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In this thesis I study a two dimensional system of patchy colloids restricted to closest
packing and its phase transition from an orientationally ordered into a disordered
phase. I approached this problem by first defining orientational order by determin-
ing bonding patterns that emerge at low temperatures for different sizes of the patch.
As the temperature is increased bonds start to break and this transition is studied via
a suitable order parameter.
The systems were investigated via Monte-Carlo simulations. In order to identify the
emerging bonding structures, a density and a cluster size analysis were employed.
For the case where particles can form up to one bond (dimers), an order parameter
was defined. With this order parameter at hand a correlation function was defined
and was calculated for different temperatures in order to study the spatial range of
the order in different phases.
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Chapter 1

Introduction

Universality is a characteristic feature of phase transitions that demonstrates that to

a considerable degree the critical behaviour often only depends on the dimension-

ality of the system, and not on the specific microscopic forces [17]. Therefore, phase

transitions of systems in two dimensions often exhibit a fundamentally different be-

haviour compared to their three-dimensional counterparts. One transition that has

been studied in detail is the two dimensional solid-liquid transition of colloid parti-

cles.

The fundamental theory, which is able to describe the melting of a two-dimensional

solid of particles by topological defect unbinding was developed in the 1970s by

Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY theory) [20][11]. This

concept predicts the occurrence of an additional intermediate phase, the so-called

hexatic phase, which emerges as an additional phase between the liquid and solid

states. While the ordered tetragonal lattice in two dimensions has a six-fold rota-

tional symmetry and a discrete translational symmetry, these discrete symmetries

are lost during melting in favour of continuous symmetries in the liquid phase.

For the intermediate phase the translational symmetry is already continuous while

its six-fold rotational symmetry is still discrete. Because of the still remaining six-

fold rotational symmetry in the intermediate phase, the latter one is called hexatic.

This feature of the solid-liquid phase transition is completely unique for the two-

dimensional case while in three dimensions the corresponding phase transition is a

conventional first-order transition with no intermediate phase [7].

Some predictions of KTHNY theory, such as the existence of the hexatic phase were

observed in simulations of theNV T -ensemble using different methods like the event-

chain Monte-Carlo algorithm, a parallel form of local Monte-Carlo algorithm or

event-driven Molecular Dynamic Simulation [4]. Also experimental groups were

able to show the occurrence of the predicted hexatic phase using video-microscopy

in a system of superparamagnetic colloid particles (with diameters of 4.5µm) con-

fined to a water-air interface [7].
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Motivated by these fascinating theoretical and experimental findings of the phase

transition of colloid particles in two dimensions, I wanted to study in my thesis the

phase transition of a related two-dimensional system where the particles are charac-

terized by an additional, rotational degree of freedom. For this purpose I assigned

a patch with an attractive potential to the otherwise repulsive surface of the colloid

particles. For simplicity the attractive potential is a step-well interaction, i.e. the

simplest form of a short-range potential. Through patch overlaps the particles have

the ability to form bonds.

The relevant question for this work was to find whether this orientational degree of

freedom also gives rise to some temperature-dependent order in the orientation of

the particles and to classify the transition from the rotationally ordered to the disor-

dered phase when the system is heated up.

Both, experimentalists and theoreticians have already worked on this system or on

related models.

For example, there have been experimental studies on the crystal formation of so-

called AB Janus particles, which carry two opposite patches, in two dimensions.

Here, due to entropic reasons, open crystal lattices such as the Kagome lattice have

been formed [14]. But also systems of one-patch Janus particles have been subject

to experiments. Here the authors of [8] were able to experimentally realize highly

ordered zigzag stripe patterns in a monolayer.

Also theoretical work has been dedicated to the two dimensional patchy particle

model which forms the basis of this work. Adapted from the Einstein solid, H. Shin

and K.S. Schweizer [18] formulated a harmonic potential for particle vibrations and

rotations in the two dimensional crystal of patchy particles. The spring constants

were computed in a self-consistent manner. In this way, the authors were able to de-

rive the free energy contributions for competing phases. With this information they

were able to plot phase diagrams for crystals with high packing fractions.

Mostly by their work, I was inspired to study exactly these phase transitions in sim-

ulations and to gain a better understanding of how the system is undergoing the

transitions between different phases.

In this work, I focused on the case where the particles are restricted to closest spatial

packing. Thus, the phase transition governed by the loss of orientational order an be

disentangled from the conventional liquid-solid transition. I first identified the pos-

sible ordered phases for patchy particles with different patch sizes. I used standard

Monte-Carlo simulation to simulate systems with various patch and particle sizes at

different temperatures. For analysing the emerging bond structures, a density and

a cluster size analysis was employed. An order parameter was defined for particles
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with patch sizes such that they can form up to one bond. With this order parameter

at hand, a correlation function was defined in order to study the range of order in

the different phases. Finally, also the heat capacity was calculated to obtain more

information about the possible emergence of a phase transition.
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Chapter 2

The Patchy Particle Model in Two

Dimensions

2.1 The Kern-Frenkel Patchy Model

FIGURE 2.1: Model Particle

This model for a patchy colloid (figure 2.1) is a commonly

employed model in soft matter theory. Its idea is to as-

sign an additional patch with an attractive potential to

the particles which breaks the rotational symmetry. The

potential is attractive and short-range and therefore de-

signed such that overlapping patches will form a bond.

The type of the attractive potential in this work has been

chosen to be a step-well potential. This is the simplest

type for a short-range potential. Patchy particles with

this type of potential are also known as Kern-Frenkel patchy particles [9]. The step-

well potential Vij is defined for two particles with indices i and j and distance vector

~rij = rr̂ij and with respective patch orientation vectors Ω̂i and Ω̂j with respect to an

arbitrary but fixed axis as follows:

Vij(~rij , Ω̂i, Ω̂j) =


+∞ 0 < r < σ

−εVΦ(r̂ij , Ω̂i, Ω̂j) σ < r < σ + δ

0 σ + δ < r

(2.1)

VΦ(r̂ij , Ω̂i, Ω̂j) =

1 if r̂ijΩ̂i > cos( θ2) and r̂jiΩ̂j > cos( θ2)

0 otherwise
. (2.2)

The parameters of the model are the patch amplitude θ, the potential depth ε and

the interaction range of the patches δ.

The value of the potential depth ε will determine the temperature scale. As I have

restricted the problem to a spatial closest packing of spheres, the interaction range
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becomes redundant in the present study. In the spatial closest packing of spheres in

the two dimensions the particles form a tetragonal lattice.

The most important model parameter in this is the patch amplitude θ which deter-

mines up to how many bonds one particle can form. A particle that has one bond

only can get a second one if the patch amplitude exceeds the angle of (2π)/6. The

general condition for a particle with patch amplitude θ to form up to n bonds is:

π

3
(n− 1) < θ <

π

3
n (2.3)

2.2 Ground States of the system

In the studied model the particles are restricted to spatially closest packing. The

model is purely two dimensional. Therefore, no rotations of the particles out of the

xy plane are allowed. (This is emphasized here because the figures show a three

dimensional rendering of the system.)

In an effort to define orientational order, the ground states, i.e. the states of lowest

energy, have to be defined for different patch amplitudes. To obtain the state of low-

est energy, the only constraint to the particles is that every particle must bond to the

maximum number of possible bonding partners.

In the following, it will be helpful looking at the bonding patterns of the system in-

stead of the real particles. In these patterns, lines between points represent the bonds

formed by two particles. These patterns contain enough information about the sys-

tem even though the exact information about each particle’s orientation is lost.

When the particles can form one bond each (n = 1), they will bond into pairs. In the

ground state these pairs will be distributed over the tetragonal lattice such that all

particles are involved in exactly one bond (figure 2.2). For the reason that a number

of configurations can be found, fulfilling this constraint, the ground state is highly

degenerate. In the following I will not refer to pairs but to dimers. This is how the

bond of two particles is called.

When n = 2, there are two possible patterns where to each particle two binding

partners are assigned. Either, clusters of three particles will be formed or the parti-

cles will arrange along lines. These two patterns are shown in figure 2.2. Also any

mixture of these two kinds is a valid ground state, as long as the lines are closed

and every particle forms two bonds. Here, the bonds between three particles will be

referred to as a trimer from now on.

