, a=2.42771 0.100000 0.195918 0.000000 2.102460 rs 1.401640 1.401640 1.401640 0.700820 0.700820	000 0.01583766 49 1.999993 1.999996 2.000001 2.000001 1.999996	-
rho= minima name: number area of numbe lattic a: b: inter- 1 2 3 4 5 6	listance= 0.1000 1 free ener 2D hexagona density: er of layers 2.427712 1.213856 1ayer vector 2.427712 2.427712 1.213856 1.213856 1.213856	96.00000 gy = 0 1, a=2.42771 0.1095918 0.000000 2.102460 rs 1.401640 1.401640 1.401640 0.700820 0.700820 0.700820	000 0.01583766 49 1.999993 1.999996 2.000001 2.000001 1.999996 1.999996	-
rho= minima name: number area (number lattic a: b: inter- 1 2 3 4 5 6 7	listance= 0.1000 (1 free ener 2D hexagona density: er of layers :e vectors: 1.213856 (1ayer vecto 2.427712 2.427712 2.427712 1.213856 1.213856 1.213856	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 0.000000 2.102460 1.401640 1.401640 1.401640 0.700820 0.700820 0.700820 0.700820	000 0.01583766 49 1.999993 1.999996 2.00001 2.00001 1.999996 1.999996 1.999996	-
rho= minima name: number area c lattic a: b: inter- 1 2 3 4 5 6 7 8	listance= 0.1000 ll free ener 2D hexagona density: er of layers :e vectors: 2.427712 1.213856 1.213856 1.213856 1.213856	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 : 0.000000 2.102460 1.401640 1.401640 1.401640 0.700820 0.700820 0.700820 0.700820 0.700820 0.700820	49 1.999993 1.999996 2.00001 2.00001 1.99996 1.99996 1.99996 2.00001	-
rho= minima name: number area o lattio a: b: inter- 1 2 3 4 5 6 7 8 9	listance= 0.1000 cl free ener 2D hexagona density: er of layers 2.427712 1.213856 clayer vector 2.427712 2.427712 2.427712 1.213856 1.213856 1.213856 1.213856 2.427712	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 : 0.000000 2.102460 0.708 1.401640 1.401640 1.401640 0.70820 0.70820 0.70820 0.70820 1.401640	000 0.01583766 49 1.999993 1.999996 2.00001 2.00001 1.999996 1.999996 1.999996 2.00001 2.00001	-
rho= minima name: number area o number lattic a: b: inter- 1 2 3 4 5 6 7 8 9 10	listance= 0.1000 1 free ener 2D hexagona density: er of layers 2.427712 1.213856 1ayer vector 2.427712 2.427712 1.213856 1.213856 1.213856 1.213856 2.427712 2.427712 2.427712	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 0.000000 2.102460 1.401640 1.401640 1.401640 0.700820 0.700820 0.700820 0.700820 0.700820 1.401640 1.401640	2000 2.01583766 49 1.999993 1.999996 2.00001 2.00001 1.999996 1.999996 1.999996 2.00001 2.00001 1.999996	-
rho= minima name: number area o number lattic a: b: inter- 1 2 3 4 5 6 7 8 9 10 11	listance= 0.1000 ll free ener 2D hexagona density: er of layers 2.427712 2.427712 2.427712 1.213856 1.213856 1.213856 1.213856 1.213856 1.213856 2.427712 2.427712 2.427712	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 0.000000 2.102460 0.130460 1.401640 1.401640 0.700820 0.700820 0.700820 0.700820 0.700820 0.700820 0.700820 1.401640 1.401640 1.401640	49 1.999993 1.999996 2.00001 2.00001 1.99996 1.99996 1.99996 2.00001 1.99996 2.00001 1.99996 2.00001	-
rho= minima name: number area of lattic a: b: inter- 1 2 3 4 5 6 7 8 9 10 11 12	listance= 0.1000 ll free ener 2D hexagona density: er of layers e vectors: 2.427712 1.213856 layer vecto 2.427712 2.427712 1.213856 1.213856 1.213856 1.213856 1.213856 2.427712 2.427712 2.427712 2.427712 2.427712 1.213856	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 0.102400 2.102460 1.401640 1.401640 1.401640 0.700820 0.700820 0.700820 0.700820 1.401640 1.401640 1.401640 1.401640 1.401640 0.700820	49 1.999993 1.999996 2.00001 2.00001 1.99996 1.99996 1.99996 2.00001 2.00001 2.00001 2.00001 2.00001 2.00001 2.00001 2.00001 2.00001 2.00001 2.00001	-
rho= minima name: number area (a: b: inter- 1 2 3 4 5 6 7 8 9 10 11 12 13	listance= 0.1000 ll free ener 2D hexagona density: er of layers :e vectors: 2.427712 2.427712 2.427712 2.427712 1.213856 1.213856 1.213856 1.213856 1.213856 2.427712 2.427712 2.427712 1.213856 2.427712 1.213856 2.427712	96.00000 gy = 0 1, a=2.42771 0.100000 0.195918 0.000000 2.102460 1.401640 1.401640 1.401640 0.700820 0.700820 0.700820 0.700820 1.401640 1.401640 1.401640 1.401640 1.401640	49 1.999993 1.999996 2.00001 2.00001 1.99996 1.99996 2.00001 1.99996 2.00001 1.99996 2.00001 1.99996 2.00001 2.00001 2.00006 2.00006 2.00006	

