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A recent comparison of computer simulation data for the triplet structure of hard spheres has
revealed that an approach proposed by Attard (the so-called PY3 approximation or “source particle
method”) has to be considered at present as the most reliable method available for the determination
of the triplet distribution function g® of a simple liquid. This holds not only for general three
particle arrangements but in particular for those configurations where at least two particles are in
direct contact, i.e., where usually the largest discrepancies between different theories are observed.
In an effort to study the influence of the interatomic potential on the applicability of the method, we
have determined the triplet structure of two classes of simple liquids, namely, soft spheres and liquid
metals: we thus varied softness and range of the repulsive potential and the long-ranged attractive
potential. In general, agreement with computer experiment is found to be excellent; only for very

soft potentials are small discrepancies encountered.

PACS number(s): 61.20.Gy, 61.20.Ne, 61.25.Mv

I. INTRODUCTION

Both improved numerical resources as well as the fact
that triplet correlations do play an important role in a
more reliable description of several physical phenomena
(such as, e.g., melting [1]) have lead during recent years to
an increased interest in the triplet structure of simple lig-
uids as such. Several methods, proposed during the past
30 years for the determination of the triplet structure
[expressed in terms of the triplet distribution function
(tDF) g®)(r,s,t)] have been implemented recently; for
an overview we refer the reader, e.g., to [2]. In parallel,
extensive computer simulations have been performed to
test the reliability of the numerical methods [2-5]. From
these studies, which have been realized in particular on
a large scale for hard spheres [2,4], it was found that the
PY3 method proposed by Attard [6] [or named in a simi-
lar context “source particle method” (SPM) [7,8], a name
to which we will stick in this contribution] represents at
present the most reliable method: in comparison with
computer experiments excellent agreement was found not
only for general configurations but also for particle ar-
rangements where at least two of the three particles are
in direct contact. Such configurations, corresponding to
the direct contact of the pair case, are — both in the
pair and triplet case — known to be very sensitive to the
method.

The aim of this contribution is to pass beyond hard
spheres and to apply this method to more realistic lig-
uids and to compare the SPM results with computer sim-
ulation data, representing thus a more stringent test for
the reliability of the numerical method. For this purpose
we have chosen soft spheres and liquid metals. With
these two types of liquids we have the possibility of vary-
ing both the attractive and the repulsive part of the in-
teractions: (i) for soft spheres [®(r) = ¢ (Z)"] we can
vary the strength (via €) or equivalently the density [via
T = po®(eB)3/™, p being the number density] and the
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softness (via n). We chose three different n values (4,
8, and 12) and for every softness parameter one to three
T values, approaching as close as possible (from the nu-
merical point of view) towards the freezing point [9]; (ii)
with liquid metals, on the other hand, we can study the
influence of the characteristic long-ranged Friedel oscil-
lations on the numerical reliability of the method. The
two liquid metals, Rb and Ge (just above their respective
melting points 373 K and 1250 K), show some character-
istic topological disorder: Rb is a typical close-packed lig-
uid metal with approximately 11 nearest neighbors [10],
while in Ge — as a reminder of the semiconducting state
— an open structure at least for temperatures near the
melting point is preferred [11]. This will also be reflected
in the triplet structure by the formation of characteristic
three particle configurations. These findings were sub-
stantiated by calculation of the pair structure of both
metals along with a close analysis of the number of near-
est neighbors [12]. Similar results were also obtained in
ab initio simulations for liquid Ge [13]. Lennard-Jones
systems which also would be appropriate candidates for
such a study have already been treated by Fushiki [8].
In this context we would like to point out that a proper
determination (i.e., realistic in comparison with exper-
imental data) of the triplet structure of a liquid as Ge
would require the inclusion of three-body forces. One of
the major drawbacks of the SPM is that its formalism —
at least at the present stage — includes two-body forces
only. Since our simulations are based on pair forces, too,
we find that a comparison on the basis of such forces
is legitimate while, on the other hand, we do not claim
that such a description is ready for a comparison with
experimental structure data.

