
DIPLOMA THESIS

“Multi-Particle Collision Dynamics”
Simulation of Viscoelastic Fluids

A thesis by

David Toneian,

supervised by

Prof. Gerhard Kahl, Institute of Theoretical Physics, TU Wien,

Prof. Gerhard Gompper, Institute of Complex Systems 2 and
Institute for Advanced Simulation 2, Forschungszentrum Jülich, and

Prof. Roland G. Winkler, Institute of Complex Systems 2 and
Institute for Advanced Simulation 2, Forschungszentrum Jülich

submitted to the

TU Wien

in partial fulfillment of the requirements for the academic degree of
“Diplom-Ingenieur” (equivalent to Master of Science).

2015-10-28



2



3

Abstract

In this thesis, the simulation technique called Multi-Particle Collision Dynamics (MPC)
is extended such that it allows for the modeling of viscoelastic fluids. This is achieved by
representing the fluid not by independent MPC particles, as would be the case in the orig-
inal formulation of MPC, but rather by polymer-like aggregates of MPC particles. This
way, the MPC particles do not propagate freely anymore, but instead are now subjected
to an intra-polymer interaction potential.

Said potential introduces elastic degrees of freedom, and is chosen to be quadratic in
the separation of nearest neighbors, which results in polymers that are described by the
Rouse model. This choice allows one to find, starting from a generalized Navier-Stokes
equation in the limit of low Reynolds numbers, an analytic solution for components of the
velocity autocorrelation in Fourier space, as will be shown in this work.

Furthermore, a new implementation of the extended MPC algorithm, capable of highly
parallel execution on a Graphics Processing Unit (GPU), is presented. Simulation data
obtained from this implementation are compared to the theoretical results, and a remark-
able agreement is demonstrated on both the qualitative and quantitative level for polymers
containing up to 10 MPC particles. The velocity autocorrelation in Fourier space is ex-
amined for asymptotically large correlation times, and it is found that the fluid’s behavior
corresponds to that of a Newtonian fluid on sufficiently long time scales.

Finally, for the case of trimers, the relationship between the interaction strength
(spring constant) and the root-mean-square bond length of the polymer is derived an-
alytically for a shear flow with arbitrary shear rate.
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Chapter 1

Introduction and Motivation

1.1 Multiscale Systems

In the field of soft matter physics, one is often interested in systems which contain entities of
vastly different sizes and masses. Consequently, the involved time and length scales can span
several orders of magnitude;1, 2 this poses a significant challenge for both theoretical treatment
and computer simulations of such systems.

Some examples are dispersions or suspensions, where large physical units, such as colloids,
are surrounded by much smaller and lighter molecules, such as water.3 The aforementioned
colloids are solid objects of typically spherical or rod-like shape,4 and have sizes in the range
of 1 nm to 10µm;5 compared to a water molecule’s diameter of about 0.3 nm,6 this is several
orders of magnitude larger. Another frequently considered class of relatively big objects is that
of polymers. A polymers is a large, often linear, molecule which is built by repeatedly linking a
number of chemical units, called monomers, together.7 The number of different types of units

1J. K. G. Dhont, G. Gompper, P. R. Lang, D. Richter, M. Ripoll, D. Willbold, and R. Zorn, eds. Macro-
molecular Systems in Soft and Living Matter. Vol. 20. Key Technologies. Forschungszentrum Jülich, 2011,
Section 1.1.

2G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler. Multi-Particle Collision Dynamics: A Particle-
Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. Advances in Polymer Science.
Springer, 2008. Chapter 1.

3J. K. G. Dhont, G. Gompper, and D. Richter, eds. Soft Matter: Complex Materials on Mesoscopic Scales.
Vol. 10. Matter and Materials. Forschungszentrum Jülich, 2002, Section 2.1.

4Dhont, Gompper, Lang, Richter, Ripoll, Willbold, and Zorn, Macromolecular Systems in Soft and Living
Matter, Section 1.1.

5Dhont, Gompper, and Richter, Soft Matter: Complex Materials on Mesoscopic Scales, Section 2.1.
6Y. Huang, X. Zhang, Z. Ma, W. Li, Y. Zhou, J. Zhou, W. Zheng, and C. Q. Sun. “Size, separation,

structural order, and mass density of molecules packing in water and ice”. Scientific Reports 3 (2013), 3005.
7Dhont, Gompper, and Richter, Soft Matter: Complex Materials on Mesoscopic Scales, Section 2.3.
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10 CHAPTER 1. INTRODUCTION AND MOTIVATION

present in a polymer can range from one, as is the case in many synthetic polymers, to about
twenty for proteins.8 The molecular weights of such polymers can exceed 103 kg

mol .
9

While the disparate length and time scales already present difficulties in their own right,
other scenarios in soft matter physics can complicate the problem even further: microorganisms,
for example, not only are comparatively very large and heavy, but may also have the capability
of actively propelling themselves.10 Description of these systems, called active since parts of
the system exert forces on their surroundings autonomously, demands very powerful tools for
the theoretical treatment and for computer simulations.

Some of the phenomena displayed by these systems may allow for a satisfactory description
that does not take the solvent into account explicitly. However, some behaviors observed
experimentally depend crucially on the hydrodynamic interactions the solvent mediates; for
example, simple swimming organisms rely on these hydrodynamic interactions to synchronize
the beating of their flagella, which is necessary to achieve efficient and directed movement.11, 12

It may therefore become unavoidable to treat both large and small constituents, if one desires
to reproduce these behaviors in computer simulations.

1.2 Multi-Particle Collision Dynamics

Although there are a multitude of simulation schemes in existence, there is no single one among
them that is viable in all situations. For example, if one cannot neglect the interplay of large,
heavy, macroscopic constituents on the one hand and small, light, microscopic solvent particles
on the other, simulation techniques where the energies and forces are calculated precisely in
the way governed by physical principles (e.g. quantum or classical mechanics) may be very
accurate, but quickly become so computationally expensive that they turn unfeasible for all
but the tiniest systems. This is because the small and light-weight parts of the simulated
objects typically exhibit dynamics governed by time scales much shorter than those of the
larger constituents. In such cases, one might instead choose to employ a mesoscopic simulation
method: here, one tries to design the simulation algorithm such that it captures the relevant

8R. B. Bird, R. C. Armstrong, and O. Hassager. Fluid Mechanics. 2nd ed. Vol. 1. Dynamics of Polymeric
Liquids. John Wiley & Sons, 1987, § 2.1.

9Bird, Armstrong, and Hassager, Fluid Mechanics, § 2.1.
10E. Lauga and T. R. Powers. “The hydrodynamics of swimming microorganisms”. Reports on Progress in

Physics 72 (2009), 096601.
11M. Theers and R. G. Winkler. “Effects of thermal fluctuations and fluid compressibility on hydrody-

namic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics
simulation study”. Soft Matter 10 (2014), 5894.

12E. Lauga and R. E. Goldstein. “Dance of the microswimmers”. Physics Today 65 (2012), 30.
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aspects of the dynamics at the different time and length scales involved, but discards the other
aspects to gain computational efficiency.

Multi-particle collision dynamics, abbreviated MPC or MPCD, is such a mesoscopic tech-
nique. Introduced in 1999 by Malevanets and Kapral,13, 14 it is now commonly used in the
simulation of fluid systems. MPC deals with discrete particles (as opposed to continua), and
consists of two alternating phases:

In the streaming phase, MPC particles, which model either a mesoscopic volume of solvent
or (part of) a macroscopic solute, are propagated ballistically, i.e. on trajectories influenced
only by external forces such as as gravity or a magnetic field, ignoring all interactions with
other MPC particles in the system. Exceptions are made for the case where specific particles
model just part of a macroscopic unit, e.g. part of a membrane: there, one can define arbitrary
interaction potentials with the other, connected parts, and perform a sufficient number of cheap
molecular dynamics (MD) simulation steps with a small number of interaction partners.

In the following collision phase, the simulation volume is virtually partitioned into cubic
cells. Each particle then interacts only with other particles occupying the same cell. In the
original and most widely used variant of MPC, known as stochastic rotation dynamics (SRD for
short), this interaction is achieved by choosing the corresponding cell’s center-of-mass frame as
the reference frame, and then rotating all particle velocities in this frame around a randomly
chosen axis passing through the origin. This choice is made independently for each collision
cell and simulation time-step.

This algorithm conserves the particle number, mass, and linear momentum. Together with a
sufficient degree of isotropy, these properties lead to the reproduction of hydrodynamic behavior
for a wide range of simulation parameters. The computational simplicity of the streaming and
collision steps allows for highly parallel and efficient implementations, so that systems with
∼ 109 MPC particles can be simulated.15

1.3 Viscoelastic Fluids

In what was described above, the MPC particles that represent the fluid (rather than the
solutes), which usually is the vast majority of MPC particles, stream independently of each

13A. Malevanets and R. Kapral. “Mesoscopic model for solvent dynamics”. The Journal of Chemical Physics
110 (1999), 8605.

14A. Malevanets and R. Kapral. “Solute molecular dynamics in a mesoscale solvent”. The Journal of Chemical
Physics 112 (2000), 7260.

15C.-C. Huang, G. Gompper, and R. G. Winkler. “Hydrodynamic correlations in multiparticle collision
dynamics fluids”. Physical Review E 86 (2012), 056711. Section I.
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other. While this works very well for a range of systems, this model does not give rise to elastic
properties of the solvent; the simulated fluid is purely viscous, i.e. Newtonian.

The elastic properties of viscoelastic fluids are, however, highly important for applications
both in industry and biology.16 In order to be able to incorporate elastic behavior into sim-
ulations, the MPC algorithm has been extended to couple fixed pairs of MPC fluid particles
via harmonic springs to form dimers, and stream each dimer independently from the others,
as opposed to streaming individual MPC particles without regard for each other.17 While this
approach has been shown to give rise to non-Newtonian phenomena,18 it has not yet been stud-
ied extensively. A thorough understanding is, however, necessary to learn as much as possible
from the simulation results.

1.4 Scope and Organization of this Thesis

In this thesis, a newly developed implementation of MPC, capable of execution on graphics
cards (GPUs), is presented (chapter 4).

To verify its correctness, simulation results for the basic MPC algorithm are compared with
known reference data and with theory, and it is found that there are no significant deviations.

The MPC simulation scheme is then extended to MPC polymers consisting of an arbitrary
number of linked monomers. In chapter 5, a closed expression for the velocity autocorrelation
function in Fourier space is found for linear polymers with harmonic interaction potentials
between adjacent monomers. Said expression is discussed, and shown to describe the simulation
results obtained to great accuracy.

Finally, for the case where the polymer consists of three monomers (i.e. is a trimer), analyt-
ical calculations are presented in chapter 6 that link the spring constants to the temperature,
shear rate, viscosity, and hydrodynamic radius, under the condition that the mean squared
end-to-end distance of the MPC polymer is fixed.

Additionally, to provide the necessary background, an introduction to the relevant aspects of
fluid dynamics is given in chapter 2, along with a detailed description of the simulation method
employed (chapter 3). Appendix A specifies the notation and mathematical conventions used in

16B. Kowalik and R. G. Winkler. “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-
thinning Gaussian dumbbells”. Journal of Chemical Physics 138 (2013), 104903. Section I.

17Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”, Section I.

18Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”, Section I.
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Chapter 2

Fluid Dynamics

2.1 Fundamental Principles

This section, which heavily borrows from Landau and Lifshitz,19 is intended to give a quick
review of the foundations of fluid dynamics most relevant to this thesis. Subsequent chapters
will extend the material presented here.

2.1.1 The Continuity Equation20

Let % (r, t) be the density of the fluid at the position r and time t, and let there be an arbitrary,
but fixed, non-degenerate 3-dimensional volume V , the 2-dimensional boundary of which is
denoted by ∂V . The infinitesimal boundary surface element is referred to by the vector df (r),
the magnitude of which is equal to the surface element’s area, while the vector’s direction is
perpendicular to the surface, pointing outwards of the volume V . Finally, let v (r, t) be the
fluid’s velocity field.

The fluid mass mV inside the volume V is given by

mV =

∫
V

% (r, t) d3r . (2.1.1)

The amount of mass per time flowing out of V through a particular surface element df is

19L. D. Landau and E. M. Lifshitz. Fluid Mechanics. 2nd ed. Vol. 6. Course of Theoretical Physics.
Pergamon Press, 1987.

20Landau and Lifshitz, Fluid Mechanics, § 1.
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16 CHAPTER 2. FLUID DYNAMICS

given by the component of the mass flux density %v along df ,

% (r, t) vi (r, t) dfi , (2.1.2)

so that the total amount of mass per time leaving V is∮
∂V

% (r, t) vi (r, t) dfi . (2.1.3)

The postulate of conservation of mass is formulated by equating this quantity to the negative
time derivative of mV , i.e. the mass flowing out of V per unit time. This leads to the integral
form of the continuity equation, which states that mass can neither be created nor destroyed:

−
∫
V

∂t% d3r =

∮
∂V

%vi dfi . (2.1.4)

One can use Gauss’s theorem to rewrite the right-hand side of the equation above as∮
∂V

%vi dfi =
∫
V

∂i (%vi) d3r (2.1.5)

to obtain ∫
V

(∂i (%vi) + ∂t%) d3r = 0 . (2.1.6)

Since this equation holds for arbitrary volumes V , the integrand has to be 0; thus, one arrives
at the differential form of the continuity equation:

∂i (%vi) + ∂t% = 0 . (2.1.7)

2.1.2 The Substantial Derivative21

When talking about time derivatives of vector fields that depend on the position and on time,
such as the velocity field v (r, t), one sometimes refers to the partial derivative,

∂tv (r, t) , (2.1.8)

21Landau and Lifshitz, Fluid Mechanics, § 2.
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which describes the rate of change of v (r, t) at a fixed point in space r. Alternatively, one may
refer to the substantial derivative

Dtv (r, t) . (2.1.9)

To define its meaning, one can imagine having a volume of fluid that is small compared to the
volume the entire fluid occupies, but large compared to the fluid molecules. This mesoscopic
fluid volume, sometimes called fluid element, can be thought to be marked in a way that
distinguishes it from all the other parts of the fluid, e.g. by being dyed with a specific color.
As time passes, the fluid element may not only change its shape – an effect that shall not be
of concern here, provided one can still ascribe a position to the fluid element in a meaningful
way – but may also have its position (i.e. its center of mass) moved in space.

It is the substantial derivative that describes how the velocity of the fluid element changes
with time, and it has two contributions: On the one hand, the fluid element at position r

witnesses how the velocity of the fluid at the fixed point r changes. On the other hand, since
the fluid element is being transported from r (t) at time t to another position r (t+ dt) at time
t+ dt, it also witnesses the fluid’s velocity v (r (t+ dt)) at that new position.

