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We present a study of the band structure of liquid Carbon and Silicon modelled in a Tight-Binding
Hamiltonian approximation by means of an integral equation approximation that includes non-linear
corrections. The theoretical predictions are contrasted with Tight Binding Molecular Dynamics
simulations in which the energy bands are obtained by direct diagonalization of the Hamiltonian
matrix. The results for Silicon are excellent, whereas in liquid Carbon only some of the qualitative
features of the band structure are captured by the non-linear corrections. We find that this can
largely be understood as an effect of missing three-body correlation functions in the theoretical
treatment of the energy bands. This is particularly crucial in the case of strongly directional and
short range bonding, as it occurs in Carbon. 1€97 American Institute of Physics.
[S0021-960607)51124-X]

I. INTRODUCTION Drude oscillators with appropriate coupling functions, and
In a recent paper Lomba, pez-Martn and Kaht inves- thus the formalism developed in Ref. 8 will apply here as

tigated the band structure of a rather academic model fof/€!l- The corrections obtained reproduce the presence of
liquid Hg in terms of the Single Superchain/Effective Me- N9 energy wings in the band, which is mainly an effect of
dium Approximation(SSCA/EMA), a theory that turned out particle pairs, as also will be seen in this Wprk._MQreover,
to yield reasonably good results when compared with direct€Y @ré constructed on top of the MSA, which is linear as
diagonalization of the Tight-BindingTB) Hamiltonian over ~the SSCA/EMA, and hence we can keep the core of the
quenched liquid configurations. Later, the same authors ifoMPutational scheme introduced in Ref. 1 intact in our new
collaboration with Winn and Rassindepresented an appli- qpproach(the portion that pertains to the Orns.teln—Zermke
cation of the same approach to determine the band structuf€ equation. In the case of thep system we will see that

of liquid Silicon. In this case, the electronic structure wascertain simplifications derived from the linearity of the clo-
modelled by means of an Empirical Tight-Binding Hamil- Sure no longer hold, in particular the transversal and longi-
tonian following the parameterization of Goodwat al®  tudinal contributions to th@-band will not be identical any
Also here it was found that the linear SSCA/EMA theory More, and this implies that a certain reformulation of some of
produced results in good agreement with the simulated Tighthe equations has to be done.

Binding Molecular Dynamics(TBMD) band structure. As test cases for our non-linear approximation we have
Nonetheless, in both cases it became clear that some featur@osen liquid silicon, for which it was already seen that the
of the band structure were not correctly captured by thdinear approximation works wefland liquid carbon, a sys-
theory, in particular the high energy wings of the band,tem which was studied some time ago by Tight Binding
which is a well known drawback of linear approximatidis. Molecular Dynamics by Wangt al** In this case, by simple

It is thus of primary importance to develop non-linear cor-inspection of the form of the hopping integrals, we know that
rections which while retaining the simple structure of thedeviations from mean field behavior will be importa(ithe
SSCA/EMA for thesp® (s- and p-band system can cope range of the interaction is half that of the silicon, and the
with the deficiencies inherent to the linear approach. In thigzalue of the hopping elements at nearest neighbor distance is
connection, Hge and Lomb%® developed an approxima- doubled) This can be further confirmed by analyzing the TB
tion that accounts for the correct two-particle contributiondensity of stategDoS) obtained by Wanget al! Liquid
missing in the low density limit of the Mean Spherical Ap- Carbon will thus be a stringent test for our non-linear cor-
proximation (MSA) (which is nothing but the SSCA/EMA rections, which are the leading ones for interactions of long
with the pair distribution function of the quenched fluid re- range.

placed by zero outside the hard core diantefdrfor a sys- In summary, we will here present an application of the
tem of coupled Drude oscillators. As pointed out in Ref. 1non-linear corrections proposed by yéoand Lomb&to the
the problem of the Tight-Binding bands in @p® fluid is  multi-band problem posed by disordered systems wiph
fully equivalent to a system of coupled three dimensionalTB Hamiltonians. These corrections, that are mostly domi-
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nant for relatively low densities, are exact as concerns pairscalar amplitude of the Drude oscillator associated with the
of particles. The explicit form of these corrections will be s-orbital, ands are the vector quantities describing the di-
presented in Section Il. Notice that in Refs. 6—8 notation andection and amplitude of the vectorial oscillator associated
language are somewhat different to that used in Refs. 1 and\®&ith the p-orbitals. Furthermore is the relative distance
which follow closely Winn and Logan’s Green function between the two particles, and the hatted quantities denote
formalism®° Since the corrections are more easily intro- unit vectors. Now, according to E¢2.14 of Ref. 8 (with
duced in the context of the Drude oscillator problem used irg(m?)— D(E)), the density of states will be given by