15	2.427712	1.401640	2.000006	
16	1.213856	0.700820	2.000006	
17	2.427712	1.401640	2.000001	
18	0.000000	1.401640	1.999996	
19	2,427712	1.401640	2.000001	
20	1 213856	0 700820	2 000001	
20	1 012056	0.700820	1 000006	
21	1.213650	0.700820	1.999990	
22	1.213856	0.700820	1.999996	
23	1.213856	0.700820	1.999996	
24	1.213856	0.700820	1.999996	
25	1.213856	0.700820	1.999996	
26	1.213856	0.700820	2.000001	
27	2.427712	1.401640	2.000006	
28	1 213856	0 700820	2 000001	
20	1 012056	0.700820	2.000001	
29	1.213650	0.700820	2.000001	
30	2.427712	1.401640	2.000001	
31	2.427712	1.401640	2.000001	
32	1.213856	0.700820	2.000001	
33	1.213856	0.700820	1.999996	
34	1.213856	0.700820	2.000001	
35	2.427712	1.401640	2.000006	
36	1.213856	0.700820	2.000001	
37	1 213856	0 700820	1 000006	
20	1.213050	0.700020	2.000001	
30	1.213656	0.700820	2.000001	
39	2.427712	1.401640	2.000001	
40	2.427712	1.401640	2.000001	
41	1.213856	0.700820	2.000001	
42	1.213856	0.700820	2.000001	
43	2.427712	1.401640	2.000001	
44	2,427711	1.401640	1,999996	
45	2 427712	1 401640	2 000001	
10	1 012056	0.700000	2.000001	
46	1.213856	0.700820	2.000006	
47	2.427711	1.401640	2.000001	
48	2.427712	1.401640	1.999993	
wall	distance=	97.00000	000	
	0 1000	0000		
rho=	0.1000	0000		
rho= mini	mal free ener	gy = (0.01585455	
rho= minin name	mal free ener : 2D hexagona	gy = (1, a=2.43969	0.01585455	
rho= minin name numbe	mal free ener : 2D hexagona er density:	gy = (1, a=2.43969 0.100000	0.01585455	
rho= minin name numbe area	mal free ener : 2D hexagona er density: density:	gy = (1, a=2.43969 0.100000 0.194000	0.01585455	
rho= minin name numbe area	mal free ener : 2D hexagona er density: density: ber of layers	gy = (1, a=2.43969 0.100000 0.194000	0.01585455)	
rho= minin name numb area num	al free ener 2D hexagona er density: density: ber of layers	gy = (1 1, a=2.43969 0.100000 0.194000 :	0.01585455 9 50	
rho= minin name numb area num latt:	al free ener 2D hexagona er density: density: ber of layers ice vectors:	gy = (1) 1, a=2.43965 0.100000 0.194000 :	0.01585455 9 50	
rho= minin name numbo area num latt: a:	and free ener 2D hexagona er density: density: ber of layers ice vectors: 2.439140	<pre>gy = (1, a=2.43965 0.100000 0.194000 : 0.000000</pre>	0.01585455 9 50	
rho= minin name numbo area num latt: a: b:	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993	<pre>// agy = (0) // a=2.43965 0.100000 0.194000 : 0.000000 2.113302</pre>	0.01585455 9 50	
<pre>rho= minii name numb area num latt: a: b: inten</pre>	and free ener : 2D hexagona er density: density: ber of layers : 2.439140 1.219993 r-layer vector	<pre>gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs</pre>	0.01585455 50	
<pre>rho= minin name numbo area num latt: a: b: inten 1</pre>	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238	<pre>gy = (1, a=2.43965 0.100000 0.194000 : 0.0000000 2.113302 rs 1.406919</pre>	0.01585455 50 1.974347	
<pre>rho= minin name numbo area num latt: a: b: inten 1 2</pre>	<pre>clinow mal free ener clinowidy: density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513</pre>	<pre>gy = (0 1, a=2.43965 0.100000 0.194000 : 0.0000000 2.113302 rs 1.406919 1.407027</pre>	0.01585455 50 1.974347 1.984857	
<pre>rho= minii name numbo area num latt: a: b: inten 1 2 3</pre>	<pre>all free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440613 2.440609</pre>	<pre>gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091</pre>	0.01585455 50 1.974347 1.984857 1.976208	
<pre>rho= minin name numb area num latt: a: b: inten 1 2 3 4</pre>	al free ener : 2D hexagona er density: density: ber of layers : 2.439140 1.219993 r-layer vector 2.440238 2.440513 2.440543	<pre>gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759</pre>	0.01585455 50 1.974347 1.984857 1.976208 1.984188	
<pre>rho= minin name numb area numl latt: a: b: inten 1 2 3 4 5</pre>	<pre>0.1000 mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440609 2.440254 2.440256</pre>	<pre>gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407091 1.407092</pre>	0.01585455 50 1.974347 1.984857 1.976208 1.984188 1.986331	
<pre>rho= minin name numb area num latt: a: b: inten 1 2 3 4 5 6</pre>	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440609 2.440543 2.440256 2.440256	<pre>gy = (1, a=2.43965 0.100000 0.194000 : 0.0000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406759</pre>	0.01585455 50 1.974347 1.984857 1.976208 1.984188 1.986331	
<pre>rho= minin name numb area num latt; a: b: inten 1 2 3 4 5 6 7</pre>	<pre>0.1000 mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440609 2.440543 2.440256 2.440256 2.440363 </pre>	<pre>gy = () gy = () l, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407091 1.407091 1.406759 1.407092 1.406779 0.706264</pre>	1.974347 1.984857 1.976208 1.984188 1.986331 1.974328	
<pre>rho= minin name numb area num latt: a: b: inten 1 2 3 4 5 6 7 7</pre>	mal free ener : 2D hexagona er density: density: ber of layers : 2.439140 1.219993 r-layer vector 2.440238 2.440543 2.440543 2.440256 2.440363 1.218730	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407091 1.407059 1.407002 1.406779 0.706364	0.01585455 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475	