In this contribution we present results for the triplet
structure of the liquids described above; these data were
obtained by using the SPM proposed by Attard [6], which
we will outline below. These results are complemented
by simulation data which serve as a criterion for the reli-
ability of the results. The most crucial parameter which
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limits the applicability of the method from the numerical
point of view is the range of the potential: for very soft
potentials (n=4) with I values close to the freezing point
convergence of the procedure becomes — despite several
tricks applied — impossible. As we decrease the strength
of the potentials and /or make the potentials more repul-
sive, no problems at all were encountered. For liquid
metals the long-ranged Friedel oscillations do not pose
any problems. Summarizing we can say that in all cases
where convergence could be achieved we find very satis-
factory agreement with results of computer data. Finally,
the results for the pair and the triplet structure obey —
within numerical accuracy — the required sum rules.
The paper is organized as follows: in the subsequent
section we briefly discuss the SPM (leaving, however, a
closer discussion to the original paper) and give a few
details about our simulations; in Sec. III we discuss the
results. The paper is closed with concluding remarks.

II. THE NUMERICAL METHODS
A. The source particle method (SPM)

The SPM is based on an idea of Percus [14] which
allows one to relate the distribution functions of a homo-
geneous N-particle system [characterized by a pair in-
teraction ®(r) and a density p] with those of an inho-
mogeneous (/N + 1)-particle system by adding a particle

J
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fixed at the origin representing the source of an external
field. If the interaction of this particle is identical to ®(r),
then the inhomogeneous one-particle density is related to
the pair distribution function (pDF) of the homogeneous
system via p(!)(r) = pg(®(0,r|0) and the pDF of the in-
homogeneous system is given in terms of the tDF of the
homogeneous system via [14]

9®(0,r1|0)g® (0,r2(0)g® (r1,12) = g™ (0,r1,12/0). (1)

The Ornstein-Zernike (OZ) relation for the inhomoge-
neous system reads

y B (ry,r2) = A® (r1,ra) — P (ry,ra)

= /d3T3 C(z) (1‘1,1‘3)p(1)(l‘3)h(2) (l‘3,l‘2), (2)

where h(?) and c(?) are the total and the direct correlation
functions. Equation (2) is solved along with a suitably
chosen closure relation. While Attard used in his original
paper a Percus-Yevick (PY) closure (generalized to func-
tions in two arguments), we rather stick here to the gen-
eralized HMSA closure [i.e., interpolation between HNC
and soft mean spherical approximation (SMSA)] [15], as
also done by Fushiki [7,8]. This relation was general-
ized by Kjellander and Sarman [16] to the inhomogeneous
case. Our choice is justified by our experience that the
HMSA is known to give very reliable results for the pair
structure of liquid metals [17]. The closure relation reads

g(r1,12) = exp[—B®Po(r1,r2)] {1 +

where ®¢(r) and ®,(r) are the attractive and repulsive
part of the pair interaction ®(r) in the sense of Weeks,
Chandler, and Andersen [18]. Equation (3) also includes
the Rogers-Young (RY) closure [19] [interpolating be-
tween the hypernetted chain approximation (HNC) and
PY] for the case ®;(r) = 0, as it is found for soft spheres;
the SMSA then becomes the PY approximation. The
mixing function f(r1,r2) was assumed to depend on the
distance 712 = |r; — rz| only, with the functional form
fa(r12) = 1 — exp[—a|r; — r2|]]. a — being a positive
parameter — interpolates between the HNC (a = o0)
and the SMSA-PY (a = 0). In the pair case « is deter-
mined to guarantee thermodynamic self-consistency be-
tween two equations of state [15,17].