The ground state in the case of n = 3 is are zigzag-lines figure 2.3. In contrast to

the lines in figure 2.2, zigzag-lines can appear in two different types. I distinguish

between left- and right tilted zigzag-lines. These lines can also change their direction
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FIGURE 2.2: Ground states for n = 1 showing dimers (left) and for
n = 2 showing lines and trimers (middle and right).

by π
3 . But the possibility of a kink in one direction depends on the inner structure of

the zigzag-lines, hence whether the line is a left- or right tilted zigzag-line. While left

tilted zigzag-lines can take right turns, right tilted ones can take left turns. In this

case the ground state is not as highly degenerate as in the dimer and in the trimer

case. The lines are either all straight and the number of possible states is 2#lines or a

kink appears but then all lines will have to be of one kind.

FIGURE 2.3: Ground states for n = 3 showing left and right tilted
zigzag lines (left) and zigzag lines with a kink (right).

All other cases of ground states where n > 3 are already covered because they are

just the inverted patterns to the ground states that have already been found for

n < 3. Starting from the (6 − n)-ground state and inverting the pattern by replac-

ing all bonding-axes by non-bonding-axes and vice versa, the ground states can be

found for the cases where n > 3. Figure 2.3 shows the ground states for n = 4 and 5

derived from the ground states where n = 2 and 1, respectively.
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FIGURE 2.4: Ground states for n = 4 (left) and for n = 5 (middle and
right) all showing the inverse patterns of figure 2.2.

2.3 Order-Disorder

All ground states discussed above are representing different ordered phases. The

order-disorder transition in the system is driven by breaking bonds. A way of defin-

ing the order in a system is to define an order parameter. The order parameter that

I was looking for has to fulfill the following requirements: First of all, by definition

its magnitude should be a number between zero and one. Secondly, it should be

maximal for the ideally ordered phase and considerably lower than one or zero for

the disordered phase. For the dimer-case, the energy per particle ε was found to

be a suitable order parameter. In the completely ordered phase, where every parti-

cle has one bond, |ε| = 1. For higher temperatures where bonds start to break, the

magnitude of the order parameter will drop and |ε| < 1.

2.4 Thermodynamics of the System

I consider a system with a fixed particle number N , a fixed volume V and at a fixed

temperature T . Therefore, the system is described in the canonical ensemble or syn-

onymously in the NV T -ensemble. As it will be later shown (Chapter 2) the ther-

modynamic potential for this ensemble is the free energy F , and therefore the state

of lowest free energy is the equilibrium state. The free Energy is a function of the

particle number N , the volume V and the temperature T . It is obtained from a Leg-

endre transform of U , i.e. the internal energy and the thermodynamic potential in

its natural variables N , V and S, where S is the entropy.
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F (N,V, T ) = U(N,V, S)− TS(T ) (2.4)

At T = 0, the free energy reduces to the internal energy. Therefore, the equilibrium

state or the state of lowest free energy is one of the ground states, which I specified

in the previous section.

To understand why the system is undergoing a transition it must be understood that

the internal energy U and the entropy S always have to be balanced in such a way

that the total free energy is minimized. Therefore, a non-trivial competition between

the entropy and the energy determines the phase in which the system appears. In

general the entropy has to grow as the internal energy grows, otherwise the system

would not undergo a transition. Therefore, as the temperature is increased, a kind

of ’entropic force’ makes the internal energy grow by letting bonds break. Due to

the higher number of possible configurations as bonds have broke, the entropy in-

creases and thus lowers the free energy. This bond breaking only proceeds as long as

the increase of the entropic factor outweighs the increase in energy. But as the tem-

perature rises the entropy gains weight against the internal energy and more bonds

will break.

On the Entropy of the System

The entropy in the system has two contributions. First, the rotational entropy Srot

and secondly the configurational entropy Sconf .

The configurational entropy denotes the kind of entropy that arises from the number

of possible configurations of bonding patterns across the lattice that are compatible

with a fixed internal energy, and therefore with a fixed number of existing and bro-

ken bonds.

For the rotational entropy only the number of configurations of the individual parti-

cles compatible with a fixed bonding pattern is considered. A particle with n bonds

has a rotational freedom, hence it can freely rotate by an angle ωfree (2.5) without

loosing one of the existing bonds

ωfree = θ − π

6
(n− 1) . (2.5)

This rotational freedom gives rise to a number of configurations that are all com-

patible with the underlying bonding pattern. This number of configurations again

are important for the rotational entropy. If a bond breaks the rotational freedom

becomes mostly larger and the the number of configurations increases.
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Chapter 3

On Classical Thermodynamics and

Phase Transitions

3.1 Classical Thermodynamics

Classical thermodynamics has its origin in times when it was generally believed that

heat is a kind of fluid that can flow from one body to another. In 1824, just on the

basis of this heat-fluid theory Carnot was very well able of deriving limitations for

the transformation of heat into work and vice versa. Essentially, this work is now

known as the second law of thermodynamics. Only eight years later, Robert Mayer

formulated the first law of thermodynamics which states the equivalence of heat to

mechanical work. In the first half of the 19th century, physicists were looking for an

explanation why heat was equivalent to energy on a microscopic level. They were

connecting the heat of a body to the dynamical energy of molecules and atoms in

it. This kinetic interpretation would suggest that all properties of a body could be

known by considering the kinetics of the underlying atoms. But the sheer impossi-

bility of treating a many-body-problem with such a great amount of particles within

classical mechanics, lead to a statistical treatment of this ensemble of particles. The

theory was mainly developed by Maxwell, Boltzmann and Gibbs and is known as

Statistical Mechanics, which we will have a closer look on in chapter 3.1 [5, p.ix]. The

extension of the theory by also considering quantum particles is covered by Quan-

tum Statistics.

However, now I want to briefly summarize some theoretical concepts of classical

thermodynamics. Mostly only those aspects which will be of importance in the fur-

ther discussion of the topic.

Classical thermodynamics is designed to describe macroscopic thermal properties

and how they are related to each other in a system through thermodynamic poten-

tials and thermodynamic state variables. Macroscopic properties such as the tem-

perature T , the pressure P or the volume V are important state variables in thermo-

dynamics. An additional state variable is the entropy S, where the change of entropy

of a system is defined as the change of heat when cooled or heated, divided by the



12 Chapter 3. On Classical Thermodynamics and Phase Transitions

current temperature:

dS =
δQ

T
. (3.1)

One distinguishes between extensive and intensive thermodynamic variables, where

extensive variables are proportional to the particle number N while intensive vari-

ables are not. Temperature T and pressure P , which are intensive variables are first

derivatives of the energy and therefore also referred to as external forces. Extensive

variables are for example the volume V or the entropy S of the system. There is al-

ways a pair of conjugate variables of one intensive and one extensive variable. The

contributing term to the change of energy is then always the intensive variable times

the change of its conjugate external variable [2, p.111].

Next to thermodynamic state variables there are also thermodynamic potentials

which are functions that contain all thermodynamic information. A thermodynamic

potential contains the full information if it is written in its natural variables. The in-

ternal energy U is such a thermodynamic potential and has the extensive variables

S, V and N as its natural variables. From derivatives of the potential with respect to

the variables, the full set of thermodynamic properties of the system can be obtained

[2, p.112].

Depending on the physical access (experiment, simulation or theory) it might be

preferable to consider another potential, depending on another set of variables. Start-

ing from the internal energy U one can obtain other valid thermodynamic potentials

through Legendre transforms, one of which is the free energy F . This potential is

defined in its natural variables as:

F (N,V, T ) = U(N,V, S)− TS(T ) . (3.2)

While the internal energy U is the potential for a completely isolated system, a sys-

tem that is in contrast not isolated but in contact with a heat reservoir allowing the

systems to exchange heat Q, the appropriate potential is the free energy F . This can

be easily seen from the second law of thermodynamics, which states that all changes

(reversible and irreversible) in a system, when it is thermally isolated, are such that

the change of entropy is positive. The entropy therefore always strives to be max-

imal. In the studied system which is in contact with a reservoir (primed variables)

the total change in entropy is the sum of the change in the subsystems.

∆Stotal = ∆S + ∆S′ ≥ 0 . (3.3)
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The heat reservoir is sufficiently large such that its temperature T ′ stays at a con-

stant value T ′ = T0 while heat is transferred. Therefore, ∆S′ = ∆Q′

T0
= −∆Q

T0
, where

∆Q is the change of heat in the reservoir and ∆Q′ the change of heat in the system.