Formally, the substantial derivative can be understood as the total time derivative of the
fluid element’s velocity as a function of time, v (r (t) , t), which can be found using the chain
rule:

Dtvi = ∂tvi + (∂jvi) (∂trj)

= ∂tvi + vj∂jvi .
(2.1.10)

Since this relation holds for any r- and t-dependent vector field for which the right-hand
side of the above relation is defined, one can declare

Dt := ∂t + vj∂j . (2.1.11)

2.1.3 Euler’s Equation for Ideal Fluids22

Given a fixed volume V with boundary ∂V and differential surface element df , the force on the
fluid volume due to (isotropic) pressure p (r, t) of the surrounding medium is given by

−
∮
∂V

p (r, t) dfi , (2.1.12)

22Landau and Lifshitz, Fluid Mechanics, § 2.
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which can be re-written, using Gauss’s theorem, as

−
∮
∂V

p (r, t) dfi = −
∫
V

∂ip (r, t) d3r . (2.1.13)

If V is taken to be infinitesimally small, the force density acting on V due to pressure is
thus

−∂ip (r, t) . (2.1.14)

With other external force densities f ext
i acting on this volume element, the total force density

then equals, according to Newton’s second law, mass density times acceleration:

%Dtvi = f ext
i − ∂ip . (2.1.15)

Insertion of the definition of the substantial derivative (2.1.11) and division by % then leads
to Euler’s equation for ideal fluids, i.e. fluids in which energy dissipation is negligible:

∂tvi + vj∂jvi = %−1
(
f ext
i − ∂ip

)
. (2.1.16)

2.1.4 Momentum Flux23

In order to study the evolution of the fluid’s momentum density %vi, one can use the continuity
equation (2.1.7) to calculate

∂t (%vi) = %∂tvi + vi∂t%

= %∂tvi − vi∂j (%vj) .
(2.1.17)

Euler’s equation (2.1.16) then allows the following reformulation:

∂t (%vi) = f ext
i − ∂ip− %vj∂jvi − vi∂j (%vj)

= f ext
i − ∂ip− ∂j (%vivj)

= f ext
i − δij∂jp− ∂j (%vivj) .

(2.1.18)

Defining the momentum flux density tensor

Πij := pδij + %vivj , (2.1.19)

23Landau and Lifshitz, Fluid Mechanics, § 7.
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one arrives at
∂t (%vi) = f ext

i − ∂jΠij . (2.1.20)

The physical meaning of Πij can be understood by integrating equation (2.1.20) for f ext
i = 0

over an arbitrary, fixed volume V :

∂t

∫
V

%vi d3r = −
∫
V

∂jΠij d3r

= −
∮
∂V

Πij dfj .
(2.1.21)

Here, the left-hand side describes the rate of change of the i-component of the momentum
in V (not accounting for external forces), while the right-hand side is a surface integral over
Πij. Thus, Πij is the i-component of the momentum flowing out of the volume through a unit
surface perpendicular to the j-axis during unit time. Then, with nj being a unit vector, the
i-component of the momentum flowing through a unit surface perpendicular to nj per unit time
is given by Πijnj.

2.1.5 The Navier-Stokes Equation24,25

The previous sections described an ideal fluid, where no internal friction occurs. In order
to introduce viscosity, one has to subtract a term σ′

ij, called viscous stress tensor, from the
momentum flux density tensor (2.1.19):

Πij := pδij + %vivj − σ′
ij . (2.1.22)

Defining the stress tensor
σij := −pδij + σ′

ij , (2.1.23)

one can also write
Πij = %vivj − σij . (2.1.24)

To derive an expression for σ′
ij, one has to note there is no friction between neighboring

fluid elements that move with the same velocity in the same direction; thus, in the case of
locally constant velocities, one must have σ′

ij = 0. Therefore, σ′
ij can neither have a constant

24Landau and Lifshitz, Fluid Mechanics, § 15.
25G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge

University Press, 2000, § 3.3.



20 CHAPTER 2. FLUID DYNAMICS

contribution, nor can it depend on v directly. We adopt the conventional ansatz, which assumes
that σ′

ij depends linearly on the first spatial derivatives of v, so that

σ′
ij = Aijkl∂kvl , (2.1.25)

where the Aijkl do not depend on v or any of its derivatives.

If the entire fluid undergoes rotational movement around an axis ω as if the fluid was a
rigid body, i.e. if v (r, t) = ω × r (t) with constant ω, then there cannot be friction, since in
the co-rotating frame of reference, the fluid is at rest. So, in this case, one also has to have
σ′
ij = 0; consequently,

σ′
ij = Aijkl∂kεlmnωmrn

= Aijklεlmnωm∂krn

= Aijklεlmnωmδkn

= Aijklεmklωm
!
= 0 .

(2.1.26)

Decomposing
Aijkl =

1

2
(Aijkl + Aijlk) +

1

2
(Aijkl − Aijlk) (2.1.27)

into a part
Aij(kl) =

1

2
(Aijkl + Aijlk) (2.1.28)

symmetric in the indices k and l, and a part

Aij[kl] =
1

2
(Aijkl − Aijlk) (2.1.29)

anti-symmetric in k and l, and noticing that the contraction of the anti-symmetric Levi-Civita
tensor εijk with a symmetric tensor Sjk gives 0 (cf. appendices D.2 and D.3), one arrives at

Aij[kl]εmklωm = 0 (2.1.30)

for arbitrary ω. However, this means (see (D.3.4)) that

Aij[kl] = 0 , (2.1.31)

so that Aijkl is symmetric in the indices k and l.

If one imposes isotropy on Aijkl, i.e. if Aijkl is to be indifferent to rotations of the Cartesian
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coordinate system, its most general form can be written as26

Aijkl = s1δijδkl + s2 (δikδjl + δilδjk) + s3 (δikδjl − δilδjk) (2.1.32)

with scalars s1, s2, and s3, which are arbitrary a priori.
The requirement of symmetry in the indices k and l found in (2.1.31), however, requires

that s3 = 0. With this, the ansatz (2.1.25) becomes

σ′
ij = s1δijδkl∂kvl + s2 (δikδjl + δilδjk) ∂kvl

= s1δij∂kvk + s2 (∂ivj + ∂jvi)

=

(
s1 +

2

3
s2

)
δij∂kvk + s2

(
∂ivj + ∂jvi −

2

3
δij∂kvk

)
.

(2.1.33)

Introducing the dynamic viscosity 27 η := s2 and the second viscosity ζ := s1 +
2
3
s2, the viscous

stress tensor σ′
ij can then be re-written in the form

σ′
ij = ζδij∂kvk + η

(
∂ivj + ∂jvi −

2

3
δij∂kvk

)
. (2.1.34)

This representation shows that the coefficient of η becomes zero if i and j are contracted, so
that the trace of the viscous stress tensor becomes

σ′
ii = 3ζ∂ivi . (2.1.35)

The expression
γ̇ij := ∂ivj + ∂jvi (2.1.36)

is called the rate-of-strain tensor or rate-of-deformation tensor,28 which can be used to rewrite
(2.1.34) as

σ′
ij =

(
ζ − 2

3
η

)
δij∂kvk + ηγ̇ij . (2.1.37)

This new contribution σ′
ij to Πij, introduced in order to take viscosity into account, leads

to an additional term in Euler’s equation (2.1.16), which now reads

% (∂tvi + vj∂jvi) = f ext
i − ∂ip+ ∂jσ

′
ij . (2.1.38)

26H. Jeffreys. Cartesian Tensors. Cambridge University Press, 1931, Chapter VII, equation (20).
27For the dynamic viscosity, both the symbols η and µ are used in the literature.
28Bird, Armstrong, and Hassager, Fluid Mechanics, § 1.2.
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In the case where f ext
i = 0, ∂iη = 0, and ∂iζ = 0, this relation can be simplified to

% (∂tvi + vj∂jvi) = −∂ip+ ζ∂i∂kvk + η

(
∂j∂ivj + ∂j∂jvi −

2

3
∂i∂kvk

)
= −∂ip+ η∂j∂jvi +

(
ζ +

η

3

)
∂i∂jvj

(2.1.39)

which is known as the Navier-Stokes equation. For a general external force density f ext
i , this

relation becomes

% (∂tvi + vj∂jvi) = f ext
i − ∂ip+ η∂j∂jvi +

(
ζ +

η

3

)
∂i∂jvj . (2.1.40)

2.1.6 Incompressibility29

If a fluid element’s density is constant throughout time, i.e. if

Dt% = 0 , (2.1.41)

the flow is called incompressible; if this condition is met for all types of flow for a given liquid,
that liquid itself is called incompressible. Rewriting the continuity equation (2.1.7) as

0 = vi∂i%+ %∂ivi + ∂t%

= %∂ivi + Dt% ,
(2.1.42)

it is evident that the incompressibility condition (2.1.41) can be equivalently formulated as

∂ivi = 0 . (2.1.43)

For incompressible flows, the viscous stress tensor becomes

σ′
ij = η (∂ivj + ∂jvi)

= ηγ̇ij
(2.1.44)

and therefore the stress tensor reads

σij = −pδij + η (∂ivj + ∂jvi)

= −pδij + ηγ̇ij .
(2.1.45)

29Landau and Lifshitz, Fluid Mechanics, § 15.
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The external-force Navier-Stokes equation reduces to

%∂tvi + %vj∂jvi = f ext
i − ∂ip+ η∂j∂jvi , (2.1.46)

or equivalently,
∂tvi + vj∂jvi = %−1f ext

i − %−1∂ip+ ν∂j∂jvi , (2.1.47)

where the kinematic viscosity ν := η/% has been introduced.

2.2 Adaptions of the Navier-Stokes Equation

2.2.1 The Linearized Navier-Stokes Equation

The dimensionless Reynolds number30, 31 Re := ul/ν, which is defined in terms of the kinematic
viscosity ν, a characteristic length l (such as a linear extent of some rigid boundary), and a
characteristic velocity u (such as the steady speed of said moving rigid boundary), serves as a
measure for the importance of the inertial forces, compared to pressure and viscous forces.32, 33

For example, the Reynolds number’s order of magnitude for a human swimming in water is
about Re ≈ 104, while for an organism about 2µm in size, such as the bacterium E. coli, the
Reynolds number is Re ≈ 10−4 or even less.34

In terms of these characteristic scales u, l, and ν, the summand vj∂jvi in equation (2.1.47),
is roughly of the order of magnitude35 u2/l, while the term ν∂j∂jvi is of order of magnitude
νu/l2; the ratio of these two (crude) estimates is exactly the Reynolds number Re. So, for
small Reynolds numbers, i.e. for Re � 1, the term %vj∂jvi becomes small compared to η∂j∂jvi,
and thus can be neglected in equation (2.1.47). Omission of this term, which is non-linear in
v, thus leads to the linearized Navier-Stokes equation36

%∂tvi = f ext
i − ∂ip+ η∂j∂jvi . (2.2.1)

30Landau and Lifshitz, Fluid Mechanics, § 19.
31Batchelor, An Introduction to Fluid Dynamics, § 4.7.
32Batchelor, An Introduction to Fluid Dynamics, § 4.8.
33E. M. Purcell. “Life at low Reynolds number”. American Journal of Physics 45 (1977), 3.
34Purcell, “Life at low Reynolds number”.
35Landau and Lifshitz, Fluid Mechanics, § 20.
36Landau and Lifshitz, Fluid Mechanics, § 20.
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2.2.2 Linear Viscoelasticity

One can generalize the derivation of the Navier-Stokes equation for incompressible fluids (see
sections 2.1.5 and 2.1.6), by introducing an explicit time-dependence in the dynamic viscosity
η and in the rate-of-strain tensor γ̇ij, and connecting them in a convolution term.37, 38, 39 Then,
instead of (2.1.45), the relationship between σij and γ̇ij reads

σij (r, t) = −p (r, t) δij +

t∫
t′=−∞

G (t− t′) γ̇ij (r, t
′) dt′ , (2.2.2)

where the real quantity G (∆t) is called the relaxation modulus; it is assumed to be inde-
pendent of the spatial coordinates r. G (∆t) describes how strain rates that occur during at
a time ∆t prior to t influence the stress of the fluid at time t. The range of integration,
t′ ∈ (−∞, t], is chosen accordingly, since it corresponds to ∆t ∈ [0,∞], so that the system’s
state is determined only by its past, but not by its future. G (∆t) is positive and monotoni-
cally decreasing40 to 0 with increasing ∆t, provided that one deals with viscoelastic liquids; the
condition lim∆t→∞ (G (∆t)) = 0 means that the system is stress-free if a strain was placed on
it only in the infinitely far past. This property is characteristic of liquids;41, 42 for a viscoelastic
solid, this assumption does not hold.

A quantity related to the relaxation modulus is the complex modulus43

G∗ (ω) = iω
∞∫

t=0

G (t) exp (−iωt) dt , (2.2.3)

37Bird, Armstrong, and Hassager, Fluid Mechanics, § 5.2d, equation (5.2-18).
38J. D. Ferry. Viscoelastic Properties of Polymers. 3rd ed. John Wiley & Sons, 1980, Section 1.B4, equation

(7).
39Ferry, Viscoelastic Properties of Polymers, Section 1.G1, equation (59).
40Bird, Armstrong, and Hassager, Fluid Mechanics, § 5.2d.
41Ferry, Viscoelastic Properties of Polymers, Section 1.B4.
42Ferry, Viscoelastic Properties of Polymers, Section 1.G.
43M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, 1994, Chapter

7.3, equation (7.22).
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which is decomposed44 into its real part, called the storage modulus45

G′ (ω) = Re (G∗ (ω))

= ω

∞∫
t=0

G (t) sin (ωt) dt ,
(2.2.4)

and its imaginary part, called the loss modulus:46

G′′ (ω) = Im (G∗ (ω))

= ω

∞∫
t=0

G (t) cos (ωt) dt .
(2.2.5)

With equation (2.2.2), the correspondingly extended Euler equation (2.1.38) reads, under
the incompressibility condition ∂ivi = 0,

% (∂tvi + vj∂jvi) = f ext
i − ∂ip+

t∫
t′=−∞

G (t− t′) ∂j γ̇ij (t
′) dt′

= f ext
i − ∂ip+

t∫
t′=−∞

G (t− t′) ∂j∂jvi (t
′) dt′ ,

(2.2.6)

where some dependencies on r and t have been omitted for notational clarity. With this, the
linearized Navier-Stokes equation (2.2.1) for linearly viscoelastic fluids reads

%∂tvi = f ext
i − ∂ip+

t∫
t′=−∞

G (t− t′) ∂j∂jvi (t
′) dt′ . (2.2.7)

44Doi and Edwards, The Theory of Polymer Dynamics, Chapter 4.5.1.
45Doi and Edwards, The Theory of Polymer Dynamics, Equation (7.23).
46Doi and Edwards, The Theory of Polymer Dynamics, Equation (7.23).
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Chapter 3

Multi-Particle Collision Dynamics

3.1 Introduction: MPC for Simple Fluids

Multi-Particle Collision Dynamics (MPC or MPCD for short) is a class of particle-based sim-
ulation techniques, introduced by Malevantes and Kapral.47

It is instructional to consider first the simplest variant of an MPC system in three spatial
dimensions: Let the coordinate system be Cartesian, with the axes named x, y, and z, or
alternatively 1, 2, and 3, respectively. Let the primary simulation volume be a cuboid of
side lengths Li = lia, i ∈ {1, 2, 3}, where li ∈ N+. So, Li is a positive integer multiple of a
characteristic length a, which serves as the length scale of the system and as such is set to
unity. The origin of the coordinate system is chosen such that it coincides with a corner of the
primary simulation volume, and the axes are aligned such that the primary simulation volume
lies entirely within the first octant of the coordinate system.