Ref. 6 we will follow in Section Il this notation and then in

Section Ill we will present a clear mapping between both

formalisms. From thereon we will retake the language of the 1 1

Green’s function approach. The reformulation of the equa- D(B)=- I|m+—|m[p—oTr(aRK)), 2.3
tions needed by the symmetry breaking effects of the non- x=0

linearity (or of the use of different on-site energies for the

pp, andpp, Hamiltonian elemenjss also discussed in this \ynere po is the total number density of particles; is a
section. Finally, in Section IV we present the results of thediagonal matrix whose elements asg =M, /42, with M,
theoretical approach and compare them with TBMD dataihe reduced “mass” of each oscillator amf= —#2w2+i.
Here we will also explore the use of direct diagonalization OfHaving a four-band problem we will have four reduced
the TB Hamiltonian matrix while averaging over quenched-magsses” that will account for the different on-site energies
configurations generated by means of classical potentials thgl 4 correspond to each atomic orbital involved. The energy
incorporate three body interactions, like the Stillinger-Weberg -onnected to the frequency throui= %202+ const. in
(Stw) potential for Silicot” and Tersoff's potential for {he equivalent harmonic oscillator problem. The crucial
Carbon®® A brief discussion about the effect on the elec'quantity in(2.3) is Rx, where theK=—i%w is the imagi-
tronic structure by the use of empirical three-body interacyary frequency introduced by the path integral formalism for
tions instead of the self-consistent TB band energy produceganiized oscillators. As shown in Ref. B contributes to

by the TBMD, is also included and will illuminate the role of i,a internal energy in a way that turns out to be precisely
the spatial ordering on the electronic structure of these sySynat the Green’s function for the TB Scldiager equation

tems. does in Winn and Logan’s formalism.

Il. NON-LINEAR CORRECTIONS TO THE FREQUENCY Now, if we incorporate corrections beyond the MSA in
SPECTRUM OF A FLUID OF COUPLED VECTOR Ref. 8 it was shown that for low densitisee Eq.(2.16
DRUDE OSCILLATORS therein

As described in Ref. 1 the band structure problem of a
fluid whose electronic structure is described by means of an
sp® TB Hamiltonian is formally equivalent to the description — d

- . RKi- = | PsSiSjAST | ps,Ps,S1.S1,

of the frequency spectrum of a system of particles with em- ! !
bedded three-dimensional Drude oscillators that are coupled.
Also, as pointed out in Ref. 1 the symmetry of the electronic
interactions will be equivalent to those of an ion-dipole mix-
ture. The corresponding correlation functions at the level of
the MSA can be written as

X € 1. 1
G 2077

ds,ds,dr, (2.9

where p; is the density of “free” particles and
V=8 7 (12)s2j with Z7; denoting the chain bond as defined
in Refs. 6 and 8. Here and in the rest of this part the vector
s also includes the fourth componesg of Eq. (2.1, i.e.,

000, 810520
CSS( 12) :Css (r) SZ ’
0

(so)

S1.S, i,j=0 is included. To leading order is the MSA pair cor-
Cep(12=cr)(78,) ——=. relation function. The configurational functioB(r) is a
V(sp)(s2) guenching factor that was introduced to cancel out the effect

of induced correlations that otherwise would originate from
¢, (12) = c2%r)(73,) the internal degrees of freedom when using statistical me-
P Pe ' <Sg><3f> ' chanical theory of systems at thermal equilibrium. Here we
note that according to the ideas of Ref. 6 the leading non-
linear contribution to the frequency spectrum will stem from
the formation of “diatomic” particle pairs. The chemical
equilibrium between these ‘“diatomic” species and the
atomic “free” species will be governed by a law of mass
action (Eq. (2.6) in Ref. 6. It must be recalled here that in
HMA12) = 3(78) (78) - 85, (2.2 accordance with this picture first introduced by Onsager, a
continuous degree of freedom will be equivalent to a mixture
Due to symmetryc,(r)=—c3;(r). Thes; (i=1,2)is the of different species. The first term in EQ.4) gives the

S1S2,

Cpp(12) =t Ar) @M 12) + cpiib 4 12) % (2.1

where
d1112)=55
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MSA type linear contribution to the frequency spectrum,The relation between the axial and spatial coeffici¢titsse
while the second gives the one from particle pairs. Now, ifdefined in a space fixed reference franmsegiven by

one incorporates the law of mass action and the quenching

factor G(r) in Eq. (2.4) (Eq. (2.16 in Ref. 6 one can also
write

p _ _
RK”:EJ psSisids+p?(a 'Dy)j; — p?(a 'Dy)j; , (2.5
where we have defined
pray; = f psSiSjds, (2.6
by which one gets
Rx=pa '[I+pD;—pD,]. (2.7