In practice, for an efficient evaluation of the integral
in (2) for a spherically symmetric potential ®(r), Attard
proposed [6] an expansion of the correlation functions in
terms of Legendre polynomials, P,(cosd), e.g.,

oo
h(z) (rl’ I'2) = h(z) (7‘1’ T2, 19) = Z i"'n(rlv TZ)PTL(.COS 19)’

n=0

(4)

exp{fa(rl, l‘z)[h(l‘l,rz) - C(l‘l,rg) - ,8<I>1(r1,r2)]} -1 } , (3)

fa(l'l,l'z)

9 being the angle enclosed by r; and ry. If we now use a
well-known relation between the Legendre polynomials,
then the OZ equation (2) becomes

4 et .
2n+1/0 dr3r§cn(r1,r3)

xpM (r3)hn(rs,T2) . (5)

gn(rly TZ) =

The coefficient functions é,, h,, and 4, are calculated

from ¢®(ry,rz), h®(ry,r3), and y@ (ry,r;) according

to (4) using a discrete Legendre transform proposed by
Attard on 32 9 points limiting thus n in (4) to 31. The
r grid (Ar, see below) covers 200 (soft spheres) and 150
(liquid metals) points in each dimension.

Numerical errors introduced by truncating the inte-
grals in (5) are minimized following an idea of Fushiki
[7,8]: by subtracting the homogeneous OZ relation from
the inhomogeneous one and assuming that the homoge-
neous and inhomogeneous correlation functions are iden-
tical for distances larger than a given R, one finally ob-
tains the approximate relation
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g‘n(rla TZ) = gn(rly”'ZlO)

R
+2n47:_ 1 (/(; drar2én(ry,r3)p™M (r3)

R
X hn(r3,T2) — p/ drar3én(r1,73/0)
0

xizn(rg,r2|0)) . (6)

The input for the homogeneous distribution functions
is taken from computer experiment. The coupled inte-
gral equations (3) and (6) are solved iteratively until self-
consistency in the following sense is achieved: let

)| = \/ DIUCEDIE (7)

where j numbers the iteration cycle and the sum ranges
over all n values and the entire (r1,72) grid, then [yl —
y=1|]1/||y¥9|| was required to be less than 10~°. Usu-
ally a satisfactory convergence in the above sense was
obtained after 130 to 200 iterations. For some systems
investigated a slight dependence of the convergence speed
on the actual value of a was observed.

In solving these equations still an arbitrariness remains
in the actual value a appearing in the closure relation (3).
One possibility would be to use the exact relation (sum
rule)

15)
(2) L (N ¢))
87‘129 (r12) oo (9 (7‘12),3<I’(T12))

1
= 27rp/ d(cos J23)

-1

oo o
X drisr?, | —B®(r ]
/o 137713 [3r13ﬁ (r13)
Xg(3) (1-12, 713 COS 1923) cos ¥p3 (8)

[8=1/(kgT)] for a check of the internal consistency be-
tween the pDF and tDF. However, this relation turns
out to be not too sensitive to the actual value of a.
We have therefore chosen a to be the value which
minimizes 3, |gMP(r;) — ¢g"™SA(r;;a)| (sum over grid
points). Comparison with computer simulation justifies
this choice (see below). For actual calculations or if com-
puter simulation data are not available we propose to fix
a by some self-consistency criterion [15,20] since these
results have proven to be as accurate as computer simu-
lation data [21].

B. The computer simulation

The computer simulation data were obtained in stan-
dard molecular-dynamics (MD) runs: we used 1372 parti-
cle ensembles; the sampling of the pDF and tDF has been
done every 20 time steps and the simulation has been ex-
tended over 4000 time steps. Special care has been taken
to avoid the counting of self-correlations in the triplet
case (cf.,, [2,5]). The final results and estimates of the
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numerical error were determined by averaging over four
independent runs.

III. RESULTS
A. Soft spheres

The parameters of the soft sphere systems investigated
in this study are compiled in Table I, along with the
values for a, which were determined according to our
criterion described above; the interactions are displayed
in Fig. 1. The pair potentials are given by

B(r) =€ (f) . (9)
r

The system is usually characterized by n and the cou-
pling parameter T' = po®(e8)*/™. In our study we con-
sidered three different n values (4, 8, and 12); I" actually
limits the applicability of the method: we present results
for the largest I'’s for which we could obtain numerical
convergence of the SPM. For larger I values, i.e., systems
closer to the freezing point [9], the numerical algorithm
breaks down, despite all of the numerical care taken. The
R values [cf., Eq. (6)] and the grid size are compiled in
Table II.

