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Kurzfassung

In der Physik der weichen Materie haben in den letzten Jahren die noch wenig

bekannten
”
Cluster-Phasen“ großes Interesse hervorgerufen. Diese Phasen wurden

etwa in Systemen entdeckt, in denen Teilchen durch beschränkte, rein abstoßen-

de Potentiale miteinander wechselwirken, die wiederum auf effektiven Wechselwir-

kungen zwischen weichen Kolloiden (z.B. Dendrimeren) beruhen. Bei entsprechend

hohen Dichten bilden sich in jenen Systemen Cluster von überlappenden Teilchen,

die sich an den regelmäßigen Punkten eines Kristallgitters anordnen. Diese Cluster-

Kristalle haben erstaunliche Eigenschaften wie sie bislang in der harten Materie

noch nicht angetroffen wurden. So reagiert das System auf Kompression durch Ver-

größerung der Cluster, während die Gitterabstände im Kristall unverändert blei-

ben. In der vorliegenden Arbeit untersuchen wir die dynamischen Eigenschaften von

Cluster-Kristallen mithilfe von Molekulardynamik-Simulationen. Um das Spektrum

der Schwingungen in derartigen Systemen zu charakterisieren, wenden wir eigens ent-

wickelte Techniken zur Datenanalyse an. Basierend auf unseren Ergebnissen können

wir zwei verschiedene Arten von Teilchenvibrationen identifizieren, die der Bewe-

gung einzelner Teilchen und kollektiver Bewegung entsprechen. In den betrachteten

Cluster-Kristallen findet Diffusion dadurch statt, dass Teilchen zwischen den einzel-

nen Clustern springen. Wir untersuchen dieses Verhalten im Detail und zeigen, dass

ein wesentlicher Anteil der Teilchensprünge hoch korreliert ist und weit über die Di-

stanz zu nächsten Nachbarn hinausgeht. Unsere Resultate gewähren somit tieferen

Einblick in die mikroskopischen Diffusionsmechanismen, die in Cluster-Kristallen

vor sich gehen.





Abstract

In soft matter physics novel kinds of “cluster phases” have attracted considerable

attention recently. These phases are observed, for instance, in systems in which

particles interact via bounded, purely repulsive potentials that originate from the

effective interactions between soft colloids, such as dendrimers. At sufficiently high

densities these particles overlap, thereby forming clusters which occupy the regu-

lar sites of a cubic lattice. These cluster crystals exhibit astonishing new features

that have not been encountered in hard matter so far. Such systems react upon

compression by increasing the average cluster size while the lattice spacings remain

constant. In the present work, we study the dynamic properties of cluster crystals

by means of molecular dynamics simulations. We employ advanced data analysis

techniques to characterise the spectrum of vibrations in such systems. We identify

two different kinds of oscillatory motion of particles in the system, corresponding

to single-particle and collective motion. In the cluster crystals under consideration,

diffusion takes place through so-called particle hopping processes between distinct

cluster sites. We analyse the behaviour of hopping particles in detail and show that

a significant fraction of hopping events is highly correlated and involves particles

travelling over many nearest-neighbour distances. Our results shed some new light

on the microscopic mechanisms of diffusion at work in cluster crystals.
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Introduction

Milk, paint, gels, cosmetics, blood, proteins, DNA, liquid crystals, pharmaceuti-

cals, ... – what do all of these substances have in common? Quite generally, they

can be classified as soft matter – ubiquitous in our daily lives.

A particular kind of soft matter systems is the class of colloidal dispersions or

complex fluids. Such systems consist of mesoscopic particles, i.e. particles with typical

sizes ranging from 1 nm to 1 µm, that are dispersed in a solvent formed by particles

of microscopic size. The mesoscopic particles, or colloids1 (such as polymer chains,

dendrimers, or microgels) in turn are usually composed of a large number of atoms

or molecules. Nowadays, these microscopic building blocks can be assembled in the

laboratory so as to control the architecture and chemical nature of colloids and steer

their macroscopic properties. In a similar way, the properties of the solvent can

be influenced, leading to substantial modifications in the interactions between the

dispersed mesoscopic particles. Colloids can thus be considered as “designer atoms”

whose shape and interactions can be selected with ease to the wish of the scientist

or the need of the application.

A theoretical description of colloidal systems in soft matter physics appears very

hard to grasp at first, owing to the huge number of degrees of freedom contained in

every single colloidal particle as well as all solvent particles. For this reason, suitable

coarse-graining procedures [1] have to be employed, in which, first, the degrees of

freedom of all solvent particles are traced out. In a second step, the degrees of

freedom of the constituent microscopic particles of the colloids are averaged out, with

the aim of deriving a simplified description of the interaction between two of these

macromolecules. Consequently, the mesoscopic aggregates are represented by their

centres of mass, interacting by means of an effective potential. Within this approach,

the thermodynamic properties of the soft matter system remain unaffected and the

problem becomes treatable with well-known techniques of statistical mechanics.

The vast range of macromolecular complexes that can nowadays be synthesised in

the lab or conceived in silico, on the computer, leads to an enormous diversity of effec-

tive potentials, and thus to an unprecedented, rich variety of new phase behaviours.

1The term “colloid” derives from the Greek words κóλλα (glue) and έıδoς (kind).
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Prominent examples of the latter are the “re-entrant melting” behaviour and the

“clustering” behaviour encountered in systems interacting via bounded, purely repul-

sive potentials. The second of these two phenomena is particularly interesting due to

its counter-intuitive character: for sufficiently steep potentials, the formation of clus-

ters in the complete absence of attraction is observed. It is on energetic grounds that,

at high densities, aggregates of overlapping particles form cluster crystals, i.e. crys-

tals with multiply occupied lattice sites, which exhibit astonishing features such as

a density-independent lattice constant and a remarkable way of responding to com-

pression [2, 3]. In computer simulations, amphiphilic dendrimers [4, 5] were found

to interact via the above interactions, which allow these macromolecules to overlap

or even penetrate each other, without violating excluded volume conditions on the

monomeric level.

In the present work, we focus on the characterisation of the dynamic proper-

ties of the above cluster crystals. We study the spectrum of vibrations due to both

single-particle oscillations as well as the coherent motion of particles in clusters.

In addition, we investigate the diffusive behaviour of particles and find that it re-

markably differs from the one encountered in single-occupancy crystals. For these

purposes, Monte Carlo and molecular dynamics simulations are carried out for a rep-

resentative ultrasoft, purely repulsive potential, the so-called generalised exponential

model of index 4 (GEM-4) [2, 6]. Our data analysis is based on a newly developed

cluster analysis tool, designed to follow each particle’s individual trajectory with re-

spect to the cluster centres of mass in time.

Our work is organised as follows: In Chapter 1 we provide the basic theoreti-

cal background necessary to understand the thermodynamics of multiple-occupancy

crystals. In Chapter 2 we introduce the basic elements of the molecular simulation

methods applied in our studies. In Chapter 3 we give an overview of the most

relevant thermodynamic quantities and introduce the concept of normal mode anal-

ysis. Subsequently, we present our cluster analysis algorithm in detail. Our results

on vibrations and diffusion in cluster crystals obtained by molecular dynamics sim-

ulations will be discussed in Chapter 4 and 5. In Conclusion, we summarise the

key results of our work.



Chapter 1

Theoretical background

To be able to understand how clusters can form in a system of ultrasoft, repulsive

particles, it is indispensable to start with a basic theoretical background for the

description of multiple-occupancy crystals.

In Section 1.1 we introduce our model interaction and present a criterion for the

occurrence of the clustering phenomenon. In Section 1.2 we focus on the description

of ordered cluster phases through density functional theory. The most important

results on the statics of clustering systems and recent ideas about their dynamic

properties, on which this work is based, will be summarised in Section 1.3.

1.1 Model

1.1.1 The generalised exponential model of index n

The spherically symmetric pair interactions that we consider in the present work

originate from a particular class of one-component model systems. In this specific

class of systems, particles interact via a bounded, purely repulsive potential which

has been given the name “generalised exponential model of index n” (GEM-n) [2].

Potentials of the GEM-n class share the same analytical form,

φ(r) = ε e−(r/σ)n

. (1.1)

While the quantities ε and σ set the characteristic energy and length scale of GEM-n

systems, the non-negative real parameter n triggers the steepness of the repulsion.

Since the 1970s mainly two representatives of the GEM-n class have been under most

frequent discussion: the Gaussian core model (GCM) [7] and the penetrable sphere
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model (PSM) [8]. In their functional form they are given by

GCM: φ(r) = ε e−(r/σ)2

PSM: φ(r) =

{

ε r < σ

0 else
.

(1.2)

The GCM potential is identical to the GEM-n for n = 2, GEM-2, whereas the

PSM potential is obtained in the limit n → ∞ leading to a GEM-∞ interaction

(see Fig. 1.1).

More recently [6], the GEM-n family as a whole, for all possible values of n, has

started attracting the attention of a broader scientific community. Above all, this

is owed to the fact that among the members of this particular interaction class two

surprisingly different phase behaviours are encountered, depending on the index n

and thus on the steepness of the potential. In Fig. 1.2 a schematic representation of

the phase diagrams of PSM and GCM systems is shown. Despite the fact that both

of them are members of the GEM-n family, the phase diagrams of the two models

exhibit a qualitatively very different topology. Upon increasing the density at fixed

temperature in systems interacting via the PSM, a mechanism sets in that has been

referred to as “clustering” [8]. At the sites of a regular Bravais lattice, overlapping

particles begin to agglomerate to homogeneously sized clusters. In contrast to this

behaviour, when compressing a GCM system at constant temperature T below a

so-called upper freezing temperature Tu, a first-order transition from the fluid to a

crystalline phase is observed, where single particles occupy the lattice sites. Upon

further increase in density the solid system melts again, which has got known as

“re-entrant melting”.

1.1.2 Clustering criterion

The fact that the GCM and the PSM belong to the same class of bounded, purely

repulsive interactions, yet react in such a contrary fashion to an increase in density,

immediately asks for an explanation. Obviously, the value of n, i.e. the steepness of

the interaction, must play a crucial role, leading to the two different phase behaviours.

And indeed, Likos et al. [10] established a criterion to decide whether clustering or

re-entrant melting will be observed in a system where particles interact via ultrasoft,

purely repulsive potentials. Being based on the analysis of the behaviour of the

structure factor (cf. Section 3.1.3), the criterion applies to all pair interactions φ(r)

which decay sufficiently fast to zero with r → 0, such that they are integrable and

their Fourier transforms exist. Depending on the functional behaviour of the Fourier

transform, φ̃(q), of the pair potential as a function of the wavenumber q, two possible

scenarios are encountered:
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Figure 1.2: A sketch of the topology of the phase diagrams of the PSM (left) and the

GCM (right). The PSM forms a cluster crystal with multiply occupied lattice sites at

all temperatures, whereas the GCM displays re-entrant melting below an upper freezing

temperature Tu for high densities. The figure is taken from [9], Chapter 2.2.
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• Interactions for which the Fourier transform is non-negative for all possible

values of q, φ̃(q) ≥ 0 ∀ q, will exhibit re-entrant melting. They are said to

belong to the Q+ class.

• If, on the other hand, φ̃(q) oscillates, i.e. takes negative values for certain

wave numbers q, the system is expected to show clustering. Accordingly, the

corresponding potentials φ(r) are members of the so-called Q± class.

With these conditions at hand, we conclude that the GCM belongs to the Q+

class, whereas the PSM is a representative of the Q± category. Conveniently, in

practice the Fourier transform φ̃(q) does not need to be evaluated explicitly. From a

relation [2], which links the second derivative of the pair potential at r = 0, φ′′(r = 0),

to φ̃(q),

φ′′(r = 0) = − 1

6π2

∞
∫

0

dq q4 φ̃(q), (1.3)

it becomes clear that, if φ′′(r = 0) ≥ 0, then φ̃(q) must necessarily have negative

parts and thus φ(r) is a Q± potential.

Returning to the GEM-n interaction class, the second derivative of φ(r), given in

eq. (1.1), is

φ′′(r) =
εn

σ2
e−(r/σ)n

[

n
( r

σ

)2(n−1)

− (n − 1)
( r

σ

)n−2
]

. (1.4)

This expression reveals that the transition from the Q+ to the Q± class precisely

occurs at n = 2. For sufficiently high densities, all systems interacting via a GEM-n,

n > 2, potential will form cluster crystals. For the remainder of this work we will

focus our attention on the properties of these clustering systems.

1.1.3 Amphiphilic dendrimers

In spite of the elegantly formulated criterion on which the clustering phenomenon is

based, one may well question the physical reality of bounded ultrasoft potentials. A

satisfactory legitimating answer to this question was proposed by Mladek et al. who

focused on a special class of macromolecules in their recent work [9, 4]. In an effort to

tailor substances on the computer that show clustering they found amphiphilic den-

drimers (see Fig. 1.3) to display exactly the form of Q± interactions. Dendrimers are

synthetic macromolecules which are characterised by a high degree of monodisper-

sity in both size and shape, and a well-defined, highly-branched internal structure [9].

In [1, 5] evidence was given that the behaviour of dendrimers can be treated on the
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Figure 1.3: Schematic representation of a 5th generation dendrimer in dense-shell configu-

ration. The figure is taken from [9], Chapter 7.1.

level of effective interactions. After a coarse-graining procedure in which the de-

grees of freedom of the constituent monomers are averaged out, dendrimers can be

regarded as point particles interacting by means of a pair potential.

In [4, 9] amphiphilic dendrimers were designed in a “computer synthesis”, in which

effective interactions of model molecule structures were calculated with the aid of

the Monte Carlo (MC) method (cf. Section 2.2). By assembling such macromolecule

models with a solvophobic core and a solvophilic shell group, the authors aimed at

a structure that is more open than the one of simple dendrimers, and that involves

a stronger segregation between outer and inner monomers. In this way, the shape

of a GEM-n potential for n > 2, consisting of a flat core region and a steep decay

for larger separations, could be reasonably well reproduced. Finally, a guideline was

presented with the ambition to encourage the synthesis of such clustering dendrimers

in the lab, as the experimental realisation of clustering systems is still missing.

1.2 Ordered cluster phases

Since the main aim of this work is to characterise the dynamics of cluster crystals,

we only provide the theoretical background for the description of solid clustering

phases. As far as the fluid phase is concerned, the reader is referred to the origi-

nal works [6, 9, 11], where detailed explanations on integral equation theories, the

formalism employed for this phase, are given.
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1.2.1 Genetic algorithms

When dealing with ordered cluster phases one first has to determine the lattice

structure in which the system freezes. From the outset, in principle many crystal

structures are suitable candidates and it is not clear a priori which one will be

preferred in a clustering system. To identify suitable crystal structures in an unbiased

fashion a search tool based on ideas of genetic algorithms (GA) [12] was developed,

i.e. a numerical tool that is able to search among basically all possible lattices for

the equilibrium structure. As the energetically most favourable ordered structures

at T = 0, the body-centred cubic (bcc) and the face-centred cubic (fcc) phase were

obtained [13, 14, 15] and considered as candidates for the phase diagram at finite

temperatures.

1.2.2 Density functional theory

As a formalism appropriate for the description of ordered cluster phases at finite

temperatures classical density functional theory (DFT) [16] was introduced. DFT

allows to determine the free energy F as a functional F [̺] of the one-particle density

̺(r) =
〈

N
∑

i=1

δ(r − ri)
〉

. (1.5)

According to the formalism of DFT the equilibrium one-particle density is obtained

by a variational requirement on F [̺]. F can be split up as follows:

F [̺] = Fid[̺] + Fex[̺], (1.6)

where the ideal part Fid[̺] is given by

Fid[̺] = kBT

∫

dr ̺(r)
{

log[̺(r)Λ3] − 1
}

, (1.7)

with Λ being the de Broglie wavelength, see Appendix A.1, eq. (A.3). Following the

considerations of [2] a mean-field format for the excess free energy functional, Fex[̺],

was used,

Fex[̺] =
1

2

∫∫

dr1dr2 ̺(r1)̺(r2) φ(|r1 − r2|). (1.8)

A clustering system is characterised by the multiple occupancy of lattice sites

by overlapping particles. Contrary to conventional crystals of single occupancy, the

number of particles, N , and the number of lattice sites, Nc, do not coincide, which

necessitates the introduction of the occupation variable (or, cluster size) nc,

nc =
N

Nc

. (1.9)
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To describe a cluster crystal in the framework of DFT, clusters are set up in a periodic

arrangement. For the cluster-density a Gaussian density profile is assumed,

̺cl(r) = nc

(α

π

)3/2

e−αr2

, (1.10)

which is localised at the lattice sites, {R}, and normalised to nc [2]. ̺cl(r) is used

to parametrise the inhomogeneous one-particle density field ̺(r),

̺(r) =
∑

{R}

̺cl(r − R) = nc

(α

π

)3/2 ∑

{R}

e−α(r−R)2 . (1.11)

In this ansatz ̺(r) is uniquely determined by the localisation parameter α and the

occupation number nc. The equilibrium values of α and nc are obtained by minimis-

ing the functional F [̺], given by eqs. (1.6) to (1.8), with respect to both α and nc

at fixed ̺ and T . Upon inserting the ansatz (1.11) into eqs. (1.6) to (1.8) the free

energy functional per particle, F [̺]/N , reduces to a function f = f(nc, α) which can

be split into and ideal, an inter-, and an intra-cluster contribution,

f(nc, α) = fid(nc, α) + finter(nc, α) + fintra(nc, α). (1.12)

The respective expressions are given by

fid(nc, α) = kBT
[

log nc + 3/2 log(ασ2/π) − 5/2 + 3 log(Λ/σ)
]

, (1.13)

finter(nc, α) = nc

√

α

8π

∑

R6=0

∞
∫

0

dr
r

R

[

e−α(r−R)2/2 − e−α(r+R)2/2
]

φ(r), (1.14)

fintra(nc, α) = (nc − 1)

√

α3

2π

∞
∫

0

dr r2 e−αr2/2φ(r). (1.15)

A detailed study of these terms provides the key to understand how clusters can form

in a system despite the complete absence of attraction. In Fig. 1.4 these contributions

are drawn for fixed α as a function of nc. finter, corresponding to the interaction be-

tween clusters, drops monotonically with nc: upon increasing nc, the lattice spacings

are enlarged and close contacts to nearest-neighbour clusters become less probable.