rho= minin name numbo area numbo latt: a: b: inten 1 2 3 4 5 6 7 8	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440543 2.440543 2.440256 2.440363 1.218730 1.218800	<pre>gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406779 1.406779 0.706364 0.706332</pre>	0.01585455 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069	
rho= minin name numbe area numl latt: a: b: inten 1 2 3 4 5 6 7 8 9	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440543 2.440543 2.440543 1.218730 1.218726	gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407091 1.406759 1.407092 1.406779 0.706364 0.706332 0.706536	0.01585455 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225	
<pre>rho= minin name numb areaa num latt; a: b: inten 1 2 3 4 5 6 7 8 9 10</pre>	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440609 2.440543 2.44056 2.440363 1.218730 1.218726 2.440359	<pre>gy = () gy = () l, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407091 1.406759 1.406759 1.406779 0.706364 0.706332 0.706536 1.406976</pre>	0.01585455 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154	
rho= minin name numba area numb area numb area b: inten 1 2 3 4 5 6 7 8 9 10 11	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440258 2.440256 2.440363 1.218730 1.218720 1.218726 2.440337	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407027 1.407071 1.407079 0.706364 0.706332 0.706536 1.406976 1.406861	0.01585455 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979154 1.979154 1.979154	
rho= minin name numbh area num latt: a: b: inter 1 2 3 4 5 6 7 8 9 0 10 11 12	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440513 2.440513 2.440513 2.440543 2.440543 1.218730 1.218700 1.218726 2.440357 1.218903	<pre>gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407091 1.406779 0.706364 0.706332 0.706536 1.406976 1.406861 0.706243</pre>	0.01585455 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839	
rho= minii name area numi latt: a: b: inter 1 2 3 4 5 6 7 8 9 10 11 12 13	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440543 2.440543 1.218706 1.218726 2.440359 2.440359 2.440359 2.440359 1.218594	gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.406759 1.407021 1.406759 1.407072 1.406779 0.706632 0.706689	0.01585455 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839 1.984635	
rho= minin name area num latt. a: b: to: to: 1 2 3 4 5 6 7 8 9 10 11 12 13 14	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440543 2.44056 2.440363 1.218730 1.218726 2.440359 2.440359 2.440539	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406779 0.706364 0.70632 0.706536 1.406976 1.406976 1.406861 0.706243 0.706649 1.406970	50 1.974347 1.984857 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.984475 1.98669 1.979225 1.979154 1.980165 1.975839 1.984635 1.986044	
rho= minin name area numb area numb a: b: inten 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	mal free ener : 2D hexagona er density: density: ber of layers: 2.439140 1.219993 r-layer vector 2.440238 2.440543 2.440543 2.440256 2.440363 1.218730 1.218720 2.440359 2.440357 1.218903 1.218594 2.440539 1.218594	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407071 1.407079 0.706364 0.706332 0.706536 1.406976 1.406861 0.706243 0.706689 1.406970 0.706270	0.01585455 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979154 1.979154 1.980165 1.975839 1.984635 1.986044 1.986042	
rho= minin name numbu area num1 latt: b: intey 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440609 2.440543 2.440543 1.218726 2.440359 1.218726 2.440337 1.218594 2.440539 1.218594 2.440539 1.218631 2.440539 1.218631	gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.406759 1.407027 1.407091 1.406759 1.406759 1.406779 0.706364 0.706536 1.406876 1.406876 1.406870 0.706689 1.406970 0.706370	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.986069 1.979255 1.979154 1.980165 1.97839 1.984635 1.986044 1.980162	
rho= minin numbu area numbu a numbu a numbu a numbu a numbu a a a a a a a a a a a a a a a a a a a	mal free ener : 2D hexagona er density: density: ber of layers : 2.439140 1.219993 r-layer vector 2.440238 2.440513 2.440543 2.44056 2.44056 2.440363 1.218726 2.440359 2.440359 2.440359 2.440359 1.218631 2.440352 -	<pre>gy = () gy = () l, a=2.43965 0.100000 0.194000 :</pre>	1.974347 1.984857 1.976208 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839 1.986044 1.980162 1.980133	
rho= minin numb area numb latt: a: b: inter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440543 2.44056 2.44056 2.440363 1.218730 1.218726 2.440359 2.440359 2.440359 1.218693 1.218631 2.440352 2.440322 2.440322 2.440326	<pre>gy = () gy = () l, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406779 0.706364 0.706332 0.706536 1.406976 1.406976 1.406976 1.406976 1.406970 0.706370 1.407014 1.407110</pre>	50 1.974347 1.984857 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986031 1.979225 1.979154 1.980165 1.975839 1.986054 1.980162 1.980133 1.973822	