For the softest potentials (n=4) three different I" values
were considered (cf., Table I). For I" = 4 the peak height
of the pDF amounts to ~ 2.2, which shows that the sys-
tem is rather dense. Figure 2 shows the tDF g(®(r, s, )
as a function of ¥ for (r,s) values which correspond to
nearest neighbor distances, i.e., for distances where the
pDF shows a maximum and where — according to our
experience from the hard sphere case — the largest dif-
ferences between different approaches are encountered.
In fact, pure closure relations (HNC and SMSA-PY) dif-
fer strongly. If we use a mixed closure relation (in this
case the generalized RY closure) we obtain — along with
our criterion for the choice of the mixing parameter o
— rather good agreement: only a slight phase shift for
¥ ~ 100° and small differences in the peak height remain.
The fact that the simulation data are rather close to the
HNC results confirms what we know from the pair case:
also there the HNC gives reliable results for soft and/or
long-ranged potentials. This tendency is also nicely re-
flected in the values of the mixing parameters a, com-
piled in Table I: the soft systems have a rather large
value for a (signifying a large HNC component), while

TABLE 1. Parameters of the soft sphere systems investi-
gated in this study.

n T ao
4 4 1.68
2.18 1.76

1 1.65

8 1.5 0.83
1 0.86

12 0.862 0.56
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the more repulsive systems are characterized by distinctly
smaller a’s, i.e., a dominating PY-SMSA contribution.
For larger particle distances (r,s) (not displayed here)
and less dense systems (I' = 2.18 and T’ = 1; cf., Fig. 2)
agreement between the SPM and computer simulation is
excellent. Again large differences between the pure clo-
sures are observed.

As we increase I' we encounter numerical problems:
convergence of the procedure becomes impossible. Not
even a very careful use of the procedure (careful mixing
of input and output of subsequent iterations for pair and
triplet structure and/or increasing I' stepwise until the
desired values are reached) could overcome these prob-
lems. These facts unambiguously point out the limits of
the SMP.

For the more repulsive systems (n = 8 and n = 12)
we observe the expected results (Figs. 3 and 4): differ-
ences between the curves for the pure closures are now
smaller as we increase n; agreement between the com-
puter simulations and the mixed closure is very satisfac-
tory, even for larger I' values. This holds in particular

=
N
w

r [ol

FIG. 1. Reduced dimensionless pair potentials for the soft
sphere systems investigated in this study as functions of r/o;
from top to bottom: n = 4 (I' = 4, 2.18, and 1; from left to
right), n = 8 (I' = 1.5 and 1; from left to right) and » = 12

(T = 0.862).
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for crucial particle configurations (r,s,?¥) with r ~ s ~
nearest neighbor distance and ¥ ~ 60°. As the configura-
tions expand the differences between the pure and mixed
closures vanish and good agreement with computer sim-
ulation is observed.

We have also checked the internal consistency of our
calculation by using the sum rule (8): in Fig. 5 we present
the results for the left-hand side and the right-hand side
of Eq. (8) (in arbitrary units). The system chosen is
characterized by n = 8 and I"' = 1.5; similar results were
found for the other systems. Within numerical accuracy
(taking into account the error bars indicated for the sim-
ulation data in Figs. 24 and 7 and 8) we obtain reason-

g?(r,s,3)
2.5+
r=1.175
I
0 i 1 1 J
r=1.175a
. s=1.1750
0 1 ! 1 J
10
r=1.1750
; s=1.175a0
A
il W\
5 oy
Hi )
I B S
il
HA
i
i
0 1 I.,Ill 1 J
0 60 120 180

FIG. 2. tDF g®(r, s,®) for three different soft sphere sys-
tems (n = 4) as functions of ¥ for the (r,s) values as indi-
cated: I" = 1, 2.18, and 4 (from top to bottom). 1.1750 corre-
sponds to the nearest neighbor distance. Symbols (including
error bars): computer simulation results; lines: dotted line
(a = o00), full line (a = 0), and broken line (o as listed in

Table I; cf., text).
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TABLE II. Range parameter R [cf., integrals in Eq. (6)],
grid spacing Ar for the SPM integrations, and At, the time
step of the simulations for the systems investigated in this
study (in units as indicated). m is the mass of the particles.