The self-interaction within the cluster, expressed by fintra, and the entropy loss due

to particle aggregation, expressed by the logarithmic dependence log nc in fid, on

the other hand, disfavour the formation of clusters [9]. Nevertheless, the interplay of
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Figure 1.4: Minimising the free energy per particle, f(nc, α), with respect to nc at fixed

α for an fcc crystal formed in a GEM-4 system at kBT/ε = 1.0 and ̺σ3 = 9.0. The

contributions to βf(nc, α) of the three parts of f(nc, α), the ideal, the inter-, and the intra-

cluster part, are shown. The inverse temperature β is defined in Appendix A.1, eq. (A.2).

The figure is taken from [9], Chapter 7.3.

these competing contributions leads to an overall f(nc, α) with a global minimum at

finite nc, which represents the equilibrium free energy per particle of a mechanically

stable cluster crystal. This provides evidence that the clustering scenario indeed

minimises the crystal’s free energy [2].

1.3 Characteristic features of GEM-4 cluster crys-

tals

The theoretical predictions of DFT on the properties of a clustering system were

put to the test by comparing them to the results of MC simulations [17]. In these

simulations cluster crystal equilibrium configurations were generated by minimising

the free energy in a procedure based on thermodynamic integration [18, 19]. For the

example of one of the members of the GEM-n class, the GEM-4 potential, the DFT-

results for the fluid-bcc and bcc-fcc transition lines were proven to be in excellent

agreement with the simulation data. Both theory and computer experiment reveal

astonishing features of the behaviour of cluster crystals [3, 15, 20, 21, 22, 23], which

shall be summarised in the following.
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Figure 1.5: Phase diagram of the GEM-4 system. The black circles are phase coexistence

points obtained from MC simulations. The dashed grey lines show the theoretical pre-

dictions on the fluid-bcc and bcc-fcc transition lines. Three simulation snapshots for the

fluid, the bcc and the fcc phase are displayed as well. The particle diameters are arbitrarily

scaled to enhance visibility. The figure is taken from [9], Chapter 7.3.

1.3.1 Phase diagram

In Fig. 1.5 the phase diagram of a GEM-4 system, determined in a joint effort

of GA, DFT, and MC simulations, is shown. The fluid phase may be described

as a mixture of strongly aspherical clusters with a vast variation of cluster size, nc.

When compressing the system at constant T a first-order transition into a cluster bcc

phase is encountered, which occupies a wedge-like shape in the phase diagram [15].

Upon further increase in density the system undergoes a structural transition to

an fcc phase. The thermodynamically more favourable fcc crystal remains stable

for all higher densities, covering the overwhelming part of the phase diagram. The

circumstance that the cluster crystal takes on a bcc and fcc structure points to the

fact that effective cluster-cluster interactions are harshly repulsive. In fact, this is

a typical property of systems that freeze into fcc and bcc, such as Lennard-Jones

systems for example.
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1.3.2 Density-independent lattice constant

From the DFT predictions and the determination of the equilibrium site occupancy

number, nc, in MC simulations [15], nc turns out to scale linearly with density. A

rigorous theoretical explanation of this effect has been provided in [2]. In that work,

it was shown that, at the freezing transition, a clustering system adapts its lattice

constant a in such a way that the modulus of its shortest reciprocal lattice vector

coincides with the wave number q∗; q∗ denotes the position of the first negative

minimum of the Fourier transform of the potential, φ̃(q). The location of the first

minimum in the Fourier transform solely depends on the functional form of the

potential φ(r), and not on density or temperature. Thus, the density-independent

lattice constant a is dictated by q∗ alone,

a ∝ 1

q∗
. (1.16)

The linear dependence of nc on ̺ is given by

nc =
8
√

2π3

q3
∗

̺. (1.17)

The above results entail far-reaching implications for the behaviour of clustering

systems. In striking contrast to systems of harshly repulsive interaction, a GEM-4

crystal does not react to an increase in density by tightening its lattice spacing [15].

Instead, the system follows the strategy of optimising its lattice constant with respect

to q∗ by adjusting the number of particles per lattice site nc. This also means that any

new particles that are inserted in the crystal will preferably join existing clusters,

thereby maintaining the underlying crystal structure or, equally, the volume of a

primitive unit cell.

1.3.3 Bulk modulus

The above considerations in mind, it is not surprising that the elastic behaviour of

the GEM-4 system is strongly influenced by the fact that the lattice constant does

not change with density.

The bulk modulus, B, measures the resistance of a substance to compression. It

is defined as

B = −V

(

∂P

∂V

)

N,T

(1.18)

where P is the pressure exerted on the system. For a clustering system eq. (1.18)

has to be reconsidered and adopted to the specific feature that, unlike in single-

occupancy crystals, the number of lattice sites, Nc, need not be equal to the number
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of particles, N , anymore. In [3, 17] it has been shown that in this case the bulk

modulus takes the form

B = −V

(

∂P

∂V

)

N,T,Nc

− V

(

∂P

∂Nc

)

N,T,V

(

∂Nc

∂V

)

N,T

(1.19)

= Bvir − Bdel,

where the right-hand side is evaluated for an equilibrium state point, corresponding

to a minimum of the free energy F . From eq. (1.19) we see that there are now two

mechanisms by which the system can react upon an increase in density (see Fig. 1.6).

The first term, Bvir, reflects the ordinary response of a system to compression: when

reducing the volume particles move closer together, which leads to affine shrinking

of the crystal [17]. In the second mechanism, expressed by Bdel, lattice sites in

the system can be deleted; the corresponding clusters are dissolved, their particles

redistribute onto the remaining lattice sites. By evaluating the magnitude of the two

contributions to the bulk modulus, it was found out that the latter correction to B,

Bdel, is far from being negligible. For the GEM-4 potential Bdel results in a reduction

of the original value of B of over 40 percent, which suggests that the deletion of lattice

sites considerably weakens the system’s response to compression [3].

The compression-induced rearrangement of particles is another aspect of the phe-

nomenon of microscopic “self-assembly”, which is one of the main features of cluster

crystals.

1.3.4 Cluster crystal dynamics

Regarding the dynamic properties of cluster crystals, recently two main aspects have

been put in the centre of attention. In [2, 15] two different types of particle excitation

in a cluster crystal have been anticipated – vibration and particle hopping.

Considering a cluster crystal as a Bravais lattice with an nc-point basis, its phonon

spectrum has been predicted to consist of three acoustic branches and 3(nc − 1)

optical branches [24], corresponding to collective and individual motion of particles

in the system.

The second type of excitation refers to the possibility that, through an activated

hopping mechanism, particles hop between lattice sites, while the underlying crystal

structure remains intact. This represents another important feature of cluster crys-

tals. Such crystals are diffusive on the single-particle level, allowing mass transport,

however arrested on the collective level and thus rigid as a conventional solid [9].

In [23] it was found out that the incessant hopping processes result in a long-time

diffusivity D which solely depends on the ratio ̺/T .
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Figure 1.6: Schematic sketch of the behaviour of a cluster crystal upon uniform com-

pression. In contrast to conventional single-occupancy crystals, diminishing the lattice

constant a is not the only possible response. Additionally, in a second mechanism, lattice

sites are deleted by redistributing the corresponding particles to neighbouring clusters. The

figure is taken from [17].

For the present work, the recent investigations of vibrations and diffusion in

cluster crystals are taken as a starting point and motivation to further explore the

features of the phonon spectrum, on the one hand, and to characterise the hop-

ping mechanism in more detail, on the other hand. The respective results that are

obtained will be extensively discussed in Chapter 4 and 5.



Chapter 2

Molecular simulations

In the past decades molecular simulations have become an indispensable numerical

tool in numerous fields of scientific research. From the point of view of statistical

mechanics, molecular simulations are capable of providing essentially exact results

where problems lack rigorous analytical solutions. In addition, they allow to test

theoretical models at physical conditions that might pass experimental limitations,

e.g. high pressure or temperature. Making it possible to simulate the macroscopic

properties of interest from microscopic details of a system in a controlled and re-

liable fashion, they play a crucial role in intermediating between theory and real

experiments.

In Section 2.1 we present the basic ideas of molecular simulation, which are com-

mon to both molecular dynamics and Monte Carlo simulations of bulk systems. In

Section 2.2 we will deal with the Monte Carlo (MC) method, an advanced technique

commonly used to evaluate ensemble averages of static system properties. Molecular

dynamics (MD) simulations, extensively employed in our work to characterise the

dynamic behaviour of cluster crystals, will be treated in Section 2.3.

2.1 Basic concepts of molecular simulations

2.1.1 Interaction model

Before any kind of molecular simulation can be carried out, a decision has to be

taken on the type of interaction model that suitably represents the system under

consideration.

In general, any potential energy function U is a many-body function U({rN})
dependent on all N particle positions {rN} = (r1, r2, ..., rN). Usually, it is assumed

that U can be split up into a sum of terms consisting of single-, pair-, triplet-, etc.
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contributions to the potential energy, i.e.

U({rN}) =
∑

i

φ1(ri) +
∑

i

∑

j>i

φ2(ri, rj) +
∑

i

∑

j>i

∑

k>j>i

φ3(ri, rj, rk) + . . . (2.1)

Here, we implicitly assume that all particles are of the same kind (“species”) and

interact via the same potential. In the above expression the first term φ1(ri) corre-

sponds to an external potential, such as container walls or an external field imposed

on the system. The second term – in general the most important one – is the

pair potential φ2(ri, rj), which we assume to depend only on the pair separation,

rij = |ri − rj|, hence φ2(ri, rj) = φ2(rij). The third term in eq. (2.1), φ3(ri, rj, rk),

is then the first one taking into account directional interactions, as it involves the

relative positions of a triplet of interacting particles.

In many computer simulations, however, many-body contributions to the po-

tential are either ignored or intentionally not considered,1 since any calculation of

interactions between three or more particles is very time-consuming. Dropping the

first term in eq. (2.1) assuming that there is no external interaction, the full expansion

of the potential energy is then approximated by

U({rN}) =
∑

i

∑

j>i

φ2(rij). (2.2)

This expression represents the class of interactions, i.e. pair interactions, which will

be used throughout this work.

2.1.2 Periodic boundary conditions

The main restriction on what we can realistically expect of a molecular simulation

is of technical rather than physical nature. Above all, the size of any system we

simulate is limited by a reasonable length of the time span needed for computation on

present-day computers. Consequently, the typical system size is very small compared

to macroscopic systems. The latter usually consist of a number of particles, N , of

the order N ≈ 1023, whereas in MD simulations of an Argon-like Lennard-Jones

fluid, for instance, N ranges from 103 to 105 for simulated times scales of the order

of µs. Additionally, for a system contained in a box of cubic shape the fraction of

particles located at its faces is proportional to N−1/3. For example, for N = 1000,

488 particles are located on the surface of such a cubic arrangement. Since these

particles are exposed to a very different surrounding than particles closer to the

centre of the box, the influence of surface effects will be drastic. Thus, if we are

1This is a very common and justified approach if the shape of the particles of the system is very

close or equal to a sphere. The most frequently used Lennard-Jones or the GEM-4 potential to be

treated in this work apply to such cases by virtue of their spherically symmetric form.
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Figure 2.1: A two-dimensional system with periodic boundary conditions. The system

is effectively infinite. As a particle leaves the system, i.e. the central simulation box, by

crossing a boundary (see arrows), its image particle enters the cell on the opposite edge.

The figure is taken from [25], Chapter 1.5.

interested in the bulk properties of a system we have to find a way to minimise these

surface effects.

A solution to this problem is provided by the use of periodic boundary conditions

(PBC): that is, we surround the central simulation box by an infinite number of

replica of this box, thereby filling the entire space. By creating an effectively infinite

lattice of boxes we remove any kind of surface effect, since we imitate in this way

the presence of an infinite bulk. This situation is illustrated for a two-dimensional

system in Fig. 2.1. Around the central cell its first 8 periodic images are arranged,

labelled in an arbitrary manner. If a particle (say, particle 1) leaves the central box

by crossing a boundary on one edge, its periodic image particle enters the cell on the

opposite side, the absolute number of particles being conserved in this way.2

Even though removal of surface effects is achieved by the implementation of PBC,

it remains to be discussed if the properties of a system of small size are representative

of its macroscopic counterpart. This leads to the question of finite size effects. Not

quite surprisingly, PBC do not enable us to scale down the system to arbitrarily small

sizes. Even though PBC allow to mimic the behaviour of a bulk system, unexpected

artefacts might be introduced. These may lead, for example, to correlation functions

(such as the radial distribution function g(r)) between spherical particles that are

2In a sense, the topology of such a system is equal to that of the surface of a three-dimensional

torus, which appears to be infinite from the point of view of someone located on this manifold.
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not entirely radial [26]. Luckily, major finite size effects can in general be avoided

easily by choosing a sufficiently large system; typically, some hundreds of particles

are enough. In practice the actual choice of the system size will also depend on the

potential range and the phenomena under investigation.

Still, some more intricate artefacts due to PBC and finite size may remain. For

instance, density fluctuations can interfere with themselves giving rise to artificial

travelling sound waves [27]. Moreover, any fluctuations of wavelength larger than L

are inhibited, limiting the validity of all wave-vector dependent quantities computed

from molecular simulation data. These problems can only be overcome by a thor-

ough analysis in which finite size effects for different system sizes are assessed. Con-

sequently, the properties calculated from the finite system can be extrapolated to

the macroscopic system [25].

A final remark concerns the actual shape of the simulation box. In principle, any

space-filling geometrical object can be taken up as an elementary cell. Nevertheless,

for the vast majority of cases one tends to keep things as simple as possible, which is

the reason why we will from now on restrict all our considerations to the cubic cell.

2.1.3 Potential truncation and minimum image convention

Having introduced PBC we realise that, in principle, the calculation of the potential

energy of a particle configuration requires to sum over an infinite number of pairs

of particles, including those in the central box as well as in all periodic images.

Obviously, this is an impossible task in practice. Two further approximations have

to be included, which are known in literature as potential truncation and minimum

image convention (MIC), the second of which was first used in simulation in [28].

Fortunately, for short-range interactions the contributions of the immediate neigh-

bours of a particle to the potential energy represent by far the most dominant part.

For this reason, by truncating the potential, φ(r)3, with a spherical cutoff rc ≤ L/2,

φtr(r) =

{

φ(r) r ≤ rc

0 r > rc
, (2.3)

we do not introduce a large error in the calculation of the potential energy, yet

manage to reduce the number of neighbours of a tagged particle.

Using this approach it may still happen that the sphere around a particle (say,

particle number 1) exceeds the central simulation cell (see Fig. 2.2). In this case, the

MIC provides a rule to determine which particles, or image particles, are regarded as

interaction partners of particle 1. A cube C of the same size as the simulation box is

3The subscript “2” of φ, still present in eq. (2.2) to denote φ as a pair potential, is dropped,

since no interactions other than pair interactions are considered.
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Figure 2.2: Minimum image convention and potential truncation. MIC: for the potential

evaluation only neighbours within a box centred around a particle are chosen. Poten-

tial truncation: the number of neighbours is reduced by truncating the potential with a

spherical cutoff in accordance with the interaction range. The figure is taken from [25],

Chapter 1.5.

introduced. C is centred around particle 1 that is located in the central cell. For the

calculation of the potential energy of this particle we take into account only those

particles which are situated in C, no matter whether these particles are located in the

central simulation cell or in one of its periodic images (see again Fig. 2.2). In that

way, the interaction of particle 1 with only those (image) particles is considered, from

which it has the minimum distance; hence the name minimum image convention.

Note that the truncated potential, φtr(r), should be still refined by using more so-

phisticated cutoff schemes that remove the discontinuity at rc introduced in eq. (2.3).

This can be achieved, for instance, with the help of a “cut and shift” prescription,

a linear or quadratic correction to the potential, or a spline interpolation from φ(rc)

towards zero [25]. We want to stress, however, that smoothing the potential at rc

seems to be a dispensable provision, in particular when the cutoff radius, rc, is cho-

sen generously enough in the case of very short-ranged potentials. For example, the

value of the GEM-4 potential at the cutoff radius that we use in our MD simulations

is

φ(rc = 2.5 σ) ≈ 10−17 φ(r = 0). (2.4)
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2.1.4 Speeding up a molecular simulation

It is worth mentioning briefly some “tricks of the trade” of how to speed up a molec-

ular simulation.

• Tabulated potential.

The repeated direct evaluation of the potential can be avoided by setting up

a look-up table. This table is constructed only once, at the beginning of the

simulation, according to a grid ins space previously chosen. During a simula-

tion the actual values of the potential and its derivatives at a given particle

separation are then obtained by interpolating between two adjacent grid points.

• Neighbour lists.

The basic concept of a Verlet neighbour list [18] may be sketched as follows: to

avoid calculating the distances of each particle to all the others for each config-

uration, a list of neighbours in a sphere of radius rl larger than rc is created for

every particle. This list enables us to keep book over those neighbouring par-

ticles for which an interaction is likely to occur. Its entries remain unchanged

during a few simulation steps, which results in a considerable speed-up of the

potential evaluation.