From the first law of thermodynamics we know that the total change of heat is the

change of internal energy, ∆U plus the work ∆W = p0∆V that is done by the sys-

tem. However, we do not allow volume changes in our system, therefore it is not

able to perform work. All in all, relation (3.3) then becomes:

∆S − ∆U

T0
≥ 0 (3.4)

∆ (U − T0S) ≤ 0 (3.5)

∆F ≤ 0 (3.6)

Therefore, the free energy of a system that is in thermal contact with a reservoir is

striving to be minimal. Hence, the system is in equilibrium only if F is minimized.

The same derivation leads to the minimization of the Gibbs free energy, G if temper-

ature and pressure are fixed. This is a system where exchange of heat and volume

with a reservoir is allowed. A completely isolated system (internal energy U , Vol-

ume V and particle number N fixed) tries to maximize its entropy [2, p.113].

3.2 Phase Transitions

Definition of a Phase

Matter can appear in different phases or aggregate states. The surrounding con-

ditions like pressure, temperature, magnetic and electric fields determine in which

phase the material will exist. In a system with a given set of thermodynamic vari-

ables always the phase which minimizes the underlying thermodynamic potential

will appear, like it was derived for the free energy, F in the previous section [17,

p.333]. It is also possible that two or more phases coexist under the given thermody-

namic variables [16, p.98].

Symmetries play an important role in the theory of phase transitions. Phases have

different symmetry properties and therefore differ in their thermal and mechanical

behaviour. In a liquid phase the system has continuous translational symmetry and

also continuous rotational symmetry. This is because the liquid is invariant under
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such transformations. Or equivalently, one can say, the liquid looks the same at ev-

ery position and in every direction. These symmetries however are not preserved

as the liquid crystallizes into a solid. In the solid state the crystal possesses only

discrete symmetries such as discrete translational symmetry and discrete rotational

symmetry, depending on the lattice type of the crystal. Both phases have different

symmetries and as mentioned before, these symmetries define the mechanical and

thermal properties of the phases.

It is often referred to a high-temperature disordered and a low-temperature ordered

phase. It is generally true for phase transitions that during the transition from a

high-temperature phase with high symmetry into a low-temperature phase with low

symmetry, the symmetries are broken in one ore more steps [7, p.41].

Critical Point and Order Parameter

As the critical point one defines the point where a new phase begins to appear. The

appearance of the new phase is connected to the appearance of its order parameter

[16, p.135]. And the order parameter itself is closely connected to the symmetry of

the respective phase. As the order parameter is a measure for the symmetry related

order in the specific phase. Approaching the critical point from above (from the

higher temperature) the order parameter of the new phase is first zero and only

starts to grow continuously when the critical point is reached [17, p.339].

Ehrenfest classification

The phase transition itself is most commonly classified based on the behaviour of

the derivatives of the thermodynamic potential at the transition point as it was pro-

posed by Ehrenfest. A phase transitions is according to Ehrenfest a phase transition

of n-th order, if at least one n-th derivative of the thermodynamic potential with

respect to a thermodynamic variable is discontinuous and all lower derivatives are

continuous [17, p.334].

First-order phase transitions are therefore phase transitions in which the first deriva-

tive of the thermodynamic potential is discontinuous. Examples for this type of

phase transitions are provided by the vapor-liquid, the liquid-solid and the vapor-

solid transition in classical fluids [16, p.96].

Phase transitions in which the change of state is continuous will have a discontinuity

in the second or in a higher derivative of the potential. Second-order phase transi-

tions in which a second derivative of the potential is discontinuous are therefore also

referred to as continuous phase transitions [16, p.96].
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In the canonical ensemble, where the temperature and the volume is kept constant,

the free energy, F is the respective thermodynamic potential. First derivatives of the

free energy are given by the pressure and the entropy. In the case of a first order

transition, a discontinuity occurs in at least one of these quantities.

For the canonical ensemble the specific heat at constant volume CV is a second

derivative of the thermodynamic potential F . If the transition is continuous there

might be a discontinuity in CV at the point of transition. However, for a transition

of first order, the second derivative is a derivative of a discontinuous quantity and

therefore the transition will be characterized by a very high and sharp peak (or an

infinite peak) in the specific heat CV .

The Ehrenfest classification is however not universal since there are systems for

which some higher-order derivatives are infinite. For these systems the classifica-

tion breaks down [16, p.101].

Correlation Functions and Order Range

The process of loosing order when a phase transition from an ordered to a disordered

phase is taking place can also be monitored by the use of correlation functions. Typ-

ically one looks at the correlation function of the order parameter. The correlation

length and the type of decay of the correlation function is characteristic for a phase.

In ordered phases the system typically exhibits long-range or quasi long-range order.

In a solid-liquid transition the positional order is measured by the pair-correlation

function of the particles g(r) = 〈ρ(r)ρ(0)〉. In the liquid phase it exhibits short-range

order due to the fact that the correlation function decays exponentially. On the other

hand a perfect crystal reveals quasi long-range behaviour meaning that the decay is

according to a power-law. For real long-range order the correlation function would

be constant.

Behaviour at the Critical Temperature

At the critical point and in its vicinity, the system begins to exhibit a new behaviour.

As the critical point is approached fluctuations in density, magnetization or in gen-

eral in fluctuations of the order parameter appear. These fluctuation essentially di-

verge in their extent at the critical point itself. Below the critical point the new phase

has formed and the corresponding order parameter becomes nonzero.
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Universality

From experiments and computer simulations on various systems, it was found that

very different systems may exhibit the same critical behaviour. This same critical be-

haviour can be seen directly from the topological similarities in the phase diagrams

but especially from the critical exponents. In the vicinity of the critical point the

temperature dependent behaviour of a thermodynamical function is described by a

power law with a critical exponent. Systems that have the same set of critical expo-

nents for different thermodynamical functions are forming a universality class [16,

p.136].

The general definition of a critical exponent with a thermodynamical function f(τ)

is given by:

α = lim
τ→0

ln(f(τ))

ln(τ)
(3.7)

Here τ = T−Tc
Tc

is a dimensionless temperature that vanishes at the critical point Tc.

The reason for universality was found to be the divergence of the correlation length

at the critical point. As the correlation length diverges it becomes the only relevant

length scale in the system. Therefore, microscopic features like the type of the po-

tential, as long as it is short-ranged, and the lattice properties do not play any role at

the critical point anymore. The properties of the system that determine the type of

transition are the global ones, like the dimensionality of the system, the dimension

of the order parameter, the number of degrees of freedom and the symmetry [17,

p.341][7, p.42].

The phenomenon of universality and scale invariance at the critical point is the cen-

tral topic of renormalization group theory, which I will not discuss here. Within this

theory the scale of the system is subsequently renormalized until a fixed point or an

interaction free system is obtained [17, p.348].

3.3 Melting Transition in 2 dimensions for Colloid Particles

In contrast to three-dimensional systems, there exist microscopic theories for the

solid-liquid transition in two dimensions for systems of colloid particles.

While there are theories suggesting grain-boundary induced melting [3][10] or con-

densation of geometrical defects [6], KTHNY theory (named after Kosterlitz, Thou-

less, Haldane, Nelson and Young) is based on the idea that the transition is driven

by unbinding of topological defects (Grünberg, Keim, Maret, p.43). A single defect

on a two-dimensional lattice is called a topological defect if there is no continuous
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transformation that would make this defect disappear. Therefore, topological de-

fects can only appear pairwise [7, p.44]. The KTHNY-theory predicts a transition

from the solid to the liquid phase through an intermediate phase, which is called

hexatic phase. The transition from the solid to the hexatic phase is driven by the

unbinding of one type of topological defects which are dislocations. Through the

dissociation of the dislocation the translational symmetry of the solid phase is de-

stroyed. There is also another type of topological defects which are disclinations.

These defects destroy rotational symmetry in a second transition step where the hex-

atic phase is changing into the completely isotropic liquid phase. The intermediate

phase originates from the different activation energies for the unbinding of the dis-

locations and the disclinations.