Herep is the total density 4, of Refs. 6 and 8while p; is
the density of free particlesp(of Refs. 6 and 8 The pref-
actor p/p¢ in Eq. (2.5 compensates thés,;s;;) term in-
cluded inD, as explained below2.17. The R can be
approximated or replaced by

Rk=pla "+ pa 'Dy], (2.8

where the effectivea,=a+ pD,a. Due to the symmetry of
the sp and ps interactions, the off-diagonal elements®§

must satisfyRgP= —RR®, and this equality is broken if one

rewrites Eq.(2.8) precisely as was done in E(.6) of Ref.

gS(S)O: 7000 C/ggoz ?/Oll/ \/§,

©ss “'sp

(2.19

1
e — 110 11 1 _ 112 A1
gﬂ)o—_ 4 +2gpp2]= //(gfl_g[gpp_gpp .
This expressions will hold for the expansion coefficients of
all correlation functions involved in this treatment. With this
one gets for the chain bond

, Zo00 “olo , 7 0
=l gps  wop and £’ = 0 vl (2.19
©100 110 111

As mentioned above, the i, are the coefficients of the
spherical harmonic expansion of the chain bond functions in
a reference frame in which tteaxis lies along. The quan-
tity My appearing in Eq(2.10 is nothing butM with the
chain bonds switched off, and hence

[Mo]"=[Mg]*=a, and[Mg]**=[Mg]*=0. (2.16

Thus, by straightforward inversion of the block diagonal ma-
trix (2.12) and with use of the expressid®.10, one gets the
first correction term inRx. As was shown in Ref. 7, the
D, term will be responsible for the appearance of the wings
of the band, that are absent in the linear approximations.
Now, to compute the second contribution, we have from Ref.

6. If the symmetry condition is broken at some stage of theg that

iterative process of solution, the numerical stability will be
badly affected, therefore we will retain here the form of Eq.
(2.8) in our calculation in contrast to the scheme followed in

Refs. 7 and 8. The first correction term in E¢&.5) or (2.7)
will be

pz[ailDl]ij:J' Pslpszgliglj[m_v_l ds,ds,dr.

(2.9

The Gaussian type integratig2.9) can be performed, and

one gets

pz[a‘lDl]n=f pAM =My 1]idr, (2.10

where the two particlél matrix is composed of 44 sub-
matrices, such that

Mll M12
] o3
The submatrices involved are
Mil=M??=3a (2.12
and
M12=M21=<g O,). (2.13
0o ¢z

1
pz[a‘lDz]iff ps,Ps (1,81, = (S1,81)) 50°ds; dsp dr.
(2.17)

The term between angular brackets in the integrand includes
the effect of the equilibrium constant of the pairing reaction,
Kslsz' This can be concluded from Eg®.16) and(2.20 of

Ref. 6 and Eq(2.16 of Ref. 8. From the former two equa-
tions it follows that only thejv? term in Kss, gives a net

contribution to the total density. The first term of the latter
equation represents only the density of “free” particles
while the first term of Eq(2.7) means total density. So the
second term in Eq(2.17) compensates for this difference.
After some algebra one gets

pzalezzpzf a M¥a M% ldr (2.18
which, as defined below Eq2.8) gives us the effective
quantity

A= a+pf M¥%a~M4dr. (2.19
Note that even it is still a diagonal quantity, this no longer
holds for its effective counterpart, since the chain bond ma-

trix incorporates thesp correlations. Now, by insertion of
Egs.(2.10 and(2.19 into Eq.(2.8) and using Eq(2.3) we

The chain bond matrices can be decomposed in their eleget an energy spectrum that incorporates non-linear correc-
ments according to the spherical harmonic projections in dions, provided we know how to calculate the chain bond

reference frame with the-axis joining the particle centers,

also called axial frantg(i.e. lower indices vs. upper indices

elements. In principle one can calculate them in an iterative
procedure following the scheme of the Exponential Hyper-
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vertex Approximatiort? but this can be an ill-conditioned (2.1) by transformationg2.14). Now, since a general prop-
problem. Therefore, following the lines of Refs. 7 and 8 weerty of these expansion coefficients is that
will here simply approximate the chain bond functions byc,,1(0)=—cq;(0), it is clear that Whensp”=spﬂ then
their values _in the M_SA, which are _nothing but the MSA @pp, =App » thus establishing the equality between the lon-
total correlation functionsh*#(12). This will only be done  yitdinal and transversal components@#® when the clo-
in the non-linear terms. Otherwise we use the Omsteing e js linear. In any case, for the systems to be dealt with
Zernike (OZ) equation with the SSCA linear closure. Some hare  the threep-components of (but not of G) will be
modifications with respect to the equations in Ref. 1 willjgensical, although we will keep the different notation for the
have to be implemented at this level, to account for the splitgake of generality. Now, we still have to find the values of
ting of the transversal and longitudinal componentsRef,  ca8 () byt this is a straightforward task if one recalls that
in particular concerning the coefficients of the elements ot} o he (r)=0 for r inside the overlap region, and uses the
Ry entering the OZ equation. OZ relation (Eq. (3.16 in Ref. 1). Note that here we use
lower caseh andc for the total and direct correlation func-