The frequency by which the neighbour lists are updated can be fixed at the

outset of the simulation. Preferably, this is done automatically by keeping track

of the displacement of all particles: as soon as the sum of the largest particle

displacements exceeds rl − rc the lists are updated in the subsequent step.

• Linked-cell lists.

As a refinement of the neighbour list method, or an alternative to it, the main

simulation box is divided into subcubes of side length larger than rc. The par-

ticles are assigned to these cells, a procedure that is repeated on a regular basis

during the simulation. For the update of the neighbour lists only the distances

to those particles are checked that are located in the surrounding cells.4

The exact name of the method “linked -cell lists” stems from an implementa-

tional detail. Each cell is addressed by the identification number of one particle

called “head-of-chain”, which refers to the next particle in the same cell. In

turn, all particles belonging to one cell are addressed, one after the other.

As mentioned before, the purpose of all these methods is to speed up a molecular

simulation. In particular, by the joint use of neighbour lists and linked-cell lists,

a substantial reduction of the computational effort for the interaction evaluation is

achieved, i.e. from order O(N2) to O(N).

4In three dimensions, each cell is surrounded by 27 neighbouring cells.
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2.2 Monte Carlo simulations

The Monte Carlo method [18] is a sampling technique that is particularly suitable for

high-dimensional systems treated in statistical physics. In its core part the method

relies on a stochastic algorithm that explores the configurational part of phase space

of such a system by repeated random sampling, making extensive use of random

numbers. Going far beyond simulating multi-particle systems, Monte Carlo simula-

tions apply to a large variety of other problems reaching from the computation of

multi-dimensional definite integrals in mathematics over risk analysis in finance to

the exploration of oil fields.

2.2.1 Conventional Monte Carlo simulations

In the canonical ensemble, the ensemble average of an arbitrary static quantity A(rN)

is given by

〈A〉 =

∫

A(rN) exp(−β U(rN)) drN

∫

exp(−β U(rN)) drN
. (2.5)

Here, the integration is carried out over the entire, 3N -dimensional configuration

space, and β is the inverse temperature defined in Appendix A.1, eq. (A.2). For

practical purposes, eq. (2.5) is intractable, if we aim at its evaluation by (numerical)

integration over a regular grid of points {rN}.
The basic solution to this problem suggested by the MC method is to take a

random sampling of points instead of a regular array of points to calculate the average

quantity 〈A〉 [29]. In its simplest version, system configurations, represented by the

positions and momenta of all particles, are created randomly and independently. For

the calculation of the ensemble average of A, eq. (2.5) is rewritten as

〈A〉 =
∑

τ

Aτ pτ , (2.6)

where Aτ is the instantaneous value of A for a state τ , and pτ the corresponding

equilibrium occupation probability of τ , used as a weight. pτ is given by

pτ =
exp(−βUτ )

∫

exp(−βU(rN)) drN
=

e−βUτ

ZN

, (2.7)

where ZN is the configurational part of the canonical partition function. However,

since many configurations will be of very low weight, i.e. they will only very weakly

contribute to the ensemble average (2.6), this naive approach is computationally very

inefficient.



22 Molecular simulations

Importance sampling

A more efficient technique is the one based on the concept of importance sam-

pling [18, 25]. In this case, we attempt to select a subset of states according to

their probability pτ . The basic idea behind it is to sample many points in a region

of space where the Boltzmann factor, e−βUτ

ZN
, is significantly large. If we succeed in

sampling a series of states {τ1, τ2, ..., τM} according to their “importance”, the sum

in eq. (2.6) may be replaced by

AM =
M

∑

i=1

Aτi
, (2.8)

Here, we do not have to include the probabilities pτ anymore because they are con-

sidered implicitly by the way in which we generate the states. The value of AM and

the average 〈A〉, calculated via eq. (2.5), coincide in the limit

lim
M→∞

AM = 〈A〉. (2.9)

Markov chains

To find a subset of states {τ} in configuration space that complies with the above

concept, we make use of time-homogeneous Markov chains [18, 25]. Instead of ran-

domly picking out configurations from the entire configuration space, we generate a

new state ν of the system from a given state τ with probability P (τ → ν). These

transition probabilities have to satisfy the following three criteria:

• P (τ → ν) do not vary with time,

• they only depend on the properties of the states τ and ν and not on any state

that the system has visited in the past (“process without memory of the past”),

• the sum over the transition probabilities from a state τ to all possible states ν

is equal to 1 (sum rule)
∑

ν

P (τ → ν) = 1, (2.10)

stating that the system has to end up in some state.

Additionally, if we want a Markov chain to produce a sequence of states that appear

with the probabilities given in eq. (2.7), two further requirements have to be fulfilled:

• ergodicity, which means that each state of the system has to be reachable from

any other state within a finite number of steps of the Markov chain (cf. also

Section 3.1.1).
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• detailed balance, expressed by the relation

pτP (τ → ν) = pνP (ν → τ), (2.11)

by which is meant that a system must pass as likely from state τ to ν as, vice

versa, from state ν to τ .

If all of the above conditions are satisfied, we will yield a set of M states from the

Markov chain, distributed according to the Boltzmann probability distribution pτ ,

and will be able to calculate a canonical ensemble average by eq. (2.8).

Metropolis Monte Carlo

So far, we have sketched the track that must be followed, if we want to employ

the Monte Carlo method for the calculation of average system properties. What we

seek for in the next step is an appropriate translation of the notion of a Markov

chain into an algorithm that fulfils all of the aforementioned requirements. The most

widespread realisation of such a procedure was suggested by Metropolis et al. [28]

and is commonly referred to as Metropolis Monte Carlo method. The algorithm

works as follows:

• From an arbitrary system state τ =̂ (r1, r2, ..., rN) a particle i is randomly

chosen.

• A vector ξi is calculated, the components of which are uniformly distributed

random numbers in the interval [−1, 1]. Particle i is shifted by ∆ · ξi,

ri → r′
i = ri + ∆ξi, (2.12)

to obtain a new state ν =̂ (r1, ..., r
′
i, ..., rN). ∆ is the maximum allowed dis-

placement, fixed at the outset of an MC simulation.

• The change in the potential energy, ∆U = Uτ − Uν , that is induced by the

particle move is calculated. If the particle displacement leads to a decrease in

energy, i.e. ∆U < 0, then the new state ν is accepted. If, on the contrary, the

potential energy is increased, i.e. ∆U ≥ 0, the new state ν is accepted with a

probability e−β∆U . In practice, another random number ξ′ between 0 and 1 is

chosen and compared to e−β∆U . If this number is smaller, state ν is accepted

despite the energy decrease, otherwise state ν is rejected (see Fig. 2.3) and

the next trial move is performed with another particle. Irrespective of whether

the new state has been accepted or not, the system is considered to be in a

new configuration; this is important for the production of states following the

intended probability distribution, given by eq. (2.7).
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Figure 2.3: Metropolis Monte Carlo: a particle move that leads to a decrease in potential

energy is always accepted. If, otherwise, the potential energy is increased by ∆U , the move

is only accepted with probability e−β∆U .

This procedure is being repeated until the desired simulation length is attained. The

“evolution” of the system corresponds to a random walk through a representative

region of configuration space such that, from an average taken over all visited states,

good estimates of the quantities of interest are obtained via eq. (2.8).

A final remark concerns the choice of the maximum allowed displacement ∆.

According to [25], it should be fixed to a value that leads to an average acceptance

ratio such that the rate of equilibration of system with respect to computational cost

is optimised. The average acceptance ratio a is defined as

a =
1

M

M
∑

i=1

min
[

1, e−β∆Ui
]

, (2.13)

where M is again the number of sampled states. Typically, the values of a range

between 30 and 50 percent.

2.2.2 Lattice Monte Carlo simulations

If we intend to perform long Monte Carlo simulations for systems of large size

(N > 103), we must search for a means of speeding up our simulations even further,

going beyond the speed-up techniques presented in Section 2.1. This is particularly

important for the study of clustering systems, where we need a considerable amount
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ζ=1 ζ=2

ζ=4 ζ=8

Figure 2.4: Discretisation of a two-dimensional system in LMC simulations, illustrated for

different values of ζ. The grid resolution (number of grid points per particle diameter)

grows as ζ is increased. The figure is taken from [9], Chapter 4.5.

of particles to guarantee a sufficiently large number of clusters in our simulation

volume. For this reason, we introduce the concept of Lattice Monte Carlo (LMC)

simulations, a method originally suggested by Panagiotopoulos [30].

The key idea of LMC simulations is to transform a system where the particle

coordinates are continuous quantities into a lattice model by discretising the particle

positions to sites of a regular grid. The resolution of the grid is fixed by the choice

of a lattice discretisation parameter ζ which specifies the number of grid sites g per

particle diameter σ,

ζ =
g

σ
. (2.14)

In Fig. 2.4 the grid resolution for different values of ζ is illustrated schematically for a

two-dimensional system. To ensure that periodic boundary conditions are respected

by the discretisation, ζ must be chosen such that L × ζ is an integer; nevertheless,

L and ζ may take rational values individually.

The main increase in computational efficiency in LMC simulations results from

the discretisation of the particle positions, through which the number of possible

distances between two particles of the system is limited. As a consequence, one

needs to calculate the interaction energies for all of these separations only once,

at the beginning of a simulation, and tabulate them in a look-up table for further

use during a simulation run. Depending on the actual shape of the potential under

consideration, this brings about an appreciable speed-up for the simulations: for
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instance, for the GEM-4 potential, a speed-up factor of about 20 with respect to the

conventional MC scheme has been reported in [9].

The price to be paid for the gain in CPU-time is a reduction in numerical accuracy

of our calculation. By discretising the available positions in a box, an artificial

substructure is imposed on the system which affects structural quantities as well as

ensemble averages of observables. Yet, lattice discretisation artefacts are expected

to decrease as ζ is increased [30]. For the GEM-4 potential a value of ζ = 32 is

reported to be sufficiently large to reproduce the results of standard continuous MC

simulations [31, 32].

2.2.3 Auxiliary “Widom-like” MC moves

An additional modification to the LMC simulation technique developed so far can

be made, if we want to enhance the equilibration of systems characterised by slow

dynamics. This refers in particular to cluster crystals at low temperatures. In our

work we opt to employ LMC simulations in a region of the GEM-4 phase diagram

(cf. Fig. 1.5), which includes the non-diffusive regime. In this region, it is not possi-

ble to reach the equilibrium distribution of cluster sizes (cf. Fig. 4.2), within an MD

simulation of reasonable length, as the equilibrating process, i.e. particle hopping

between lattice sites, is very slow. In a cluster crystal the potential barriers between

lattice sites can attain considerable heights (cf. Section 5.2). That is why configu-

rations where a particle leaves a cluster and hops to a neighbouring lattice site are

states of increased energy, compared to a situation in which the same particle stays

in its home cluster. Therefore, for low temperatures, such configurations are very

likely to be rejected in a standard Metropolis MC algorithm.

To circumvent this problem, we introduce an additional type of MC trial move:

if from time to time (say, once out of 100 steps) we allow a particle to be displaced

by an arbitrary distance, regardless of the prescribed value of ∆ in eq. (2.12), this

particle will be shifted directly to another cluster site with a certain probability.

In this way, we enable the system to explore a larger region of configuration space.

Concomitantly, it will tend much faster to its equilibrium cluster size distribution.

One may call this kind of auxiliary move a “Widom-like” move, due to its simi-

larity to the Widom insertion method [33], in which a particle is (re-)inserted into a

system at a random position. It is important to note that, as artificial as Widom-like

moves may seem at first sight, they, however, do not lead to unphysical results as long

as the requirements formulated for Markov processes are satisfied (cf. Section 2.2.1).
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2.3 Molecular dynamics simulations

In contrast to MC simulations, in a molecular dynamics simulation we intend to

generate a sequence of configurations according to the inherent time-evolution of a

system. In many respects an MD simulation is very similar to a real experiment. It

serves us to measure not only static but also time-dependent properties of a system,

characterising the interesting dynamics of the underlying physical processes.

In the following two subsections we will present the integration algorithm for

the solution of the equations of motion and will point out the difference between

equilibration and production MD simulation runs.

2.3.1 NVE simulations

We first look at an isolated, classical system. Its volume is kept constant, the particle

number and the energy are conserved. An MD simulation subject to these constraints

will sample from the microcanonical ensemble.

Equations of motion

The dynamics of the system is governed by the Hamiltonian

H =
N

∑

i=1

p2
i

2mi

+ U(rN). (2.15)

Particle trajectories are obtained from the solution of Hamilton’s equations of motion

{

ṙi = pi /mi

ṗi = −∇i U(rN) = f i

(2.16)

with suitable initial conditions, (ri(t = 0),pi(t = 0)). In eq. (2.16) ṙi and ṗi are

the time derivatives of the positions and momenta of particle i and f i is the force

exerted on the same particle by all the others.

Integration Scheme

The core part of an MD simulation is its integration algorithm. It discretises the

equations of motion, eqs. (2.16), and solves them numerically via an iterative proce-

dure. Starting from the set of positions and momenta of all particles at a time t, the

algorithm calculates the positions and momenta at a later time t + δt, with δt being

the time increment.

The expectations for such an integration scheme are the following:
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• it should produce a highly accurate numerical solution of the equations of

motion, for the time range on which we investigate time-dependent correlations,

• whereas for the calculation of time-independent (static) macroscopic averages,

in the long term, it is sufficient to sample from a statistical ensemble such that

the corresponding phase space density is approximated at the best.

These requirements impose further desirable properties on the algorithm:

• a large time step δt, which at the same time maintains a high degree of accuracy,

is preferred,

• energy conservation on a very high level (see below) is essential,

• conceptual simplicity of the algorithm is an asset.

The Verlet integration algorithm [34] satisfies all of these requirements. The iterative

algorithm is based on the following equation for the particle positions:

ri(t + δt) = 2ri(t) − ri(t − δt) +
f i(t)

mi

δt2. (2.17)

This expression is easily obtained by adding two second-order Taylor expansions

about ri(t),

ri(t + δt) = ri(t) +
pi(t)

mi

δt +
f i(t)

2mi

δt2,

ri(t − δt) = ri(t) −
pi(t)

mi

δt +
f i(t)

2mi

δt2.

(2.18)

From eq. (2.18) we see that in this integration scheme the momenta are not needed

to compute the trajectories. The pi(t) are given separately by the difference quotient

pi(t)

mi

=
r(t + δt) − r(t − δt)

2δt
. (2.19)

Eq. (2.17) is correct up to O(δt4), whereas the momenta are affected by an error

of O(δt2). For this reason, the Verlet algorithm allows the use of a relatively large

time increment δt. Further, it is time-reversible and shows excellent energy conser-

vation properties.

In our MD code, a modification to the above outlined basic Verlet algorithm

has been implemented. It is known as velocity-Verlet algorithm [35] and solves the

equations of motion via the following Taylor expansions,

ri(t + δt) = ri(t) +
pi(t)

mi

δt +
1

2mi

f i(t) δt2

pi(t + δt) = pi(t) +
1

2mi

[f i(t) + f i(t + δt)] δt.

(2.20)



2.3 Molecular dynamics simulations 29

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1

<
δE

to
t2 >

1/
2  / 

<
δE

ki
n2 >

1/
2

δt *

0.02

LJ, ρ *= 1.0, T *= 2.0, liq 
GEM-4, ρ *= 6.2, T *= 0.8, fcc

Figure 2.5: A rough guideline for the appropriate choice of the time increment suggests to

fix δt∗ such that σ(Etot) represents at most 1% of σ(Ekin). Note that the starred δt, δt∗,

indicates the use of reduced units (see Appendix A.2).

Because it minimises round-off errors [25], it is superior to the simple Verlet algorithm

due to its better precision [35] and includes the momenta in the calculation in a more

natural way, yet it shares all of the aforementioned qualities.

Having now an appropriate algorithm to calculate the particle trajectories at

hand, we still need to determine an accurate value of the time increment, δt. In

general, this decision involves a trade-off between simulation time and numerical

precision. When choosing a value for δt the minimisation of both the energy drift

of the system for long times and its fluctuations on a short-time scale must be

considered. For this reason, a “good” value of δt also depends on the interaction

model and on the state parameters, ̺ and T . As a rule of thumb the fluctuation

of the total energy, σ(Etot), of the system should never exceed one percent of the

fluctuation of the kinetic energy, σ(Ekin)5,

σ(Etot)

σ(Ekin)
=

〈(δEtot)
2〉1/2

〈(δEkin)2〉1/2
≤ 0.01. (2.21)

As can be seen in Fig. 2.5, for the GEM-4 potential, this criterion suggests a time

increment of δt∗ = 0.02.

5In the microcanonical ensemble the fluctuation of the kinetic energy is equal to the fluctuation

of the potential energy, σ(Ekin) = σ(Epot).
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We note at this point that the star superscript, “ ∗ ”, is commonly used to

indicate that the value of a starred quantity is given in reduced units (see [25],

Appendix B). A list of reduced units for all quantities considered in this work is

provided in Appendix A.2.

2.3.2 NVT simulations

Frequently, it is necessary to equilibrate a system at a desired temperature T , starting

for example from a previous MD simulation at a different temperature T ′. To this

end, we need to perform simulations at constant temperature T . This is achieved by

bringing the system, in the sense of statistical mechanics, into thermal contact with a

large heat bath of temperature T . In our MD code, this has been implemented with

the aid of a “massive stochastic” version of the Andersen thermostat [36]. At equally

spaced intervals of time the velocities of all particles are redistributed according to

the Maxwell-Boltzmann velocity distribution,

P(v) =
( β

2πm

)3/2

exp [−βmv2/2], (2.22)

which characterises the NVT-ensemble. Once the system is in equilibrium with

the heat bath, we switch off the thermostat and continue the simulation in the

microcanonical ensemble.