As already indicated, the hexatic phase is characterized by continuous translational

symmetry and a remaining local six-fold rotational symmetry. By contrast, the solid

phase has both discrete translational and rotational symmetry and the liquid phase

has only continuous symmetries. While the order parameters are a measure for the

local symmetries in the system, the range of order of the symmetry properties in a

phase can be observed in the correlation functions of the order parameters. The local

orientation order parameter, ψk = 〈e6iφkl〉, for a particle with index k measures the

local six-fold rotational symmetry when averaged over all neighbours l of k. The

orientational correlation function g6(r) = 〈ψ(r)ψ(0)〉 then characterizes the range of

orientational order in the system. In contrast, the range of positional order is mea-

sured by using the positional pair correlation function, g(∆r) = 〈ρ(r)ρ(r+∆r)〉with

the particle density ρ(r).

KTHNY-theory predicts short-range positional order and long-range orientational

order for the hexatic phase. The tetragonal lattice of the solid phase exhibits quasi

long-range positional order and long-range orientational order. All these predictions

were confirmed in experiments and in simulations [7][4].





19

Chapter 4

On Statistical Mechanics and

Monte-Carlo Simulations

4.1 Statistical Mechanics

4.1.1 Introduction

In contrast to classical thermodynamics (Chapter 2.1) which deals with the macro-

scopic properties of a system, statistical mechanics is a probabilistic microscopic the-

ory. The most essential and important relation between the micro- and the macro-

scale was made by Boltzmann who discovered the relation between the number of

possible microstates Ω compatible with the given macroscopic parameters, and the

entropy S:

S ∝ ln (Ω) (4.1)

The general aim of statistical mechanics is the derivation of macroscopic properties

that are accessible in an experiment from the statistical treatment of the microscopic

system and its underlying Hamiltonian [16, p.285]. Measurable properties or phys-

ical interesting properties are the specific heat-capacity, the thermal expansion coef-

ficient, heat conductivity or electric conductivity, to name a few examples.

Phase Space in Statistical Mechanics

When considering a classical system with N spherical particles in three dimensions

the independent coordinates or degrees of freedom are 3N space coordinates and

3N coordinates for the momenta of the particles. Every state of the system is de-

fined by 6N coordinates and the space spanned by these coordinates is called phase

space Γ [17, p.9]. In other words, phase space is a multidimensional space in which

each point represents a microstate of the system [12, p.10]. The motion of a point in

phase space is governed by Hamiltonian dynamics (Hamilton equations of motion).

Anyhow, if the considered system contains a large number of particles N , we will
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practically never be able to know the exact state of the system. All we may be able to

know by using the tool of statistical mechanics is the probability of the system being

in one certain state or more precisely the probability density, which will be denoted

as ρ in the following, for the system occupying a certain phase space volume. This

point of the sheer impossibility of knowing all the states of the N particles, is where

classical mechanics is replaced by statistical mechanics, a probabilistic description of

the microstates.

Ensembles

A microstate is a point in phase space which is defined for a classical system with N

spherical particles by the 6N phase space coordinates (q1i, q2i, q3i, p1i, p2i, p3i), where

i is the particle index that goes up to N . A macrostate on the other hand is defined

by a set of macroscopic parameters like the energy, the volume or the temperature.

All microstates compatible with one macrostate weighted with the respective prob-

ability with which they can occur in the Γ-space are called a statistical ensemble.

According to the macroscopic parameters that are kept constant, different statistical

ensembles are defined [17, p.3]. In Chapter 2 where systems were put in contact with

heat and/or particle reservoirs, in statistical mechanics the same procedure leads to

different ensembles.

A completely isolated system which according to the second law of thermodynam-

ics tries to maximize its entropy under the given boundary conditions is described

within the microcanonical ensemble in statistical mechanics. The equilibrium state

for this system is the state with highest entropy. It is a time-independent state and

it can be described by only a few thermodynamic state variables. Another name for

it is UV N -ensemble, which names the ensemble after the thermodynamic variables

that are kept constant.

Since it is rather hard to experimentally keep the internal energy U constant, a sys-

tem is preferred where instead the temperature is kept constant. This is achieved by

putting the system into contact with a thermal reservoir of a fixed temperature and

allowing the exchange of heat between the system and the reservoir. Note that since

the volume is constant heat and energy are equal. The corresponding ensemble in

statistical mechanics is the canonical ensemble, or NV T -ensemble.

Other ensembles are the grand canonical ensemble, or µVT-ensemble where also ex-

change of particles with the reservoir is allowed, the isothermal-isobaric ensemble

or NPT -ensemble where additionally the system can undergo volume changes.

The simulations on the model-system studied in this thesis were all performed in
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the canonical ensemble which is why I will continue considering the microcanonical

and the canonical ensembles.

4.1.2 The Ergodic Theorem

A state vector XN in phase-space is defined by the three position and three momen-

tum coordinates of allN particles of a system
(
qN ,pN

)
. The HamiltonianH(qN ,pN )

defines the evolution of this state vector in phase space by the Hamiltonian equa-

tions of motion (4.2).

dqi
dt

=
∂H(qN ,pN )

∂pi

dpi
dt

= −∂H(qN ,pN )

∂qi
(4.2)

The evolution of such a state vector XN with fixed energy, U will then be restricted

to a 6N − 1 dimensional hyper-surface of constant energy in phase space. The flow

on the energy surface is called ergodic if almost all trajectories XN (t) sample small

neighbourhoods on the entire energy surface.

The ergodic theorem states that a system is ergodic if the time average 〈f〉T for all

functions f(XN ) on phase space exists for almost all XN and is equal to the phase

space average 〈f〉S . The time and phase space average for a function f(XN ) are de-

fined by:

〈f〉T = lim
T→∞

1

T

∫ t0+T

t0

f(XN (t))dt (4.3)

〈f〉S =
1

Ω(U)

∫
Γ
δ(U −HN (XN ))f(XN )dXN (4.4)

The phase space average is the integral of the function on the surface of constant

energy in phase-space Γ. Here Ω(U) is the area of the respective energy surface [16,

p.296].

4.1.3 The Probability Density Function

In this section I derive the probability densities for the microcanonical and the canon-

ical ensemble. The probability density function ρ(XN ) should be normalized over

the whole phase space Γ:

∫
Γ
dXNρ(XN ) = 1 (4.5)
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And it should give the probability for a system being in a state that is in a subregion

R of phase space Γ by integration over this subregion:

p(XN ∈ R) =

∫
R
dXNρ(XN ) . (4.6)

Micro Canonical Ensemble

For ergodic flow, almost all points XN sample all finite neighbour regions RE on

the energy surface. As a consequence the system spends equal times in regions of

equal extent. The corresponding probability for a microstate XN to appear is there-

fore naturally a uniform distribution. It is postulated that every microstate XN with

energy U is equally probable and therefore the probability density is given by:

ρ(XN , U) =
δ(U −H(XN ))

Ω(U)
. (4.7)

Here, Ω(U) as specified in equation 4.8 is the area of the surface of constant energy

U in phase space. Ω(U) is proportional to the total number of states compatible with

energy U in a discrete system or quantized system

Ω(U) =

∫
Γ
dXNδ(U −H(XN )) . (4.8)

Canonical Ensemble

Now we are interested in the probability density for the microstates in the canon-

ical ensemble. In the canonical ensemble instead of a fixed internal energy U , the

temperature T is kept constant. This is achieved by putting the system S1 in ther-

mal contact with a reservoir S2 with constant temperature T0. The combined system

S = S1 + S2 is completely isolated and described by the microcanonical ensemble.

The probability density for the combined system is given according to (4.7) by:

ρ(XN = (XN
1 ,X

N
2 ), U = U1 + U2) =

δ(U −H1(XN
1 )−H2(XN

2 ))

Ω(U)
. (4.9)

To get the probability density for subsystem S1, Equation (4.9) is integrated over all

variables of subsystem S2. Later the probability density has to be normalized such

that
∫
dΓρ = 1.

ρ(XN
1 , U1) ∼

∫
Γ2

dXN
2

δ(U −H1(XN
1 )−H2(XN

2 ))

Ω(U)
(4.10)

Here, the numerator gives according to (4.8) the surface area of all states with energy
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(U −H1) in sub-phase-space Γ2.

The resulting expression,

ρ(XN
1 , U1) ∼ Ω2(U −H1(XN

1 ))

Ω(U)
(4.11)

can be further simplified by expanding under the assumption that U1 << U . This is

justified by the fact that the heat reservoir S2 is assumed to be much bigger than S1.