lIl. NON-LINEAR CORRECTIONS IN WINN-LOGAN'S t|ons,atﬁo avoid confusion with the (_:haln bond functlaﬁ_
FORMALISM The cyj7,(0) can now be expressed in terms of convolutions

of h andc. In the MSA case one will simply have,=a,
Now, if we want to incorporate the corrections intro-

MSA_ ,—1
duced in the previous section into the formalism used in G™=a, (3.6

Refs. 1 and 2 we have to carefully map the needed q_uantitiegnd thecf (0) in Eq. (3.5 expressed as convolutions via
When comparing Eq2.3) for the energy spectrum with the the OZ equation is precisely the energy as in B322 of
corresponding expression for the density of states evaluategef. 1. (Note that in the MSAcEE (r)=VEE (r) outside the

from the average diagonal Green’s function, particle core, wher®&/ represents the interactiorBut if we
1 want to go beyond the linear approximation we just have to
D(E)= lim ;Im{TrG(E+i§)} (3.1)  retain the chain bond terms & and calculatéd,, which as
é-0" already mentioned will no longer be diagonal. When going
one sees that beyond the low density limit, we can introduce finite density
corrections along the line suggested in Ref. 8, which modi-
R¢/p=G(E), (3.2 fies Eq.(2.19 into
where we know thatrK?—E+ const.p-=M/%2. Then, our 1 o1 i 2 o )
energyequation(2.8) with non-linear correctionéEgs. (3.3) de=at ;J M*Za™ M (u?=p?)g(r)+p?ldr, (3.7

and(3.4) in Ref. 1) will read ) o )
whereg(r) is the pair distribution function of the quenched

G(z2)=a, "+pa 'Dy, (33 fluid and u=p(dBPIdp) L, i.e. ulp is the bulk isothermal
where compressibility. TheD; term requires some further elabora-
tion. With arbitrary density corrections we can rewrite Eq.
Qgg o ... 0 (2.10 as
Qpp, :
a=|( | . (3.9 2
: app : -1 s 2
™ pa "Dy=47— | A(r)g(r)r=dr, (3.8
0 ... ... @ p

with elements, where we have defined the quantity

ass(z)zaoss(z)-i-CS(S)O(O):(ss— 2)+Cood0), A(D=[M~ 11— [M; 4™

which by inversion of Eq(2.11) can be explicitly written as

Apes ... O

pp pp Am={ o F o Ba %9
app_ﬂ(z):aoppw(z)_Cllf(o):(Spﬂ_z)_clll(o)' 0 coe Ay,

app, (2) =a0ppa(z) +cl1e(0)=(gp, —2)+cBy0), (3.5

where Z:E+i§, and we have assumed that the On-SiIE\Nhere by use of computer a|gebra we find

Hamiltonian eIements:pU and ep_ might be different de-

pending on the type of TB parameterizationn Eq. (3.5 A A e pp,, 1 a1

the cgf, are the spherical h i i ffici foooTMT 2 2 (3.10
ki pherical harmonic expansion coefficients o a%, —hbP  pp,

the direct correlations functions corresponding to the internal N

degrees of freedom, which are connected with those of Eqsnd
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2
1 agp(rass_ asshgfo_ app(,hgg 8?0_ dlass aSShrl)thggo_’_ aPPU 8(5) SEO
Arxo== (3.1
J — (asiidotot 8pp,_ d0d1550) ap paais— ap pahg(s)zo_ asdhiodoio— olay, Py
|
with 15 ~ ;A 1
AGPPB= —f (A3)(3GPP8)(8B)dw— =Tr{GPP}AB.
— a2 2 2 pp2 SP | Ps sp2 p52 2 2
o=ayp, ass—asdiio— 2app ashoidioot NozoNioo (3.15
2
— 2h b sdhe s agpahggzﬁ hffohggzo Besides it is easy to write down the explicit angular depen-