System R Ar At
Soft spheres 50 0.025¢0 0.010 e~ 12172
Rb 15 A 014 5 fs
Ge 9.375 & 0.0625 A 3fs

able agreement; discrepancies in the region of the first
peak stem from the limited accuracy of the required dif-
ferentiation of the simulation data for the pDF in that
region.
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B. Liquid metals

The liquid metals investigated are Rb and Ge just
above their respective melting points (373 K for Rb and
1250 K for Ge). The potentials ®(r) are based on pseu-
dopotential theory [22], using the Ashcroft empty-core
pseudopotential [23] and the expressions of Ichimaru and
Utsumi [24] for the local field correction. The core radii
are those usually used in literature [22]. The poten-
tials, displayed (along with the pDF obtained in the com-
puter experiment) in Fig. 6, show the characteristic long-
ranged Friedel oscillations. Note that ®g.(r) has a turn-
ing point at the distance of the nearest neighbors (age ~

g (r,s,9) g (r,s,%)
10
10
r=1.1750 r=1.1250
s=11750 s=11250
5 5 |
O L 1 1 J 0 1 1 )
.5 F
15 ~ r=1.175a r=15750
s=1.5750
10
5 |
0 1 A J 0 1 |
5+ 5 F
; r=11750
5=1.6250
0 | 0 1 ]
0 0 60 120 180

FIG. 3. tDF ¢®®(r,s,9) for three different soft sphere sys-
tems (n = 8) as functions of ¥ for the (r, 8) values as indicated:
I' =1 (top) and 1.5 (middle and bottom). 1.1750 corresponds
to the nearest neighbor distance, 1.6250 to the first minimum
in the pDF. Symbols (including error bars): computer simu-
lation results; lines: dotted line (a = o0), full line (a = 0),
and broken line (a as listed in Table I; cf., text).

FIG. 4. tDF g(a)(r, s,9) for three different soft sphere sys-
tems (n = 12) as functions of 9 for the (r, s) values as indi-
cated: I' = 0.862. 1.1750 corresponds to the first minimum
in the pDF, 1.5750 to the second nearest neighbor distance.
Symbols (including error bars): computer simulation results;
lines: dotted line (a = 00), full line (o = 0), and broken line
(a as listed in Table I; cf., text).
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r/o

FIG. 5. A check of the internal consistency (via the sum-
rules) of our results: left-hand side (full line) and right-hand
side (broken line) of Eq. (8) as a function (in arb. units) of
7 in arbitrary units for a soft sphere system characterized by
n =8, = 1.5, and the opimal a value (cf. Table I).

2.8 A) while for ®grp(r) a pronounced minimum is ob-
served.

Using our proposed criterion for the choice of the mix-
ing parameter we found a to be 0 (i.e., a pure SMSA
closure relation) for the case of Rb and a = 0.5 A~ for
Ge. In an effort to give the reader an impression to what
extent the closures SMSA and HNC are mixed we have
displayed in Figs. 7 and 8 results for the tDF for our
choice of a and for the pure closures HNC (o = 00) and
SMSA (a =0).

The Rb results for g(® (r, s,9) are depicted in Fig. 7 for
the following (r, s) pairs as functions of the enclosed angle
¥ (4.9,4.9) and (5.1,5.1), for » and s near the position
of the main peak of the pDF; (8.9,8.9),  and s near the
position of the second peak of the pDF; (4.9,8.9), r being
the nearest neighbor distance and s the second nearest
neighbor distance. Results are displayed for the mixing
parameter o = oo and 0, the latter being “our” choice
for the closure relation (see above). In all four cases we
find a very good agreement between the SPM data with
computer results and it is obvious that a=0 represents a
better choice than a = oco. Note the characteristic peak
for ¥ = 120° for those cases where » and s correspond
to the nearest neighbor distance: this indicates that the
particles tend to arrange in triplet configurations of a
close-packed structure.