Ω2 can be rewritten as exp(ln Ω2). In the next step the emerging logarithm is ex-

panded for U2 ≈ U :

Ω2(U2) = eln Ω2(U−H1)

= exp
[
lnΩ2(U2)|U2=U +

∂ ln Ω2(U2)

∂U2

∣∣∣∣
U2=U

(U2 − U) + ...
]

= exp
[

ln Ω2(U)− ∂ ln Ω2(U2)

∂U2

∣∣∣∣
U2=U

H1 + ...
]

(4.12)

Given the identities for the entropy introduced in (3.1) and in (4.1) with the correct

proportionality,

S = kB ln (Ω) dS =
δQ

T
(4.13)

(4.12) can be further simplified:

Ω2(U2) = Ω2(U)e
− 1
kB

∂S2
∂U2
H1

= Ω2(U)e
− H1
kBT .

(4.14)

Bear in mind that dQ = dU in the microcanonical ensemble where the volume V is

kept constant.

The desired probability density for the subsystem S1 is then given by:

ρ(XN
1 ) ∼ Ω2(U)

Ω(U)
e
−H1(XN1 )

kBT . (4.15)

The factor e−
H1
kBT is called Boltzmann-factor. The other factor in (4.15) is a constant

and independent of the subsystem S1. Therefore it drops out when the distribution

is normalized.
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After normalization and having dropped the indices for subsystem S1, the probabil-

ity density for a system with Hamiltonian H in the canonical ensemble is given by

[17, p.51]:

ρ(XN ) =
e
−H(XN )

kBT∫
dΓe

− H
kBT

. (4.16)

4.1.4 The Partition Function and Expectation Values

While the probability density function ρ(XN ) for the microcanonical ensemble gives

simply a uniform distribution for all microstates of the same energy U , in the canon-

ical ensemble using β = 1
kBT

the probability density takes the form:

ρ(XN ) =
1

Z
e−βH(XN ) . (4.17)

Here Z, the so-called partition function is the normalization factor given by:

Z =

∫
dΓe−βH . (4.18)

In the microcanonical ensemble the partition function gives the phase space volume

Ω(U) as given in Equation (4.8).

The ensemble average for an observable A(XN ) in the canonical ensemble can then

be written as:

〈A〉 =
1

Z

∫
Γ
dXNA(XN )e−βH(XN ) . (4.19)

Sometimes the integral over phase space dΓ is introduced including an additional

factor (hND)−1. Here D is the dimensionality of the system and h an arbitrarily

chosen constant. This factor is a normalization that clarifies/illustrates that each

point in phase space XN occupies a finite volume hND. However, the ensemble

averages do not depend on this factor. Only the thermodynamic potentials such as

the entropy will depend on it when it is introduced.

More importantly is another factor (N)−1 that must be considered in the probability

density, if the particles of the system are indistinguishable. It makes sure that a set

of N microstates that can be transformed into one another by permutation of the

particle indices are counted as only one microstate [17, p.27].
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4.1.5 Heat Capacity from Fluctuations in Energy

In this section an expression for the specific heat will be derived from the expecta-

tion values for the Hamiltonian in the canonical ensemble.

The specific heat is defined as the change of internal energy δU with respect to the

change of temperature δT . The internal energy is given by the expectation value

of the Hamiltonian in the respective ensemble. In the canonical ensemble the ex-

pectation value for the Hamiltonian is calculated by weighting each energy by the

Boltzmann factor e−βH. According to Equation (4.24) the internal energy is thus

given by:

Ū = 〈H〉 =
1

Z

∫
Γ
dXNH(XN )e−βH(XN ) . (4.20)

Similarily, the expectation value forH2(XN ) is defined as:

Ū2 = 〈H2〉 =
1

Z

∫
Γ
dXNH2(XN )e−βH(XN ) . (4.21)

Taking the derivative of Equation (4.20) with respect to β and identifying the up-

coming terms with (4.20) and (4.21) leads to:

∂〈H〉
∂β

= 〈H〉2 − 〈H2〉 (4.22)

Writing β = 1
kBT

leads to a formula for the specific heat:

CV =
∂〈H〉
∂T

=
〈H〉2 − 〈H2〉

kBT 2
. (4.23)

4.2 Monte-Carlo Simulations

Within Statistical Physics the most common application of Monte-Carlo method is to

find reliable evaluations of the expectation values as given in equation (4.24). Only

for a hand-full of physical systems the partition function is accessible via analytical

expressions. For the overwhelming majority of systems numerical methods for the

calculation of the integrals of the partition function and the expectation values have

to be applied. Anyhow, the integral over phase-space represents an extremely high

dimensional problem and therefore standard methods for numerical integration fail

at this problem. This is where the Monte-Carlo method serves a practical tool. The
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theory presented in the succeeding sections is based on [12].

4.2.1 Simple Sampling Monte-Carlo methods

In this section the core idea of Monte-Carlo sampling methods will be introduced.

Considering a system with HamiltonianH(XN ) with continuous degrees of freedom

in the canonical ensemble, the expectation value of some observable A is given by

equation (4.24). Here the integral extends over all possible states XN in phase space

Γ and Z is the respective partition function.

〈A〉 =
1

Z

∫
Γ
dXNA(XN )e−βH(XN ) . (4.24)

For a system with a discrete phase-space this expectation value can also be repre-

sented by a sum. For the patchy colloid particles restricted to closest packing the

according expectation value of some observable A(~θi) is given by:

〈A〉 =
1

Z

∫
d~θiA(~θi) · e−βH(~θi) (4.25)

Note that the Boltzmann-factors e−βH(XN ) are just relative probabilities. The abso-

lute probability for a state XN is given by p(XN ) = e−βH(XN )

Z . However, the partition

function Z is not known. This will become important later in this chapter.

An approximate evaluation of Equations (4.24) or (4.25) can be achieved using Monte-

Carlo method. Here, the core idea is to generate a number of configurations XN
k ,

with k = 1, ..., n as a sample from phase-space. Using this sample, an approxima-

tion of 〈A〉 can be simply made by evaluating A(XN
k ) for each configuration and

performing the summation over these values with their respective Boltzmann fac-

tors (see Equation (4.26)).

〈A〉 ≈ 〈A〉MC =
1∑n

k=1 e
−βH(XN

k )

n∑
k=1

A(XN
k ) · e−βH(XN

k ) . (4.26)

In this procedure the configurations are generated completely randomly. The sam-

ple originates therefore from a uniform distribution of all possible configurations.

However, following this method a considerably large number of configurations will

give a vanishingly low contribution to the sum in Equation (4.26) due to the fact,

that the Boltzmann-factors can get very small. The integral or sum will therefore

converge very slowly. This happens not only for the Boltzmann distribution but is
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generally true for any integral of a highly varying function when applying Monte-

Carlo integration method. The slow convergence then demands a larger sample and

therefore longer computation times are required.

The sample standard deviation of this sample mean is given by:

σ(A) =
1√
n− 1

( n∑
k=1

(A(XN
k )− 〈A〉MC)2

) 1
2 (4.27)

Thus the standard error ε is given by:

ε =
σ√
n

(4.28)

The error can be derived by using the central limit theorem. This theorem states a

general behaviour for the average value x̄n =
∑n
i=1 xi
n of independent random vari-

ables x1, x2, ..., xn which are drawn from the same distribution with the expected

value µ and variance σ2. The distribution is not further specified and need not be a

Gaussian distribution.

In the limit of very large sample sizes n the central limit theorem states that the

distribution of the sample averages x̄n approaches the Gaussian distribution with

expected value µ and variance σ2/n. This leads to the error (4.28), which is given by

the standard deviation of the sample means from the expected value µ. On the other

hand, the standard deviation σ as given in (4.27) is a measure of the distribution of

the random variables A(XN
k ) among the sample mean 〈A〉.

The dependence of the statistical error on the sample size n shows that when de-

creasing the statistical error by a factor of 10, one has to increase the sample size by

a factor of 100.

One can also consider the error (4.28) and pose the question how it can be reduced.

The two possibilities of doing that is to increase the sample size or to make the sam-

ple standard deviation as small as possible. How the latter can be achieved will be

discussed in the next section.

4.2.2 Importance Sampling

A more efficient Monte-Carlo sampling method is importance sampling. Due to the

fact that when sampling from a uniform distribution a large number of irrelevant

contributions is generated, it would therefore be appropriate to preferentially gener-

ate configurations with large Boltzmann-factors, hence configurations with relevant
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contributions to the expectation value.