rho= minin name area numb area numb area numb b: inten 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440258 2.440256 2.440363 1.218730 1.218730 1.218703 1.218903 1.218594 2.440359 2.440359 2.440359 2.440359 1.218631 2.440326 1.218678	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407091 1.406759 1.407002 1.406759 0.706364 0.706332 0.706536 1.406976 1.406861 0.706243 0.706689 1.406970 1.406701 1.407014 1.407110 0.706542	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.980165 1.979154 1.980165 1.975839 1.984635 1.980165 1.980133 1.973822 1.979254	
rho= minin numbu area numi latt: b: intes 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440543 2.440543 2.440543 1.218726 2.440359 1.218726 2.440359 2.440539 1.218594 2.440539 1.218631 2.440326 1.218678 2.440348	gy = (0 gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.4067091 1.407027 1.407071 1.407091 1.406759 1.407091 1.406759 1.406779 0.706332 0.706536 1.406976 1.406976 1.406976 1.406970 0.706243 0.706542 1.407110 0.706542 1.406893	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979255 1.979154 1.980165 1.975839 1.984635 1.986044 1.980162 1.980162 1.980162 1.980162 1.980162 1.980122 1.979254 1.979254 1.981192	
rho= minin numbo area numi latt: a: b: inte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440513 2.440513 2.44056 2.440543 1.218730 1.218726 2.440359 2.440359 2.440359 2.440359 2.440359 1.218631 2.440352 2.440352 2.440352 2.440352 2.440348 1.218502	<pre>gy = () gy = () l, a=2.43965 0.100000 0.194000 :</pre>	50 50 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984188 1.984188 1.986331 1.979225 1.979154 1.986069 1.979255 1.979154 1.986044 1.986044 1.980162 1.986044 1.980162 1.980133 1.973822 1.973582	
rho= minin name area numb area numb area numb b: inter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21	mal free ener i 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440543 2.440543 2.44056 2.44056 2.440363 1.218730 1.218700 1.218726 2.440359 2.440359 2.440359 1.218631 2.440352 2.440352 2.440352 1.218678 1.218678 1.218678 2.440348 1.218502 1.220407	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406779 0.706364 0.706364 0.706536 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.406970 0.706370 1.407014 1.407110 0.706542 1.406838 -0.706396	50 50 50 50 50 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839 1.980165 1.980162 1.980133 1.973822 1.979254 1.981192 1.978385	
rho= minin numbu area numbu a: b: inte; 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440609 2.440543 2.440563 1.218726 2.440363 1.218726 2.440337 1.218594 2.440539 1.218631 2.440532 2.440352 2.440352 2.440348 1.218678 2.440348 1.218502 1.228678 2.4405461	gy = (0 gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407027 1.407091 1.406759 1.407091 1.406759 1.406779 0.706364 0.706536 1.406976 1.406976 1.406976 1.40689 0.706689 1.406970 0.706689 1.407014 1.407110 0.706532 0.706538 -0.706396 1.407033	50 50 50 50 50 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.986069 1.979255 1.979154 1.980165 1.976839 1.984635 1.984635 1.986044 1.980162 1.980162 1.980162 1.980162 1.979254 1.980162 1.979254 1.981192 1.973582 1.973582 1.973855 1.981515	
rho= minin numbu area numi latt: b: intes 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440543 2.440543 2.440543 2.440543 1.218726 2.440359 2.440359 2.440359 2.440539 1.218594 2.440352 2.440352 2.440352 2.440352 1.218631 2.440352 1.218678 2.440348 1.218502 1.228678 2.440348 1.218502 1.228407 2.440541 1.218502 1.228407 1.22867	gy = (0 gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.407091 1.406759 1.407092 1.406779 0.706536 1.406976 1.406976 1.406976 1.406970 0.706542 1.406893 0.706542 1.406893 0.706338 -0.706396 1.407033 0.706556	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839 1.986035 1.986044 1.980162 1.980162 1.980133 1.973822 1.979254 1.981192 1.973582 1.978385 1.981515 1.98192	
rho= minin numbo area numi latt: a: b: intej 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 34	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440513 2.440513 2.4405513 2.440563 1.218730 1.218726 2.440359 2.440359 2.440359 2.440359 2.440359 2.440359 2.440359 2.440352 2.440326 1.218631 2.440352 2.440326 1.218678 2.440348 1.218502 1.220407 2.440561 1.218425	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406779 0.706364 0.70632 0.706332 0.706536 1.406976 1.406976 1.406871 0.706323 0.706370 1.407014 1.407110 0.706338 -0.706338 -0.706338 -0.706336 1.407033 0.706356 1.407033 0.706356 1.407033 0.706356 1.407033 0.706356 1.407033 0.706356 1.407033 0.706256 1.407033 0.706256 1.407033 0.706256 1.407033 0.706256 1.407033 0.706256 1.407033 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706256 1.40703 0.706538 -0.706338 -0.706338 -0.706338 -0.706356 -0.706356 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706376 -0.706576 -0.706376 -0.706576 -0.706776 -0.706776 -0.706776 -0.706776 -0.706776 -0.706776 -0.706776 -0.706776 -0.706776 -0.706	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984188 1.986331 1.974328 1.984188 1.984188 1.984188 1.984185 1.984635 1.979154 1.980165 1.975839 1.980165 1.975839 1.980162 1.980162 1.980133 1.973822 1.973582 1.975582 1.975582 1.975582 1.975582 1.975582 1.	