The fluid is modeled by a number NMPC ∈ N+ of point-like MPC particles. Each of them is
an abstract representation of a volume of the fluid that is large compared to the individual fluid
molecules, but small compared to V := L1L2L3, the volume of the simulated system. Each MPC
particle i ∈ I := {x ∈ N+ | x ≤ NMPC} has a position, taking on continuous values ri ∈ R3,
which, depending on the boundary conditions applied and the way these are implemented, may
be further restricted to some continuous subset of R3. The MPC particle velocities, vi ∈ R3,
are unconstrained. For simple fluids, each MPC particle has the same mass mi = m, which is
the system’s reference mass and is set to 1.

The MPC algorithm then consists of two alternating phases. In the streaming phase, each
MPC particle is propagated independently from all other particles. With the fixed propagation

47Malevanets and Kapral, “Mesoscopic model for solvent dynamics”.

27
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time being called ∆tMPC, and ignoring here, for the sake of simplicity, both the possible presence
of external force fields and the issue of boundary conditions (see section 3.1.3), the streaming
step thus is simply an update of the particle positions in accordance with ballistic motion:

ri (t+∆tMPC) = ri (t) + vi (t) ·∆tMPC . (3.1.1)

For the subsequent collision phase, the primary simulation volume is partitioned into cubic
collision cells, the side lengths of which are what defines the system’s length scale a. The
collision cells are tiled such that each point in the simulation volume can be uniquely assigned
to one collision cell. Then, all MPC particles that are momentarily located within a given
collision cell interact with one another (but not with any particles outside that collision cell), in
a way that conserves the total mass, linear momentum, and energy contained in each individual
collision cell.48

With these properties, the only missing ingredient essential to the derivation of the Navier-
Stokes equation (cf. section 2.1) is spatial isotropy. Since the orientation of the collision cell
cubes distinguishes three directions, the system is not strictly isotropic. However, it is conven-
tional to assume that isotropy is satisfied to a sufficient degree, such that, for suitable simula-
tion parameters (such as the simulation time-step ∆tMPC), one can expect MPC to reproduce
Navier-Stokes-like behavior.49, 50, 51

3.1.1 Stochastic Rotation Dynamics (SRD)

In the initial and most common variant of MPC, called stochastic rotation dynamics52 and
abbreviated SRD, the collision rule is as follows: For each collision cell c, the largest set Ic ⊆ I
of MPC particle indices with the property that for each i ∈ Ic, ri lies in the collision cell c, is
identified. Then, the collision cell’s center-of-mass velocity

Vc :=

∑
i∈Ic mivi∑
i∈Ic mi

(3.1.2)

48Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-
ulation Approach to the Hydrodynamics of Complex Fluids, Chapter 1.

49U. Frisch, B. Hasslacher, and Y. Pomeau. “Lattice-Gas Automata for the Navier-Stokes Equation”. Physical
Review Letters 56 (1986), 1505.

50Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-
ulation Approach to the Hydrodynamics of Complex Fluids, Chapter 1.

51T. Ihle and D. M. Kroll. “Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo
relations”. Physical Review E 67 (2003), 066705. Section I.A.

52T. Ihle and D. M. Kroll. “Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid
flow”. Physical Review E 63 (2001), 020201.
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is calculated, where vi is the i-th MPC particle velocity prior to the collision. With this, the
MPC particle velocities in the center-of-mass frame of the collision cell are obtained:

vi := vi − Vc . (3.1.3)

Next, in the collision cell’s center-of-mass frame, the vi are rotated by a fixed angle α

around a randomly chosen unit vector R; it is uniformly sampled from S2 (cf. appendix E),
independently so for each collision cell and time-step. Decomposing vi = v⊥

i +v
‖
i uniquely into

a part v
‖
i := (vi ·R)R parallel to R and a part v⊥

i := vi − v
‖
i perpendicular to R, the result

of the rotation of vi around R is53

v′
i := v

‖
i + cos (α)v⊥

i +
∣∣v⊥

i

∣∣ sin (α)
R× vi

|R× vi|
= v

‖
i + cos (α)v⊥

i + sin (α) (R× vi)

= (vi ·R)R+ cos (α) (vi − (vi ·R)R) + sin (α) (R× vi) ,

(3.1.4)

since |R× vi| =
∣∣v⊥

i

∣∣. The post-collision velocities obtained in the simulation system’s frame
of reference then are finally

v′
i := Vc + v′

i . (3.1.5)

Since the collision cell’s center-of-mass frame is defined by the condition that the sum of all
linear momenta in that reference frame is zero, i.e.

∑
i∈Ic mivi = 0, rotation of all vi around the

same axis conserves the linear momentum of the entire collision cell. Also, the collision cell’s
mass content is conserved, so that energy is unchanged as well. Finally, since the procedure is
evidently isotropic, all the conditions for an MPC collision step are satisfied (cf. section 3.1).

It should be noted, however, that SRD violates conservation of angular momentum. While
this deficiency can be repaired at the cost of computational efficiency,54 in most simulations
where MPC particles move slowly compared to the speed of sound55 the deviation from Navier-
Stokes-type behavior due to unphysical changes in angular momentum during the collision step
is negligible.56

53D. Koks. Explorations in Mathematical Physics. 1st ed. Springer, 2006. Chapter 4.2.
54H. Noguchi, N. Kikuchi, and G. Gompper. “Particle-based mesoscale hydrodynamic techniques”. Euro-

physics Letters (2007).
55Landau and Lifshitz, Fluid Mechanics, § 44.
56Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-

ulation Approach to the Hydrodynamics of Complex Fluids, Chapter 2.1.1.
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3.1.2 Grid Shift57,58,59

If one uses a fixed grid to define the collision cells, one breaks the system’s symmetry under
Galilei transformations: Imagine a fluid in a situation where the mean free path λ during the
time-step ∆tMPC is substantially smaller than the collision cell size a. Then, given a particular
collision cell c, the set of MPC particles Ic (t) in that cell at time t is going to contain mostly
the same members as Ic (t+∆tMPC), the set of MPC particles in the same collision cell c in
the next time-step. Statistically, the states of the MPC particles in Ic (t) are therefore going to
be correlated over a timespan large compared to the streaming time-step ∆tMPC.

However, if one superimposes a global, fixed, and non-zero velocity u on the entire system,
the correlation time changes in general, since now, the sets Ic (t) and Ic (t+∆tMPC) may share
less members. This means that the statistical properties of a system’s MPC particles depend
on the observer’s inertial frame, thus breaking Galilean symmetry.

In the case where λ is large compared to a, this effect is negligible, since then Ic (t) and
Ic (t+∆tMPC) are mostly disjoint for arbitrary u.

This deficiency of broken Galilean symmetry can be eliminated by independently sampling
three random numbers X1, X2, and X3 from U

([
−a

2
, a
2

])
and shifting either the entire collision

cell grid by X = (X1, X2, X3) with reference to its fixed position in the previous scenario, or
equivalently, by shifting the positions of all MPC particles by −X (for the handling of boundary
conditions see section 3.1.3).

This grid shift does not, however, fix the broken rotational symmetry due to the grid’s cubic
unit cell, which distinguishes three spatial directions in the system. Like most of the literature,
the present work will not deal with this issue further.

3.1.3 Boundary Conditions

The boundary conditions used in this work are periodic boundary conditions and Lees-Edwards
boundary conditions, both described below. Of course, others can be used with MPC as well,
such as no-slip boundary conditions in scenarios where extended solids, such as confining walls,
are involved: there, one imposes that the velocity component tangential to the surface of the
solid-fluid interface is continuous across the interface, i.e. the fluid does not slip along the solid’s

57Ihle and Kroll, “Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow”.
58Ihle and Kroll, “Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo rela-

tions”, Section A.
59Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-

ulation Approach to the Hydrodynamics of Complex Fluids, Chapter 2.1.
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surface – a condition experimentally verified under certain conditions.60 However, implementing
these boundary conditions without introducing artifacts is non-trivial.61, 62

3.1.3.1 Periodic Boundary Conditions

Periodic boundary conditions are defined by the property that, during the collision step, each
MPC particle i has its position vector components ri,j, j ∈ {1, 2, 3}, mapped to the image
coordinates

r′i,j := ri,j + ci,jLj , (3.1.6)

where the ci,j ∈ Z are chosen such that r′i,j ∈ [0, Lj).
For the collision step, it is only these image coordinates that are of importance. However,

the real MPC particle coordinates ri,j are not replaced by these image coordinates, so that
during the streaming steps, the MPC particles effectively move in an unbounded system, that
is only virtually folded back into the primary simulation volume for MPC collisions.

This procedure makes the handling of distances easier, for example when observing diffu-
sion behavior: if one is interested in how far a certain MPC particle travels during a given
time interval, one does not have to keep track of how often the primary simulation volume’s
boundaries have been crossed.

There is a possible downside to having the MPC particles propagate without bounds: if
particles move far away from the origin, the numerical accuracy of the floating-point variables
storing the positions degrades, as the density of representable real numbers decreases with
increasing modulus.63, 64 However, this effect would be noticeable only for simulations running
many orders of magnitude longer than what was necessary in this work.

60Batchelor, An Introduction to Fluid Dynamics, Chapter 3.3.
61A. Lamura, G. Gompper, T. Ihle, and D. M. Kroll. “Multi-particle collision dynamics: Flow around a

circular and a square cylinder”. Europhysics Letters 56 (2001), 319.
62A. Lamura and G. Gompper. “Numerical study of the flow around a cylinder using multi-particle collision

dynamics”. The European Physical Journal E - Soft Matter 9 (2002), 477.
63IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers.
64D. Goldberg. “What every computer scientist should know about floating-point arithmetic”. ACM Com-

puting Surveys 23 (1991), 5.
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3.1.3.2 Lees-Edwards Boundary Conditions65, 66

Lees and Edwards67 introduced a generalization of the periodic boundary conditions that en-
ables one to impose a specific, possibly time-dependent, uniform shear on the simulated system.

Let the shear act in the x-y-plane in the sense that with increasing y, the mean velocity vx

along the x direction increases, and let

γ̇ :=
dvx
dry

(3.1.7)

denote the shear rate, which is time-independent in this work.
Imagine, at the beginning of the simulation, having periodic images of the primary sim-

ulation volume along the x, y, and z directions. Label the primary simulation volume by
nx = ny = nz = 0; the image adjacent to that along the positive x direction is labeled nx = 1,
ny = nz = 0, and so on. Then, as the simulation time progresses, imagine the layers with
y-label ny = 1 moving with a constant velocity

u := γ̇Ly , (3.1.8)

with Ly being the length of the primary simulation volume along the y direction. Similarly,
the ny = −1 images move with −u along the x direction, and in general, an image with label
ny moves with nyu along the x direction. So, after a simulation time t, the coordinates of the
origins of the images are (nxLx + nyut, nyLy, nzLz) with respect to the origin of the primary
simulation cell.

Recall that the MPC particles are thought to propagate in unbounded space during the
streaming phase, and that it is necessary to temporarily fold the MPC particle coordinates into
the primary simulation volume for the collision phase. To achieve this, one first finds, for each
MPC particle i, which simulation volume image it falls into, by computing

ni,j :=

⌊
ri,j
Lj

⌋
(3.1.9)

65M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Reprint by The Ipswich Book Co Ltd
in 1991. Clarendon Press, 1987, Chapter 8.2.

66Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”, Appendix A.

67A. W. Lees and S. F. Edwards. “The computer study of transport processes under extreme conditions”.
Journal of Physics C: Solid State Physics 5 (1972), 1921.
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for j ∈ {1, 2, 3}. Then, the MPC particle’s image coordinates are calculated as

r′i,j = ri,j − ni,jLj − ni,2nyutδj,1 , (3.1.10)

where δij is the Kronecker symbol. Additionally, the MPC particle’s velocity along the x

direction is temporarily changed to

v′i,j (t) := vi,j (t) + nyuδj,1 (3.1.11)

to account for the additional speed gained through the applied shear. Next, the MPC collision
algorithm is executed with the image positions r′i and image velocities v′

i. Finally, the changed
MPC particle velocities are transformed from the image in the primary simulation volume to
the proper position in unbounded space, by undoing the transformation (3.1.11):

vi,j (t+∆tMPC) := v′i,j (t+∆tMPC)− nyuδj,1 . (3.1.12)

The Lees-Edwards boundary conditions have the periodic boundary conditions as the special
case γ̇ = 0, as can easily be seen.

3.1.4 Maxwell-Boltzmann-Scaling Thermostat

The MPC algorithm conserves energy, and thus models a microcanonical ensemble. However,
many interesting phenomena, such as the dynamics of polymers in solution, arise due to thermal
fluctuations.68 In order to introduce those fluctuations into the simulation scheme, one can
employ various methods to realize a canonical ensemble where the system temperature T is
fixed. Another reason one might need to couple the system to a heat bath is that, if external
forces act on the MPC particles, one may introduce energy into the system that may accumulate
if not removed via thermal contact.

In this work, the Maxwell-Boltzmann-Scaling thermostat, introduced by Huang et al.,69 is
implemented, which operates locally on the collision cells: For each collision cell c with member
particle indices in Ic, let Nc be the number of MPC particles currently being in that collision cell.
If Nc = 1, no action is performed, since then, no change in energy can be accomplished without
violating momentum conservation. In the case Nc > 1, a random variable E ′

k is sampled from

68Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-
ulation Approach to the Hydrodynamics of Complex Fluids, Chapter 1.