Chapter 3

Data analysis

In general, both Monte Carlo and molecular dynamics simulations must be followed

by an extensive data analysis in which the quantities of interest (such as the radial

distribution function or the velocity auto-correlation function) are calculated. In

principle, this analysis may either be carried out during the simulation, or, once the

simulation run is terminated, from a set of single-particle trajectories saved to a data

file. As we took benefit from an existing MD simulations code (atooms1), we opted

for the latter choice, i.e. a post-processing analysis, which includes a standard, a

normal mode and a cluster post-processing analysis to be presented in this chapter.

3.1 Standard post-processing analysis

We restrict our discussion of the post-processing analysis to those static and dynamic

quantities which are of most relevance to our work. In an effort to be as concise

as possible, we present only their definitions and a few explanations, for further

explications we refer to standard books on statistical physics such as [27, 37, 38].

As a starting point, it appears to be helpful to summarise the formalism of taking

appropriate thermodynamic averages of the quantities under consideration.

3.1.1 Time averages and ensemble averages

The thermodynamic state of a monatomic system is characterised by a small set of

state variables (such as temperature T , volume V , or number of particles N). The

majority of thermodynamic properties that are of macroscopic interest solely depends

on these few parameters. The time evolution of a system consisting of N particles

is governed by (Newtonian) equations of motion. From the solution of the latter it

is obtained a sequence of configurations in time which share the same set of natural

1Atomistic Object-Oriented Molecular Simulations, by Daniele Coslovich <coslo@ts.infn.it>
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variables. Each configuration is characterised by the positions rN = {r1, r2, ..., rN}
and momenta pN = {p1,p2, ...,pN} of all particles in three-dimensional space and

can thus be represented by a point in the 6N -dimensional phase space.

The positions and momenta for all times, t, define the system’s trajectory through

phase space and are used to calculate the time average of any function of phase space

A(rN ,pN). Denoting a particular point in phase space (rN ,pN) with Γ(t), the time

average of an experimentally observable macroscopic property A(Γ) is given by

Aobs = 〈A〉time = 〈A(Γ(t)) 〉time = lim
τ→∞

1

τ

τ
∫

0

A(Γ(t)) dt. (3.1)

In reality, it is of course impossible to take a measurement over an infinite period

of time. In this case, τ is replaced by τobs which must be greater than the typical

relaxation times2 of A to obtain a reliable average, which is independent of the initial

conditions.

Alternatively, macroscopic quantities can be obtained within the framework of

statistical physics via ensemble averages. These averages are calculated from an en-

semble of imaginary, macroscopically equivalent systems, each of them corresponding

to a different point in phase space. These points Γ are distributed according to a

probability density (phase space density), ̺ens(Γ), which is determined by the choice

of the state variables, exclusively. The ensemble average reads

Aobs = 〈A〉ens =

∫

A(Γ) ̺ens(Γ) dΓ =

∫∫

A(rN ,pN) ̺ens(rN ,pN) drNdpN . (3.2)

Systems in which the time average is identical to the ensemble average,

〈A〉time = 〈A〉ens, (3.3)

are called ergodic. Ergodicity holds if a system passes “sufficiently close” [39] to all

phase points for which ̺ens is non-zero and returns to the point of departure after a

finite time3. However, for the overwhelming majority of systems this equation cannot

be proven rigorously; thus in most cases one has to rely on the mere hope that the

system under consideration is ergodic.

For practical purposes, eqs. (3.1) and (3.2) for the time average and the ensemble

average respectively have to be modified to be of use in a molecular simulation. For

instance, given an MD simulation over a finite time interval τobs and based on the

2The relaxation time of a quantity A is generally considered to be the period of time after which

initial fluctuations of A about its equilibrium value are relaxed.
3This time is known as Poincaré recurrence time.
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choice of a discrete time step δt , the integral in eq. (3.1) has to be replaced by a

sum

Aobs = 〈A〉time =
1

τobs

τobs
∑

t=0

A(Γ(t)), (3.4)

where t now refers to the configurations Γ(t) separated in time by δt. On the other

hand, the concept of ensemble averages is taken up in MC simulations. Provided that

we manage to generate (somehow) a succession of M configurations {Γ1,Γ2, ...,ΓM}
reflecting a representative part of phase space, we can make use of the ensemble

average to calculate the values of the interesting macroscopic quantities. In this

case, eq. (3.2) reduces to a discrete sum

Aobs = 〈A〉ens =
1

M

M
∑

i=1

A(Γi). (3.5)

These configurations {Γi} are not calculated by equations of motion anymore, but

by a stochastic algorithm, such as the one presented in Section 2.3.

In the next two subsections we will introduce and define those static and dynamic

quantities that are most important for our work. In both cases we deal with auto-

correlation functions. For a static auto-correlation function we correlate a function

of phase space A at one time to its value at the same time, averaging over many

points in time,

〈A(0)A(0)〉time. (3.6)

To obtain a dynamic auto-correlation function, we correlate the same function at one

time to its value at a different time, averaging over many time origins,

〈A(t)A(0)〉time. (3.7)

In what follows we will stick to standard notation of statistical mechanics, denoting

averages by “〈 . 〉” without specifying whether they are calculated by taking the time

or the ensemble average.

3.1.2 Static structural quantities

Radial distribution function g(r)

The pair distribution function, gN(r1, r2), for a monatomic system consisting of N

particles confined in a volume V at temperature T (canonical ensemble) is given by

gN(r1, r2) =
N(N − 1)

̺2ZN

∫

...

∫

e−βU(rN ) dr3...drN , (3.8)
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where ̺ is the density of the system (see Appendix A.1, eq. (A.1)) and ZN is the

configurational integral

ZN =

∫

e−βU(rN ) drN . (3.9)

gN(r1, r2) dr1dr2 is a measure for the probability of finding two particles in the

volume element (r1 + dr1) × (r2 + dr2), irrespective of the positions of all other

particles and irrespective of all momenta.

Restricting our considerations to a homogeneous, isotropic system we see that the

dependency of gN(r1, r2) reduces to a function of the particle separation r = |r1−r2|
and eq. (3.8) becomes an ensemble average of the form

g(r) =
V

N2

〈

∑

i6=j

δ(r − rij)

〉

. (3.10)

This is an expression that can be easily evaluated in computer simulations [25].

g(r) is called radial distribution function (RDF) and indicates the probability of

finding a pair of particles a distance r apart, compared to the same probability in a

completely random system. In this sense, the particle distribution function is a mea-

sure of the extent to which the structure of a fluid differs from the structure of an ideal

gas [27]. The RDF is an essential ingredient to the formalism of statistical physics

as it may be used to express the ensemble average of any pair function a(ri, rj) in a

very simple and condensed form,

〈a(ri, rj)〉 =
1

V 2

∫

dridrj g(r) a(ri, rj). (3.11)

In particular, the knowledge of this function provides a convenient way of calculating

thermodynamic properties as well the equation of state of the system.

Furthermore, the RDF contains information about the system’s structure. From

the positions and relative amplitudes of its peaks it is possible to distinguish un-

ambiguously between different phases, such as the liquid, the body-centred cubic

(bcc) and the face-centred cubic (fcc) phase (see Fig. 3.1). Integration of 4πr2̺g(r)

up to its first minimum serves as an estimate of the nearest-neighbour coordination

number, which is the number of particles in the first shell of nearest-neighbours. For

instance, for the bcc and fcc phase, the coordination number takes characteristic

values of 8 and 12, respectively. Interestingly enough, for a clustering system, the

same measure yields the average occupation number of lattice sites 〈nc〉, which is to

be discussed in Section 3.3 in more detail.
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Figure 3.1: Typical shape of the radial distribution function, g(r), of monatomic liquid

and crystalline systems with spherically symmetric interactions. g(r) of a Lennard-Jones

liquid and of two generic crystal structures is shown. The peak structure is characteristic

to every phase (liquid, body-centred cubic (bcc) and face-centred cubic (fcc)). r is scaled

in units of the nearest-neighbour distance, dnn, of the respective structures.

Static structure factor S(k)

The static structure factor, S(k), is defined as

S(k) =
1

N
〈 ̺(k) ̺(−k) 〉, (3.12)

where ̺(k), the spatial Fourier transform of the number density ̺(r) =
∑N

i=1 δ(r − ri),

is given by

̺(k) =
N

∑

i=1

eik·ri . (3.13)

For homogeneous, isotropic systems the static structure factor reduces to a func-

tion S(k) of the modulus of the wave vector k. In this case, it is related to g(r)

through the Fourier transform

S(|k|) = 1 + 4π̺

∞
∫

0

r2 sin kr

kr
g(r) dr. (3.14)
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Figure 3.2: Typical shape of the static structure factor, S(k∗), of monatomic, liquid and

crystalline systems with spherically symmetric interactions. S(k∗) of a Lennard-Jones

liquid and of two generic crystal structures is shown. Similarly to the RDF, g(r), the peak

structure in S(k∗) is characteristic to every phase (liquid, bcc and fcc). The vertical axis

is scaled arbitrarily to enhance the visibility of the peaks.

S(k) is a measure of the response of a system in equilibrium to a density fluctuation

of wavelength 2π/k. Again, the order and relative amplitudes of its peaks can be

used to identify the crystal structure (see Fig. 3.2).

3.1.3 Dynamic quantities

Velocity auto-correlation function cv(t)

The velocity auto-correlation function (VACF), cv(t), is one of the simplest but most

important examples of a time-correlation function. It is defined as

cv(t) =
1

3
〈vi(t) vi(0)〉 , (3.15)

which is the ensemble averaged projection of the velocity vi(t) of a particle i at time t

onto its initial velocity vi(0). Its value at t = 0 is given by

cv(t = 0) =
1

3

〈

v2
〉

=
kBT

m
, (3.16)
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Figure 3.3: VACF, cv(t
∗), of a Lennard-Jones system at density ̺∗ = 1.0 and different

temperatures. Note that the decay time of the VACF depends on T ∗. In the inset the

Fourier transform of the VACF, c̃v(ω
∗), for the same state points is shown.

where the latter equivalence is given by the equipartition theorem [37]. cv(t) (see

Fig. 3.3) vanishes at times sufficiently large compared to typical microscopic relax-

ation times, i.e. where initial and final velocities will be completely uncorrelated,

cv(t → ∞) = 0. (3.17)

The Fourier transform of the VACF,

c̃v(ω) =
1

2π

∞
∫

−∞

cv(t) eiωt dt, (3.18)

gives us a hint to the spectrum of vibrations present in the system (see the inset

of Fig. 3.3). In addition, in a liquid the value c̃v(ω = 0) is a signature of diffusion in

the system by virtue of the Green-Kubo formula [27]

D =
1

3

∞
∫

0

〈vi(t) · vi(0)〉 dt. (3.19)
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Figure 3.4: Mean square displacement of particles in a Lennard-Jones liquid at ̺∗ = 1.0

and T ∗ = 2.0 in double log scale. For short times, 〈r∗2(t∗)〉 grows with t∗2, which is known

as “ballistic” regime. After an intermediate crossover region (corresponding to typical

collision times) it scales linearly with t∗ for times such that the root of the MSD exceeds

one interparticle separation.

Mean square displacement 〈r2(t)〉

The mean square displacement (MSD), 〈r2(t)〉, measures the square of the displace-

ment of a tagged particle i from an initial configuration, averaged over independent

time origins. It is given by

〈

r2(t)
〉

=
〈

|ri(t) − ri(0)|2
〉

. (3.20)

The MSD ranges among the most important quantities characterising the thermo-

dynamic properties of a system. It is linked to the time-independent diffusion coef-

ficient, D, by the Einstein relation

D = lim
t→∞

1

6t

〈

|ri(t) − ri(0)|2
〉

. (3.21)

Typically, for a fluid system this linear behaviour is met for times such that the root

of the MSD exceeds one interparticle separation (see Fig. 3.4).
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Van Hove correlation function G(r, t)

The van Hove correlation function, G(r, t), is a space and time-dependent correlation

function, defined as

G(r, t) =

〈

1

N

N
∑

i=1

N
∑

j=1

∫

δ[r − rj(t) + ri(0)]

〉

=

=
1

̺
〈 ̺(r, t) ̺(0, 0) 〉,

(3.22)

where ̺(r, t) is the time-dependent number density,

̺(r, t) =
N

∑

i=1

δ(r − ri(t)). (3.23)

The last term in eq. (3.22) shows that the van Hove correlation function is a density-

density correlation function. G(r, t)dr measures the number of particles j located in

a volume element dr around a point r at time t, given that at time t = 0 a particle i

was located at the origin, 0. The van Hove correlation function can be split up into

two terms, usually called the “self” (s) and the “distinct” (d) part,

G(r, t) = Gs(r, t) + Gd(r, t), (3.24)

which takes into account that i and j may be the same particle or different ones [27].

The “self” part, defined as

Gs(r, t) =

〈

1

N

N
∑

i=1

δ[r − ri(t) + ri(0)]

〉

, (3.25)

is the one which is most relevant for our work, as we will see in the analysis of the

diffusive behaviour of a cluster crystal (cf. Chapter 5). Similarly to the RDF, g(r),

for isotropic systems Gs(r, t) reduces to Gs(r, t), a function of the particle separation

r = |r1 − r2|.

Intermediate scattering function F (k, t)

The Fourier transform of the van Hove correlation function,

F (k, t) =

∫

G(r, t) e−ik·r dr, (3.26)

is called intermediate scattering function and represents the time-dependent auto-

correlation of density fluctuations of wave vector k,

F (k, t) =
1

N
〈 ̺(k, t) ̺(−k, 0) 〉. (3.27)
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Here, ̺(k) is given by eq. (3.13), where we replaced ri by a time-dependent ri(t). In

the same way as the van Hove correlation function it may be separated into a “self”

and a “distinct” part, as becomes clear when inserting eq. (3.24) into eq. (3.26).

The self intermediate scattering function Fs(k, t) describes the “self dynamics” of a

system, related to single-particle motion.

Dynamic structure factor S(k, ω)

For the sake of completeness, we mention the dynamic structure factor, S(k, ω), given

by the time Fourier transform of F (k, t),

S(k, ω) =
1

2π

∞
∫

−∞

F (k, t) eiωt dt. (3.28)

Integrating S(k, ω) over all frequencies leads to the static structure factor,

∞
∫

−∞

S(k, ω) dω = F (k, 0) = S(k). (3.29)

3.2 Normal mode analysis

In Section 3.1.3 we have mentioned that the Fourier transform of the VACF allows a

first insight into the vibrational spectrum of a system. A more direct route, however,

to determine the “true” vibrational density of states is provided by normal mode

analysis (NMA). The latter can be achieved by a two-step procedure [40]:

• Minimisation of the total potential energy of one or more instantaneous con-

figurations taken out of a simulation run, to locate the nearest local minimum

of the potential energy surface.

• NMA of these minimised configurations by diagonalising the dynamical matrix

in real space.

Both steps will be explained in the following.

3.2.1 Minimisation

Stated in general terms, a minimisation technique aims at minimising a generic

function F(x), where x stands for a large number of variables, for instance a point

x = {rN} in configuration space. Today, a broad range of minimisation algorithms
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of different complexity and effectiveness exists [41], spanning from the “steepest

descent” minimisation over the “conjugate gradient” method to the BFGS algorithm.

In the present work, we employ a so-called limited-memory quasi-Newton method

for the minimisation of the potential energy U . It is known as l-BFGS algorithm,

limited Broyden-Fletcher-Goldfarb-Shanno algorithm, in the implementation of Liu

and Nocedal [42]. The attribute “limited-memory” (“l-”BFGS) refers to the fact that

the algorithm memory requirements can be controlled by the user. For this reason,

the l-BFGS algorithm is particularly suitable for large scale problems involving a

considerable number of degrees of freedom [40, 42].

3.2.2 Calculation of normal modes

In the framework of classical theory of harmonic crystals [24] the total potential

energy of a crystal is written as

U =
1

2

∑

R,R′

φ(r(R) − r(R′)). (3.30)

In this expression r(R) denotes a particle’s position r displaced from its original

position R in a Bravais lattice, which is characterised by the primitive lattice vec-

tors ai (i = 1, 2, 3). In what is called harmonic approximation, U is approximated

by the sum of two terms, U eq and Uharm, which are retained from a full Taylor series

expansion of U about the equilibrium configuration {R}. Adopting the commonly

approved notation of [24], these terms are given by

U eq =
1

2

∑

R,R′

φ(R − R′)

Uharm =
1

2

∑

R,R′

u(R) D(R − R′) u(R′)
(3.31)

with u = r(R)−R being the particle displacement from the respective lattice sites,

and

D(R − R′) =
∂2U

∂u(R) ∂u(R′)

∣

∣

∣

∣

u=0

. (3.32)

Considering a three-dimensional system consisting of N particles of mass m, the

formalism leads to 3N equations of motion:

mü(R) = −∂Uharm

∂u(R)
= −

∑

R
′

D(R − R′) u(R′). (3.33)
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From an ansatz to solve these equations we yield their eigenfunctions, which take

the form of simple plain waves

u(R, t) = ǫ ei(kR−ωt), ǫ ∈ R
3. (3.34)

By the use of periodic boundary conditions (cf. Section 2.1.2) the number of all

possible wave vectors k in eq. (3.34) is reduced to a set of N nonequivalent values.

Upon inserting eq. (3.34) into eq. (3.33) and including the symmetry properties

of D [24] we obtain the eigenvalue problem for ǫ,

mω2ǫ = D(k)ǫ, (3.35)

where

D(k) =
∑

R

D(R) e−ikR (3.36)

is called dynamical matrix. One finds that for each of the N values of k there exist

three solutions ǫi(k) (i = 1, 2, 3) to eq. (3.35), leading to 3N normal modes. They

are obtained by diagonalisation of the 3N × 3N dimensional dynamical matrix D.