rho= minin name area numb area numb area numb 1 att: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 6 7 18 19 19 20 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	mal free ener : 2D hexagona er density: density: ber of layers : 2.439140 1.219993 r-layer vector 2.440238 2.440543 2.440543 2.44056 2.44056 2.440363 1.218730 1.218730 1.218726 2.440359 2.440359 2.440359 1.218631 2.440352 2.440352 2.440352 1.218678 2.440348 1.218678 2.440348 1.218678 2.440348 1.218502 1.220407 2.440561 1.218425 2.438476	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.407702 1.406759 1.406779 0.706364 0.706364 0.706332 0.706689 1.406976 1.406976 1.406976 1.406976 1.406976 1.406976 1.407014 1.407014 1.407014 1.407014 1.407014 1.407014 1.407638 -0.706338 -0.706338 -0.706396 1.407033 0.706256 2.819698	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839 1.984635 1.986044 1.980133 1.973822 1.979254 1.980133 1.973822 1.979254 1.981192 1.975885 1.981515 1.982819 1.981978	
rho= minin numbu area numbu area numbu area numbu area numbu area numbu area numbu area numbu area numbu area numbu area a b: inter 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 12 13 14 15 16 10 11 12 12 13 14 12 12 12 12 12 14 12 12 14 12 14 14 15 14 14 15 14 14 14 14 14 15 14 14 14 14 14 15 14 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440543 2.440543 1.218730 1.218706 2.440359 1.218726 2.440337 1.218594 2.440339 1.218631 2.440352 2.440352 2.440348 1.218678 2.440348 1.218678 2.440348 1.218678 2.440348 1.218502 1.220407 2.440561 1.218425 2.438476 1.218745 2.438476 1.21875 2.43875 2.43875 2.43875 2.43875 2.43875 2.43875 2.43875 2.43875 2.43875	gy = (0 gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407027 1.407091 1.406759 1.407091 1.406759 1.407092 1.406779 0.706336 1.406976 1.406976 1.406976 1.406976 1.406970 0.706689 1.406970 0.706538 -0.706538 -0.706338 -0.706338 -0.706338 -0.706356 2.819698 0.706555 2.819698 0.706555	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.97925 1.979154 1.980165 1.975839 1.984635 1.986044 1.980162 1.980162 1.980162 1.980162 1.980162 1.980162 1.98253 1.979254 1.98155 1.981515 1.981530	
rho= minin numbu area numi latt: b: intes 1 2 3 4 5 6 7 7 8 9 10 11 12 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440238 2.440513 2.440563 1.218706 1.218726 2.440359 2.440359 2.440359 2.440359 2.440359 1.218594 2.440352 2.440352 2.440352 1.218631 2.440352 1.218631 2.440352 1.218638 1.218502 1.218502 1.220407 2.440541 1.218745 1.218745 1.218796	gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407021 1.407091 1.407091 1.406759 1.407092 1.406779 0.706364 0.706332 0.706536 1.406970 1.406970 0.706689 1.406970 0.706370 1.407014 1.407014 1.407110 0.706542 1.406933 0.706338 -0.706396 1.407033 0.706256 2.819698 0.706593 0.706224	50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986031 1.974328 1.984475 1.986069 1.979255 1.979154 1.980165 1.975839 1.986044 1.980162 1.980133 1.973822 1.979254 1.981192 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.981515 1.982819 1.981530 1.981889	
rho= minin numbo area numbi area numbi area numbi b: inten 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440513 2.440513 2.440543 2.440553 1.218730 1.218726 2.440359 2.440359 2.440359 2.440359 2.440359 1.218594 2.440352 2.440352 2.440352 2.440352 2.440352 1.218678 1.218678 1.218678 1.218502 1.220407 2.440561 1.218425 2.438476 1.218796 2.440635	gy = () gy = () 1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406779 0.706364 0.70632 0.706536 1.406976 1.406876 1.406876 1.406876 1.406876 1.406876 1.406870 0.706638 -0.706338 -0.706338 -0.706338 -0.706338 -0.706593 0.706593 0.706593 0.706593 0.706593 0.706593 0.706593	50 1.974347 1.984857 1.984857 1.976208 1.984188 1.986331 1.974328 1.984188 1.986331 1.974328 1.984188 1.984188 1.986165 1.979255 1.979154 1.980165 1.975839 1.980165 1.980133 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.973582 1.981515 1.981530 1.981889 1.980655	
rho= minin numeb area numb latt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26 27 28	mal free ener : 2D hexagona er density: density: ber of layers ice vectors: 2.439140 1.219993 r-layer vecto 2.440543 2.440509 2.440543 2.440543 2.440543 1.218700 1.218726 2.440359 2.440337 1.218903 1.218594 2.440359 1.218631 2.440352 2.440348 1.218678 2.440348 1.218678 2.440348 1.218678 2.440348 1.218726 1.218745 1.218425 2.438476 1.218745 1.218796 2.440635 2.440642	gy = (gy = (1, a=2.43965 0.100000 0.194000 : 0.000000 2.113302 rs 1.406919 1.407027 1.407091 1.406759 1.406759 1.406779 0.706364 0.706332 0.706536 1.406976 1.406976 1.406976 1.406976 1.406870 0.706370 1.407014 1.407014 1.407014 1.407014 1.406893 0.706538 -0.706338 -0.706338 -0.706338 -0.706338 1.407033 0.706256 2.819698 0.706593 0.706224 1.406830 1.407084	50 50 50 50 50 50 50 1.974347 1.984857 1.976208 1.984188 1.986331 1.974328 1.984475 1.986069 1.979225 1.979154 1.980165 1.975839 1.986044 1.980162 1.980133 1.973822 1.979254 1.981192 1.975885 1.981515 1.982819 1.981578 1.9825778778 1.98257787778 1.9825777777777777777777777777777777777777	