dence ofGPP(w), which is simply given by

In these expressions we will here use MSA chain bond
functions,h® . Note that in Eq(3.10 one can see the fa- GPP(w)=(GPP—GPP)cog 9+ GPP, (3.16
miliar form of the denominator of th®; corrections terms, R
whose poles will give rise to the wings of the spectrum, andvhere cog=s, ands is the equivalent harmonic oscillator
from Egs. (3.9 and (3.11) it follows that the transversal amplitude for thep-band. Now, if one takes into account the
components will be completely decoupled from the longitu-aforementioned convolutions and rewrites E3y7) of Ref. 1
dinal term, and that the off-diagonal elements of @ena-  in terms of angular functions which are then expanded in
trix will fulfill GSP= — GPS. We retain the boldface in the Spherical harmonics, only one class of terms will deserve
matrix elements of3, since in accordance to the discussionspecial attention, namely those products of the form
in Ref. 1 these terms will be vectors of the form
GSP=GSP(1,0,0) and similarly foiGPS which now will be a F(12)=5,AGP"Bs, 317
column vector. Let us also recall that t8&8° element will be
a 3x3 diagonal matrix with elementsGPP),,=GPP,
(GPP)2o=(GPP)55=GPh".

In the above paragraph we have run into a rather subtl€ m=(—1)™(GPP+2GPP) >, Ay mByim+ 5(GPP—GPP)
complication when we now want to translate the A

which when expanded in spherical harmonics lead to

r-dependent form of the matrix OZ equatiofisg. (3.7) in N oy 2

Ref. 1) into molecular OZ equations in which the usual ro- XZ VA+1)(2x+1)

tational invariant expressions can be applied, as was done in Mx 000

Ref. 1. It turns out that, neithe®*P (GP%) nor GPP are the N ox 2

simple rotational invariants considered so far any more, since X m o—m O) AamB yim » (3.18

due to the non-linear terms ti&P # constl, by which it is

not invariant during the rotation operation, which also is thewhere we have used the convolution relatid8sl4 and

case forG®P. Consequently, when we want to go from the (3.15, together with Eq(3.16), and we have performed the
matrix to the angular dependent form of the OZ equatien substitution

when going from Eq(3.7) to Eq. (3.10 in Ref. 1) we will

have to construct angular functions from the matrix quanti- 167
cog e=< \/TYZO( 6)+1

ties G°P, (GP®) and GPP and perform carefully the convolu- /3. (3.19

tions, as was done for the correlation functions. Thus, we

will also have functions of the form In Eq. (3.18 the quantities
G*P(w3)=GPs;, (3.12 « 1 n
GPP(w3) =5GPPs;. (3.13 (m -m 0)

Now, it turns out that a number of new convolution relationsare 3-J Wigner symbols that occur due to the composition
will make feasible the connection between the matrix formu-yles of the spherical harmonics. If we now focus on the case
lation of the OZ equation and the molecular version. As ink,1<1, which is the relevant situation for us
Ref. 1, we will have for any two matricesr vectors A and
B, Fiao=(G)P+2GE) X, AoByiot+2(GHP—GIP)ABy 1
N
(3.20

AB=3J (As)(sB)dw, (3.14 Fku:_(GngFZG?Tp); Aa1Buit (GEP—GP)AG 1By 1 .
wheres is a unit vector whose orientation is described byWith all these relationit is then possible to get the new OZ
w. Also, for any two matricegor vectors A andB of the  equation, that again, as in Ref. 1 will be decoupled into
appropriate dimensions, and any diagonal maB® transversal in=1) and longitudinal componentsn=0)
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m=0 VE(N) =VSro)f(r), Ve =VEi(ro)f(r),

Tiss  Tsp ~ss  =sp

( h oo (€ Co1o ‘o

hesy hofy/ | Thee Thbo
PS( ) — _\/SP
Vo(r)=—=V.A(r),

e

hss Esp) VRPN =VER(ro)f(r), VAN =Vrof(r) (4.2

hps
h 100 hiT 110

\/§GpS 3GHP 00 C110 ro 2 r\Me o Ne
m=1 The numerical parameters for silicon were taken from
9P =hP - 3pGPPhERERr,, (329  Virkkunenetal, °

The tilde in the above expressions denotes Fourier transform.  V° ro)=—1.820 eV, VR(rg)=1.960 eV,
Now, the SSCA/EMA closure will be VPP(r))=3.060 eV, VPP(rg)=—0.870 eV, ws
cf DVEE+(g(r)—D[hgf—cgfl, 3.2 :
=0 (r) Vi (9(1) = DI el (329 es=—6.173 eV, £,=2.122 eV,
whereas the MSA closure is obtained by replacing the pair
distribution function,g(r), by 1 outside a distance that indi- r=36 A, n.=6.48,
cates the onset of the overlap region while itis 0 inside. Notg =2 35 A s the equilibrium nearest-neighbor distance of

that Eq.(3.7) was derived as a leading contribution beyondthe diamond lattice for Si. In the case of Carbon, we hh¥e
the MSA. By use of the SSCA/EMA closur@.23 part of