In Fig. 8 we present the Ge data for the following (r, s)
pairs: (2.8125,2.8125), (2.5625,2.5625), (4.1875,4.1875),
and (2.8125,4.3125). The four cases correspond to the
particle arrangements discussed above for Rb. Besides
the simulation results we have depicted SPM results with
three different mixing parameters for the closure relation
(2), i.e., 0 (pure SMSA), oo (pure HNC), and 0.5 A1,
the latter being the mixing parameter of our choice (see
above). Again we observe a distinct dependence of the
results on the mixing parameter. In all cases displayed
(and other configurations investigated) we find that this
special choice of a yields the best agreement with com-
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puter data. If we consider triangular configurations with
T ~ 8 ~ age We observe — besides the trivial peak for
¥ ~ 60° — a side maximum near 109°. This angle corre-
sponds to a tetragonal configuration at the nearest neigh-
bor distance in Ge and may be understood very nicely
in terms of the preferred distances in Ge: for this choice
of r and s, side ¢ (being opposite to ¥ in this isosceles
triangle) is the second nearest neighbor distance in Ge.
We would like to take this opportunity to mention that
a realistic description of the pair or triplet structure of
liquid Ge would of course require the inclusion of three-
body forces. At its present stage the formulation of the
SPM only includes pair forces. The main aim of this
contribution is not a comparison of the triplet structure
of the “realistic” Ge but a check of the reliability of the

glr), ¥*(r)
3 .

(a)

N
T

o
(9]
—
o
o

glr), X(r)
3 r ( b )

r [A]

FIG. 6. Reduced dimensionless pair potentials ®*(r) =
B®(r) and pDFs g(r) as functions of r for Rb (a) and Ge
(b) as obtained from the computer experiment. 8 = 1/kgT,
with T' = 373 K for Rb and T = 1250 K for Ge.
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g?(r,s,¥) g% (r,s,3)
10 10 k-
5 F 5 -
0 ' ! 0 '
r=49
s=89
2.5+
5
|':.. 1 | 1 L L ] 0 1 1 1 1 1 L 1
120 160 0 60 120 180
)

0
0 60
3
FIG. 7. tDF g®(r,s,9) for liquid Rb at a temperature of 373 K as a function of ¥ for the (r, s) values as indicated (in units
of A). Symbols (including error bars): computer simulation results; lines: broken line (o = co) and full line (a = 0).

g® (r,5,3) g?(r,s,8) -
1o r 10
! r=2.8125
5 51
0 I L J 0 1 L 1 J
i r=4.1875 r=2.8125
i\ 5=4.3125
2.5 '[‘ i
5r ,'
J
|
0 1 J 0 1 ]
0 60 120 180 0 60 120 180
N 3
FIG. 8. tDF ¢g®(r, s,9) for liquid Ge at a temperature of 1250 K as a function of 9 for the (v, s) values as indicated (in units
of A). Symbols (including error bars): computer simulation results; lines: broken line (o = c0), full line (@ = 0), and dotted

line (a = 0.5 A~1).



SPM; furthermore, in the present study the simulations
also use pairwise forces, hence a comparison on the basis
of two-body forces seems to us to be legitimate.

IV. CONCLUSION

In this contribution we have demonstrated that the
SPM for the determination of the triplet structure of a
simple liquid is able to yield very reliable results also for a
wide range of simple liquids, represented in our study by
soft spheres of variable range and strength and by two lig-
uid metals. Results are based on a mixed closure relation
(interpolating between “pure” closures) as introduced by
Attard. We propose a criterion based on two-body corre-
lation functions for the determination of the mixing pa-
rameter in the closure relation and show that this choice
is justified by an excellent agreement with computer sim-
ulation results. From the soft sphere results we may con-
clude that in particular the range of the potential repre-
sents a limitation of the numerical approach. For rather
dense and long-ranged potentials (n = 4) no numerical
convergence could be obtained. While the pure closure
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relations yield strongly different results, we obtain very
good agreement for the mixed closure with computer sim-
ulation data. As we make the potential more repulsive
the discrepancies between the pure closures become less
drastic. In general, results for configurations where par-
ticles are in close contact are more sensitive to the mixing
parameter than for particle arrangements with larger dis-
tances; this also holds for the liquid metals. For the two
studied cases, the tendencies to a more closed structure
(Rb) and a rather open arrangement (Ge) of the particles
in the liquid are reflected very nicely in the triplet struc-
ture. In all cases investigated the sum rules are preserved
within numerical accuracy.