69C. Huang, A. Chatterji, G. Sutmann, G. Gompper, and R. G. Winkler. “Cell-level canonical sampling by
velocity scaling for multiparticle collision dynamics simulations”. Journal of Computational Physics 229 (2010),
168.
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the gamma distribution (A.11), with the distribution parameters being a = f
2

and b = kBT ;
here, f = 3 (Nc − 1) is the number of velocity degrees of freedom left in the collision cell’s
center-of-mass frame, so that

E ′
k ∼ fΓ

(
E ′

k;
f

2
, kBT

)
=

1

E ′
kΓ
(
f
2

) ( E ′
k

kBT

) f
2

exp
(
− E ′

k

kBT

)
. (3.1.13)

Equation (3.1.13) is derived from the Maxwell-Boltzmann distribution of three-dimensional
velocity vectors, with the constraint of momentum conservation.

With the center-of-mass velocity of MPC particle i being vi, the current center-of-mass
kinetic energy

Ek :=
1

2
m
∑
i∈Ic

v2
i (3.1.14)

is calculated, a random E ′
k is chosen according to equation (3.1.13), and the center-of-mass

velocities are scaled via

vi 7→

√
E ′

k

Ek

vi , (3.1.15)

with the result that after scaling, the center-of-mass kinetic energy of the collision cell c is E ′
k.

3.2 MPC for Complex Systems

MPC can easily be extended to simulate more complex systems than just fluids of one species,
with applications ranging from the modeling of binary fluids to systems of biological cells and
vesicles.70

In this work, the emphasis lies on the dynamics of linear polymers and the behavior of
viscoelastic fluids. Here, polymers are represented by linking together several MPC particles
by suitable potentials.

While it is easy to find an analytic solution for the streaming-step propagation of two
MPC particles coupled by a harmonic potential,71 the solutions become increasingly more
complicated, or even inaccessible, as soon as one generalizes this to other interaction potentials
and/or more constituents per polymer. So, instead of trying to find exact solutions in terms of
closed expressions, the motion of the individual MPC particles is approximately calculated by

70Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-
ulation Approach to the Hydrodynamics of Complex Fluids.

71Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”, Section III.A.
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the velocity Verlet algorithm as follows.72 Let ri (t), vi (t), and ai (t) be the position, velocity,
and acceleration of the i-th MPC particle at time t, respectively, and let ∆t be the simulation
time-step. Then, the updated positions ri (t+∆t) are calculated as

ri (t+∆t) = ri (t) + vi (t)∆t+
1

2
ai (t) (∆t)2 . (3.2.1)

The updated velocities are computed via

vi (t+∆t) = vi (t) +
ai (t) + ai (t+∆t)

2
∆t . (3.2.2)

Of course, for the accelerations ai (t+∆t) to be available, the updated positions ri (t+∆t) of
all interaction partners have to be computed beforehand, since

ai (t) := − ∂

∂ri (t)
U (r1 (t) , r2 (t) , . . .) , (3.2.3)

where U (r1 (t) , r2 (t) , . . .) is the system’s potential energy at time t. U evidently depends on
the positions of the interacting particles, but the velocity Verlet algorithm in unsuitable if there
is a dependence on the velocities; since the calculation of the updated velocities (3.2.2) requires
knowledge of the updated accelerations, having the latter be influenced by the former would
create a circular dependency.

For the velocity Verlet algorithm, being equivalent to the original Verlet algorithm,73 an
error of (∆t)4 in the updated positions can be estimated, and an error of (∆t)2 in the prediction
of the updated velocities.74 While velocity verlet exhibits inaccuracies in the estimation of the
velocity and a violation of conservation of energy on long timescales,75 these deficiencies are
not too worrisome in SRD simulations, because first, the velocities are subjected to a random
rotation during the SRD collision step anyway, and second, the system energy and velocities
undergo random rescalings due to the thermostat (see section 3.1.4).

The main advantage of the velocity Verlet algorithm is its conceptual and computational
simplicity. In particular, the number of values one needs to store and access are small, so that
the algorithm does not additionally constrain the system size one is able to simulate by requiring
storage of otherwise unneeded values. Furthermore, since accessing memory that is not local
to the GPU’s computation unit costs a considerable amount of time, minimizing the amount

72D. Frenkel and B. Smit. Understanding Molecular Simulation. From Algorithms to Applications. 2nd ed.
Academic Press, 2002, Chapter 4.3.1.

73Frenkel and Smit, Understanding Molecular Simulation, Chapter 4.3.1.
74Frenkel and Smit, Understanding Molecular Simulation, Chapter 4.2.3.
75Frenkel and Smit, Understanding Molecular Simulation, Chapter 4.3.
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of data needed to update a given polymer is beneficial for the simulation performance.



Chapter 4

MPCDSim: A Novel GPU-Based MPC
Implementation

4.1 Overview and Design Goals

The basis of this thesis is an implementation of the SRD variant of MPC; uncreatively named
MPCDSim, it has been developed from ground up, with the following design goals in mind:

• Correctness
The implementation has to produce correct data, in the sense that the simulation follows
the MPC algorithm as specified in chapter 3.

• Performance
One advantage of MPC is its computational efficiency, which allows for large and com-
plex systems to be simulated over extended periods of simulation-time (i.e. number of
simulation steps times the simulation time-step ∆tMPC). However, one can easily negate
this algorithmic advantage by making unfavorable code design choices which may reduce
computational performance (i.e. real time taken per simulation step) drastically. While
optimization of computing performance was not a primary objective, considerable effort
was spent on identifying and implementing the optimizations that were characterized by
the highest ratio of anticipated impact on computing time vs. developer time used.

• Massive Parallelization
Since in the streaming step, (fixed groups of) MPC particles move independently from the
others, and since the collision step involves only on the order of 1 to 10 MPC particles,

37
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MPC is inherently a very parallel algorithm; the majority of computational work can be
easily broken up into independent tasks, each of which requires only a small amount of
computing power and memory. This makes MPC very well-suited for the use of Graph-
ics Processing Units (abbreviated GPUs), which have, depending on the model, several
thousands of computing cores working in parallel; in order to utilize them most efficiently,
ideally one would schedule on the order of 104 threads for execution on each GPU.76

• Clean and Easily Extensible Software Architecture
The software was designed, using the paradigm of object-oriented programming, in such
a way that different tasks are handled by different parts of the code, and vice versa.
This way, the code modularizes into components that are small, specialized, and easily
comprehensible. Components can readily be changed, e.g. in order to test a new algo-
rithm, without disturbing the remainder of the program. Also, new components, like a
new measurement of a dynamical system property, can be added without concern for the
inner workings of the bulk of the software package.

• Documentation
In order for the black-box approach to work, the application programming interfaces
(APIs) of the code have to be specified; for example, a given function’s documentation
should describe the purpose of passed parameters and conditions for their validity, the
returned value, possible side effects, assumptions made about the state of the program
upon entering the function, and error conditions.

The documentation is embedded into the source code in the form of comments, and
is written in a syntax compatible the program doxygen,77 which allows for automatic
generation of manuals in various formats, such as HTML and PDF.

• Code Legibility
It was attempted to make the code as easily readable as possible: for names of symbols,
such as variables and functions, descriptive names have been chosen over short ones. Also,
effort was spent to make routines small and compact; if a function grew too large, often-
times that was due to the function doing two separable tasks, which then were refactored
into smaller functions. This way, even readers unfamiliar with the code should have an,

76A. V. Adinetz. “GPUs and Other Non-Standard Hardware”. Computing Solids: Models, ab-initio methods
and supercomputing. Ed. by S. Blügel, N. Helbig, V. Meden, and D. Wortmann. Vol. 74. Key Technologies.
Forschungszentrum Jülich, 2014. Chap. D5, Chapter 2.2.

77D. van Heesch. Doxygen. url: http://www.stack.nl/~dimitri/doxygen/manual/index.html.



4.2. SIMULATION PARAMETERS 39

at least vague, idea what any particular code passage does. If the functionality still was
non-obvious, for example due to algorithmic or mathematical complexities, appropriate
comments were inserted into the code explaining the passage’s purpose.

• Traceability
As features are added and errors are corrected, the source code undergoes a lot of changes.
To ensure that data produced by any given version of the software can be checked for
systematic errors, and in order to provide the possibility to trace potential errors to where
they were introduced, the source control management program git 78 was used.

While the degree of success in achieving the design goals has to be judged subjectively,
there certainly is potential for improvement regarding performance and scalability, at least
for simulations of simple fluids:79 The implementation presented here is currently incapable
of using more than one GPU in parallel. This is primarily a constraint on the available GPU
memory, and thus on the system size. However, since the majority of applications for MPCDSim
do not require any given simulation to run for extended periods of simulation-time (say, 2t),
multi-GPU systems can still be used efficiently by running multiple instances of MPCDSim
in parallel, and thus improving the statistics of the data gathered, by providing two distinct
realizations of the simulated system, each contributing a simulation-time of t.

Furthermore, MPCDSim currently utilizes only one CPU thread, since the performance
bottleneck lies with the GPU and in the communication with it; it should be relatively easy,
however, to implement CPU-multithreading if needed.

4.2 Simulation Parameters

4.2.1 System Properties

Unless noted otherwise, the simulation parameters for results shown were as follows:
The primary system volume had dimensions Lx = Ly = Lz = 30a. The SRD rotation angle

α was fixed at 2.27, corresponding to about 130◦. The temperature was set to kBT = 1, the
MPC streaming time was ∆tMPC = 0.1. The statistical average number of MPC particles per
collision cell was set to Nc = 10.

78L. Torvalds et al. git (Version 1.9.1). url: https://git-scm.com.
79E. Westphal, S. Singh, C.-C. Huang, G. Gompper, and R. G. Winkler. “Multiparticle collision dynamics:

GPU accelerated particle-based mesoscale hydrodynamic simulations”. Computer Physics Communications 185
(2014), 495.
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4.2.2 System Initialization

When initializing the simulation, NMPC := NcLxLyLza
−3 MPC particles are created in total.

With N being the number of springs per MPC polymer, i.e. N + 1 being the number of MPC
particles per polymer, this populates the simulation volume with NPolymer := NMPC/ (N + 1)

MPC polymers; the simulation parameters are chosen such that NPolymer ∈ N+.
For each MPC polymer, the position r1 of the first MPC particle is sampled randomly from

a uniform distribution U ([0, Lx)× [0, Ly)× [0, Lz)) over the primary simulation volume. For
each subsequent MPC particle i+1 of that same MPC polymer, the initial position ri+1 is set to
be ri+ sX, where X ∼ U

(
[0, 1)3

)
, and s is a scaling factor that is described below. The thusly

chosen ri is rejected if it lies outside of the primary simulation volume. If this would not be
done, the newly generated particle would be mapped onto a potentially very distant location
due to the boundary conditions employed, which could create unphysically highly stretched
polymer bonds. On the other hand, this rejection mechanism is cause for a relatively depleted
zone around the borders of the primary simulation volume. However, this imbalance in the
mass distribution is expected to average out after the warmup phase described below.

The scaling parameter s is chosen to be the root-mean-square bond length l in the case for
dimers, since there, this quantity can be readily obtained from the spring constant and vice
versa. For larger polymers, calculation of the l is more involved (see chapter 6); for spring
constants on the order of unity, it is expected that setting s = 1 for simplicity’s sake still allows
for the springs to reach their equilibrium state during simulation warmup.

The initial velocities of the MPC particles are chosen randomly and independently, with
each Cartesian component being drawn from a normal distribution with zero mean and unity
variance. This immediately yields the Maxwell-Boltzmann distribution for the magnitudes of
the velocities, which is the correct distribution in systems where there is no external force;
for other systems, the warmup time defined below has to be chosen such that a steady state
can develop during warumup. The magnitudes of the velocities, which depend on the fluid’s
temperature, are scaled from their initialization value to the physically correct one by the
thermostat applied (see section 3.1.4).

After the system has been set up by choosing the initial positions and velocities of all MPC
particles, a number of the usual MPC simulation steps is performed in what is called the warmup
phase of the simulation. The goal of these steps is to let the system evolve to a point where the
artifacts introduced by the initialization algorithm described above have averaged out and a
steady state is reached, so that measurements of quantities one is interested in can be expected
to accurately represent the physical behavior of an ideally-prepared system. Consequently, all
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measurements are performed only after the warmup phase has concluded.

4.3 Verification of Implementation Correctness

In this section, MPCDSim is tested in some scenarios where published results and theoretical
predictions are available, in order to test the implementation for deficiencies. Of course, the
absence of observed deviations is not a proof of the correctness of MPCDSim, but is reassuring
nevertheless. Also, the tests shown are of diagnostic help in situations where indeed faults are
introduced into the code during development.

4.3.1 Shear Flow of a Simple Fluid

As a first test, a simulation of a simple fluid in shear flow is presented in figure 4.1. The simu-
lation data was taken by dividing the primary simulation volume along the y axis into intervals
of length a

10
, and for each of these subvolumes, averaging over all MPC particle velocities for

about 3 · 105 MPC time-steps.
The results are in excellent agreement with the theoretical prediction, which is that in the

central layer y = 1
2
Ly of the simulation volume, the shear flow is zero, while its magnitude

increases linearly with increasing distance from that central layer. Mathematically, this can be
formulated as

vx = −
(
y − 1

2
Ly +

1

2

a

10

)
γ̇ . (4.3.1)

Since in the sampled subvolume identified by the coordinate y0, one averages over all MPC
particles in the interval y ∈

[
y0, y0 +

a
10

)
, one effectively samples from the average MPC particle

position y0 +
1
2

a
10

; hence the corresponding correctional term 1
2

a
10

in equation (4.3.1).

4.3.2 Grid Shift

In order to see that the results in section 4.3.1 depend on the MPC particle decorrelation
achieved by the grid shift procedure as described in section 3.1.2, figure 4.2 shows the same
situation as figure 4.1, except that the grid shift has been disabled entirely in one case, and
reduced in its effect in another case. The almost-vertical sections of the data graph coincide
with the boundaries of the collision cells. The zig-zag pattern is due to the fact that within
each collision cell, the average particle velocities are nearly constant. Since the collision cell
boundaries are fixed without the grid shift, “communication” between different collision cells
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is achieved only through MPC particles crossing cell boundaries, which is a comparatively rare
event; relaxation into the theoretically predicted equilibrium state would take vast amounts of
computing time. However, with grid shift enabled, the interaction partners for one given MPC
particle change frequently, so that equilibrium can be reached quickly.