When discussing the statistical error in Equation (4.28) it was stated that this quan-

tity can be decreased by making σ small. This is achieved by sampling a set of

XN
k such that the deviations of A(XN

k ) from the mean become as small as possible.

Therefore the aim of importance sampling is to find a probability distribution func-

tion such that this is achieved.

I want take a step backwards and outline the idea of importance sampling by re-

garding some general integral of some function f(x) over the integration domain V

as given in Equation (4.29)

I =

∫
V
dxf(x) . (4.29)

The previously described sampling method, where random variables x are drawn

from a uniform distribution, leads to a sum given in (4.30) as an estimate for I . It

will converge slowly if f(x) is a strongly varying function over the integration do-

main V . The error is given by σf/
√
n

I ≈ 1

n

n∑
k=1

f(xk) . (4.30)

The integrand is now expressed via two factors, i.e. f(x) = g(x)p(x), with the aim

that g(x) becomes a slowly varying function. Fulfilling the condition
∫
V p(x) = 1 and

0 < p(x) < 1, p(x) is a valid probability measure. Sampling xk from p(x) will then

give the following approximtion to the integral with the error σg/
√
n.

I =

∫
V
dxg(x)p(x) ≈ 1

n

n∑
k=1

g(xk) (4.31)

The probability density p(x) has to be chosen such that the statistical error σg for the

approximation to the integral becomes as low as possible. The aim of this procedure

was to reduce the sample standard deviation (Equation (4.27)) in order to achieve

a smaller error. Choosing p(x) such that it captures the features of f(x) as good as

possible, g(x) becomes a function with low variations. Then it is generally true for

the sample standard deviations that σg < σf .

Coming back to the initial problem of estimating the expectation value for some

observable A, the same procedure can be followed. The integrand in Equation (4.24)

is already factorized and p(x) = e−βH(x/Z is a valid probability measure.

The estimate of Equation (4.24) when employing importance sampling is then given
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by:

〈A〉 ≈ 1

n

n∑
k=1

A(µk) . (4.32)

The remaining task is to find a way to sample xk from the given distribution p(x) =

e−βH(x)/Z.

4.2.3 Markov-Chains and the Metropolis Algorithm

Now the task is to find a way of how to generate configurations from the given dis-

tribution p(x). Because the absolute probability function is not known the task is to

generate random variables with relative probabilities proportional to the Boltzmann-

factor.

Markov-Chains

This can be done by using Markov-Chains. In a Markov-Chain without memory

an ordered sequence of random variables (xt1 , xt2 , ..., xtn) is generated where each

variable xtk depends on its predecessor xtk−1
only. The random variable x can take

a value from a set of possible states denoted by S1, S2, ... . A Markov-chain can be

generated introducing a transition probabilityWi→j = W (xtn = Sj |xtn−1 = Si). This

is a conditional probability for generating the new state Sj at the time tn if the pre-

ceding one was the state Si. The total probability pn(Si) for finding state Si at a time

tn is given by the Master equation:

pn(Sj) = pn−1(Sj) +
∑
i

Wi→jpn−1(Si)−
∑
i

Wj→ipn−1(Sj) . (4.33)

This relation is the formulation for discrete time steps. The equation can also be for-

mulated for a continuous time scale where the resemblance to a continuity equation

becomes more obvious.

In order to be able to use this relation for sampling from a given probability dis-

tribution p(x), the task is to find a suitable transition amplitude Wi→j . This tran-

sition amplitude must be designed such that first of all, the probability pn reaches

an equilibrium peq for large n and secondly, the resulting equilibrium probability is

proportional to the desired probability distribution g(x) specified in section 4.2.2.
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Detailed Balance Condition

At equilibrium the time dependent probabilities pn must not change from one time

step to another. Therefore, pn(Sj) must be equal pn−1(Sj). Inserting this requirement

into the Master equation (4.33) gives the global balance condition,

∑
i

Wjipeq(Sj) =
∑
i

Wijpeq(Si) . (4.34)

The strongest balance condition that automatically satisfies the global balance con-

dition is the detailed balance condition for which:

Wjipeq(Sj) = Wijpeq(Si) . (4.35)

Detailed balance is of high importance for standard Monte-Carlo simulations. It

states that a transition from a configuration Si to Sj has to be as likely as the back-

wards transition [12]. Anyhow, there are also weaker balance conditions between

global and detailed balance that are sufficient for the Monte-Carlo sampling [13].

Metropolis Algorithm

The Metropolis Algorithm [15] uses the characteristics of Markov-Chains in order to

generate a sample of configurations from a probability distribution proportional to

the Boltzmann distribution. The configurations are therefore generated as a Markov-

Chain, with the transition probabilities chosen such that peq(Si) ∝ e−βH(Si). One

possible transition probability that generates this equilibrium probability is given

by:

Wi→j = min
[
1,

p(Sj)

p(Si)

]
. (4.36)

Here p(Sj) and p(Si) are the actual probabilities for the system to be in state Sj or Si
given by p(Sj) = 1

Z e
−βH(Sj). This transition probability satisfies detailed balance, as

can be seen from inserting (4.36) into (4.35).

As mentioned before, one has to bear in mind that the partition functionZ =
∑

allstates e
−βH

is unknown. Anyhow, using the transition probability as defined in Equation (4.36)

the partition function cancels out in Equation (4.37) and only the change in energy

when passing from one configuration to the next matters
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p(Sj)

p(Si)
=

1
Z e
−βH(Sj)

1
Z e
−βH(Si)

= e−β(H(Sj)−H(Si)) . (4.37)

Applying Metropolis Algorithm in order to generate configurations within a canon-

ical ensemble, the following scheme can be followed:

1. choose a random state as an initial configuration;

2. randomly pick one particle of all N particles;

3. propose a new configuration by performing a Monte-Carlo move (randomly

changing the particles position and/or orientation);

4. calculate the energy difference between the old and the new configuration ∆U ;

5. generate a random variable r ∈ [0, 1] and accept the new configuration if r <

Wold→new.

Steps (2)-(5) are repeated several times. A set ofN such repetitions is called a Monte-

Carlo sweep. In order to generate configurations that show no unphysical correla-

tions, one chooses to save a configuration only after a certain number of Monte-Carlo

sweeps.
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Chapter 5

Results

The simulations were carried out for four different system sizes. The different sys-

tems contained N = 576, N = 900, N = 9216 and N = 82944 particles. In the

pre-study, the simulations were done on systems with 576 or 900 particles. In the fol-

lowing studies, I focused on the dimer case, where particles have patch amplitudes

θ ∈ (0◦, 60◦), only for these systems the system size was increased to N = 9216 and

N = 82944 particles.

Before I continue with presenting the results of the simulations and their analysis, I

want to briefly explain the path I followed for the implementation of the model and

for tackling the problems of saving computation time and going to larger system

sizes.

5.1 Methodology for the Patchy Particle Model

Application of the Metropolis Algorithm

In my problem the N patchy colloids are restricted to closest spatial packing with

periodic boundary conditions applied. The only degree of freedom left for a par-

ticle is its orientation. A configuration is therefore represented by a state in the N -

dimensional subspace of phase-space given by a vector XN = (θ1, θ2, ..., θN ). Apply-

ing the Metropolis Algorithm a rotation move is proposed to one randomly chosen

particle where the rotation move is a rotation by a randomly generated angle. Then

the transition probability from the old to the new configuration is calculated accord-

ing to Equation (4.36). The new configuration is accepted or rejected according to

this rule.

All results presented in the next chapter are based on simulations with 5 ·105 Monte-

Carlo sweeps. One Monte-Carlo sweep consists of N proposed Monte-Carlo moves,

where the particles for the rotation moves are picked randomly. After 500 sweeps,

the full configuration (i.e. the orientations of all particles) was saved for the subse-

quent analysis. However the initial 10-20% of the configurations were discarded in

order to sample only over the equilibrated system.

In the simulations either a cooling or a heating process was mimicked. Starting from
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one particular configuration the temperature was subsequently lowered or raised

by a small temperature increment. For each new temperature the last configuration

of the previous temperature was taken to be the initial configuration for the sim-

ulation process. This is of course not the best option for many temperature steps

because the process cannot be parallelized. A parallelized alternative, where every

temperature is simulated independently from a random initial configuration, would

however need longer to reach equilibrium.