Whether we diagonalise D in its k-representation, D(k), or its representation in real

space, D(R), is not of any importance for the final result, as long as we are interested

in the vibrational density of states only. Due to eq. (3.36) both matrices share an

equivalent spectrum of eigenvalues and eigenvectors and the same symmetries hold

– they are positive semidefinite symmetric matrices.4,5

In our work, we choose to diagonalise D(R), which is more straight-forward

with the Hessian matrix at hand. By virtue of eq. (3.35), from the diagonalisation

of D(R) we obtain a set of 3N normalised eigenvectors and 3N corresponding real

eigenvalues

ǫα and ωα (α = 1, ..., 3N). (3.37)

For each normal mode α the 3N -dimensional vector ǫα contains the vector displace-

ments ei
α (i = 1, ..., N) of every particle on the mode.

From our results we gain the vibrational density of states (VDOS) [43] by

D(ω) =

〈

1

3N

3N
∑

α=1

δ(ω − ωα)

〉

, (3.38)

4The eigenvalues of a positive semi-definite matrix are all greater or equal to zero.
5We stress that this is only true for a configuration {R} corresponding to a (local) minimum

of U . At this minimum, the potential energy surface is positively curved in all directions. In

contrast to this, the normal mode spectrum evaluated at a saddle point or an “instantaneous”

configuration [40, 43] will contain a finite fraction of negative eigenvalues.
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Figure 3.5: Vibrational density of states, D(ω∗), and the participation ratio, p(ω∗), for

the fcc phase of a Lennard-Jones system. A small value of p(ω∗) corresponds to high

localisation, a high value of p(ω∗) to low localisation of normal modes lying in a frequency

interval dω∗ = 0.3 around ω∗.

where the angular brackets refer to taking the average over all analysed configura-

tions. A standard measure of the localisation of a normal mode α is its participation

ratio defined as

pα =

[

N
N

∑

i=1

(ei
α · ei

α)2

]−1

. (3.39)

This quantity is of particular interest when characterising the spectrum of vibrations

in a cluster crystal, since it will enable us to distinguish between collective and single-

particle vibrational motion in a clustering system (cf. Chapter 4). The vibrational

density of states and the participation ratio are illustrated in Fig. 3.5 for a Lennard-

Jones fcc crystal.

Aiming at a deeper understanding of the spectrum of vibrations in a cluster

crystal it is worth discussing the generalisation of our previous considerations to

a three-dimensional lattice with a basis. The NMA of such a system will yield

two different kinds of eigenfrequencies and eigenvectors. Let Nc be the number of

lattice sites and nb the number of particles in the basis for a system of N = Ncnb

particles. Then, three out of 3nb vibrational branches are called acoustic branches,

which essentially consist of vibrations of the lattice sites. The remaining 3(nb − 1)

branches are known as optical branches, which contain normal modes associated with
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the motion of particles relative to the motion of lattice sites. In Chapter 4 we will

learn that, interestingly enough, a connection between acoustic and optical branches

and collective and individual motion of particles can be established.

3.3 Cluster post-processing analysis

Investigating the dynamics of a cluster crystal requires a thorough analysis of its

cluster objects. First of all we must decide on a criterion for what we call a cluster

object. From Fig. 3.6 we see that g(r) of cluster crystals shows a characteristic rise

as r tends to zero. The position of the first minimum in g(r), rmin, may serve as a

measure of a cluster’s spatial extent and allow us to determine the average cluster

size, 〈nc〉, as well,

〈nc〉 = 1 + 4π̺

rmin
∫

0

dr r2g(r). (3.40)

This definition has been suggested in [9]. However, clusters do not have well-defined

boundaries – g(r) does not vanish completely at rmin (see the inset of Fig. 3.6).

This means that this quantity should be rather only used as a rough estimate that

provides a first insight into the underlying distribution of cluster sizes. If we want

to go beyond the calculation of static cluster properties we must analyse clusters

individually, using a radius of the order of rmin as a threshold to group particles

together.

As a starting point, we pick up the basic ideas developed in [9].6 We realise

however that, for our purposes, it is necessary to considerably refine the technique of

assigning particles to clusters. In view of the fact that we want to measure dynamic

properties of our system we have to distinguish between different clusters unambigu-

ously at each single step in time, otherwise taking the risk of losing track of their

identities.

In the following we will present a 5-step strategy of identifying clusters.

3.3.1 From single-particle to cluster trajectories

As mentioned above, the only estimate of a cluster’s spatial extent available at the

moment is given by the position rmin of the first minimum in g(r). We shall make

use of this criterion in Step 1 of our analysis.

6In contrast to [9], we opted for not including the analysis in the MD simulations, but implement-

ing it as a post-processing tool in our code. In this way, we keep the data analysis well separated

from the simulations. This route is more comfortable from the programmer’s point of view since it

makes code debugging and code maintenance easier.
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Figure 3.6: Radial distribution function, g(r∗), of a GEM-4 cluster crystal as a function

of r∗ for two different densities ̺∗ and temperatures T ∗. From the inset we see that g(r∗)

does not vanish completely at its first minimum, r∗min = 0.75.

Step 1 - Searching for neighbours.

We start with the first particle (particle 1) and calculate its distance from all other

particles in the system. As a neighbour of particle 1 we regard all particles which lie

within a sphere of cutoff radius rc. Every particle that satisfies this criterion will be

added to the set of neighbours of particle 1. Then we proceed to particle 2 and in a

similar manner with all particles. We end up with an array of size N , containing the

sets of neighbours of each particle. As a first guess the value of rmin is used for rc. In

Step 3 we will see that we still have to elaborate on this choice in order to optimise

the algorithm in terms of speed.

Step 2 - Grouping particles to clusters.

With the sets of neighbours for all particles at hand, we head for the composition

of the clusters. Starting again with particle 1, we label all its neighbours and their

respective neighbours7 with an identity number (ID), which in turn will be identified

with a cluster. Then we proceed to the next particle that has not been labelled yet

and finally arrive at a point where all particles have been assigned an identity. In

the end, each ID corresponds to a cluster.

7To form a cluster we have to join overlapping sets of neighbours.
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Step 3 - Separating merged clusters.

At this stage, using the algorithm described so far, we manage to reproduce the

results obtained in [9] on the cluster size distribution (see Fig. 3.7, left panel). How-

ever, from the fact that g(r) remains finite at its first minimum one concludes that,

occasionally, the distance of a particle from the centre of mass (CM) of its cluster

exceeds rmin. This is the case if, at sufficiently high temperatures, particles hop from

one cluster to another. The cluster analysis algorithm developed up to this point

risks to fail in that case; particles of both the old and the new home cluster might

be counted to the set of neighbours of the hopping particle, thereby merging the two

clusters (see Fig. 3.8 (a)).

One may well think that these troubles can be overcome by reducing the rc to

small enough a fraction of rmin; but, empirically, we realised that this choice does not

solve the problem. On the one hand, in a cluster crystal of high density, situations

occur in which, simultaneously, two or three particles are hopping to/from a cluster

from/to clusters in its nearest surrounding. This means that taking a smaller value

for rc would not solve the problem of one particle merging two clusters. One can

easily imagine an arrangement of two or more particles connecting two clusters or

even three. On the other hand, decreasing the cutoff radius drastically brings about

the problem that particles remain without any neighbours in their surrounding and

are subsequently believed to be clusters on their own.

For these reasons, we have to develop a more sophisticated procedure to separate

merged clusters, which does not rely on the mere reduction of rc. To this end, we

need to introduce three additional parameters in the cluster analysis procedure.

• nmin
c and nmax

c , the minimum and maximum cluster size present in our system.

Both of them are roughly estimated from the cluster size distribution calculated

after Step 1 and 2 (see Fig. 3.7, left panel).

• Nc, the number of lattice sites in our system, which is expected to be equal

to the amount of clusters in the crystal phase. Its value is known from the

beginning of the molecular simulation. (Remember, for each point in the phase

diagram, we start from a system configuration minimised in terms of its free

energy F by varying total particle number N and volume V but keeping the

number of lattice sites, Nc, constant.)

With these three parameters at hand, the algorithm aiming at separating merged

clusters proceeds in the following way.

1. All clusters that have just been identified are reconsidered. If the size of one

of them exceeds nmax
c , the collection of particles is isolated from the rest of the

system (see Fig. 3.8 (a)).
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Figure 3.7: Distribution of cluster sizes nc. Left panel, distribution calculated after Step 2

of the cluster analysis. From the inset it can be seen that there are still cases in which the

algorithm merges two or three different clusters. Right panel, distribution calculated after

Step 4. In the inset we see no signature of merged clusters anymore.

2. The search for neighbours is repeated just within the remaining set of particles

(Fig. 3.8 (b)).

3. Those particles with the lowest number of neighbours are excluded from the

others (Fig. 3.8 (c)). The reason for doing so is that particles at the boundaries

of a cluster have a number of neighbours that is small compared to the average

cluster population. We assume that these particles are responsible for merging

the clusters.

4. Once again the neighbours are identified, ignoring now the excluded particles.

5. Step 2 is performed for the updated sets of neighbours, giving disjoint clusters

(Fig. 3.8 (d)).

6. All particles excluded during the last two steps are reassigned to those clusters

with the nearest centre of mass position (Fig. 3.8 (e) and (f)).

7. As a last point, the following checks are made: (i) Does the size of all newly

derived clusters lie within nmin
c and nmax

c ? (ii) Is the number of clusters iden-

tified in the system equal to the number of lattice sites, Nc? If one of these

two conditions is not satisfied, the current procedure is iterated, reducing the

cutoff radius rc at each iteration.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Separating merged clusters step by step. (a) Clusters have been merged by

hopping particles. All particles in red are erroneously believed to belong to one cluster. (b)

The search for particle neighbours is repeated. (c) Merging particles (grey spheres) have

a small number of neighbours, they are temporarily excluded. (d) After identifying the

particles’ neighbours once again, new, separated clusters are set up. (e) Excluded particles

are reintroduced and reassigned to the nearest cluster. (f) Procedure accomplished, yielding

three disjoint clusters.
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Steps 4 - Reassigning remaining particles to clusters.

In order to be as flexible as possible in the choice of the cutoff radius rc, we opted for

implementing a final check on the cluster sizes at that point. If, by accident, there

are still remaining particles or small collections of particles which have not yet been

assigned to one of the clusters, we label them with the ID of the cluster with the

nearest centre of mass. The outcome of our efforts made to distinguish unambigu-

ously between clusters becomes obvious when we reconsider the cluster population

distribution (see Fig. 3.7, right panel). Peaks due to single particles and merged clus-

ters have vanished, reflecting correctly the distribution of cluster sizes in the system.

From MD simulations we obtain a set of configurations which contain single-

particle trajectories. Having performed Steps 1 to 4 for all configurations available

we still need to ensure that the cluster IDs remain unique to each cluster in time as

well.

Step 5 - Matching cluster IDs in time.

Remember that, for the sake of simplicity, we started our search for particle neigh-

bours always with particle 1 and then continued up to particle N . Yet, in the diffusive

regime of a clustering system we encounter a substantial number of particles hop-

ping around and changing their cluster identities, which raises the following question:

What if, in the course of the simulation, particles hop to other clusters? In this case,

the IDs of clusters would be exchanged and we would lose track of the individual

clusters in no time. This has to be avoided, since it is crucial for the analysis of dy-

namic properties of a cluster to ensure that the cluster identity is fixed at all points

in time.

To overcome this problem, we can benefit from the assumption that, as long as we

carry out the cluster analysis in the crystal phase, the centres of mass of the clusters

are bound to their respective lattice sites. To be more specific, the root mean square

displacement of the centres of mass,
√

〈r2
cm(t)〉, does not exceed ten percent of the

nearest-neighbour distance between clusters, dnn, at any state point in the fcc region

of the phase diagram,

√

〈r2
cm(t)〉 ≤ 0.10 dnn, ∀ (̺, T )fcc. (3.41)

It is thus possible to match each cluster CM with itself by identifying it with the

nearest cluster CM in the next time step. In this way, it is guaranteed that, once a

cluster ID has been chosen, we address the same cluster object in each configuration

computed in the simulation.
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By the successful accomplishment of Step 5 we finish the cluster analysis. It

supplies us with the information necessary for the calculations of dynamic properties

that are related to the motion of particles with respect to their cluster’s CM or the

cluster motion itself (for example, the VACF of the cluster CM or their MSD). It is

worth summarising the relevant parameters used:

- rc, the cutoff radius defining the sphere in which we search for neighbouring

particles. In our work its optimal value was empirically found to be r∗c ≈ 0.5,

which is smaller than the position of the first minimum in g(r), r∗min ≈ 0.75,

for the GEM-4 potential.

- nmin
c and nmax

c , the minimum and maximum cluster size, used to check whether

two or more clusters have been erroneously merged by the algorithm.

- Nc, the number of lattice sites in the simulation box, necessary to check if

separating the merged clusters has been successful.

The cluster analysis procedure is designed to treat a crystalline system. We want

to stress, however, that it perfectly applies to disordered phases as well. In this case,

we have to restrict the analysis to Steps 1 and 2, since neither the number of clusters

is preserved nor are their centres of mass bound to lattice sites anymore.

3.3.2 An alternative cluster analysis method

The way of calculating cluster objects from single-particle trajectories presented in

this work is not the only one one can think of. An alternative approach to it would

be to start from the calculation of the single-particle potential energy surface. After

the minima of the latter have been identified, particles are labelled with the IDs of

the nearest potential energy minimum around, thereby forming the clusters. By the

use of this method difficulties arising from merged clusters might be circumvented

in an elegant manner. Still, the analysis relies on parameters such as the number of

lattice sites or a definition of what to consider a sufficiently deep local minimum on

the potential energy surface.
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Vibrations in cluster crystals

In recent years, static properties of cluster crystals have been extensively stud-

ied [3, 15, 20, 21]. In Chapter 1 we have presented the outcome of these studies.

The dynamic properties [22, 23] of cluster crystals, however, have been considered

to a lesser extent. One main part of our work is dedicated to the investigation of vi-

brations in cluster crystals. In an effort to understand how particles behave within a

cluster on a very short-time scale, we reconsider the GEM-4 potential. From previous

works [9], data of equilibrium system configurations for this representative member

of the GEM-n, n > 2, class are available. These will serve as a starting point for our

MC and MD simulations.

In Section 4.1 we give a detailed protocol of the simulations that we perform,

which shall enable the reader to retrace the numerical part of our work with ease.

Our results on single-particle and collective motion in cluster crystals will take centre

stage in Section 4.2.

4.1 Simulation protocol

For the characterisation of the vibrational properties of a cluster crystal, we perform

both MC and MD simulations for a GEM-4 system. We choose the fcc phase for

our investigations because, for a GEM-4 system, the fcc crystal structure remains

stable for all densities beyond a certain temperature-dependent threshold density

(cf. Section 1.3). The explicit region of the GEM-4 phase diagram that we explore

is illustrated in Fig. 4.1. At each state point we run simulations for ten independent

realisations of the system and take the average of the dynamic quantities of interest

(such as the VACF for example). In this way, we enhance the statistical significance

of our results and reduce their possible dependence on initial conditions or on the

cluster size distribution in the system.
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Figure 4.1: GEM-4 phase diagram. The blue and the red line depict the fluid-bcc and

the bcc-fcc coexistence line, respectively. Both of these lines have been fitted to the data

presented in [9], depicted by the blue and red squares. In our work, we investigate the

vibrational properties in the fcc phase. Simulations are performed for densities ̺∗ = 4.3,

6.4, and 8.7 in the range of temperatures indicated by the full black circles.

̺∗ 〈nc〉 a∗
fcc Nc N

4.3 8.824 2.0 256 2259

6.4 13.152 2.0 256 3367

8.7 17.883 2.0 256 4578

Table 4.1: Important parameters for setting up MC and MD simulations. We perform

simulations for an fcc cluster crystal at three different densities, ̺∗, for which the average

cluster occupation number, 〈nc〉, was obtained in the work of Mladek et al. [9]. The fcc

lattice constant, a∗fcc, is prescribed to the value predicted by DFT, the number of lattice

sites in the system, Nc, is constant. Accordingly, the number of particles in the system, N ,

varies with density.
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System setup

Before starting MC and MD simulations, we have to set up a cluster crystal cor-

responding to an equilibrium configuration at a given density ̺. As mentioned in

Chapter 1, these equilibrium configurations have been determined by Mladek et al. [9]

for a large region of the GEM-4 phase diagram by the use of the DFT formalism. In

this formalism the free energy functional, F , is minimised with respect to the average

cluster occupation number, 〈nc〉. For our purposes, we take advantage of the data

obtained from these calculations (see Tab. 4.1) and choose an equilibrium number

of particles N in our system appropriate for each state point. The explicit value of

the density-independent lattice constant, a, for the GEM-4 system is provided by

GA- and DFT-calculations (cf. Chapter 1.2). To be more specific, a∗ ∼= 2.0 in the

entire fcc region of the GEM-4 phase diagram.

With this information at hand, we set up a cluster crystal with four fcc unit cells

per box side at a lattice spacing of a∗ = 2.0, leading to Nc = 4 · 43 = 256 lattice

sites in a box of side length L∗ = 8.0. For a given density we choose the appropriate

number of particles from Tab. 4.1 and uniformly distribute Nc · INT(〈nc〉) 1 of these

particles onto the lattice sites. The N −Nc · INT(〈nc〉) remaining particles are then

assigned randomly to the lattice sites.

MC simulation runs

In the next step we perform MC simulations2 to allow the cluster crystal, initially

set up at zero temperature, to find its equilibrium distribution of cluster sizes, cor-

responding to the equilibrium degree of polydispersity in the cluster occupancy, at

temperature T . The dependence of cluster size polydispersity on density and tem-

perature has been described in [15]: according to this work, the width of the cluster

size distribution changes, above all, with T , which is well reproduced in our MC

simulations (see Fig. 4.2).