4.3. VERIFICATION OF IMPLEMENTATION CORRECTNESS 43

0 5 10 15 20 25 30

−1

0

1

y coordinate of sampled volume

av
er

ag
e

ve
lo

ci
ty

v x
in

x
-d

ire
ct

io
n

Data
Theory

Figure 4.1: Results of a simulation of a simple fluid in shear flow with shear rate γ̇ = 0.1,
showing how the x-component vx of the fluid velocity depends on the y coordinate. About
3 · 105 time-steps were simulated.
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Figure 4.2: Results of simulations with varying “strength factors” s for the grid shift. This
scaling factor s has the effect that, instead of sampling the grid shift lengths from U

([
−a

2
, a
2

])
,

the distribution function is given by U
([
−sa

2
, sa

2

])
. The data for s = 1 (i.e. full grid shift)

is not shown, as it is virtually indistinguishable from the theory curve. s = 0 corresponds to
having no grid shift at all, and s = 0.5 is an in-between case that only serves to illustrate how
the simulation reaches equilibrium faster with s approaching 1 from below. The imposed shear
rate in this figure is γ̇ = 0.1, and about 3 · 105 time-steps were simulated.
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Chapter 5

Center-of-Mass Velocity
Autocorrelation Function

5.1 Theory

5.1.1 Laplace-Domain Equation of Motion

The linearized Navier-Stokes equation for linearly viscoelastic fluids (2.2.7) reads, in the absence
of external forces (f ext = 0),

%∂tvi (r, t) = −∂ip (r, t) +

t∫
t′=−∞

G (t− t′) ∂j∂jvi (r, t
′) dt′ . (5.1.1)

In order to make the mathematical treatment easier later on, let the lower integration bound
be changed to 0:80

%∂tvi (r, t) = −∂ip (r, t) +

t∫
t′=0

G (t− t′) ∂j∂jvi (r, t
′) dt′ (5.1.2)

This change corresponds to a system which is in equilibrium at times t ≤ 0. For other systems,
this altered equation is only an approximation, the quality of which depends on t and on
how fast G (∆t) decays with ∆t. However, arbitrarily small errors can be guaranteed with

80J. Farago, H. Meyer, J. Baschnagel, and A. N. Semenov. “Mode-coupling approach to polymer diffusion
in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions”. Physical Review E 85 (2012),
051807. Equation (27).
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sufficiently large t, since G (∆t) tends to 0 monotonically with ∆t (cf. section 2.2.2).

The spatial Fourier transform r → k then leads to (cf. appendix B.1)

%∂tṽi (k, t) = −ikip̃ (k, t)− kjkj

t∫
t′=0

G (t− t′) ṽi (k, t
′) dt′ , (5.1.3)

where the tilde denotes a Fourier-transformed quantity (see appendix A).

Let ṽ be uniquely decomposed into a longitudinal part ṽL parallel to k and a transverse
part ṽT perpendicular to k for a fixed k, i.e. ṽ = ṽL + ṽT. Then, one can perform a projection
of the vectors occurring in (5.1.3) onto the subspace perpendicular to k and obtain

%∂tṽ
T
i (k, t) = −k2

t∫
t′=0

G (t− t′) ṽT
i (k, t′) dt′ . (5.1.4)

Multiplication with the t-independent term ṽT
i (−k, 0) and summation over the repeated

index i yields

%∂tṽ
T
i (k, t) ṽT

i (−k, 0) = −k2

t∫
t′=0

G (t− t′) ṽT
i (k, t′) ṽT

i (−k, 0) dt′ . (5.1.5)

Defining the velocity autocorrelation function in the Fourier subspace perpendicular to k as

C̃T
v (k, t) :=

〈
ṽT (k, t) · ṽT (−k, 0)

〉
, (5.1.6)

where the angle brackets denote statistical averaging over the stochastic value of ṽT (k, t) ·
ṽT (−k, 0), one can calculate the ensemble average on both sides of equation (5.1.5) to obtain
the equation governing the temporal evolution of C̃T

v (k, t):

%∂tC̃
T
v (k, t) = −k2

t∫
t′=0

G (t− t′) C̃T
v (k, t′) dt′ . (5.1.7)

Due to the lower integration bound being 0, this equation can conveniently be subjected to
a Laplace transform t → s (denoted by the decoration of a symbol with a hat) to arrive at an
algebraic equation for ˆ̃CT

v (cf. appendices C.1 and C.2),

%
(
s ˆ̃CT

v (k, s)− C̃T
v (k, 0)

)
= −k2Ĝ (s) ˆ̃CT

v (k, s) , (5.1.8)
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which can be rearranged to yield

ˆ̃CT
v (k, s) =

%C̃T
v (k, 0)

%s+ k2Ĝ (s)
. (5.1.9)

5.1.2 Solution for C̃T
v for Simple Fluids

For simple, purely viscous fluids, equation (2.2.2) has to reduce to equation (2.1.45). This is
achieved by

G (t− t′) = ηδ (t− t′) , (5.1.10)

which means that the stress tensor depends only on the instantaneous value of the shear rate,
but not its history. Then, the Laplace transform of G is given by81

Ĝ (s) = η , (5.1.11)

so that equation (5.1.9) simplifies to

ˆ̃CT
v (k, s) =

C̃T
v (k, 0)

s+ k2η%−1
, (5.1.12)

the inverse Laplace transform s → t of which is82

C̃T
v (k, t) = C̃T

v (k, 0) exp
(
−k2η

%
t

)
. (5.1.13)

This exponential decay is characteristic of simple fluids and can be used to determine the
kinematic viscosity ν = η/% from measurements of C̃T

v (k, t) /C̃T
v (k, 0).

81P. Dyke. An Introduction to Laplace Transforms and Fourier Series. Ed. by M. A. J. Chaplain, K. Erd-
mann, A. MacIntyre, E. Süli, M. R. Tehranchi, and J. F. Toland. 2nd ed. Springer Undergraduate Mathematics
Series. Springer, 2014. Chapter 2.6.

82F. Oberhettinger and L. Badii. Tables of Laplace Transforms. Springer, 1973. Rule II.2.2.
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5.1.3 Solution for C̃T
v for Rouse Polymers

5.1.3.1 Storage and Loss Moduli

The Rouse model 83, 84 describes a linear chain of N + 1 identical monomers, connected via N

massless harmonic springs, dissolved in a viscous solvent; the hydrodynamic interaction between
the monomers is, however, neglected. Likewise, interactions due to excluded volume effects,
such as forbidding the penetration of one polymer’s bonds by another bond, are not considered.

The Rouse model is mathematically simple enough to allow one to compute an analytical
solution. The storage modulus, defined in equation (2.2.4), can be found to be85, 86

G′ (ω) = ϕkBT
N∑
p=1

ω2τ 2p
1 + ω2τ 2p

, (5.1.14)

while the loss modulus (2.2.5) is87, 88, 89

G′′ (ω) = ωη + ϕkBT
N∑
p=1

ωτp
1 + ω2τ 2p

. (5.1.15)

Here, η is the dynamic viscosity of the solvent, and ϕ is the number density of polymer
molecules, i.e. the number of polymer chains per unit volume. The relaxation times τp are
given by90

τp = σ2

(
24BkBT sin2

(
pπ

2 (N + 1)

))−1

> 0 , (5.1.16)

with σ2 > 0 being the average squared distance of two consecutive monomers. B > 0 is the
mobility, defined as v/F of the initial drift velocity v of a monomer when a small force F acts

83P. E. Rouse. “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers”.
The Journal of Chemical Physics 21 (1953), 1272.

84Doi and Edwards, The Theory of Polymer Dynamics, Chapter 4.1.
85Rouse, “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers”, Equation

(30a).
86Y.-G. Tao, I. O. Götze, and G. Gompper. “Multiparticle collision dynamics modeling of viscoelastic fluids”.

The Journal of Chemical Physics 128 (2008), 144902. arXiv: 0802.2200 [cond-mat.soft]. Equation (30).
87Rouse, “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers”, Equation

(30b).
88R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Kinetic Theory. 2nd ed. Vol. 2. Dynamics

of Polymeric Liquids. John Wiley & Sons, 1987, Equations (13.4-21) and (13.4-22).
89Tao, Götze, and Gompper, “Multiparticle collision dynamics modeling of viscoelastic fluids”, Equation

(31).
90Rouse, “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers”, Equation

(31).
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on it; B is related91 to the friction constant ζ via

B = ζ−1 . (5.1.17)

5.1.3.2 Relaxation Modulus

In order to retrieve the relaxation modulus G (t) from the complex modulus G∗ (ω) (cf. (2.2.3)),

G∗ (ω) = iω
∞∫

t′=0

G (t′) exp (−iωt′) dt′ , (5.1.18)

one can multiply both sides of this equation by −iω−1 exp (iωt) and integrate ω over R:

∞∫
ω=−∞

G∗ (ω) exp (iωt)
iω

dω =

∞∫
ω=−∞

∞∫
t′=0

G (t′) exp (iω (t− t′)) dt′ dω . (5.1.19)

One can carry out the integration over ω on the right hand side, using the representation (B.2.1)
of the Dirac delta function, to obtain

∞∫
ω=−∞

G∗ (ω) exp (iωt)
iω

dω = 2π

∞∫
t′=0

G (t′) δ (t− t′) dt′

= 2πG (t) θ (t) .

(5.1.20)

In order to simplify the left-hand side, one can use the definitions (2.2.4) and (2.2.5) of the
storage and loss moduli,

G∗ (ω) = G′ (ω) + iG′′ (ω) , (5.1.21)

and insert the expressions (5.1.14) and (5.1.15):

G∗ (ω) = ϕkBT
N∑
p=1

ω2τ 2p
1 + ω2τ 2p

+ iωη + iϕkBT
N∑
p=1

ωτp
1 + ω2τ 2p

. (5.1.22)

91Doi and Edwards, The Theory of Polymer Dynamics, Equation (3.5).
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Division by iω then yields

G∗ (ω)

iω
= η + ϕkBT

N∑
p=1

τp − iωτ 2p
1 + ω2τ 2p

. (5.1.23)

Writing the denominator as 1 + ω2τ 2p = (1− iωτp) (1 + iωτp), one can cancel one of the factors
with the numerator, arriving at

G∗ (ω)

iω
= η + ϕkBT

N∑
p=1

1

τ−1
p + iω

. (5.1.24)

The left-hand side of (5.1.20) is (up to a factor of
√
2π) an inverse Fourier transformation,

the result of which is92 (see also appendix B.2)

∞∫
ω=−∞

G∗ (ω) exp (iωt)
iω

dω =
√
2πF−1

ω

{
G∗ (ω)

iω

}
(t)

= 2πηδ (t) + ϕkBT
N∑
p=1

2π exp
(
− t

τp

)
θ (t) .

(5.1.25)

Comparison with the final result of (5.1.20) yields

G (t) θ (t) = ηδ (t) + ϕkBT
N∑
p=1

exp
(
− t

τp

)
θ (t) . (5.1.26)

Since values for t < 0 do not enter in the Laplace transform

Ĝ (s) =

∞∫
t=0

G (t) exp (−st) dt , (5.1.27)

the Heaviside function can be replaced by unity in equation (5.1.26). The Laplace transform
is then computed to be93, 94

Ĝ (s) = η + ϕkBT
N∑
p=1

1

τ−1
p + s

. (5.1.28)

92F. Oberhettinger. Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer, 1990.
Rule III.3.42.

93Dyke, An Introduction to Laplace Transforms and Fourier Series, Chapter 2.6.
94Oberhettinger and Badii, Tables of Laplace Transforms, Rule I.5.1.
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Insertion of this result into (5.1.9) leads to the result

ˆ̃CT
v (k, s) =

%C̃T
v (k, 0)

%s+ k2
(
η + ϕkBT

∑N
p=1

(
τ−1
p + s

)−1
) . (5.1.29)

5.1.3.3 Solution for C̃T
v (k, t) for the Rouse Model

In order to find the analytic solution for C̃T
v (k, t) within the Rouse model, one has to compute

the inverse Laplace transform of ˆ̃CT
v (k, s) in (5.1.29). Let

D (s) := %s+ k2

(
η + ϕkBT

N∑
n=1

(
τ−1
n + s

)−1

)
(5.1.30)

be the denominator in (5.1.29). Multiplication with

W (s) :=
N∏
p=1

(
τ−1
p + s

)
, (5.1.31)

which is a polynomial of degree N in s, yields

P (s) := D (s)W (s)

=
(
%s+ k2η

) N∏
p=1

(
τ−1
p + s

)
+ k2ϕkBT

N∑
n=1

1

τ−1
n + s

N∏
p=1

(
τ−1
p + s

)
=
(
%s+ k2η

)
W (s) + k2ϕkBT

N∑
n=1

N∏
p=1
p 6=n

(
τ−1
p + s

)
.

(5.1.32)

Since this expression is a polynomial of degree N + 1 in s, the coefficient of sN+1 being
% 6= 0, it can be written as

P (s) = %

N+1∏
m=1

(s− Pm) , (5.1.33)

where Pn are the roots of the polynomial %−1P (s). Similarly, since W (s) is a polynomial in s,
the coefficient of sn being denoted by Wn, W (s) can be written as

W (s) =
N∑

n=0

Wns
n . (5.1.34)
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Multiplying both the numerator and the denominator in (5.1.29) by W (s), one finds

ˆ̃CT
v (k, s) = %C̃T

v (k, 0)
W (s)

P (s)

= C̃T
v (k, 0)

N∑
n=0

Wn
sn∏N+1

m=1 (s− Pm)

(5.1.35)

Assuming that all of the Pn are distinct, i.e. that P (s) only has simple roots, the inverse
Laplace transform s → t of

sn
N+1∏
m=1

(s− Pm)
−1 (5.1.36)

can be computed to be95

L−1
s

{
sn∏N+1

m=1 (s− Pm)

}
(t) =

N+1∑
m=1

P n
m exp (Pmt)

N+1∏
q=1
q 6=m

(Pm − Pq)
−1 , (5.1.37)

where the property n ≤ N was used. Thus, the velocity autocorrelation function in the Fourier
subspace perpendicular to k is found to be

C̃T
v (k, t) = C̃T

v (k, 0)
N∑

n=0

Wn

N+1∑
m=1

P n
m exp (Pmt)

N+1∏
q=1
q 6=m

(Pm − Pq)
−1 . (5.1.38)

To make the dependency of C̃T
v (k, t) on the relaxation times τp explicit, it is necessary

to express Wn and Pn in terms of the τp. As is evident from (5.1.31), WN = 1. The other
coefficients WN−n, n 6= 0, can be calculated using Viète’s formula96

WN−n =
∑

1≤i1<i2<...<in≤N

τ−1
i1

τ−1
i2

· · · τ−1
in

> 0 . (5.1.39)

One can define the functions

W (n) (s) :=
1

τ−1
n + s

W (s) =
N∏
p=1
p 6=n

(
τ−1
p + s

)
, (5.1.40)

which again are polynomials in s, but of degree N − 1. Similar as for W (s), their leading

95Oberhettinger and Badii, Tables of Laplace Transforms, Rule II.2.78.
96E. B. Vinberg. A Course in Algebra. Ed. by W. Craig, N. Ivanov, S. G. Krantz, and D. Saltman. Vol. 56.