30	2.440524	1.407059	1.979097
31	1.218774	0.706147	1.981616
32	1.218763	0.706472	1.975667
33	1.218881	0.706396	1.980487
34	2.440326	1.406804	1.980241
35	2.440697	1.406938	1.977788
36	1.218509	0.706275	1.978579
37	1.218697	0.706358	1.976640
38	0.001252	1.406715	1.979160
39	3.657800	0.706472	1.980058
40	1.218605	0.706300	1.977567
41	2.440432	1.406798	1.976411
42	1.218719	0.706472	1.978171
43	2.440587	1.407116	1.978722
44	2.440256	1.406874	1.977252
45	1.218609	0.706370	1.978172
46	2.440524	1.406715	1.977881
47	1.218807	0.706116	1.977505
48	2.440664	1.407059	1.977973
49	1.218664	0.706287	1.978164

B.3. Reference data of the buckling section

wall distance= 2.90000000 rho= 0.1000000 minimal free energy = 0.00106735 name: 2D centered rectangular, a=14.66333 b=2.82196 number density: 0.100000 area density: 0.048333 0.100000 number of layers: 6 lattice vectors: 7.466201 0.533300 0.00000 a: 2.771109 b: inter-layer vectors
 1
 2.666501
 0.923703
 0.000000

 2
 2.666501
 0.923703
 0.000000

 3
 5.866301
 0.307901
 2.900000

 4
 2.666501
 0.923703
 0.000000

 5
 2.666501
 0.923703
 0.000000
 _____ wall distance= 3.00000000 rho= 0.10000000 minimal free energy = 0.00135821 name: 2D centered rectangular, a=14.31698 b=2.79389 number density: 0.100000 area density: 0.050000 number of layers: 6 lattice vectors: a: 7.293519 b: 0.535119 0.000000 2.742161 inter-layer vectors
 1
 5.182396
 1.835268
 0.000000

 2
 5.237527
 1.824509
 0.420255

 3
 4.175815
 0.608404
 2.159490

 4
 5.237527
 1.824510
 0.420255

 5
 5.182396
 1.835268
 0.000000
 _____ wall distance= 3.1000000 rho= 0.10000000 minimal free energy = 0.00163349 name: 2D centered rectangular, a=13.93860 b=2.77716 inter-layer vectors name: 20 cc... number density: 0.10000 -+... 0.051667 0.100000 number of lavers: 6 lattice vectors: a: 7.106286 0.000000 2.723622 b: 0.542660 inter-layer vectors
 1
 2.633151
 0.891237
 0.000000