As soon as the cluster size distribution has reached equilibrium in the MC simu-

lation runs, we can proceed with the MD simulation runs.

MD simulation runs

From MC simulations, we obtain configurations equilibrated in terms of the parti-

cle positions in the crystal. We now make use of NVT simulations, as described in

1Here, the function INT(x), familiar to any computational physicist, truncates the decimal digits

of a real number x and returns the next lower integer n.
2The reason why we use MC simulations instead of MD simulations for the equilibration of the

system has already been pointed out in Section 2.2.3. In the non-diffusive region of the fcc phase it

is not possible to reach the equilibrium cluster size distribution within reasonable simulation length.
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Figure 4.2: Distribution of cluster sizes at two different densities, ̺∗ = 4.3 and 8.7. The

width of the distribution, a measure of the degree of polydispersity present in a cluster

crystal, grows as the temperature, T ∗, is increased.

Section 2.3.2, to equilibrate the particle velocities according to the Boltzmann ve-

locity distribution, eq. (2.22), at the desired temperature T . Before starting the MD

“production runs” (NVE simulations (cf. Section 2.3.1)) the simulation parameters

that we employ have to be fixed. These are, for example, the time step, δt, the time

interval of configuration printout, ∆t, or the simulation length, tmax. The choice of

the values of the respective parameters primarily rests upon the quantities that we

intend to calculate from the trajectories and the required numerical accuracy.

Aiming at characterising the spectrum of vibrations in a cluster crystal, the time

step, δt, and the configuration printout interval, ∆t, must be chosen such that particle

oscillations can be resolved with sufficient precision in the VACF and enough simu-

lation time steps, n, are available for the calculation of its Fourier transform (FT).

In fact, the finest possible resolution in frequency, ∆ω, in the spectrum of the VACF

is determined by the equation

n∆t∆ω = 2π. (4.1)

This relation is imposed by the formalism of the discretised FT and inverse FT of

any time-dependent correlation function (see [25], Appendix D). These considerations

lead us to the first type of production runs (see Tab. 4.2 – third column). These

runs are characterised as relatively short MD simulations (“short” runs), with many

system configurations written out for the ensuing post-processing analysis.
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MD production run “short” “long”

time step δt∗ 0.02 0.02

configuration printout interval ∆t∗ 0.02 500

number of simulation steps n 8000 500 000

simulation length t∗max = n · δt∗ 160 10 000

potential cutoff scheme “cut & shift” “cut & shift”

speed-up scheme Verlet list Verlet list

Table 4.2: Specific simulation parameters characterising the MD production runs (NVE

simulations) used for i) calculating the VACF and its FT (“short” run), and ii) the normal

mode analysis (“long” run). For explanations on potential cutoff and speed-up scheme see

Sections 2.1.3 and 2.1.4.

We perform separate MD simulation runs for the normal mode analysis (NMA).

Starting again from an MC-equilibrated system we run relatively long simulations,

“long” runs (see Tab. 4.2 – forth column), in which particles are offered the possibility

to hop and diffuse over several lattice sites. In this way, we are able to cancel out the

influence of different cluster occupancy configurations in the crystal on the vibrational

spectrum, by selecting system configurations sufficiently separated in time for the

NMA.

Post-processing data analysis

For the short runs, the MC and MD simulations that we have just outlined are

performed for ten different cluster crystal realisations at each state point, (̺, T ).

The difference in these realisations results from the random assignment of particles

to cluster sites when setting up the system, and the stochastic development of particle

positions in the MC equilibration run. For the calculation of the VACF and its FT

from the short simulation runs, we average over these independent realisations.

Finally, we mention the great computational effort made in the NMA of the

present clustering systems. For the highest density, ̺∗ = 8.7, for instance, a (3N ×
3N) = (3·4578)×(3·4578) = 13734×13743 dimensional matrix has to be diagonalised,

a procedure that takes up to around 14 hours on an Intel Core 2 Duo CPU at 3.00

GHz, for 15 system configurations at each temperature.
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Figure 4.3: For short times, t∗, the VACF, the MSD and the van Hove correlation function

of a cluster crystal exhibit oscillations of the same frequency.

4.2 Single-particle and collective motion in a clus-

ter crystal

In Section 1.3.4 we briefly reported on the predictions on acoustic and optical branches

in the phonon spectrum of a cluster crystal made by Likos et al. [2]. A connection

between these two different kinds of phonon excitations, on the one hand, and col-

lective and individual motion of particles in the system, on the other hand, has been

established. In our work, we carry out more profound investigations on particle vi-

brations in cluster crystals in order to understand how these determine the shape of

the vibrational density of states in the system.

First insight into the particles’ motion is provided by a comparison of the os-

cillation frequencies of the VACF, the MSD and the van Hove correlation function

(cf. Section 3.1.3) for short times (see Fig. 4.3). Interestingly, on this timescale all of

these three dynamic quantities exhibit oscillations which share the essentially equal

frequency. Obviously, such similarities point towards a common origin of the os-

cillations, to be found in the particles’ motion. Indeed, in [22, 23] this particular

behaviour of the MSD for short times was attributed to the oscillatory motion of

particles around the lattice sites.
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4.2.1 The spectrum of vibrations obtained from the VACF

Having a suitable cluster analysis tool (as the one presented in Section 3.3.1) at

our disposal we are now able to take a further step in the description of vibrations

in a cluster crystal. To understand how particles behave within a cluster, we will

analyse the motion of individual particles and cluster centres of mass separately.

This task necessitates the decomposition of the particle positions and velocities into

components associated with the CM motion and components describing the motion

of a particle relative to the cluster CM. The position and velocity of a cluster CM is

given by

rcm =
1

M

nc
∑

i=1

mi ri =
1

nc

nc
∑

i=1

ri (4.2)

vcm =
1

M

nc
∑

i=1

mi vi =
1

nc

nc
∑

i=1

vi . (4.3)

Here, nc indicates the instantaneous cluster size, M =
∑nc

i=1 mi is the cluster mass,

and ri and vi are the positions and velocities of a cluster’s particles. The second

equivalence in eqs. (4.2) and (4.3) follows from our initial assumption that all particles

have the same mass, mi = m (cf. Section 2.1.1). Dropping the index i, the relative

coordinates and velocities of a particle with respect to the CM of its home cluster

are given by

rrel = r − rcm (4.4)

vrel = v − vcm . (4.5)

Furthermore, as illustrated in Fig. 4.4, we decompose the relative particle veloc-

ity, vrel, into a radial and a tangential part,

vr = (vrel · e) e (4.6)

vt = vrel − vr , (4.7)

where e is a unit vector pointing into the direction of rrel,

e = errel
=

rrel

|rrel|
. (4.8)

The typical shape of the auto-correlation function for all velocity components is

displayed in Fig. 4.5. For the range of temperatures we consider, the VACFs of the

total and the relative particle velocity, cv(t) and cvrel
(t), normalised to cv(0), are al-

most indistinguishable. The VACF of the cluster CM motion, cvcm
(t), is characterised

by a very small amplitude and a decay in time that is different from the one of the
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Figure 4.4: For the analysis of the VACF of different components of the particle velocity

we decompose vrel, defined in eq. (4.5), into a radial and a tangential part, vr and vt. The

large, full grey circle depicts the cluster CM, the smaller, full blue circle indicates a particle

in the cluster.

other velocity components. The radial and the tangential velocity components show

amplitudes that remarkably differ from each other. Their distinct amplitudes reflect

the number of degrees of freedom associated with each of the components. While the

radial motion of a particle can be described by its radial separation from the clus-

ter CM, rrel (one degree of freedom), the tangential motion is associated with two

angles, ϑ and ϕ (two degrees of freedom). By virtue of the equipartition theorem [37]

this leads to the average ratio 〈v2
r 〉 : 〈v2

t 〉 = 1 : 2. The two ensemble-averaged squared

velocities, 〈v2
r 〉 and 〈v2

t 〉, are the t = 0 limits of their corresponding VACFs.

The vibrational spectrum obtained from the FT of the VACF of the total particle

velocity, c̃v(ω), displays the characteristic shape shown in Fig. 4.6. The spectrum is

markedly dominated by a main peak, the position of which exclusively depends on

density. Though very weak in amplitude, the rich peak structure in the remainder

of the spectrum is no less remarkable (see the inset of Fig. 4.6). Indeed, the FT of

the VACF of the relative particle velocity and of the cluster CM velocity, c̃vrel
(ω)

and c̃vcm
(ω), reveal that the spectrum may be understood as consisting of two con-

tributions, as illustrated in Fig. 4.7. The main peak is associated with individual

motion of particles within the cluster, i.e. relative to the cluster CM, whereas the

small peak structure is related to coherent motion of particles within a cluster, i.e. the

motion of the cluster CM itself.

4.2.2 The vibrational density of states obtained from NMA

The calculation of the FT of the VACF of different velocity components is a very

straight-forward approach leading to the spectrum of vibrations in a crystal. Nonethe-

less, it is worthwhile calculating the vibrational density of states (VDOS) by NMA
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of peaks of smaller amplitude (shown in the inset).
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coherent motion of particles within a cluster.

as well, as it perfectly complements and confirms the picture of vibrations gained

from the FT.

In general, the FT of a VACF contains more than just the information about

vibrations. It also takes into account anharmonic effects that come into play at high

temperatures and may serve as a measure of diffusion in the system (cf. eq. (3.19)).

NMA, on the other hand, provides a route to an even more profound understanding

of the vibrational spectrum. It yields not only the “true” VDOS, D(ω), via eq. (3.38),

but also the eigenvectors of the dynamical matrix of the system from which the par-

ticipation ratio, p(ω), of particles on a normal mode can be calculated via eq. (3.39).

In Section 3.2 we mentioned that the NMA requires a preceding minimisation of the

total potential energy of the system. In Fig. 4.8 an untreated cluster crystal config-

uration is opposed to a minimised configuration, in which all particles of a cluster

sit on top of each other.

From Fig. 4.9 we obtain a first impression of the VDOS and the origin of its

different contributions which agrees very well with the one established via Fig. 4.7.

Again, a large main peak dominates the spectrum and the surrounding peak structure

persists. The participation ratio, p(ω), takes low values in the region of the main

peak, indicating high localisation of normal modes. For the rest of the spectrum, p(ω)



4.2 Single-particle and collective motion in a cluster crystal 61

(a) (b)

Figure 4.8: Simulation snapshots of a cluster crystal at ̺∗ = 6.4 and T ∗ = 0.80, (a) before

minimising the total potential energy, and (b) after the minimisation procedure has been

carried out (cf. Section 3.2.1). The minimum of the total potential energy in a cluster

crystal corresponds to a configuration in which all particles of a cluster sit right on top of

each other. In a polydisperse system, the positions of the clusters will not exactly coincide

with the lattice sites of a perfect fcc crystal, since inter-cluster interactions depend on the

(non-uniform) cluster sizes. These deviations are, however, too small to be discernible in

(b).

takes considerably larger values, which suggests the presence of delocalised normal

modes, i.e. modes which involve a large fraction of particles throughout the crystal.

This type of vibrations corresponds to collective motion of particles, as anticipated

in Section 4.2.1. In Fig. 4.10 the VDOS and the participation ratio are displayed

for two different densities. These results give further evidence that the position of

the main peak in the VDOS exactly coincides with the region of high normal mode

localisation, corresponding to small values of p(ω).

As pointed out in Section 3.2.2, NMA also provides information on the displace-

ment vectors ei
α of each particle i on a mode α. Thus, we may directly look at

intra-cluster and collective modes in real space. From Fig. 4.11 the character of

localised and delocalised modes becomes obvious. For frequencies ω chosen from

the centre of the main peak in the spectrum, only particles belonging to one single

cluster have a significant vector displacement on the corresponding normal modes

(Fig. 4.11 (a), (b)). For frequencies located in the region of delocalised vibrations in

the VDOS, on the other hand, particles all over the crystal contribute to the mode

in a collective motion (Fig. 4.11 (c), (d)).

A final remark concerns the shape of the main peak in the VDOS. Apart from the
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Figure 4.10: VDOS, D(ω∗), and participation ratio, p(ω∗), for (̺∗, T ∗) = (4.3, 0.50) and
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localisation of normal modes coincides with the position of the main peak.
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(a) (b)

(c) (d)

Figure 4.11: Localised and delocalised normal modes in real space for a cluster crystal at

̺∗ = 6.4 and T ∗ = 0.80. The orange vectors indicate the direction of the displacement ei
α of

a particle i on a mode α. The vector length |ei
α| is arbitrarily scaled to enhance visibility. In

(a) and (b) two localised normal modes corresponding to intra-cluster motion are shown;

only particles with non-zero displacement, |ei
α| > 0, are drawn. The frequencies and

participation ratios are (a) ω∗ = 8.54, p = 0.0012 and (b) ω∗ = 8.75, p = 0.0008. In (c)

and (d) two representative delocalised normal modes are displayed; only particles with a

displacement |ei
α| ≥ 0.14 are shown. At each lattice site, all cluster particles sit on top of

each other participating “collectively” in the oscillation of the cluster CMs. The frequencies

and participation ratios are (c) ω∗ = 2.72, p = 0.68 and (d) ω∗ = 12.43, p = 0.62.
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cluster crystal. In the inset, the distribution of cluster sizes, nc, is shown for the same

density and temperatures.

fact that its position is independent of temperature we find a correlation between the

width of the main peak and the degree of cluster size polydispersity present in the

system, which can be seen from Fig. 4.12. The question arises how the distribution

of cluster sizes can possibly influence the spectrum of vibrations in a cluster crystal.

An explanation of this effect will be given in the following subsections.

4.2.3 Effectively harmonic one-particle motion

From Fig. 4.6 and Fig. 4.10 we conclude that the position of the main peak in the

VDOS depends on density, ̺. This behaviour can be understood within the concept

of a harmonic approach to the single-particle motion, as suggested in [2]. In that

work, the oscillation of a single particle with respect to all its peer particles in a cluster

is considered, in order to derive an expression for the effective site potential, Φsite(rrel).

The latter is obtained from a Taylor series expansion of the single-particle potential

energy around a lattice site and by exploiting the symmetry properties of a cubic

lattice. Φsite(rrel) then takes the form

Φsite(rrel) = Φsite(0) +

[

(〈nc〉 − 1)

6

∑

R6=0

φ′′(R)

]

r2
rel. (4.9)
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̺∗ 〈nc〉 ω∗
0 [VDOS] ω∗

0 [Φsite] ω∗
0 [fit]

4.3 8.824 7.3 7.7 6.5

6.4 13.152 8.8 9.6 7.9

8.7 17.883 10.3 11.3 9.2

Table 4.3: Oscillation frequency, ω∗
0, of individual particle motion for different densities.

Estimates of ω∗
0 are obtained from the position of the main peak in the VDOS, eq. (4.11) de-

rived from an expression for the effective site potential Φsite, and a fit to the single-particle

potential well calculated from MD simulation data.

Here, rrel is given by eq. (4.4), R are the lattice site vectors, and the pair poten-

tial φ(r) can be any representative of the GEM-n, n > 2, class defined in eq. (1.1).

From eq. (4.9) it follows that Φsite(rrel) can be considered as a harmonic potential well

in which the single particle is trapped. Thus, the corresponding effective, one-particle

Hamiltonian, H1, [2] can be written in the form

H1 =
p2

2m
+

mω2
0

2
r2
rel, (4.10)

where the two terms on the right-hand side represent the kinetic and the potential

energy, respectively. Comparison of the prefactors of r2
rel in eqs. (4.9) and (4.10)

allows the oscillation frequency to be expressed as

ω0 =

√

√

√

√

(〈nc〉 − 1)

3m

∑

R6=0

φ′′(R). (4.11)

Since the nearest-neighbours contributions dominate by far the sum in eq. (4.11), it

is sufficient to take into account only the nearest-neighbour sites for the evaluation

of this expression, i.e. 12 sites in an fcc lattice, a distance d∗
nn = a∗

fcc/
√

2 ∼=
√

2

apart from the central site. From Tab. 4.3 we see that, despite the substantial

simplifications made when deriving the effective site potential, Φsite(rrel), the results

for ω0 obtained from eq. (4.11) for different densities match the positions of the

main peak in the VDOS (cf. Figs. 4.9 and 4.10) quite well. In addition, the density

dependence of the VDOS can be easily explained: for 〈nc〉 ≫ 1 eq. (4.11) suggests a

linear dependence of ω2
0 on 〈nc〉, which translates into a linear scaling of ω2

0 with ̺,

ω2
0 ∝ 〈nc〉 ∝ ̺, (4.12)

due to eq. (1.17) (see Fig. 4.13).

The above results encourage us to calculate the shape of the single-particle poten-

tial well from our simulation data. To this end, we simply evaluate the single-particle
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dependence of the oscillation frequency ω∗
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potential energy at those separations from the cluster CM which occur naturally in

the course of a particle’s oscillation at finite temperature. We then fit a parabolic

function to the effective site potential, Φsite(rrel), calculated in this way, and extract

its curvature ω2
0[fit] (see Fig. 4.14). From the fifth column of Tab. 4.3 we see that

the so-obtained frequencies ω0[fit] match the ones calculated from the VDOS and via

eq. (4.11) quite well.

Exploiting our simulation data even further we are also able to determine the

shape of the effective site potentials for clusters of different occupancy nc. The

results are shown in Fig. 4.15 and suggest that the average curvature, ω2
0, of the

harmonic potential well depends only very weakly on nc. Above all, ω2
0 is determined

by the contributions of the nearest-neighbour clusters to the potential energy, which

correspond to the contributions to the sum in eq. (4.9). The force on a particle

exerted by its neighbour particles within the same cluster is very small because of

the functional shape of the GEM-4 potential, for which φ′(r ≈ 0) ≈ 0. This can

also be seen in Fig. 4.16, where two representative single-particle trajectories are

illustrated. The particles’ oscillatory motion is not deflected or distorted by the

interaction with the other particles that occupy the same cluster.