ACKNOWLEDGMENTS

This work was supported by the Osterreichische
Forschungsfonds (FWF) under Project No. P8912-PHY
and the Oesterreichische Nationalbank under Project No.
4649. In addition, B.B. acknowledges financial support
by the FWF under Project No. J01087.

[1] C.N. Likos and N.W. Ashcroft, Phys. Rev. Lett. 69, 316
(1992); C.N. Likos and N.W. Ashcroft, J. Chem. Phys.
99, 9090 (1993).

(2] B. Bildstein and G. Kahl, Phys. Rev. E 47, 1712 (1993);
B. Bildstein and G. Kahl, J. Chem. Phys. 100, 5882
(1994).

[3] Y. Rosenfeld, D. Levesque, and J.-J. Weis, J. Chem.
Phys. 92, 6818 (1990).

[4] E.A. Miiller and K.E. Gubbins, Mol. Phys. 80, 91 (1993).

[5] B. Bildstein and G. Kahl, J. Non-Cryst. Solids 156-158,
107 (1993).

(6] P. Attard, J. Chem. Phys. 91, 3072 (1989).

[7] M. Fushiki, Chem. Phys. Lett. 154, 77 (1989).

[8] M. Fushiki, Mol. Phys. 74, 307 (1991).

[9] S. Kambayashi and Y. Hiwatari, Phys. Rev. E 49, 1251
(1994); W.G. Hoover, M. Ross, K.W. Johnson, D. Hen-
derson, J.A. Barker, and B.C. Brown, J. Chem. Phys. 52,
1931 (1970); W.G. Hoover, S.G. Gray, and K.W. John-
son, ibid. 55, 1128 (1971).

[10] G. Kahl and J. Hafner, Phys. Rev. A 29, 3310 (1984).

[11] G. Kahl and J. Hafner, Solid State Commun. 49, 1125
(1984).

[12] J. Hafner and G. Kahl, J. Phys. F 14, 2259 (1984).

[13] G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993);

49, 14251 (1994).

[14] J.K. Percus, Phys. Rev. Lett. 8, 462 (1962); in The Equi-
librium Theory of Classical Fluids, edited by H.L. Frisch
and J.L. Lebowitz (Benjamin, New York, 1964), p. II-
171.

[15] J.-P. Hansen and G. Zerah, Phys. Lett. 108A, 277
(1985); G. Zerah and J.-P. Hansen, J. Chem. Phys. 84,
2336 (1986).

[16] R. Kjellander and S. Sarman, Mol. Phys. 70, 215 (1990).
[17] G. Pastore and G. Kahl, J. Phys. F 17, L.267 (1987); G.
Kahl and G. Pastore, Europhys. Lett. 7, 37 (1988).

[18] R.D. Weeks, D. Chandler, and H.C. Andersen, J. Chem.
Phys. 54, 5237 (1971).

[19] F.J. Rogers and D.A. Young, Phys. Rev. A 30, 999
(1984).

[20] F. Lado, Phys. Rev. A 8, 2548 (1973); F. Lado, S.M.
Foiles, and N.W. Ashcroft, ibid. 28, 2374 (1983).

[21] J. Talbot, J.L. Lebowitz, E.M. Waisman, D. Levesque,
and J.-J. Weis, J. Chem. Phys. 85, 2187 (1986).

[22] J. Hafner, From Hamiltonians to Phase Diagrams
(Springer, Berlin, 1987).

[23] N.W. Ashcroft, Phys. Lett. 23, 48 (1966).

[24] S. Ichimaru, Rev. Mod. Phys. 54, 1027 (1982); S. Ichi-
maru and K. Utsumi, Phys. Rev. B 24, 7381 (1981).