this, namely thep?(g(r)—1) term, is already included to a Vi(rg)=—5.00 eV, Virg)=4.70 eV,

leading order and should thus be deleted to avoid double VPP(r;)=5.50 eV, VPP(ry)=-1.55 eV,

counting. (4.4
Now the coefficients of the electronic interaction are ~ €s=—2.99 eV, g,=3.71 eV,

given by r.=2.18 A, n.,=6.5,

000= V%, vgg’ozvf,p/ﬁ, andr,=1.536 A is again the equilibrium nearest-neighbor
VER=VPP/3,  \PR=\EP = \/PP/3, distance of the diamond Iattiqe. The. repulsive energy needed
for the TB Molecular Dynamicgbut irrelevant to our inte-
Explicit expressions for silicon and carbon will be given in gral equation approaghs constructed in both cases from a
the next section. Now, if one solves E48.21)—(3.22 with  sum of two-center potentials whose explicit expressions can
the MSA closurg Eq. (3.23 with a step function fog(r)]  be found in Ref. 16 for silicon and Ref. 17 for carbon.
one gets a set correlation functiang’, that inserted into Eq. We have run TB Molecular Dynamics for both systems
(3.5 will generate the first linear approximation @ If one  for 64-particle samples in order to generate reference results
goes beyond the linear approximation, one simply has tand pair correlation functions that served as structural input
insert the correlation functiongecall thatZ {2, is approxi-  for the theory. In order to check the sensitivity of the band
mated byhk|m) into Egs.(3.9), (3.8 and (3.7), to generate  structure to changes in the structural input we have also de-
the corrections that go into E¢8.3) and finally get our non-  termined the structure of liquid Silicon and Carbon by means
linear approximation tds, which is then inserted back into of classical Monte Carlo simulations in which triplet poten-
the OZ equations, and the procedure is repeated until satigials give account of the particular coordinations dominant in
factory convergence is achieved. these systems. As already mentioned, we have used the
Stillinger-Weber potentiaf to model liquid silicon and Ter-
soff's interaction for liquid carbali (in both cases using 216
IV. AN APPLICATION TO LIQUID SILICON AND particles. Iq Figs. 1 and 2 it can be seen that whereas the
CARBON StW potential reproduces reasonably well the TBMD results
for the pair structure, there is a considerable discrepancy
As mentioned in the Introduction we have here used théetween the results for Si carbon obtained using Tersoff's
standard Tight Binding Hamiltonian with the empirical pa- potential and TBMD. Apparently, Tersoff's potential leads to
rameterization of Goodwiet al2 for Silicon and the model nearest neighbor distances too large in liquid phases, and
of Wanget al!! for Carbon. The thermodynamic state underhence one sees a displacement of the position of all the peaks
consideration for Si corresponds to a temperature of 1740 Kn g(r). Now, if one compares the DoS obtained by diago-
and a density of 2590 kg nt, close to the triple point. For nalization and averaging for both systeffégs. 3 and % it
liquid carbon we have considered a thermodynamic states clear that the results obtained when using configurations
also in the vicinity of the melting transition, namely a tem- generated according to the StW potential are in reasonably
perature of 5000 K and a density of 2000 kg fnExplicitty ~ good agreement with TBMD, whereas for liquid carbon the
we have dealt with the following parameterization of the TBsituation is the opposite. On one hand, the displacement of
Hamiltonian, the peaks ofj(r) decreases the overlap in the hopping terms,
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o ) o ) FIG. 3. Total Density of States for liquid Silicon from TBMilled circles
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by which the width of the band shrinks. On the other handind betweerpp, andpp, levels, as this is what one sees in

the central peakg-band splits in two in the TBMD results € P-band calculated from the TBMD results. _
Now, once we have available structural information, we

whereas when configurations from Tersoff's potential are 2
used the splitting is missing. A plausible explanation of thisc@n proceed to solve the SSCA/EMA and the non-linear ap-

difference can be inferred from the value of the average coProximation. The resuzlts for Silicon are presented in Fig. 5.
ordination number, which for the TBMD resulitss 2.4 and AS was found in Ref” the SSCA/EMA already gives re-

for the Tersoff's potential simulation is in our case 3.4.markably good results. However, the incorporation of the

Somehow, this is telling us that the particles in our TBMD non-linear terms adds a fine correction to the peak. It has to
simulations tend to be organized in chains, whereas triple?® Pointed out however, that the non-linear terms had to be

configurations seem to be more dominant when one usedvitched off in the region where treecontribution is domi-

Tersoff's potential. These features have already been weff@nt to avoid divergence, both when using MSA chain bonds
characterized in the explicit analysis of configurations per2" When these were approximated by the SSCA/EMA.

formed in Refs. 11 and 13 for various states of liquid angThis type of failure is also present in linear approximations

. . 9 . . .
amorphous carbon. Thus, in view of our simulation results it Nigh density? In principle, for the value ofs in Egs.(3.7)

seems that the formation of linear chains enhances the split"d (3.8) we have used the result of the integration of the
simulated pair distribution function, i.e.