The above considerations certainly give a qualitatively correct picture of how

particles behave in a cluster. However, the deviations of ω0[fit] and ω0[Φsite] from



68 Vibrations in cluster crystals

0.0

0.4

0.8

1.2

1.6

-0.5  0  0.5 -0.5
 0

 0.5-0.5

 0

 0.5

z *rel

x *rel
y *rel

z *rel

0.0

0.4

0.8

1.2

1.6

-0.5  0  0.5

-0.5

 0

 0.5

x *rel

y *rel

0.0

0.4

0.8

1.2

-0.5
 0

 0.5 0  0.5
-0.5

 0

 0.5

z *rel

x *rely *rel

z *rel

0.0

0.4

0.8

1.2

-0.5

 0

-0.5

 0

 0.5

-0.5

 0

 0.5z *rel

x *rel
y *rel

z *rel

Figure 4.16: Two representative trajectories of a particle oscillating in its home cluster.

Red and blue colour stand for high and low values of the modulus of the relative particle

velocity, respectively (cf. colour palettes). We look at each trajectory from two different

points of view, the first one perpendicular to the plane defined by the particle’s motion

around the cluster CM (first and third panel from the top), the second one lying in this

plane (second and forth panel). The cluster CMs are depicted by small black spheres. The

two trajectories occur as regular orbits around the cluster CM and the particles’ motion is

almost constrained to a plane (second and forth panel), indicating that there is little to no

correlation to the motion of other particles in the same cluster.
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ω0[VDOS] in Tab. 4.3 indicate that the assumption of one-particle motion must not

be fully trusted. One must not ignore the fact that, in reality, the dynamics of a

clustered system takes place on a high-dimensional potential energy surface.

4.2.4 Phonon spectra of monodisperse and polydisperse clus-

ter crystals

Recently, we became aware of further investigations on the phonon spectrum of clus-

ter crystals that are currently under way [44]. Diagonalising the dynamical matrix

in k-space in an analytical approach, these studies are expected to yield phonon dis-

persions which feature 3 acoustic and and 3(nc − 1) optical branches, as has been

mentioned in Section 1.3.4. Since only monodisperse systems are considered, i.e. crys-

tals with fixed integer occupation number, nc, for all lattice sites, all optical branches

will be degenerate.

In an effort to render the results of [44] comparable to our data, we perform

additional MD simulations for a monodisperse system at ̺∗ = 6.32 with a uniform,

integer cluster size nc = 13, and for a polydisperse system at the same density.

In Fig. 4.17 we see that, in the monodisperse case, all intra-cluster normal modes

are degenerate, with a single frequency, ω∗ ∼= 8.79, which complies well with the

analytical predictions [44]. For the polydisperse system, the degree of degeneracy in

frequency is considerably reduced but not entirely removed. In fact, from the NMA

we can also extract the number of modes of the same frequency ω0, which provides

information that the oscillation of all particles at a cluster site is associated with

precisely three frequencies, one for each direction in real space. The three frequencies

are ninst
c -fold degenerate, with ninst

c being the instantaneous occupation number of the

cluster. As mentioned above, these frequencies are determined not by the particles

that occupy this cluster themselves but by the nearest-neighbour clusters and their

respective occupancy. Hence, there exist many different frequencies, contributing to

the broad main peak in the VDOS of a polydisperse system, which originate from

the numerous possible arrangements of clusters of different size around a central site.

As a final point it is worth mentioning that, even though the spectrum of normal

modes that characterise intra-cluster motion in a polydisperse system differs from

the monodisperse case, the basic principle that the phonon spectrum is separated

into acoustic and optical branches remains valid. Remarkably, a signature of acoustic

and optical branches can be observed even in the FT of the VACF.

This can be seen by calculating the ratio of the integral over the spectrum of the

relative particle velocities, c̃vrel
(ω), and the integral over the spectrum of the cluster
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Figure 4.17: VDOS of a cluster crystal for systems of monodisperse and polydisperse

cluster sizes nc. In the monodisperse system, all frequencies of the main peak coincide

at one single frequency, ω∗
0 = 8.79. The main peak and the small peaks in the VDOS of

the monodisperse system have been scaled down by a factor of 65 and 6.5, respectively, to

enhance visibility. In the inset, the cluster size distribution for the polydisperse and the

monodisperse system is shown.

CM velocities, c̃vcm
(ω) (cf. Fig 4.7). This ratio yields an estimate of (〈nc〉 − 1),

∞
∫

0

c̃vrel
(ω) dω

∞
∫

0

c̃vcm
(ω) dω

∼= 3 (〈nc〉 − 1)

3
= (〈nc〉 − 1). (4.13)

Eq. (4.13) is fulfilled very well in the entire range of densities and temperatures that

we consider, as shown in Tab. 4.4.
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̺∗ 〈nc〉 T ∗ (〈nc〉 − 1)

4.3 8.824 0.20 7.826

0.35 7.855

0.50 7.835

6.4 13.152 0.20 12.288

0.50 12.108

0.80 12.011

8.7 17.883 0.20 16.848

0.80 17.040

1.10 17.044

Table 4.4: Evaluation of eq. (4.13) for a range of densities and temperatures, yielding an

estimate of (〈nc〉 − 1).





Chapter 5

Diffusion in cluster crystals

The second part of the present work is dedicated to the description of diffusion

processes in cluster crystals. Unlike perfect single-occupancy crystals, such systems

exhibit an appreciable degree of long-time diffusivity by so-called particle hopping

processes. Concerning this mechanism, two of the most interesting questions are why

and how particles are given the possibility to move from one cluster to another.

In Section 5.1 we focus on the most important parameters that characterise our

simulations. The results of our investigations of the diffusive behaviour of particles

in a cluster crystal will be presented in Section 5.2.

5.1 Simulation protocol

To explore the features of diffusion processes in a cluster crystal we perform MD sim-

ulations in a GEM-4 system. For these simulations we choose those state points in

the fcc region of the GEM-4 phase diagram (cf. Fig. 4.1) for which a measurable de-

gree of diffusivity can be expected within reasonable simulation length (see Tab. 5.1).

The procedure to set up ten independent realisations of a cluster crystal for every

state point and the MC equilibration runs are identical to the ones presented in

Section 4.1 (cf. Tab. 4.1).

MD simulation runs

As in the MD simulations that were run to characterise the vibrational spectrum of

a cluster crystal, the choice of the configuration printout interval, ∆t, depends on

the timescale on which the physical processes of interest take place. ∆t has to be

small enough to resolve the particles’ diffusive motion in the crystal, i.e. hopping

processes between lattice sites. In contrast to the MD simulations in Chapter 4, we

are free to choose the number of simulation steps, n, as we now need not calculate
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̺∗ T ∗ D∗

4.3 0.45 9.978 · 10−5

0.50 3.948 · 10−4

6.4 0.65 7.046 · 10−5

0.70 2.109 · 10−4

0.75 4.447 · 10−4

0.80 1.119 · 10−3

8.7 0.90 8.007 · 10−5

0.95 1.707 · 10−4

1.00 3.283 · 10−4

1.05 7.045 · 10−4

1.10 1.272 · 10−3

Table 5.1: MD simulations are performed in the region of the GEM-4 phase diagram where

the fcc phase is stable at those state points (̺∗, T ∗) for which diffusion can be observed

within reasonable simulation length. The corresponding diffusion coefficient, D∗, obtained

via eq. (3.21), is included in the table.

time-dependent correlation functions over long times. Therefore, we perform MD

production runs (NVE simulations) that comply best to the abilities of the sub-

sequent post-processing analysis, i.e. we generate data files of relatively small size

which are easy to process. At every state point and for each of the ten system

realisations we carry out ten successive simulation runs of that kind, in this way

guaranteeing that our results are based on sufficiently rich statistics. In Tab. 5.2 a

full characterisation of these MD simulations of medium length is given.

MD production run “medium length”

time step δt∗ 0.02

configuration printout interval ∆t∗ 10

number of simulation steps n 20 000

simulation length t∗max = n · δt∗ 400

potential cutoff scheme “cut & shift”

speed-up scheme Verlet list

Table 5.2: Specific simulation parameters characterising the MD production runs (NVE

simulations), from which the diffusive behaviour of particles in a cluster crystal is deter-

mined.
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Post-processing data analysis

Having finished the MD simulations for a given state point (̺, T ) we analyse the gen-

erated system configurations by employing our cluster analysis algorithm (cf. Sec-

tion 3.3.1). The latter provides the necessary information to which clusters the

particles belong in the course of a simulation. This enables us to keep track of the

diffusion of each particle in the system and to calculate relevant quantities (such as

the distribution of the distances travelled by diffusing particles). These quantities

are then averaged over the ten successive simulation runs mentioned above and ten

independent system realisations, for each point in the diffusive part of the fcc region

of the phase diagram (cf. Tab. 5.1).

In addition, for the characterisation of long-time diffusion in a cluster crystal, we

take advantage of the “long” MD simulations performed in Chapter 4 (cf. Tab. 4.2),

from which we calculate, for instance, the MSD and the van Hove correlation func-

tion.

5.2 Diffusive behaviour of particles in a cluster

crystal

The most direct way to gain insight into diffusion processes in a cluster crystal is

provided by the MSD. In Fig. 5.1 the MSD for a range of densities and temperatures

is shown as a function of ̺1/2t. In [22, 23] this quantity was calculated for a GEM-8

system (cf. Fig. 1.1). Its behaviour was described as consisting of basically three

different regimes in time: the quadratic increase of the MSD in t, called “ballistic”

regime, takes place for very short times, i.e. when a particle is not yet interacting

with surrounding particles. The following crossover regime (“plateau” regime) is

associated with the temporary trapping of particles within the clusters. For long

times, the diffusive regime is reached, for which the MSD scales linearly with t. In

this region, every particle moves beyond the nearest-neighbour distance between the

lattice sites, dnn. From visual inspection of simulation snapshots we realise that,

even though particles are able to diffuse in the crystal, the fcc lattice structure is

maintained during the entire simulation. This situation is in sharp contrast to the

one observed in single-occupancy crystals, where diffusion is impossible as long as

there are no interstitials or vacant lattice sites. For the cluster crystal it means

that, without the clusters being decomposed themselves, particles can jump between

neighbouring clusters, a phenomenon which has been referred to as “hopping” [20].

These hopping processes lead to clusters that are composed of locally ever-changing

particle populations, while the average cluster population, 〈nc〉, and the number of

lattice sites in the system, Nc, remain unaffected [23].
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Figure 5.1: MSD of a GEM-4 cluster crystal for different densities and temperatures. The

time axis is scaled with ̺∗1/2t∗, in which case the short-time oscillations in the MSD have

identical frequencies due to eq. (4.12). Essentially, three different regimes can be identified:

the initial ballistic regime (not shown in the plot) is followed by a plateau regime for

intermediate times (100 . ̺∗1/2t∗ . 2 · 101), corresponding to the particles being trapped

in the clusters. In this regime, the oscillations in the MSD are of the same frequency as in

the VACF (cf. Fig. 4.3). For long times (̺∗1/2t∗ & 2 · 101), the diffusive regime is reached,

for which the MSD grows linearly with t.

5.2.1 Characteristic features of particle hopping

Aiming at a deeper understanding of this hopping mechanism we consider the van

Hove self correlation function, Gs(r, t), introduced in Section 3.1.3. Again, Moreno

and Likos [23] discussed this quantity for the case of a GEM-8 system for the first

time. In Fig. 5.2 Gs(r, t) is shown for ̺∗ = 4.3 and T ∗ = 0.50 for different times t.

The presence of a sequence of well-defined peaks, located at distinct r-values, points

to the fact that the motion of particles between clusters is of discrete nature. With

increasing time, the first peak in Gs(r, t) decreases while peaks located at larger dis-

tances grow progressively, corresponding to particles moving away from their original

home clusters. The black arrows in Fig. 5.2 indicate the distances to the n-th nearest

neighbours in the fcc crystal structure,
√

ndnn (n = 1, 2, 3, 4). The second maximum

in Gs(r, t) at r/dnn ≈ 1 originates from the hopping of a particle to the first shell

of nearest neighbours of its home cluster. The fact that n = 2 and n = 3 corre-

spond to a local minimum and a local maximum of Gs(r, t), respectively, suggests
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Figure 5.2: Van Hove self correlation function, Gs(r/dnn, t
∗), at (̺∗, T ∗) = (4.3, 0.50) as

a function of r/dnn for different times t∗, as indicated in the key. With increasing time,

peaks at larger distances arise in Gs(r/dnn, t
∗) due to hopping of particles to neighbouring

lattice sites. The black arrows indicate the distances to the first four nearest-neighbour

shells, r/dnn =
√

n, with n = 1, 2, 3, 4.

a preferential directionality for the motion between neighbouring sites. This can be

understood by considering a particle involved in two successive jumps connecting

three distinct lattice sites. The four possible angles of such consecutive hops, 60◦,

90◦, 120◦, and 180◦ are associated with the distances r/dnn = 1,
√

2,
√

3, and
√

4,

respectively (see Fig. 5.3). Thus, one concludes that during the hopping process

angles of 120◦ are more likely to occur than angles of 90◦.

To push our analysis of particle hopping to an even deeper level, we consider the

trajectories of hopping particles individually and introduce a thorough distinction

between the following two categories of hopping events:

(i) uncorrelated hopping events, in which particles hop to one of the clusters lo-

cated in the first shell of nearest-neighbours (r/dnn = 1) and are thermally

equilibrated in this new cluster. This means that a subsequent hop takes place

after a time longer than a certain threshold time tth, which is of the order

of the characteristic vibrational period of the intra-cluster particle oscillations

described in Section 4.2.
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Figure 5.3: Unit cell of the fcc crystal structure. The full black and grey circles indicate

fcc lattice sites. The coloured arrows correspond to possible consecutive jumps of particles

to the n-th nearest-neighbour shell. Blue arrow: 60◦, r = dnn. Red arrow: 90◦, r =
√

2dnn.

Green arrow: 120◦, r =
√

3dnn. Orange arrow: 180◦, r =
√

4dnn.

(ii) correlated hopping events, in which particles pass several clusters consecutively

and are not thermally equilibrated in any of the passed clusters. Those particles

can be identified by the condition that their residence time in each of these

clusters is shorter than tth.

In our work, a value of t∗th = 3.2 was empirically found to allow to reliably distinguish

between uncorrelated and correlated hopping events.

In Fig. 5.4 we show the distribution of angles between consecutive jumps, Pangle(θ),

of particles performing correlated hops (hops of category (ii)). It is important to note

that the state points for which our data are presented are characterised by the ap-

proximately same diffusion coefficient and same ratio ̺/T (cf. Tab. 5.1). For the

evaluation of angles, θ, we use the relative vectors connecting the CMs of the differ-

ent clusters that are visited, one after the other, by a hopping particle. To calculate

Pangle(θ) we take into account the angles between each pair of consecutive jumps of

a hopping particle. For instance, a particle that performs five hops will contribute

four angles to the distribution. While confirming the relative preference of angles

of 120◦ to angles of 90◦, Fig. 5.4 reveals the occurrence of a global maximum in

the angle distribution at 180◦. This maximum gives evidence that, if particles hop

more than once, they preferentially keep moving in the direction defined by their

initial momentum when leaving their home cluster. We note that this feature cannot

be detected by mere inspection of Gs(r, t). Further, we emphasise that this effect,

while being almost independent of temperature within the range of state parameters

explored in this work, is even more pronounced for higher densities, since the mo-

mentum required to overcome the potential barrier grows, together with the barrier

height itself, with ̺.
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Figure 5.4: Distribution of angles between consecutive jumps, Pangle(θ), of particles per-

forming correlated hops (hops of category (ii), see text). Data are shown for three different

state points that share the essentially same diffusion coefficient and same ratio ̺∗/T ∗

(cf. Tab. 5.1). With increasing density, the probability of hopping at angles of 180◦ be-

comes higher, as the momentum of a particle required to overcome the potential barrier

grows with density. The height of the error bars in our data is comparable to the symbol

size. Pangle(θ) is normalised such that its integral over the full range of angles is equal to 1.

Another interesting aspect concerning the hopping mechanism is how far hopping

particles are able to travel through the crystal until they are trapped again and ther-

mally equilibrated in another cluster. To find an answer to this question, we calculate

the following two quantities: first, the distribution of accumulated distances, Pacc(r),

which measures how often hopping particles jumps, counting also distances accumu-

lated by a particle that jumps back to its home cluster. Second, the distribution of

net hopped distances, Pnet(r), which provides information on how far particles can

propagate in the crystal, starting from their initial cluster. The travelled distances

are given by the moduli of the relative vectors between the CMs of the clusters that

are visited. For the calculation of the two distributions we take into account both

categories (i) and (ii) of hopping events.