 2
 2.507617
 0.916249
 0.645797

 3
 3.571276
 2.120195
 1.808406

 4
 2.507617
 0.916249
 0.645797
 0.645797 5 3.175811 3.614859 0.000000 ---------wall distance= 3.2000000 rho= 0.1000000 minimal free energy = 0.00189158 name: 2D centered rectangular, a=13.53980 b=2.76961 name: 20 cc.. number density: 0.100000 -*+v: 0.053333 0.100000 number of layers: 6 lattice vectors: 6.910084 0.555040 0.000000 a: 2.713426 b: inter-layer vectors
 1
 4.837833
 1.837366

 2
 5.047108
 1.794559

 3
 3.973114
 0.600767

 4
 5.047108
 1.794559

 5
 4.837833
 1.837366
 0.000000 0.833898 1.532204 0.833898 0.00000

wall distance= 3.25000000 rho= 0.1000000 minimal free energy = 0.00200919 name: 2D centered rectangular, a=13.33305 b=2.76929 number density: 0.100000 area density: 0.054167 number of layers: 6 lattice vectors: a: 6.808801 0.000000 b: 0.563166 2.711423 inter-layer vectors 1 4.744252 1.843006 0.000000
 1
 4.744252
 1.843000

 2
 5.001419
 1.789592

 3
 3.917104
 0.600609

 4
 5.001419
 1.789592

 5
 4.744252
 1.843006
 0.920982 0.920982 ----wall distance= 3.27000000 0.10000000 rho= minimal free energy = 0.00205349 name: 2D centered rectangular, a=13.24922 b=2.76977 number density: 0.100000 area density: 0.054500 number of layers: 6 lattice vectors: a: 6.767817 0.000000 0.566771 b: 2.711158 inter-layer vectors
 1
 2.628586
 0.865312
 0.000000

 2
 2.351043
 0.923333
 0.954812

 3
 3.440736
 2.110352
 1.360377

 4
 2.351043
 0.923333
 0.954812
 2.351043 5 0.865312 0.000000 _____ wall distance= 3.3000000 0.1000000 rho= minimal free energy = 0.00209171 name: 2D square, a=3.01511 number density: 0.100000 area density: 0.110000 number of layers: 3 lattice vectors: 3.015113 0.000000 a: 0.000000 b: 3.015113 1 1.507557 1.507557 2 1.507557 1.507557 1.650000 1.650000

Bibliography

- [1] J. Kepler, Strena, Seu, de Nive Sexangula (G. Tampach, Frankfurt, 1611).
- [2] N. Steno, *De solido intra solidum naturaliter contento dissertationis prodromus* (Typographia sub signa Stellae, Florence, 1669).
- [3] A. Bravais, J. l'Ecole polytechnique **19**, 1 (1850).
- [4] W. Bragg, Proceedings of the Cambridge Philosophical Society 17, 43 (1913).
- [5] W. Bragg, Nature **91**, 557 (1913).
- [6] S.A. Safran and N.A. Clark, *Physics of Complex and Supermolecular Fluids* (Wiley Interscience, New York, 1987).
- [7] R.B. Hunter, Foundations of Colloid Science (Clarendon Press, Oxford, 1986).
- [8] W.B. Russel, D.A. Saville, and W.R. Schowalter, *Colloidal Dispersions* (Cambridge University Press, Cambridge, 1989).
- [9] C.N. Likos, Phys. Rep. **348**, 267 (2001).
- [10] P.J. Flory and W.R. Krigbaum, J. Chem. Phys. 18, 1086 (1950).
- [11] C.N. Likos, N. Hoffmann, H. Löwen, and A.A. Louis, J. Phys.: Condens. Matter 14, 7681 (2002).
- [12] J.G. Kirkwood, J. Chem. Phys. 18, 380 (1950).
- [13] W.W. Wood, J. Chem. Phys. **20**, 1334 (1952).
- [14] A. Bonissent, P. Pieranski, and P. Pieranski, Philos. Mag. A 50, 57 (1984).
- [15] K.W. Wojciechowski, Phys. Rev. A **122**, 377 (1987).
- [16] D. Oxtoby, in Les Houches, Session LI, Liquids, Freezing and Glass Transition, edited by J.-P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991).