Graduate Studies in Mathematics. American Mathematical Society, 2003, Chapter 3.2.
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coefficients are W
(n)
N−1 = 1, and, for m 6= 1,

W
(n)
N−m =

∑
1≤i1<i2<...<im−1≤N

n/∈{i1,i2,...,im−1}

τ−1
i1

τ−1
i2

· · · τ−1
im−1

> 0 .
(5.1.41)

With this in mind, one can rewrite (5.1.32) as

%−1P (s) =
(
s+ %−1k2η

)
W (s) + %−1k2ϕkBT

N∑
n=1

W (n) (s) . (5.1.42)

Representing the polynomial %−1P (s) by its coefficients Qn,

%−1P (s) =
N+1∑
n=0

Qns
n (5.1.43)

and comparing this with (5.1.42), one finds that

QN+1 = WN = 1 ,

QN = WN−1 + %−1k2ηWN ,

∀n ∈ [1, N − 1] : Qn = Wn−1 + %−1k2ηWn + %−1k2ϕkBT
N∑

m=1

W (m)
n ,

Q0 = %−1k2ηW0 + %−1k2ϕkBT
N∑

m=1

W
(m)
0 .

(5.1.44)

Since % > 0, ϕ > 0, k2 > 0, η > 0, and kBT > 0, one finds that the Qn all are real and positive.

5.1.3.4 Limit of Long Polymers

In the limit of large N � 1 and small p � N , one can approximate N + 1 ≈ N and expand
the sine in (5.1.16) into its Taylor series, keeping only the linear term, to obtain

τp ≈
ζN2σ2

6π2kBTp2
. (5.1.45)

Evidently, within the approximation (5.1.45), τp = τ1/p
2 holds. From this, it can be seen

that the relaxation times are ordered τ1 > τ2 > τ3 > . . ., and that therefore, the longest
relaxation times provide the major contributions to the storage and loss moduli.
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5.1.3.5 Dimers

In the case of dimers, where N = 1, the only emerging relaxation time can be computed from
(5.1.16) to be

τ1 =
σ2

12BkBT
. (5.1.46)

If the potential between two neighboring monomers, being a distance R apart from each other,
is written as KR2 (K being the spring constant), then σ2 is given by97, 98

σ2 =
3kBT

2K
, (5.1.47)

so that
τ1 =

ζ

8K
. (5.1.48)

For the storage modulus (5.1.14) and the loss modulus (5.1.15), one thus obtains

G′ (ω) = ϕkBT
ω2τ 21

1 + ω2τ 21
, (5.1.49)

G′′ (ω) = ωη + ϕkBT
ωτ1

1 + ω2τ 21
, (5.1.50)

and consequently, the Laplace-transformed relaxation modulus (5.1.28) is given by

Ĝ (s) = η + ϕkBT
1

τ−1
1 + s

. (5.1.51)

The polynomial P (s) defined in (5.1.32) now reads

P (s) =
(
%s+ k2η

) (
τ−1
1 + s

)
+ k2ϕkBT

= %
(
s2 + s

(
τ−1
1 + k2%−1η

)
+
(
k2%−1ητ−1

1 + k2%−1ϕkBT
))

,
(5.1.52)

and hence its two roots P1 and P2 are (cf. equation (5.1.33))

Pn = −τ−1
1 + k2%−1η

2
+ (−1)n

√(
τ−1
1 + k2%−1η

)2
4

− k2%−1
(
ητ−1

1 + ϕkBT
)

. (5.1.53)

The solution (5.1.38) for the velocity autocorrelation function in the Fourier subspace per-

97Doi and Edwards, The Theory of Polymer Dynamics, Equation (4.5).
98Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning

Gaussian dumbbells”, Equation (3) and section III.A.
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pendicular to k can, with W0 = τ−1
1 and W1 = 1, thus be re-written as

C̃T
v (k, t)

P1 − P2

C̃T
v (k, 0)

= exp (P1t)
(
τ−1
1 + P1

)
− exp (P2t)

(
τ−1
1 + P2

)
. (5.1.54)

Defining

pA := −τ−1
1 + k2%−1η

2

pB := −i

√(
τ−1
1 + k2%−1η

)2
4

− k2%−1
(
ητ−1

1 + ϕkBT
)

,
(5.1.55)

the roots P1 and P2 in equation (5.1.53) can be written more compactly as

P1 = pA − ipB
P2 = pA + ipB

(5.1.56)

so that equation (5.1.54) can be cast into the form

C̃T
v (k, t)

C̃T
v (k, 0)

= exp (pAt)
exp (−ipBt)

(
τ−1
1 + pA − ipB

)
− exp (ipBt)

(
τ−1
1 + pA + ipB

)
−2ipB

=
exp (pAt)

2ipB
(
exp (ipBt)

(
τ−1
1 + pA + ipB

)
− exp (−ipBt)

(
τ−1
1 + pA − ipB

))
=

exp (pAt)

pB

((
τ−1
1 + pA

)
sin (pBt) + pB cos (pBt)

)
.

(5.1.57)

Evidently, pA ∈ R−. If (
τ−1
1 + k2%−1η

)2
4

< k2%−1
(
ητ−1

1 + ϕkBT
)

, (5.1.58)

then pB ∈ R+, and equation (5.1.57) contains real quantities only.

Otherwise, if
(
τ−1
1 + k2%−1η

)2
> 4k2%−1

(
ητ−1

1 + ϕkBT
)
, pB is purely imaginary. Then, let

pC := ipB ∈ R+, so that equation (5.1.57) can be written in terms of hyperbolic functions:

C̃T
v (k, t)

C̃T
v (k, 0)

=
exp (pAt)

pC

((
τ−1
1 + pA

)
sinh (pCt) + pC cosh (pCt)

)
. (5.1.59)

Asymptotically, for constant k and t → ∞, one thus has the proportionality

C̃T
v (k, t) ∼ exp ((pA + pC) t) (5.1.60)
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which tends to 0 if and only if −pA > pC , i.e. in the case

τ−1
1 + k2%−1η

2
>

√(
τ−1
1 + k2%−1η

)2
4

− k2%−1
(
ητ−1

1 + ϕkBT
) (5.1.61)

which evidently is a tautology as long as k 6= 0.
In this large-t limit (5.1.60) of C̃T

v (k, t), it is clear that it is the small k-values that provide
the dominant contributions. A Taylor expansion of pC around k = 0 up to order k2 yields

pC ≈ 1

2τ1
− k2%−1

(
ϕkBTτ1 +

η

2

)
, (5.1.62)

so that, for large t,
CT

v (k, t) ∼ exp
(
−k2%−1 (η + ϕkBTτ1) t

)
. (5.1.63)

Comparison with the case of simple fluids, i.e. equation (5.1.13), shows that in the large-t
limit, the viscous behavior dominates over the elastic contributions; the latter only influence
the apparent viscosity, providing an additional term ϕkBTτ1.

5.2 Simulation Results

5.2.1 Simple Fluid

Figures 5.1 and 5.2 show data obtained from a simulation of a simple fluid, along with the
theoretical prediction in equation (5.1.13). For the latter, the kinematic viscosity ν = η/% has
been computed to be ν = 0.8705 from the MPC particle mass m = 1, the system temperature
kBT = 1, the MPC time-step ∆tMPC = 0.1, and the SRD rotation angle α = 2.27, via99

ν =

(
5m

(m− 1 + exp (−m)) (2− cos (α)− cos (2α))
− 1

)
kBT∆tMPC

2m

+
m− 1 + exp (−m)

18m
(1− cos (α)) a2

∆tMPC

(5.2.1)

For t ≤ 40, the simulation data is in excellent agreement both with the theory curve and
with the literature.100 For larger times, the signal-to-noise ratio in the simulation measurements
gets gradually worse, so that the sample size is probably too small for the statistical average

99Gompper, Ihle, Kroll, and Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Sim-
ulation Approach to the Hydrodynamics of Complex Fluids, Table 1.

100Huang, Gompper, and Winkler, “Hydrodynamic correlations in multiparticle collision dynamics fluids”,
Fig. 2.
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to approach its real mean value. This would serve not only as an explanation for the deviation
of the data from the theoretical prediction, but is also hinted at by the fact that the data for
k along different axes of the Cartesian coordinate system diverge for larger t, even though the
simulation does not distinguish between the different directions.

5.2.2 Dimers

Figures 5.3 to 5.5 show the absolute value of C̃T
v (k, t) /C̃T

v (k, 0) as a function of t in dimeric
fluid simulations.

Comparison of the data with the theoretical prediction (5.1.57) again shows very good
agreement for t < t0 for some t0, where t0 is getting smaller with increasing k. The relaxation
time τ1 ≈ 13.4 is measured from the decay of the correlation of the dimer’s normal mode
coordinates.101 Once thusly obtained, it can be used in equation (5.1.57) to show that not
only does the predicted envelope match the data, but also that the oscillation frequency and
amplitude, into which τ1 enters, matches the simulation.

5.2.3 Decamers

Figures 5.6 to 5.8 show simulation results for a system consisting of decamers, with varying
spring constants K.

Figure 5.9 can be used to judge the quality of the prediction that is equation (5.1.38);
again, for small enough t, the agreement of the qualitative features is very satisfactory. The
first relaxation time τ1 has been obtained by fitting equation (5.1.38) to the data, so that the
agreement on the quantitative level is not verified independently.

5.3 Numerical Results for C̃T
v

In order to study the properties of the theoretical solution (5.1.38) in general and the long-time
limit in particular, one can calculate the solutions numerically for various parameters and
compare them to one another.

In figure 5.10, the effect of varying the spring count N for a fixed first relaxation time τ1 is
shown. One notable property is that the slope of the envelope is not a monotonic function of
the spring count. Another is that, as predicted by (5.1.38), the curve N = 5 demonstrates, after

101I. Teraoka. Polymer Solutions. An Introduction to Physical Properties. John Wiley & Sons, 2002, Chapter
3.4.2.
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sufficiently long time, that one oscillation frequency is suppressed at a time. The frequency
that persists the longest is the one related to the longest relaxation time τ1.

Figures 5.11 and 5.12 show, for fixed N , the effect of varying τ1. While in the case N = 1

the most noticeable change is the change of the slope of the envelope, the case N = 10 offers a
richer spectrum of behaviors. It is interesting to note that, contrary to the long-time asymptote
(5.1.63) for N = 1, the slope does not always steepen with increasing τ1.
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Figure 5.1: Simulation results for simple fluids without shear. The horizontal axis represents
the time parameter t, while the vertical axis shows the absolute value of C̃T

v (k, t) normalized by
C̃T

v (k, 0). The vector k is related to kn by ki = 2πkn,i/Li. The theory curve is obtained from
equation (5.1.13), with the kinematic viscosity ν = η/% = 0.8705 and |kn| = 1. The simulation
data is averaged over about 1.13 · 107 simulation steps.
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Figure 5.2: Depiction of simulation data and theory for the same kind of scenario as in figure
5.1, but with other values for kn, and thus k.
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Figure 5.3: Simulation results for a dimer fluid without shear (spring count N = 1). The
horizontal axis represents the time parameter t, while the vertical axis shows the absolute value
of C̃T

v (k, t) normalized by C̃T
v (k, 0). The vector k is related to kn by ki = 2πkn,i/Li. The

theoretical envelope exp
(
−
(
τ−1
1 + k2ν

)
t/2
)

is extracted from equations (5.1.57) and (5.1.55),
with |kn| = 1, ν = η/% = 0.8705, and τ1 ≈ 13.4. The root-mean-square bond length was chosen
to be l = 3, which corresponds to spring constant K = 1/3. The data is sampled from about
3 · 105 simulation steps.
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Figure 5.4: The same situation as in figure 5.4, but with other values of kn, and thus k.



5.3. NUMERICAL RESULTS FOR C̃T
V 61

0 20 40 60 80 100

10−6

10−5

10−4

10−3

10−2

10−1

100

Time t

N
or

m
al

iz
ed

Ve
lo

ci
ty

A
ut

oc
or

re
la

tio
n
∣ ∣ ∣C̃T v

(k
,t
)

C̃
T v
(k

,0
)

∣ ∣ ∣

Simulation kn = (1, 0, 0)
Theory |kn| = 1

Figure 5.5: One of the three simulation curves from figure 5.4, with the addition of the theo-
retical prediction from equation (5.1.57).
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Figure 5.6: Simulation results for a decamer fluid (spring count N = 9) with spring constant
K = 1. The horizontal axis represents the time parameter t, while the vertical axis shows
the absolute value of C̃T

v (k, t) normalized by C̃T
v (k, 0). The vector k is related to kn by

ki = 2πkn,i/Li. The data is sampled from about 5 · 106 simulation steps.
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Figure 5.7: Simulation data for the same scenario as in figure 5.6, but with a spring constant
K = 5.
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Figure 5.8: Simulation data for the same scenario as in figure 5.6, but with a spring constant
K = 10.
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Figure 5.9: Simulation data for the same scenario as in figure 5.6, with K = 1, and the
theoretical prediction (5.1.38).
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Figure 5.10: Numerical result for C̃T
v for various N with τ1 = 26.8 fixed.
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Figure 5.11: Numerical result for C̃T
v for various τ1 with N = 1 fixed.
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Figure 5.12: Numerical result for C̃T
v for various τ1 with N = 10 fixed.



Chapter 6

Trimer MPC Fluid

While the behavior of dimers in MPC fluid has been studied already,102 the next-harder problem,
that of trimers, has not been treated yet.

With the goal of finding a relationship between the spring constant K and the root-mean-
square bond length l, let ri, i ∈ {1, 2, 3} denote the positions of MPC fluid particles that
constitute a specific trimer, and let Ri := ri+1 − ri, i ∈ {1, 2}, be the bond vectors. The
constituents are then interacting via the potential

U (R1,R2) := KR2
1 +KR2

2 . (6.1)

In a system with hydrodynamic interactions, the equations of motion read103

d
dt
ri =

3∑
j=1

H i,j (ri − rj) (Fi + Γi) , (6.2)

where H i,j (ri − rj) is the hydrodynamic tensor, Fi,α = − ∂U
∂Ri,α

is the force exerted on particle
i in the Cartesian direction α ∈ {x, y, z} due to the potential U , and Γi,α is a stochastic force
acting on particle i along α, accounting for thermal fluctuations.