Saving Computation Time

In an effort to save time during the simulation process the code was modified the

following way. Each Monte-Carlo move is tested for acceptance by calculating the

energy difference between the old and the new configuration. Since only one parti-

cle is rotated in each Monte-Carlo move, the calculation of the difference in energy

can be restricted to the particle and its surrounding particles by introducing neigh-

bour lists. In the case of my problem where the particles are fixed in their positions,

this list must only be built once and never has to be updated as it would be the com-

mon procedure when using Verlet neighbour lists for simulation of liquids [1]. This

strategy helps to save a considerable amount of simulation time since the potential

function (2.1) does not have to be called for each pair of particles.

Passing to 82944 particles

In order to be able to perform simulations on considerably larger systems within

a reasonable time, each temperature was simulated individually. The main obsta-

cle was to decrease the time required for each simulation that gets lost during the

equilibration process. For this purpose, the equilibrated configurations from the

simulations with N = 9216 particles have been taken and replicated 9 times and put

together into a system of nine times more particles, hence N = 82944. Thus I had an

already equilibrated initial configuration for the further Monte-Carlo simulations at

hand, leading to a smaller number of discarded configurations. For the previously

described method, where for each Monte-Carlo move only the six surrounding parti-

cles are checked for changes in the energy, the correct neighbours have to be assigned

to the particles on the border of the N = 9216 subsystems of the 9× 9-grid.

5.2 Pre-Studies on the Bonding Patterns

5.2.1 Snapshots of Bonding Patterns

From first simulations on systems of N = 900 particles, snapshots of the bonding

patterns at different temperatures were created. The system was simulated for 24
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temperatures in the temperature interval T ∈ [0.04, 0.5] in a cooling process with

5 · 105 Monte-Carlo sweeps at each temperature step.

Dimer Case

The number of bonds one particle can form depends on the patch amplitude θ ac-

cording to Equation 2.3. When particles can form up to one bond (n = 1) figure 5.1

shows the bonding patterns at three different temperatures, T = 0.28, 0.16 and 0.04.

The colors of the particles represent the number of bonds of the particle, where black

particles are those which bonds are saturated.

Trimer Case

When n=2, the particles form up to two bonds each, here θ has to lie in the interval

(60◦, 120◦). The corresponding bonding patterns are trimers, dimers or lines. The

snapshots in figure 5.2 are taken from simulations of two systems with different

patch amplitudes: The first patch amplitude θ = 65◦ was chosen very close to the

lower boundary while θ = 90◦ lies in the middle of interval.

For higher patch amplitudes the rotational entropy is higher than for lower patch

amplitudes. Therefore, for θ = 90◦ the transition into the disordered phase takes

place at a higher temperature when compared to the case with θ = 65◦. In figure 5.2

(f) the system has reached one possible groundstate where all bonds are saturated.

At the intermediate and higher temperatures also line structures (extending over

three or more particles) occur. Here, it is the preferred phase compared to the trimer

phase since the endpoints of the lines are able to contribute to a higher rotational

entropy. However, at least in figure 5.2 (f) the line phase disappears completely in

favour of the trimer phase, which has a far higher configurational entropy and is

therefore much more likely to appear from the crystallization process.

Zigzag Case

For n = 3, figure 5.3 shows snapshots of two systems- one with patch amplitude

θ = 125◦ and another with θ = 150◦. For the same entropic reason as discussed

for the trimer case, the system with the smaller patch amplitude takes longer to

crystallize. Again, one possible groundstate configuration is reached at T = 0.04 for

the system with θ = 150◦ (Figure (5.3) (f)) : it consists of parallel left or right tilted

zigzag lines. Due to the periodic boundary conditions, a groundstate with a kink in

those zigzag lines would not be possible.
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FIGURE 5.1: Simulation snapshots from a cooling process for N=900
particles with θ = 55◦ at temperatures (a) T = 0.28, (b) T = 0.16 and

(c) T = 0.04.
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FIGURE 5.2: Simulation snapshots from a cooling process for N=900
particles with (a)-(c) θ = 65◦ and (d)-(f) θ = 90◦ at temperatures (a+d)

T = 0.28, (b+e) T = 0.16 and (c+f) T = 0.04.
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FIGURE 5.3: Simulation snapshots from a cooling process for N=900
particles with (a)-(c) θ = 125◦ and (d)-(f) θ = 150◦ at temperatures

(a+d) T = 0.28, (b+e) T = 0.16 and (c+f) T = 0.04.
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5.2.2 Density Analysis

The analysis in this section is based on the simulations with N = 900 particles pre-

sented in the previous section. With the density analysis, I want to calculate the

densities of the emerging monomers, dimers and trimers. The density ρi for one of

these structure indicated with index i are defined as:

ρi =
ni
N
, (5.1)

where ni is the number of particles that are part of a structure i and N is the total

number of particles in the system.

Dimer Case

In the analysis the densities of particles that are in a monomer or dimer configura-

tion were determined by their energies. In a second step the full dimer density was

divided into three densities of the different dimer types, which are horizontal, left

and right tilted dimers.

Figure 5.4 shows the densities of monomers and dimers for different patch ampli-

tudes as function of the temperature T . During the cooling process particles with

larger patch amplitudes form dimers earlier than particles with smaller patch am-

plitudes because the entropic loss is not as high.
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In figure 5.5 also the densities for the horizontal, left and right tilted dimers in the

case of a patch amlitude of θ = 55◦ are shown. The vertical lines mark the tem-

peratures of the snapshots of the system showed in the figures 5.1. Of course these

three types are symmetric and therefore the system would not favour a priori one

of the directions. This is indeed observed at higher temperatures where due to a

sufficiently large number of monomers the dimers seem to be completely indepen-

dent. However, at low temperatures the curves split which happens due to the finite

system size of the simulation box and a finite cooling time.

Trimer Case

FIGURE 5.6: Six sublat-
tices of the trigonal lat-

tice

Similar to the dimer case and inspired by [19], I distin-

guished in the analysis of the trimer densities six different

types of trimers. In figure 5.6 these six trimer types are indi-

cated in a hexagonal cell of the trigonal lattice.

In [19] an analytical derivation of the entropy for the trimer

problem is presented. The trimer problem is stated as a tiling

of trimers that covers all lattice sites of an underlying trig-

onal without overlaps. In [19] the trigonal lattice was split

into six sublattices, where each sublattice represents one trimer type. A fully occu-

pied sublattice represents a special solution to the tiling problem because it possesses
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a discrete translational symmetry into the two directions of the two-dimensional lat-

tice. By a Bethe ansatz the authors were able to derive the entropy and the densities

of the sublattices ρ0, ..., ρ5. The six trimer types can also be grouped into down-

oriented trimers and up-oriented trimers with densities ρ∇ = ρ1 + ρ3 + ρ5 and

ρ∆ = ρ0 + ρ2 + ρ4.

The most important findings that were delivered via this analytical approach were

that the entropy of the system is maximal if the up- and down-trimers are balanced,

ρ∇ = ρ∆ . And secondly that a spontaneous symmetry breaking takes place if one

of these densities gets small compared to the other, e.g. ρ∇ < ρ∆ . In this case, the

symmetry between the three trimer types that make up ρ∆ is spontaneously broken

as one type increases, e.g. ρ0 > ρ1 = ρ3 = ρ5 > ρ2 = ρ4. However this sponta-

neous symmetry breaking mainly plays a role if the up- and down-trimer densities

could be regulated. In my problem this is not the case. The density calculation in
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this work was carried out for the two previously presented systems with N = 900

particles and patch amplitudes θ = 65◦ and θ = 90◦. In figure 5.7 the up- and down-

trimer densities are considered separately for these two cases.

As expected, the densities ρ∇ and ρ∆ become equal when θ = 90◦. Only here, all

monomers disappear at low temperatures and a ground state is reached. As de-

rived by [19] equal densities for up- and down-trimers has the highest entropy and

is therefore most likely to occur. For θ = 65◦ the ground state is not yet reached

since the monomer density is still non-zero. The next figures, (5.8) and (5.9), show

the densities of all six trimer types for the two systems. In the density calculation,
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the six trimer types were distinguished and plotted individually. As it can be seen

from figure (5.7) the up- and down-trimers have the same densities for higher tem-

peratures. This is obvious since they represent symmetric states and are completely

independent of each other as long as the monomer density is high enough. As soon

as the monomers disappear the trimers get trapped in one configuration.