- [17] Y. Singh, Phys. Rep. **207**, 351 (1991).
- [18] A.D.J. Haymet, in Fundamentals of Inhomogeneous Liquids, edited by D. Henderson (Marcel-Dekker, New York, 1992).
- [19] H. Löwen, Phys. Rep. **237**, 249 (1994).
- [20] M. Schmidt, J. Phys.: Condens. Matter 15, 101 (2003).
- [21] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).
- [22] D. Gottwald, Ph.D. thesis, TU Vienna, 2005.
- [23] D. Gottwald, C.N. Likos, G. Kahl, and H. Löwen, Phys. Rev. Lett. 92, 068301 (2004).
- [24] M. Watzlawek, C. Likos, and H. Löwen, Phys. Rev. Lett. 82, 5289 (1999).
- [25] G. Pauschenwein and G. Kahl, Soft Matter, D01:10.1039/bb06147e, 2008.
- [26] V. Balagurusamy, G. Ungar, V. Percec, and G. Johansson, J. Am. Chem. Soc. 119, 1539 (1997).
- [27] G. McConnell and A. Gast, Macromolecules **30**, 435 (1997).
- [28] B. Pansu, P. Pieranski, and P. Pieranski, J. Phys. (Paris) 45, 331 (1984).
- [29] S. Neser, C. Bechinger, P. Leiderer, and T. Palberg, Phys. Rev. Lett. 79, 2348 (1997).
- [30] B. Krüger, L. Schärfer, and A. Baumgärtner, J. Physique 50, 3191 (1989).
- [31] F. Stillinger, J. Chem. Phys. 65, 3968 (1976).
- [32] F. Stillinger, Phys. Rev. B **20**, 299 (1979).
- [33] F. Stillinger and D. K. Stillinger, Physica A **244**, 358 (1997).
- [34] A. Lang, C.N. Likos, M. Watzlawek, and H. Löwen, J. Phys.: Condens. Matter 12, 5087 (2000).
- [35] C. Darwin, The Origin of Species by Means of Natural Selection (John Murray, Albemarle Street, London, 1859).
- [36] J.H. Holland, Adaption in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, 1975).

- [37] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, MA, 1989).
- [38] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, New York, 1992).
- [39] C. To and J. Vohradsky, BMC Genomics 8, 49 (2007).
- [40] E. Cantu-Paz, *Efficient and Accurate Parallel Genetic Algorithms (Vol 1)* (Springer, New York, 2000).
- [41] W. Stemmer, Nature **370**, 389 (1994).
- [42] A. Assioen, Science **282**, 919 (1998).
- [43] D.H. Deaven and K.M. Ho, Phys. Rev. Lett. **75**, 288 (1995).
- [44] I. Rechenberg, *Evolutionsstrategie* (Friedrich Frommann Verlag, Stuttgart, 1973).
- [45] I. Rechenberg, Evolutionsstrategie '92, 1992, unveröffentlichtes Manuskript.
- [46] J.P. Hansen and I.R. McDonald, *Theory of Simple Liquids*, 2nd ed. (Academic Press, London, 1986).
- [47] D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).
- [48] G. Pauschenwein, Ph.D. thesis, TU Vienna, 2008.
- [49] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Second Edition (Cambridge University Press, New York, 1992).
- [50] P. Pieranski, L. Strzelecki, and B. Pansu, Phys. Rev. Lett. 50, 900 (1983).

Danksagung

Während meines Studiums und im Speziellen während dieser Arbeit wurde ich von einer Anzahl von Menschen immer wieder auf unterschiedlichste Weise unterstützt. Durch sie ist all das erst möglich geworden. Es ist an der Zeit Danke zu sagen:

Besonderer Dank gilt meinem Betreuer Gerhard Kahl, für seine Unterstützung, Freundlichkeit und im Besonderen für dessen Ermutigungen, welche meine Selbstzweifel immer wieder zu zerstreuen vermochten.

Für wertvolles Feedback und Ratschläge möchte ich Jean-Jacques Weis aus Paris sowie Christos Likos aus Düsseldorf danken.

Meinen Kollegen Julia Fornleitner, Bianca Mladek, Maria-José Fernaud sowie Gernot Pauschenwein, Dieter Schwanzer, Daniele Coslovich, Jan Kurzidim und Georg Falkinger danke ich für die herzliche Aufnahme in die Arbeitsgruppe und für die geduldige Beantwortung all meiner Fragen.

Großer Dank gilt meinen Studienkollegen Manfred Schuster, Stefan Nagele, Martin Willitsch, Reinhard Wehr, Roman Kogler sowie Cosima Koch und Veronika Schweigel für die freundschaftliche Begleitung einer intensiven Zeit, die wertvollen Diskussionen über Gott und die Welt und auch für die nicht missen wollenden unzähligen tollen Parties.

Ich danke Andre Guggenberger für die langjährige Freundschaft, die kritischen Diskussionen und fr die vielen gemeinsam erlebten Abenteuern.

Meinen Eltern Doris und Hermann Kahn möchte ich ganz besonders danken, für die seelische Unterstützung, den finanziellen Rückhalt, das moralische Rüstzeug und für ihr immerwährendes Vertrauen in meine Fähigkeiten.

Größtmöglicher Dank gilt Yvonne für ihre Liebe und Geduld sowie für den nicht endenwollenden Glauben an mich.

Man darf schweigen. Die guten Dinge sind getan, offenbar. Alexander Widner Tag und Nacht und Tag