In Fig. 5.5 the distribution of accumulated distances, Pacc(r), for different state

points is shown. These results provide evidence that particles are able to perform

hops over a wide range in the number of visited clusters. We note that it is, however,

not possible to describe the envelope of the maxima of Pacc(r) by a single exponential
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Figure 5.5: Distribution of accumulated distances, Pacc(r/dnn), taking into account cat-

egory (i) and (ii) of hopping events (see text), for three different state points. From the

inset we see that higher numbers of jumps per hopping particle become more probable

with growing density. Pacc(r/dnn) is normalised such that its integral over the full range

of distances is equal to 1.

function or a simple inverse power law. A weak dependence of Pacc(r) on density

can be seen from the inset of Fig. 5.5. The fact that larger-distance peaks grow with

increasing ̺ corroborates the tendency mentioned already when discussing Fig. 5.4:

the higher the potential barriers that must be overcome to break out of a cluster,

the higher is the momentum of a hopping particle and the farther it can hop until

it finally gets trapped again. As pointed out before, at the state points considered

in Fig. 5.5, the different values of T compensate for the larger potential barriers

at higher ̺ such that the diffusion coefficient, D, takes the approximately same

values. Nevertheless, as the ability of a particle to gain momentum is triggered by

temperature, it is possible to observe a weak dependence of Pacc(r) on T for fixed

density as well. The T dependence is, however, considerably smaller compared to

the dependence on ̺ and therefore negligible.

The distribution of net distances, Pnet(r), evaluated for both category (i) and (ii)

of hopping events, is shown in Fig. 5.6. Pnet(r) lends itself very well to a comparison

with the long-time van Hove self correlation function (cf. Fig. 5.2). The first peak

of the distribution at r/dnn = 1 corresponds to single hops of particles to nearest-

neighbour clusters. The side peak observed between r/dnn = 1 and r/dnn = 2 for



5.2 Diffusive behaviour of particles in a cluster crystal 81

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7  8  9  10

P
ne

t(r
/d

nn
)

r/dnn

ρ * = 4.3, T * = 0.50
ρ * = 6.4, T * = 0.75
ρ * = 8.7, T * = 1.00

 0

 0.01

 0.02

 0.03

 5  6  7  8  9  10

Figure 5.6: Distribution of net distances, Pnet(r/dnn), travelled by hopping particles, for

three different state points. The dominant peaks, located at multiple integers of the nearest-

neighbour distance, are associated to jumps at a preferred angle of 180◦. The small peak

between r/dnn = 1 and r/dnn = 2 originates from consecutive hops at angles of 90◦ and

120◦. Note the small probability of returning to the initial cluster, reflected by a small

peak at r/dnn = 0. In the inset, an enlarged view of the distribution at large distances

is shown to highlight the dependence on density. Pnet(r/dnn) is normalised such that its

integral over the full range of distances is equal to 1.

all densities, is due to consecutive jumps of both angles of 90◦ and of 120◦. The

larger-distance peaks, located at multiples of dnn, originate from hopping particles

of higher momentum that tend to hop through the crystal at a preferred angle of

180◦ (cf. Fig. 5.4). This behaviour can also be seen in the correlation of angles be-

tween consecutive jumps and the net distance travelled, shown in Fig. 5.7. Despite

considerable scattering of possible angles for all distances (Fig. 5.7 (a)), this corre-

lation confirms the aforementioned tendency to conserve the direction of the initial

momentum for hopping particles that travel farther away from their home cluster

(Fig. 5.7 (b)). In Fig. 5.8 two representative trajectories of hopping particles are

illustrated. The left panel shows a particle’s hopping path connecting many lattice

sites throughout the crystal. The right panel shows a particle hopping to the fourth

nearest-neighbour shell.

A possible way of interpreting our results on how far particles can travel in a clus-

ter crystal is to put them in the context of different kinds of diffusion mechanisms

present in such a system. We presume that, in a cluster crystal, there might exist two
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Figure 5.7: Correlation of the angle between consecutive jumps, θ, and the net distance

travelled by a hopping particle. In (a) the scattering of angle versus net distance is com-

pared to the correlation between angle and net distance obtained from averaging the angle

over many hopping particles. For all net distances, in principle all angles (concentrated

around 60◦, 90◦, 120◦, and 180◦) are possible. Nevertheless, the averaged correlation reveals

a preference of angles of 180◦ for large net distances. In (b) the angle-distance correlation

is shown for three different state points. For comparison, the distribution of net distances,

Pnet(r/dnn), of Fig. 5.6 is redrawn.
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Figure 5.8: Two representative trajectories of particles performing correlated hops. The

real clusters, each of them consisting of many particles, have been replaced by grey spheres

located at the cluster CMs which occupy the positions of an fcc lattice. The hopping

particles are drawn as small, coloured spheres. Coloured large spheres represent clusters

visited by the particle on its trajectory. Left panel: hopping over large distances, involving

ten clusters (racc/dnn = 9). On its path, the hopping particle leaves the periodic simulation

cell on the right edge and re-enters on the left side. Right panel: short-distance hopping,

involving only three clusters (racc/dnn = 2).

different kinds of diffusion: hopping and “effectively ballistic” motion of particles1.

The first one corresponds to particles that perform uncorrelated hops from one clus-

ter to another, the second one is associated to particles diffusing through the crystal

in a correlated way, virtually irrespective of its lattice structure. Similarly, in [22] the

question was raised “whether hopping amounts to local particle moves or takes the

form of diffusive migration of particles across macroscopically large distances”. In

the distribution of net distances, Pnet(r), we see pronounced peaks for a broad range

of distances. While the first peak, corresponding to uncorrelated hops, is especially

marked, the heights of the larger-distance peaks decrease monotonically, but still

contribute significantly to the overall distribution. To measure the relative contribu-

tions of the different categories of hops to the diffusion coefficient, D, we split the

range of distances into three sections, corresponding to hops back to the initial cluster

(r/dnn < 0.5), uncorrelated hops to nearest-neighbour clusters (0.5 ≤ r/dnn ≤ 1.25)

and correlated hops over a sequence of clusters (r/dnn > 1.25). Then, we calculate

the integrals (Iback, Iuncorr, and Icorr) over Pnet(r) for these r-ranges. Tab. 5.3 con-

tains the results of these calculations for the same three state points as displayed in

Fig. 5.6. We see that both categories (i) and (ii) of hopping events contribute signif-

1We thank D. Frenkel and B. M. Mladek for enlightening discussions on this topic.
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̺∗ T ∗ Iback Iuncorr Icorr

4.3 0.50 0.06 0.52 0.42

6.4 0.75 0.05 0.45 0.50

8.7 1.00 0.05 0.42 0.53

Table 5.3: To measure the relative contributions of hopping events of categories (i) and (ii)

to the diffusion coefficient in a cluster crystal, we split the r-range of the distribution of net

distances, Pnet(r), (cf. Fig. 5.6) into three sections: (r/dnn < 0.5), (0.5 ≤ r/dnn ≤ 1.25),

and (r/dnn > 1.25). Then we calculate the integrals (Iback, Iuncorr, and Icorr) over Pnet(r)

in these ranges.

icantly to Pnet(r). We think that this provides the first evidence of the existence of

the two diffusion mechanisms conjectured above.

5.2.2 Relaxation of cluster occupancy fluctuations

We now focus on the physical mechanisms that are responsible for the particle hop-

ping processes. In [22] it was stated that, in a stable, polydisperse cluster crystal,

incessant hopping processes must exist to maintain the mechanical stability of the

crystal by guaranteeing the equality of the time-averaged site occupancy, 〈nc〉, for

all lattice sites. This leads to perceiving particle hopping processes as a relaxation

mechanism which equilibrates fluctuations in the cluster occupancy. This approach

can be confirmed by a comparison of the cluster size distributions of clusters from

which hopping particles are kicked out and of clusters by which these particles are

absorbed (or, caught) again at the end of their hopping path. For the sake of brevity,

we shall refer to these distributions as “kicking” and “catching” distributions in the

following.

From Fig. 5.9 we see that the kicking and the catching distributions are shifted

to the right and to the left with respect to the equilibrium cluster size distribution,

respectively. On the one hand, this provides evidence that indeed particles belonging

to large clusters are more likely to leave their home cluster than particles occupying

small clusters. On the other hand, the overlap between the kicking and the catching

distribution is still considerable, meaning that the reverse situation, i.e. particle

hopping from small to large clusters, is less probable but not impossible. Thus,

the tendency to relax an unbalanced cluster occupancy is superposed by substantial

occupancy fluctuations in which particles start hopping from their cluster at random,

without being induced by any external influence.

In Fig. 5.10 the single-particle potential energy, U(1), of two tagged hopping par-

ticles is followed before, during, and after the particles hop to another cluster, on
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two different timescales. The upper panel shows U(1) over long times covering several

hundreds of vibrational periods of the particles’ intra-cluster oscillation. Before the

hopping event takes place, a progressive increase of the particle’s average potential

energy is observed. In the lower panel of Fig. 5.10, U(1) is shown on a very short

time scale, corresponding to 10-15 oscillation periods. During the hopping process,

every local minimum of U(1) is associated with a new cluster being visited by the

hopping particle. On closer inspection, we realise that the exact mechanism that

causes hopping remains unclear. In fact, no significant increase of U(1) can be seen

short before the particle leaves the cluster. This more subtle behaviour suggests

that our level of description, which takes into account only single-particle potential

energies, may be oversimplified. In principle, a full description of the system’s total

potential energy as a function of the coordinates of all particles would uncover the

exact circumstances under which a particle can gather sufficient energy to leave its

cluster. This high-dimensional problem may be hard to grasp at first, but methods

apt to deal with it have been developed [45, 46].

In the following subsection we will see that, in spite of all its shortcomings, our

simple, single-particle picture can be very useful, if we are interested in describing

the effects of hopping processes by a macroscopic diffusion law.

5.2.3 Particle hopping viewed as an activated mechanism

In [23] a simple model description of diffusion in cluster crystals was put forward, in

which diffusion is interpreted as an activated process. In this picture, particles are

regarded as independent thermal oscillators in harmonic potential wells separated

by barriers of height ∆U . Taking into account the contact with the heat bath of

temperature T , the probability of a particle to have a total energy E > 0 is then

given by

p(E) =
β3E2

2
e−βE. (5.1)

In this expression, the first factor in the product on the right-hand side represents

the density of states in an energy shell of width dE around E, whereas the second

term is the Boltzmann factor. By the use of eq. (5.1) it is possible to obtain the

probability P>(∆U) that the energy of the oscillator, E, exceeds the height of the

potential barrier, ∆U , as

P>(∆U) =

∞
∫

∆U

p(E) dE = e−β∆U
[

(β∆U)2/2 + β∆U + 1
]

. (5.2)

A particle with E > ∆U is assumed to hop to a neighbouring site, thus P>(∆U) may

be regarded as a hopping probability. To estimate the density-dependent barrier
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Figure 5.9: Distribution of cluster sizes, nc, on average (grey), for “kicking” clusters (red),

and for “catching” clusters (blue). The kicking and catching distributions are shifted to

the right and to the left of the equilibrium cluster size distribution, respectively, indicating

the tendency of hopping processes to relax cluster occupancy fluctuations in the crystal.
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Figure 5.10: Typical time evolution of the single-particle potential energy, U∗
(1), of a hopping

particle, illustrated for one state point (̺∗, T ∗) = (6.4, 0.80). The time window of the

hopping event, as identified through our cluster analysis tool (cf. Section 3.3.1), is indicated

by dotted vertical lines. In the upper panel we see how a hopping particle’s potential energy

is accumulated before and released after the hopping event. The displayed range in time

comprises several hundreds of vibrational periods. The lower panel demonstrates that, on

a shorter timescale, it is completely impossible to predict when and where a particle will

start hopping to a new cluster. Every local minimum of U∗
(1) in the hopping time window

is associated to a new cluster being visited by the hopping particle.
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height ∆U , we benefit from the the single-particle potential energy wells that were

used to measure the particle oscillation frequency in Chapter 4 (cf. Fig. 4.14). By

averaging over the data available for densities ̺∗ = 4.3, 6.4, and 8.7 we obtain

∆U∗ ≈ 1.30 ̺∗. (5.3)

From the standard theory of random walks [22, 23] the long-time diffusion coefficient

in reduced units, D∗, then follows from eqs. (5.2) and (5.3) as

D∗ = γ0

[

1.302

2

(

̺∗

T ∗

)2

+ 1.30
̺∗

T ∗
+ 1

]

e−1.30 ̺∗/T ∗

, (5.4)

where γ0 is a numerical coefficient introduced in [23] that is supposed to be related

to the average distance that hopping particles travel through the crystal. The fact

that D is solely dictated by the ratio ̺/T was considered in [22, 23] as a dynamical

extension of the scaling properties of 〈nc〉 and ̺ that had previously been found for

the statics of clustering systems. In Fig. 5.11 our simulation data for the diffusion

coefficient (presented in Tab. 5.1) are compared to eq. (5.4), using a numerically

determined value of γ0 = 0.38. Despite the considerable simplifications made to

derive an expression for the diffusion coefficient, the agreement of simulation data

and theoretical prediction is good.

It should be noted, however, that the ∆U∗ extracted from the data by a fitting

function of the form of eq. (5.4) is appreciably larger than the one obtained by

measuring the potential well barriers from Fig. 4.14. This is an indication of the

limited validity of the simple diffusion model introduced in this subsection. On the

one hand, this model describes hopping as a Markovian process, since the diffusion

path is described as a random walk [23], and thus implicitly assumes that successive

hops are uncorrelated. This is clearly not always the case, as we have demonstrated

in our investigations of the length of hopping paths (cf. Fig. 5.6) and the distribution

of angles between consecutive jumps (cf. Fig. 5.4) for correlated hopping events. On

the other hand, the assumption of the harmonic shape of the potential well does not

hold, as we can see from Fig. 5.12. Here, a refinement of eq. (5.4) might be achieved

by including an anharmonic term in the effective site potential, Φsite(rrel), which

would model the actual shape of the well more accurately. This would correspond

to describing the effective cluster site potentials as double well potentials. In this

case, the probability distribution in eq. (5.1) has to be reconsidered and recalculated

numerically, which will be part of future work on this subject.
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Conclusion

In this work, we have investigated the dynamics of cluster crystals formed by particles

interacting via bounded, purely repulsive effective potentials. In recent years, this

novel kind of soft matter system has attracted the interest of a broad scientific

community, as these crystals were found to exhibit astonishing new features, such

as a density-independent lattice constant, an unconventional way of responding to

compression, or a remarkable diffusive behaviour [2, 3, 23].

We have characterised several aspects of vibrations and diffusion in cluster crys-

tals by employing advanced molecular simulation techniques. Extensive Lattice

Monte Carlo and molecular dynamics simulations have been carried out for a repre-

sentative interaction model, the GEM-4 potential, in the region of the phase diagram

where the fcc phase is stable. To analyse the system configurations generated in the

simulations we have developed a cluster analysis tool which is capable of identifying

cluster objects in an unambiguous manner and makes it possible to analyse particle

trajectories with respect to the cluster centres of mass in time.

In the first part of our work, we focused on the spectrum of vibrations in a

cluster crystal. We obtained the vibrational density of states both from the Fourier

transform of the velocity auto-correlation function as well as from normal mode

analysis. By the former approach we were able to separate the vibrational spectrum

into a contribution of the particle velocity relative to the cluster centres of mass and

a contribution of the centre of mass velocity. In this way, we demonstrated that there

exists a fundamental difference between single-particle and collective vibrations in the

system. The former corresponds to the motion of particles inside a cluster (intra-

cluster motion), the latter to the motion of cluster centres of mass (inter-cluster

motion). Normal mode analysis allowed us to further examine the properties of the

main peak in the vibrational spectrum, which originates from single-particle motion.

We detected high localisation of normal modes in the region of this peak and high

delocalisation in the remainder of the spectrum. The square of the main frequency

of the peak was found to scale linearly with density, which has been anticipated in

the description of particle oscillations as effectively harmonic one-particle motion,

put forward in previous works [2]. Finally, we considered cluster crystals with both
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monodisperse and polydisperse cluster occupancy numbers, in order to establish a

connection to recent analytical, zero-temperature calculations of phonon dispersion

relations in the system [44].

The second part of our work was dedicated to the diffusive behaviour of particles

in a cluster crystal. We studied the particle hopping mechanism, which is responsible

for diffusion in the system while maintaining the underlying lattice structure. We

discovered that a significant contribution to the diffusivity in the system results from

highly correlated particle hops connecting lattice sites separated by large distances.

This points to the existence of two different diffusion mechanisms in cluster crystals:

mere particle hopping from one cluster to one of its nearest neighbours, and “effec-

tively ballistic” motion. When investigating the physical mechanism that leads to

hopping processes, we demonstrated that particles tend to hop from overpopulated

clusters to clusters of smaller size. This effect is, however, strongly superposed with

cluster occupancy fluctuations that occur at random, regardless of the occupancy of

kicking and catching clusters. In recent related works [22, 23], the diffusion coefficient

in a cluster crystal was predicted to solely depend on the ratio between density and

temperature, ̺/T , in an exponential law. While this simple model already provides a

reasonable first description, our analysis revealed two main shortcomings. First, the

assumption that particle hopping processes may be regarded as uncorrelated does

not hold in the case of long, correlated hops of particles over many lattice sites. Sec-

ond, the single-particle potential energy well is in fact not harmonic. To describe its

shape correctly, at least a cubic term in the effective cluster site potential has to be

included. These last two findings call for a reconsideration of the model of diffusion

in cluster crystals, which shall be part of future work on this subject.



Appendix A

Appendix

A.1 Common variable definitions in statistical me-

chanics

density ̺

̺ =
N

V
(A.1)

inverse temperature β

β =
1

kBT
(A.2)

de Broglie wavelength Λ

Λ =

√

2πβ~2

m
(A.3)

A.2 Reduced units

density

̺∗ = ̺σ3 (A.4)

temperature

T ∗ =
kBT

ε
(A.5)

energy

E∗ =
E

ε
(A.6)
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pressure

P ∗ =
Pσ3

ε
(A.7)

distance

r∗ = r/σ (A.8)

wave vector

k∗ = kσ (A.9)

time

t∗ =

√

ε

mσ2
t (A.10)

frequency

ω∗ =

√

mσ2

ε
ω (A.11)

diffusion coefficient

D∗ =

√

m

εσ2
D (A.12)
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