In order to simplify (6.2), Zimm’s pre-averaging approximation104, 105 is employed, where

102Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”.

103Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”, Equation (4).

104Doi and Edwards, The Theory of Polymer Dynamics, Equation (4.49).
105Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning

Gaussian dumbbells”, Equation (5).
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H i,j (ri − rj) is replaced with

〈
H i,j (ri − rj)

〉
=

(
δij

6πηRH

+
1− δij

ηl
√
6π3 |i− j|

)
︸ ︷︷ ︸

=:Hij

I ,
(6.3)

with I being the unit tensor and δij being the Kronecker symbol. l is the root-mean-square
length of each bond, η is the dynamic viscosity, and RH is the (Stokes-Einstein) hydrodynamic
radius.

Defining
A :=

1

6πηRH

B :=
1

ηl
√
6π3

,
(6.4)

the equations of motion (6.2) read

d
dt
r1 = A (F1 + Γ1) +B (F2 + Γ2) +

B√
2
(F3 + Γ3)

d
dt
r2 = B (F1 + Γ1) + A (F2 + Γ2) +B (F3 + Γ3)

d
dt
r3 =

B√
2
(F1 + Γ1) +B (F2 + Γ2) + A (F3 + Γ3) .

(6.5)

Using
F1 = 2KR1

F1 = −2KR1 + 2KR2

F3 = −2KR2 ,

(6.6)

one can then obtain the equations of motion for the bond vectors Ri = ri+1 − ri:

d
dt
r1 = ar1 + br2 + E1 (6.7)

d
dt
r2 = br1 + ar2 + E2 , (6.8)
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with

a := 4K (B − A) = −4K

ζ
(6.9)

b := K
(
2A+

(√
2− 4

)
B
)

(6.10)

E1 := (A−B) (Γ2 − Γ1) +B

(
1− 1√

2

)
Γ3 (6.11)

E2 := (A−B) (Γ3 − Γ2)−B

(
1− 1√

2

)
Γ1 , (6.12)

where ζ = (A−B)−1 is the effective friction coefficient.106 Since K > 0 and ζ > 0, one can
deduce that a < 0.

In order to incorporate shear flow into the system, the equations (6.7) and (6.8) have to be
extended with a term GRi, so that they read

d
dt
R1 = aR1 + bR2 + E1 +GR1 (6.13)

d
dt
R2 = bR1 + aR2 + E2 +GR2 . (6.14)

Aligning the coordinate system in such a way that the shear flow direction corresponds to the
x axis and the shear gradient corresponds to the y axis, the linear map G : R3 → R3 is written

G =

0 γ̇ 0

0 0 0

0 0 0

 , (6.15)

so that
(GRi)α = γ̇Ri,yδαx . (6.16)

Equations (6.13) and (6.14) can be combined into the linear system(
Ṙ1 (t)

Ṙ2 (t)

)
︸ ︷︷ ︸

=:ρ̇(t)

=

(
a+G b

b a+G

)
︸ ︷︷ ︸

=:M

(
R1 (t)

R2 (t)

)
︸ ︷︷ ︸

=:ρ(t)

+

(
E1 (t)

E2 (t)

)
︸ ︷︷ ︸

=:ξ(t)

,
(6.17)

so that ρ, ρ̇ and ξ are elements of V2 and M : V2 → V2 is a linear map, where V := R3.
Expressions like a+G are to be understood as aI +G, where again I is the unit tensor of the

106Kowalik and Winkler, “Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning
Gaussian dumbbells”, Equation (7).
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appropriate type; I will be suppressed in such cases.

Defining, as usual, the exponential of a linear map L to be

exp (L) =
∞∑
k=0

Lk

k!
, (6.18)

one can verify that, with t ∈ R,

ρ̇ (t)−Mρ (t) = exp (tM)
d
dt

(exp (−tM) ρ (t)) . (6.19)

So, (6.17) can be written as

d
dt

(exp (−tM) ρ (t)) = exp (−tM) ξ (t) , (6.20)

the solution of which is

ρ (t) = exp ((t− t0)M) ρ (t0) + exp (tM)

t∫
s=t0

exp (−sM) ξ (s) ds , (6.21)

with t0 ∈ R arbitrary but fixed.

Let q ∈ R. Then, one can use the simple structure of

qM =

(
q (a+G) qb

qb q (a+G)

)
(6.22)

to find its exponential

exp (qM) : V2 → V2, qM 7→ exp (qM) = exp (q (a+G))

(
cosh (qb) sinh (qb)

sinh (qb) cosh (qb)

)
. (6.23)

Similarly, the exponential of the linear map q (a+G) is

exp (q (a+G)) : R3 → R3, q (a+G) 7→ exp (q (a+G)) = exp (aq)

1 qγ̇ 0

0 1 0

0 0 1

 . (6.24)

As such, for all v ∈ V ,
lim

aq→∞
(exp (qM) v) = 0 . (6.25)
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Thus, and because a < 0, the choice t0 = −∞ reduces equation (6.21) to

ρ (t) = exp (tM)

t∫
s=−∞

exp (−sM) ξ (s) ds , (6.26)

which, using the addition theorems for hyperbolic functions, can be written in terms of the Ri

as (
R1 (t)

R2 (t)

)
=

t∫
s=−∞

exp ((t− s) (a+G))

(
cosh (b (t− s)) sinh (b (t− s))

sinh (b (t− s)) cosh (b (t− s))

)(
E1 (t)

E2 (t)

)
ds .

(6.27)

Using (6.24), one can calculate the components of the bond vectors to be

R1,x (t) =

t∫
s=−∞

( cosh ((t− s) b) (E1,x (s) + γ̇ (t− s)E1,y (s))

+ sinh ((t− s) b) (E2,x (s) + γ̇ (t− s)E2,y (s))

) · exp (a (t− s)) ds (6.28)

R2,x (t) =

t∫
s=−∞

( sinh ((t− s) b) (E1,x (s) + γ̇ (t− s)E1,y (s))

+ cosh ((t− s) b) (E2,x (s) + γ̇ (t− s)E2,y (s))

) · exp (a (t− s)) ds , (6.29)

and, for α ∈ {y, z},
Ri,α (t) = Ri,x (t; γ̇ = 0) . (6.30)

In order to calculate correlation functions between the different Ri,α, one has to know the
correlation functions 〈Ei,α (t)Ej,β (t

′)〉, which in turn depend on 〈Γi,α (t) Γj,β (t
′)〉.

The expectation values for the random forces are zero, 〈Γi,α〉 = 0, and thus 〈Ei,α〉 = 0.
Interpreting Hij from equation (6.3) as a N × N matrix, N = 3 being the number of

interacting particles, and denoting the inverse of Hij as (H−1)ij, it holds that107

〈Γi,α (t) Γj,β (t
′)〉 = 2kBT

(
H−1

)
ij
δαβδ (t− t′) , (6.31)

107Doi and Edwards, The Theory of Polymer Dynamics.
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where kB is Boltzmann’s constant and T is the temperature.

Having (see equation (6.3))

H =

A B B√
2

B A B
B√
2

B A

 , (6.32)

one can calculate the inverse matrix to be

H−1 =
1

det (H)


A2 −B2 B2

√
2
− AB B2 − AB√

2
B2
√
2
− AB A2 − B2

2
B2
√
2
− AB

B2 − AB√
2

B2
√
2
− AB A2 −B2

 , (6.33)

where
det (H) = A3 +

√
2B3 − 5

2
AB2 (6.34)

is the determinant of H.

With this, equation (6.31), and the definitions of Ei in (6.11) and (6.12), one can calculate

〈Ei,α (t)Ej,β (t
′)〉 = 2kBT

det (H)
Ξijδαβδ (t− t′) , (6.35)

where

Ξ11 = Ξ22 = 2A4 − 2A3B − 5A2B2 +
(
5 + 2

√
2
)
AB3 − 2

√
2B4

Ξ12 = Ξ21 = −A4 +

(
2− 1√

2

)
A3B +

5

2
A2B2 +

√
2− 20

4
AB3 +

(
2
√
2− 1

)
B4 .

(6.36)

With equations (6.28) and (6.29), one can now proceed to calculate the correlation functions.
Defining

g (u) := 1− u (t− u) γ̇2 , (6.37)
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and assuming, without loss of generality, that t > 0,

〈R1,x (t)R1,x (0)〉

=

t∫
u=−∞

du
0∫

s=−∞

ds exp (a (t− u− s)) ·

·
(
cosh ((t− u) b) cosh (−sb)

(
〈E1,x (u)E1,x (s)〉 − γ̇2s (t− u) 〈E1,y (u)E1,y (s)〉

)
+ cosh ((t− u) b) sinh (−sb)

(
〈E1,x (u)E2,x (s)〉 − γ̇2s (t− u) 〈E1,y (u)E2,y (s)〉

)
+ sinh ((t− u) b) cosh (−sb)

(
〈E2,x (u)E1,x (s)〉 − γ̇2s (t− u) 〈E2,y (u)E1,y (s)〉

)
+ sinh ((t− u) b) sinh (−sb)

(
〈E2,x (u)E2,x (s)〉 − γ̇2s (t− u) 〈E2,y (u)E2,y (s)〉

))
=

2kBT

det (H)

t∫
u=−∞

0∫
s=−∞

exp (a (t− u− s)) δ (s− u)·

·
(
Ξ11 cosh ((t− u) b) cosh (−sb)

(
1− γ̇2s (t− u)

)
+ Ξ12 cosh ((t− u) b) sinh (−sb)

(
1− γ̇2s (t− u)

)
+ Ξ12 sinh ((t− u) b) cosh (−sb)

(
1− γ̇2s (t− u)

)
+ Ξ11 sinh ((t− u) b) sinh (−sb)

(
1− γ̇2s (t− u)

))
ds du

=
2kBT

det (H)

t∫
u=−∞

exp (a (t− 2u)) g (u) ·

· (Ξ11 cosh ((t− u) b) cosh (−ub) + Ξ11 sinh ((t− u) b) sinh (−ub)

+ Ξ12 cosh ((t− u) b) sinh (−ub) + Ξ12 sinh ((t− u) b) cosh (−ub)) du

=
2kBT

det (H)
·

·
t∫

u=−∞

exp (a (t− 2u)) g (u) (Ξ11 cosh ((t− 2u) b) + Ξ12 sinh ((t− 2u) b)) du .

(6.38)

For symmetry reasons,

〈R1,x (t)R1,x (0)〉 = 〈R2,x (t)R2,x (0)〉 (6.39)

and 〈Ri,α (t)Ri,α (0)〉 for α 6= x is equivalent to 〈Ri,x (t)Ri,x (0)〉 except that g (u) has to be
replaced by 1.
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For t = 0, one obtains (with α ∈ {y, z})

〈R1,x (0)R1,x (0)〉 =
2kBT

det (H)

t∫
u=−∞

exp (−2au) g (u) (Ξ11 cosh (−2ub) + Ξ12 sinh (−2ub)) du

=
kBT

det (H)

(
aΞ11 − bΞ12

b2 − a2

+
γ̇2

2 (b2 − a2)3
(
Ξ11

(
a3 + 3ab2

)
− Ξ12

(
3a2b+ b3

)))

〈R1,α (0)R1,α (0)〉 =
2kBT

det (H)

t∫
u=−∞

exp (−2au) (Ξ11 cosh (−2ub) + Ξ12 sinh (−2ub)) du

=
kBT

det (H)

aΞ11 − bΞ12

b2 − a2
.

(6.40)
As such, the expectation value for the bond length vector is calculated to be〈

R2
1

〉
= 〈R1,x (0)R1,x (0)〉+ 〈R1,y (0)R1,y (0)〉+ 〈R1,z (0)R1,z (0)〉

=
kBT

det (H)

(
3
aΞ11 − bΞ12

b2 − a2

+
γ̇2

2 (b2 − a2)3
(
Ξ11

(
a3 + 3ab2

)
− Ξ12

(
3a2b+ b3

)))
.

(6.41)

Substituting the definitions of det (H), a, b, Ξ11, Ξ12, A, and B into this expression, one obtains
a complicated polynomial in kBT , η, γ̇, RH , the spring constant K and the root-mean-square
bond length l. Since, by definition,

〈
R2

1

〉
= l2, one has obtained a polynomial equation that

can be solved numerically. Figure 6.1 shows a graph of the solution.
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Figure 6.1: Solution of
〈
R2

i

〉
= l2 (see equation (6.41)) for RH = 0.3, η = 8.7, l = 2 and

kBT = 1. For large γ̇, K scales with γ̇2/3.
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Figure 6.2: Dependence of l =
√〈

R2
i

〉
on the shear rate γ̇ (see equation (6.41)) for K = 1,

RH = 0.3, η = 8.7, and kBT = 1.
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Chapter 7

Conclusion and Outlook

Multi-Particle Collision Dynamics (MPC) simulations, such as implemented in the MPCDSim
software packaged presented in this thesis, offer an important and efficient tool if one seeks to
understand the role of hydrodynamic interactions in large-scale systems containing macroscopic
objects, where “macroscopic” is relative to the size of the fluid’s constituents and may refer to
passive solute particles, or even active entities such as self-propelling living organisms.

This thesis’ subject, an extension of MPC to incorporate elastic effects in fluids, allows
for the treatment of a much broader class of problems than that of systems containing purely
viscous fluids. Thus, one is now able to model more realistic scenarios not only in basic research
into rheology, but also in a wide range of applications in engineering as well as biology and
medicine. With this improved computer simulation technique at hand, one can now address,
among others, the following questions:

• Which phenomena in fluidic systems arise due to the introduction of viscoelasticity?

• How do the emerging effects depend on rheological properties of the fluid?

• How can one tailor these properties, possibly through the engineering of microscopic
details of the fluid constituents, to obtain a desired result?

Finding answers to these questions requires a certain understanding of the fundamental
behavior of the (simulated) fluid itself, i.e. without interactions with solute objects. One way
this thesis contributes to this knowledge is by deriving, starting from the low-Reynolds-number
limit of the linear viscoelastic Navier-Stokes equation, the velocity autocorrelation function C̃T

v

in Fourier space, and demonstrating that this solution indeed describes the simulation data for
viscoelastic MPC fluids.
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On the one hand, this information then can be used in future works to more profoundly
understand how complex systems deviate from the simpler case of the pure viscoelastic fluid.
On the other, the analytic nature of the solution found for both C̃T

v and for the relationship
between the root-mean-square bond length in trimers and the corresponding spring constants,
extends the freedom one has in designing fluids that exhibit certain features; it thus helps search
systematically for fluid properties deemed optimal for a given problem.