From the analytical derivation of the free energy and of the entropy of a system

of trimers with the constraint that they have to cover the lattice completely [19], it

is known that balanced densities ρ∇ and ρ∆ of up- and down-trimers leads to the

highest entropy.

The fact, that at low temperatures the density curves for up- and down-trimers split

has to do with trapped configuration. Simulations with slower cooling processes

and higher system sizes would most likely end up in the configuration of highest

entropy where all the sub-densities are balanced.

5.2.3 Cluster Size Analysis

In the density analysis for the trimer case only trimers, dimers and monomers were

distinguished. By the use of a cluster size analysis, also lines formed by three or

more particles as they can be seen in figure 5.2 could be tracked. A standard cluster

size analysis was implemented. Solely clusters of size three were distinguished into

two different cluster types, trimers and open triangles, which are lines of three par-

ticles.

Figures 5.10 and 5.11 show the densities of monomers, dimers, trimers and line

structures as defined in equation 5.1 for the two considered angles θ = 65◦ and

θ = 90◦.

From figure 5.11 it can be seen that the system reaches a ground state in the pure

trimer phase. When looking at the densities of the line structures it becomes obvious

that for all temperatures the shorter lines are more likely to emerge than the longer

ones. But as the lines get larger, the maximal probability for each line type gets to

lower temperatures. The reason for this behaviour can be found when considering

the competing of the energy and entropy at the ends of the line.



44 Chapter 5. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

cl
u
st

e
r 

p
ro

b
a
b

ili
ty

, 
in

 %

temperature, T

monomers
dimers
open triangles
trimers
line 4
line 5
line 6
line 7
line 8

FIGURE 5.10: Cluster size analysis on system with N=900 particles
and θ = 65◦, obtained from cooling process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

cl
u
st

e
r 

p
ro

b
a
b

ili
ty

, 
in

 %

temperature, T

monomers
dimers
open triangles
trimers
line 4
line 5
line 6
line 7
line 8

FIGURE 5.11: Cluster size analysis on system with N=900 particles
and θ = 90◦, obtained from cooling process.



5.3. Detailed Studies on the Dimer Case 45

5.3 Detailed Studies on the Dimer Case

For the further analysis I focused on the system with θ = 55◦. From the results of

the density analysis on this system, I located the transition temperature to lie in the

interval [0.04 − 0.08]. As it can be seen from figure 5.4 the first monomers emerge

in this interval and the transition from the ordered phase into the disordered sets in.

The increment in temperature, ∆T was assumed to be 0.001.

5.3.1 Energy per Particle as the Order Parameter

As suggested in section 2.3 the global order parameter for the dimer phase is simply

the energy per particle ε. However this choice will not provide new information

since the ε- curve will reproduce the monomer curve shown in figure 5.4 shifted in

the y−direction by−1. Nevertheless, I performed the analysis in the smaller temper-

ature window and went to higher system sizes. In figure 5.12 the averaged energy

per particle 〈ε〉 is presented with the respective statistical errors for the three differ-

ent system sizes investigated.
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FIGURE 5.12: Global order parameter 〈ε〉 with errorbars, comparison
for different system sizes.

5.3.2 Energy Autocorrelation Function

In the next step the correlation function of the local order parameter has been investi-

gated. As the local order parameter the energy ε(~ri) of a particle at position ~ri can be

defined. Then the correlation of the local order parameter of two particles separated
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by a distance r is given by:

g(r = |~rij |) = 〈ε(~ri)ε(~rj)〉 =
1

2N

∑
allconf

∑
i,j

r=|~rij |

ε(~ri)ε(~rj) , (5.2)

with the normalization factor,

N =
∑

allconf

∑
i,j

r=|~rij |

1 . (5.3)

The average denoted by 〈·〉 is taken over all configurations and all particles at posi-

tions ~ri and ~rj with the restriction that the particles at these positions have distance

r. The normalization factor is the number configurations times the number of all

pairs of particles separated by a distance r that can be found in one configuration.

In figure 5.13 this correlation function of the order parameter calculated from the

largest system with N = 82944 particles is plotted for distances up to 20 particle

diameters at different temperatures. The temperatures range within the interval

[0.04 − 0.08]. The correlation function as a function of the distance is constant, and

also stays constant for larger distances, at the temperatures shown from the first

neighbour particles on. But for higher temperatures the constant value decreases

since bonds start to break. The order of the correlation is thus quasi long-range.

In figure 5.14 the same correlation function is plotted for higher temperatures rang-

ing within the interval [0.08−0.4]. For the first three shells around the central particle

some oscillations appear which indicate a very short range effective interaction be-

tween the dimers.

5.3.3 Heat Capacity

The heat capacity at constant volume CV is a response function which is able to pro-

vide information about the possible occurrence of a phase transition.

There are two common methods for determining the heat capacity from simulations

in the NV T -ensemble. The first method starts from the definition of the heat capac-

ity at constant volume,

CV =
(∂Q
∂T

)
V

=
∂U

∂T
(5.4)

The energy U is determined from the simulations as an average 〈U〉Ti for each tem-

perature Ti in the simulation process. When fitting a function through the data and

then taking the derivative of this fit-function with respect to T the heat capacity at

constant volume can then be calculated.
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An alternative method is to use formula (4.23). Via this approach, the heat capacity

at constant volume can be calculated from the energy fluctuations 〈H〉2−〈H2〉 during

the simulation process. This method was used in the following analysis. Although

being very attractive for the fact that the heat capacity can be directly measured

from the simulations, this method has the disadvantage that very good statistics are

needed to obtain smooth data for CV . From figure 5.15 it can be seen that even for

the largest system ofN = 82944 particles the curve is still not able to give reasonable

results.
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Chapter 6

Conclusion & Outlook

At the beginning of this work stood the melting transition of colloid particles in two

dimensions. For this system a microscopic theory for melting has been developed

by Kosterlitz, Thouless, Haperlin, Nelson and Young in the 1970s. The predictions

of this theory, particularly the occurrence of a hexatic phase which occurs between

the solid and the liquid phase have been proven many times in experiments and

simulations.

For this work, I extended the model of the colloid particles by assigning a patch with

an attractive interaction to the otherwise repulsive surface of the particles. Through

this patch the particles have an additional, orientational degree of freedom.

The original idea of this thesis was to investigate this system by first of all clarifying

whether it still undergoes a KTHNY melting transition and secondly determining

how this melting transition is related to the order-disorder transition of the orienta-

tional order. As a first step to pursue this issue the orientational order transition was

disentangled from the spatially induced melting transition. In order to realize this,

the particles were restricted to closest spatial packing, thus allowing the particles

only to rotate.

In the course of my studies I focused primarily on the cases where particles can

form one or two bonds. The aim was to gain more knowledge on how to treat this

problem also for those cases, where the particles can form more bonds. This part

of the work comprised density and cluster size analyses of the emerging bonding

structures in the dimer and trimer case.

For the dimer case a local order parameter was defined which was found to be mod-

ulus of the energy of each particle. Using this order parameter the correlation of the

local order parameter was calculated in order to investigate the range of order in the

different phases. To be able to study long range order also simulations on larger sys-

tems were performed. Anyhow, so far I was not able to draw any clear conclusions

from the obtained results.

The heat capacity was determined from the fluctuations in the energy during the
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simulation for the dimer case. For now, the heat capacity curve has large fluctua-

tions because even for the largest system the statistics are apparently of insufficient

quality. From these results no conclusions can be drawn yet. For this analysis even

larger system sizes or longer simulation runs are needed to get better statistics.

The next steps will be to find one single or a set of suitable order parameters for

the trimer case in order to distinguish the trimers, line structures and monomers

from each other. On the basis of these order parameters, the range of order in the

different phases can be studied using the correlation functions of the respective or-

der parameters.

If the phase transition of the orientational order for the case of closest spatial packing

is better understood, it will be interesting to proceed further and also let the system

undergo a melting transition. The melting transition of the patchy colloids can then

be compared to the KTHNY phase transition of usual colloid particles. Finally, the

original research question can be tackled by studying the phase transitions of the

differently orientationally ordered phases in combination with the melting transi-

tion. For this purpose the order parameters that were found for the case of highest

packing fractions might be useful to define orientationally ordered phases in this

somewhat different problem.
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