[
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FIG. 2. Pair distribution function for liquid Carbon, obtained from TBMD FIG. 4. Total Density of States for liquid Carbon from TBM@illed

(filled circles and Monte Carlo simulation using Tersoff's potentiabllow circles and by direct diagonalization over configurations generated by
circles. Monte Carlo simulation using Tersoff's potentidollow circles.
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FIG. 6. Totalpp-contribution to the Density of States in liquid Silicon from
TBMD (hollow circles, pp, (solid lineg, pp,. contributions(dash-dotted
line) from the non-linear theory and totalp contribution from the SSCA
(dashed ling Note that the totapp-contribution is normalized to one, so
that we haveDPP=(DPPs+2DPP7)/3,

0.12

0.08 ] and the much larger values of the hopping parameters intro-

duce strong deviations from the mean field behavior that
. seems to be characteristic of liquid Silicon. Also, in Carbon
the difference between thep, and pp, hopping termg7
0.00 eV at nearest neighbor separatias larger than in Silicon
-150 -10.0 -5.0 Eev) 0.0 50 100 (=4 eV). This will inforce a more directional structure with
lower coordinations. As mentioned before for this thermody-
FIG. 5. Total and partial Density of States for liquid Silicon from TBMD namic state chain formation will be very much favored. This
(hollow circles, SSCA/EMA (dashed linesand non-linear theorysolid ~ particular feature we expect is reflected in a large difference
lines). between thep,, andpp, contribution to the DoS that is not
captured by linear approaches.
With these previous considerations in mind, we can now
take a look at Fig. 8, where we have plotted the total DoS
' and thes and p contributions as obtained from the TBMD
and the SSCA/EMA with non-linear corrections addsdlid

0.04

w=p 1+477pf r2(g(r)—1)dr
0

In the case of Silicortbut not for Carbopnthis value is ex-
tremely low (u/p=0.08) and as a consequence the effect of
the non-linear corrections on the DoS is negligible. How-
ever, it is possible to find a value @f that introduces cor-
rections in the desired direction. In this case we have fount
that,u:0.5rc§3 (ro is our scaling distangdeads to a perfect 0.40
agreement with simulatiofin the low density limitu=p,
and in our cas¢;=0.72853). In Fig. 6 we have plotted the
o and 7 contributions to the band, and one sees that it is
precisely the displacement in the position of thdand that &
actually brings the whole theoretical prediction to a better
agreement with the simulation. In the results presented i
Figs. 5 and 6 we have used the TBMJ0r) as input for the
theoretical calculations. To illustrate the effect of using the o0}
StW pair distribution functions we can see in Figa com-
parison between the SSCA/EMA results obtained using botl
sets of structural data. We see that the discrepancies are %50 100 50 00 50 100
the same sort as found in Fig. 3. EeV)

The situation for Carbon is essentially different. Now FIG. 7. SSCA/EMA Total Density of States for liquid Silicon with struc-

ulp=0.7 and the non'"near. corrections will be.mOI’.e' IMPOr-tyral input from TBMD (solid line), and from Monte Carlo simulation with
tant. The smaller cutoff radiu€.1 A vs. 3.6 A in Silicon  Stw potential(dashed ling

0.50 T T

0.30

0.20
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line) and without(dashed ling When compared with the
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FIG. 9. Totalp p-contribution to the Density of States in liquid Carbon from
TBMD (hollow circles, pp, (solid lines, pp, contributions(dash-dotted
line) from the non-linear theory and totalp contribution from the SSCA
(dashed ling Note that the totap p-contribution is normalized to one, so
that we haveDPP=(DPPs+42DPP7)/3,

accounted for if the three particle correlation function is in-
corporated in some way.