These tasks – understanding a system’s behavior, and manipulating that behavior to one’s
liking – are, of course, ultimately linked by the underlying theory. This thesis surely does not
constitute an exhaustive treatment of said theory, but the author hopes that it serves as a
useful foundation for future exploration of the topic and, in the spirit of the TU Wien’s mission
technology for people, that it finds applications that advance science and benefit society.



Appendix A

Notation and Mathematical
Conventions

Definitions When defining a new quantity in terms of previously introduced quantities, the
symbols := and =: are used. For example, if one wanted to define a new quantity X as the
sum of the known objects g and h, one could synonymously write either

X := g + h (A.1)

or
g + h =: X (A.2)

Special Sets The set N0 is the set of natural numbers, including 0, and N+ is the set of
natural numbers, excluding 0. Z is the set of integers. R is the set of real numbers, R+ is the
set of real numbers greater than 0, and R− is the set of real numbers smaller than 0. The set
of complex numbers is denoted by C.

The unit 2-sphere, that is the set of all points which lie a (Euclidean) distance 1 away from
the center of the coordinate system, is denoted by

S2 :=
{
r ∈ R3 | |r| = 1

}
. (A.3)

Vectors Vectors are denoted by bold letters, such as R or vi, where i is part of the symbol’s
name, e.g. in the case in situations where the index i serves to designate a particular particle’s
velocity. The components of a vector, usually with respect to a Cartesian coordinate system
with axes x, y, and z, or synonymously 1, 2, and 3, are referred to as, for example, Rx or R1,
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where no bold face is used. If the vector itself had an index, as in the case vi, the y-component
of vi is denoted by vi,y or equivalently vi,2. The norm |R| of a vector is, unless noted otherwise,
to be understood as the Euclidean norm:

|R| :=
√

R2
1 +R2

2 +R2
3

(A.4)

The scalar product, or dot product, between two vectors a and b, is denoted by a ·b, while
the cross product is written a× b.

Index notation Throughout this document, the index notation is used, along with the
Einstein summation convention – that is, repeated indices are summed over, although the
summation sign is suppressed. Partial derivatives with respect to time are denoted by ∂t, while
partial derivatives with respect to the spatial coordinate i are written as ∂i.

Fourier transformation Unless noted otherwise, the Fourier transform of a function f is
synonymously denoted by either f̃ or F {f}. Similarly, the inverse Fourier transform of f̃ is
written f or F−1

{
f̃
}

.
If it is desired to explicitly assign a symbol for the argument of the transformation’s resultant

function, the notation chosen is f̃ (ω) or F {f} (ω) for the Fourier transform, and f (t) or
F−1

{
f̃
}
(t) for its inversion. It may be necessary to be specific about the argument that is

transformed, e.g. to avoid ambiguity. In such a case, the notation f̃ (r, ω) = Ft {f (r, t)} (r, ω)
or f (r, t) = F−1

ω

{
f̃ (r, ω)

}
(r, t) is chosen.

While the arguments can, of course, be named arbitrarily, it is customary to call them k if
the transformed argument of f is a (vector of) spatial coordinates r, and ω if the transformed
variable is the time t. In the definition of the Fourier transform and its inverse, the following
convention, called unitary angular frequency convention, is used:

F {f} (k) = f̃ (k) := (2π)−
D
2

∫
RD

f (r) exp (−ik · r) drD , (A.5)

F−1
{
f̃
}
(r) = f (r) = (2π)−

D
2

∫
RD

f̃ (k) exp (ik · r) dkD . (A.6)

Here, D is the dimension of the vector space the argument affected by the (inverse) Fourier
transformation is an element of. Since the integration range is the entire RD, said function has
to be defined at least in the cases where the transformed argument takes on values in RD.
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Laplace transformation Similarly, the (unilateral) Laplace transform of a function f is
denoted by f̂ or L{f}, while the inversion of the Laplace transform is written L−1

{
f̂
}

. The
arguments of the original and the transformed functions may be specified, if required, as in the
case of Fourier transforms.

The arguments of f̂ are usually named s if the transformed argument of f was the time t,
and vice versa. The Laplace transform of f is defined by

L{f} (s) = f̂ (s) :=

∞∫
t=0

f (t) exp (−st) dt . (A.7)

Special functions Given a complex number z ∈ C with z = x + iy, x ∈ R, y ∈ R, the real
part of z is denoted by Re (z) := x, while the imaginary part is written as Im (z) := y.

The convention and notation chosen for the Heaviside step function is

θ (x) :=


0, x < 0

1
2
, x = 0

1, x > 0

. (A.8)

The floor function is defined as

bxc := max ({z ∈ Z | z ≤ x}) . (A.9)

The gamma function108 is defined on R+ by

Γ (x) :=

∞∫
y=0

yx−1 exp (−y) dy . (A.10)

Probability Distributions and Sampling of Random Numbers The sampling of a
random variable X from a given probability distribution function F is denoted by X ∼ F .

Given an interval I ⊂ R, the uniform probability distribution over the interval I is called
U (I).

108R. V. Hogg, J. W. McKean, and A. T. Craig. Introduction to Mathematical Statistics. 7th ed. Pearson,
2012, Chapter 3.3.



80 APPENDIX A. NOTATION AND MATHEMATICAL CONVENTIONS

The gamma distribution109 has two parameters a ∈ R+, b ∈ R+ and is defined for x ∈ R by

fΓ (x; a, b) :=
1

baΓ (a)
xa−1 exp

(
−x

b

)
θ (x) . (A.11)

109Hogg, McKean, and Craig, Introduction to Mathematical Statistics, Equation (3.3.1).



Appendix B

Properties of the Fourier
Transformation

B.1 Fourier Transformation of Derivatives

Given a function f (r) and its Fourier transform f̃ (k), the inverse Fourier transform of f̃ (k)is
given by equation (A.6):

f (r) = (2π)−
D
2

∫
RD

f̃ (k) exp (ik · r) dkD . (B.1.1)

Taking the derivative ∂j of this equation with respect to the j-component of r, one can write

∂jf (r) = (2π)−
D
2

∫
RD

f̃ (k) ∂j exp (ik · r) dkD

= (2π)−
D
2

∫
RD

f̃ (k) ikj exp (ik · r) dkD .
(B.1.2)

Defining g (r) := ∂jf (k) and comparing the equation above with (A.6), i.e.

g (r) = (2π)−
D
2

∫
RD

g̃ (k) exp (ik · r) dkD , (B.1.3)

one sees that
g̃ (k) = ikj f̃ (k) . (B.1.4)
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B.2 Fourier Transform of 1 and the Dirac Delta Function

The Dirac delta function δ can be represented as110

δ (t− t′) =
1

2π

∞∫
ω=−∞

exp (i (t− t′)ω) dω , (B.2.1)

which, conversely, allows one to define the inverse Fourier transform of 1 via
∞∫

ω=−∞

1 · exp (itω) dω = 2πδ (t) . (B.2.2)

Since the Dirac delta function is even in its argument, also the relation
∞∫

ω=−∞

exp (−itω) dω = 2πδ (t) (B.2.3)

holds.

110F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds. NIST Handbook of Mathematical
Functions. Cambridge University Press, 2010, Equation (1.17.12).



Appendix C

Properties of the Laplace
Transformation

C.1 Laplace Transformation of Derivatives

For a given function f (t), let g (t) := ∂tf (t). Then, inserting g (t) into equation (A.7), one can
write for the Laplace transform of g (t)

ĝ (s) :=

∞∫
t=0

g (t) exp (−st) dt

=

∞∫
t=0

(∂tf (t)) exp (−st) dt

= [f (t) exp (−st)]∞t=0 −
∞∫

t=0

f (t) (∂t exp (−st)) dt .

(C.1.1)

Assuming that the upper boundary term tends to 0, i.e.

lim
t→∞

(f (t) exp (−st)) = 0 , (C.1.2)

one arrives at the following expression for the Laplace transform of a derivative g (t) := ∂tf (t):

ĝ (s) = −f (0) + s

∞∫
t=0

f (t) exp (−st) dt

= sf̂ (s)− f (0) .

(C.1.3)
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C.2 Convolution Theorem

Given two functions f (t) and g (t) and defining their convolution to be

h (t) :=

t∫
τ=0

f (τ) g (t− τ) dτ , (C.2.1)

one can calculate the Laplace transform ĥ (s) of h (t) by insertion of equation (C.2.1) into the
definition (A.7):

ĥ (s) :=

∞∫
t=0

h (t) exp (−st) dt

=

∞∫
t=0

t∫
τ=0

f (τ) g (t− τ) exp (−st) dτ dt

=

∞∫
t=0

∞∫
τ=0

f (τ) g (t− τ) exp (−st) θ (t− τ) dτ dt .

(C.2.2)

Interchanging the order of integration and defining u (t) := t− τ for a fixed τ , one can perform
the change of integration variables t → u,

dt = du ,

u (t = 0) = −τ ,

u (t = ∞) = ∞ ,

(C.2.3)

so that

ĥ (s) =

∞∫
τ=0

∞∫
u=−τ

f (τ) g (u) exp (−s (u+ τ)) θ (u) du dτ

=

∞∫
τ=0

∞∫
u=0

f (τ) g (u) exp (−s (u+ τ)) du dτ

=

∞∫
τ=0

f (τ) exp (−sτ) dτ
∞∫

u=0

g (u) exp (−su) du

= f̂ (s) ĝ (s) .

(C.2.4)



Appendix D

Tensors

D.1 The Kronecker Tensor δij

The Kronecker tensor δij is defined such that

δij =

1, i = j

0, i 6= j
. (D.1.1)

Evidently, the Kronecker tensor is symmetric: δij = δji.

D.2 The Levi-Civita Tensor εijk

The Levi-Civita tensor εijk is defined as

εijk =


1, (i, j, k) is an even permutation of (1, 2, 3)

−1, (i, j, k) is an odd permutation of (1, 2, 3)

0, else

. (D.2.1)

Therefore, εijk is anti-symmetric in all pairs of its indices, i.e. εijk = −εjik, εijk = −εkji, and
εijk = −εikj.
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D.3 Symmetric and Anti-Symmetric Parts of a Tensor

Any tensor Tij of order 2 can be decomposed into a symmetric part Sij = Sji and an anti-
symmetric part Aij = −Aji:

Tij =
1

2
(Tij + Tji)︸ ︷︷ ︸

=:Sij

+
1

2
(Tij − Tji)︸ ︷︷ ︸

=:Aij

.
(D.3.1)

Pairs of indices of higher-order tensors can be symmetrized (denoted by parentheses) and
anti-symmetrized (denoted by square brackets) in an analogous manner; for example,

Ti(jk)l :=
1

2
(Tijkl + Tikjl)

Ti[jk]l :=
1

2
(Tijkl − Tikjl) .

(D.3.2)

The contraction of the Levi-Civita tensor with a symmetric tensor Sjk of order 2 is 0. To
prove this, let a ∈ {1, 2, 3} be an arbitrary index. Furthermore, let b ∈ {1, 2, 3}\{a} and finally
c ∈ {1, 2, 3} \ {a, b}. Then,

εajkSjk = εabcSbc + εacbScb

= εabcSbc − εabcSbc = 0 .
(D.3.3)

Contraction of the Levi-Civita tensor εajk with an anti-symmetric tensor Ajk, on the other
hand, gives

εajkAjk = εabcAbc + εacbAcb

= 2εabcAbc = 2εacbAcb .
(D.3.4)

Therefore, for a general tensor T of order n, one obtains

εjixiyTi1i2...ixiy ...in = εjixiyTi1i2...[ixiy ]...in . (D.3.5)



Appendix E

Uniform Sampling from the 2-Sphere

There are various methods111, 112, 113, 114, 115, 116, 117 that can be used to uniformly sample from
the n-sphere Sn in general, and the 2-sphere S2 in particular. For this thesis, only the latter
was relevant, and the following algorithm was used:

Let X1 ∼ U ([0, 1]) and independently X2 ∼ U ([0, 1)). Then, let z := 2X1 − 1 and ϕ :=

2πX2, so that z is uniformly distributed over [−1, 1] and ϕ is uniformly distributed over [0, 2π).
Finally, the Cartesian coordinates R1, R2, and R3 of the uniformly sampled, random unit vector
R ∈ S2 are

R1 :=
√
1− z2 cos (ϕ)

R2 :=
√
1− z2 sin (ϕ)

R3 := z .

(E.1)

The implementation in MPCDSim deviates from the algorithm just described in that no
guarantee is given on whether the end points of the distribution function intervals have non-zero
probability of being sampled. The reason for this is that the primitive random number gener-

111Y. Tashiro. “On methods for generating uniform random points on the surface of a sphere”. Annals of the
Institute of Statistical Mathematics 29 (1977), 295.

112G. Marsaglia. “Choosing a Point from the Surface of a Sphere”. The Annals of Mathematical Statistics 43
(1972), 645.

113E. W. Weisstein. Sphere Point Picking. url: http://mathworld.wolfram.com/SpherePointPicking.
html.

114E. Allahyarov and G. Gompper. “Mesoscopic solvent simulations: Multiparticle-collision dynamics of
three-dimensional flows”. Physical Review E 66 (2002), 036702. Appendix.

115M. E. Muller. “A note on a method for generating points uniformly on n-dimensional spheres”. Commu-
nications of the ACM 2 (1959), 19.

116J. M. Cook. “Rational formulae for the production of a spherically symmetric probability distribution”.
Mathematics of Computation 11 (1957), 81.

117J. S. Hicks and R. F. Wheeling. “An efficient method for generating uniformly distributed points on the
surface of an n-dimensional sphere”. Communications of the ACM 2 (1959), 17.
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ators provided by various operating systems and programming libraries do not agree whether
either end point of the interval is part of the set of possible results. While it is mathematically
possible to construct a function that has the same range of return values for any operating
system or library used, it comes at a cost in computational efficiency.

However, one can convince oneself that the question of whether the interval end points
can be sampled is of little importance in practice: The computations were performed with
IEEE-754118, 119 double-precision (i.e. 64-bit) arithmetic. One can roughly estimate the number
of distinct floating point values in the interval [0, 1]: since there are about approximately 264

distinct and finite floating point values, about half of which are positive, and since about
half of the exponents are smaller than 0, there are of the order of 262 ≈ 4.6 · 108 representable
numbers in [0, 1], such that the addition or omission of the boundary points only has a negligible
impact.

118IEEE Standard for Floating-Point Arithmetic.
119Goldberg, “What every computer scientist should know about floating-point arithmetic”.
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