Nonetheless, it can be seen that the non-linear correc-
tions account to a certain extent for the wings of the spec-
trum (in particular the high energy wing of threband con-
tribution, cf. center of Fig. Band the peaks of thp-band
show some traces of the electronic structure exhibited by the
simulation, namely a peak around 13 eV and a shoulder at 5
eV. If we now take a look at thpp,, andpp, contributions
depicted in Fig. 9 we first notice that the non-linear theory
predicts large differences between both terms, in contrast
with the results for Silicor(Fig. 6). The = band presents a
shoulder in the vicinity of the central peaks of the simulated
DoS at 5 eV. Also, the theoreticat peak lies on top of the

good performance of the theory for Silicon, the results now/MaXImum of the TBMD at 13 eV, but this is clearly

look rather disappointing. The approximation fails to repro-

duce the considerable symmetry of the band with respect to

its center of gravity(close to the on-site energy of the
orbitals,e,=3.71 e\). Taking into account that the interac-

tion is quasi-nearest neighbors, the symmetry of the banc
(which is connected with a vanishingly small third moment
can also be ascribed to the formation of coordinations which
do not allow for odd number of hops between particles, as is
the case in chains, trigonal and tetrahedral coordinafions.
The long range of the interactions in silicon bypasses theseg
limitations and leads to a relatively large and negative third
moment of the energy distribution. As mentioned above, one
may speculate that in order to capture these features prog
erly, three-body correlations will have to be incorporated.
For instance, a rescaling of distances in the configurations
generated using Tersoff's potential would bring its corre-
sponding pair distribution function to a good agreement with
its TBMD counterpart. This would certainly cure the differ-
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ence of band width observed in Fig. 4 but we have CheCI(eglG. 10. SSCA/EMA Total Density of States for liquid Carbon with struc-

that it would not give rise to the splitting of tieepeak. This

we regard as a clear indication that this feature will only beTersoff's potentialdashed ling
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tural input from TBMD (solid line), and from Monte Carlo simulation with
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overestimated. At low energy even the linear theory per-lE. Lomba, J.L. Lpez-Martn, and G. Kahl, J. Chem. Phy&05 7735
forms somewhat better. As to the use of pair correlations (1996. ) _ _
generated using Tersoff's potential we in Fig. 10 comparez“-- Lopez-Martn, E. Lomba, G. Kahl, M.D. Winn, and M. Rassinger, J.
the SSCA/EMA solution using both TBMD and Tersoff's 3Eh3§6;c\’,;ien:id g;ﬁigf?’iiéligg Petiifor, Europhys. L 701
Monte Carlog(r). Although the width and height of the (1959 ’ o ' B
bands reflect somehow the different spatial structure, the'm.p. winn and G. Kahl, J. Chem. Phy$01, 10 850(1994).
simulated bands shown in Fig. 4 are more dissimilar, prob-°z. Chen and R.M. Stratt, J. Chem. Phg3, 5687 (1992.

ably due to the effect of the three body correlations that don-S- Hoe and E. Lomba, J. Chem. Phyi1, 4083(1994.

not enter the theoretical approaches presented herein. Jiig Hye, E. Lomba and J.L. lgez Martn, J. Chem. Phys101, 9042
In summary, we have presented results for non—linearggls' ?l.’(ye, J.L. Lpez Marin, and E. Lomba, J. Chem. Phyt03 2178
corrections to the SSCA/EMA for silicon and carbon. (j1g95.

Whereas the corrections lead to accurate results for liquid Si?D.E. Logan and M.D. Winn, J. Phys. £1, 5773(1988.

in the case of Carbon only some qualitative features of thé’M. D. Winn and D.E. Logan, J. Chem. Phy26, 4818(1992.

DoS are reproduced. It seems clear that in this case thilg-zs-ti\l’l‘i’r?”grv :r-";"-TH:: svldb ;—T'-szar;;/hﬁl- 232'3?133 ;35(1993-
strongly directional effects of the structure affect the DoS to,, 3 Terso?f’ Phys. Rev. LetbL. 2873’9 (1088,

an extent that can only be accounted for by involving threess; Hoye and G. Stell, J. Chem. Phy&z, 3731(1982; J.S. Hiye and E.
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15see for instance the TB parameters for Se found in Table |, in J. Robert-
ACKNOWLEDGMENTS son, Adv. Phys32, 361(1983.

] 16R. Virkkunen, K. Laasonen, and R.M. Nieminen, J. Phys. Condensed
The authors wish to acknowledge support from the matter3, 7455(1992.

Austrian-Spanish Program of Acciones integradas undel’C.H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho, J. Phys. Condensed Matter

Grant HU1995-0015. We would like to thank Fernando 4 6047(1992.
Bresme for providing the code to perform the cluster anaIy_lgFor a simple and clear exposition on the qualitative determination of band
shapes in terms of lattice coordination and interaction ranges see the dis-

S'.S' ThJS work has been SUP_poft?d '.n pa}rt by th,e Span'Shcussion in Chap. 4 of A.P. SuttoB|ectronic Structure of Material&Clar-
Direccion General de Investigaaio Cientfica y Tecnica endon, Oxford, 1993
(DGICYT) under Grant PB94-0112. 19M.D. Winn and G. Kahl, J. Chem. Phy$00, 7567(1994.

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997



