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We present a study of the band structure of liquid Carbon and Silicon modelled in a Tight-Binding
Hamiltonian approximation by means of an integral equation approximation that includes non-linear
corrections. The theoretical predictions are contrasted with Tight Binding Molecular Dynamics
simulations in which the energy bands are obtained by direct diagonalization of the Hamiltonian
matrix. The results for Silicon are excellent, whereas in liquid Carbon only some of the qualitative
features of the band structure are captured by the non-linear corrections. We find that this can
largely be understood as an effect of missing three-body correlation functions in the theoretical
treatment of the energy bands. This is particularly crucial in the case of strongly directional and
short range bonding, as it occurs in Carbon. ©1997 American Institute of Physics.
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I. INTRODUCTION

In a recent paper Lomba, Lo´pez-Martı´n and Kahl1 inves-
tigated the band structure of a rather academic model
liquid Hg in terms of the Single Superchain/Effective M
dium Approximation~SSCA/EMA!, a theory that turned ou
to yield reasonably good results when compared with dir
diagonalization of the Tight-Binding~TB! Hamiltonian over
quenched liquid configurations. Later, the same author
collaboration with Winn and Rassinger2 presented an appli
cation of the same approach to determine the band struc
of liquid Silicon. In this case, the electronic structure w
modelled by means of an Empirical Tight-Binding Ham
tonian following the parameterization of Goodwinet al.3

Also here it was found that the linear SSCA/EMA theo
produced results in good agreement with the simulated T
Binding Molecular Dynamics ~TBMD! band structure.
Nonetheless, in both cases it became clear that some fea
of the band structure were not correctly captured by
theory, in particular the high energy wings of the ban
which is a well known drawback of linear approximations.4,5

It is thus of primary importance to develop non-linear co
rections which while retaining the simple structure of t
SSCA/EMA for thesp3 (s- and p-band! system can cope
with the deficiencies inherent to the linear approach. In t
connection, Ho”ye and Lomba6–8 developed an approxima
tion that accounts for the correct two-particle contributi
missing in the low density limit of the Mean Spherical A
proximation ~MSA! ~which is nothing but the SSCA/EMA
with the pair distribution function of the quenched fluid r
placed by zero outside the hard core diameter9,10! for a sys-
tem of coupled Drude oscillators. As pointed out in Ref
the problem of the Tight-Binding bands in ansp3 fluid is
fully equivalent to a system of coupled three dimensio
10238 J. Chem. Phys. 106 (24), 22 June 1997 0021-9606/97/1
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Drude oscillators with appropriate coupling functions, a
thus the formalism developed in Ref. 8 will apply here
well. The corrections obtained reproduce the presence
high energy wings in the band, which is mainly an effect
particle pairs, as also will be seen in this work. Moreov
they are constructed on top of the MSA, which is linear
the SSCA/EMA, and hence we can keep the core of
computational scheme introduced in Ref. 1 intact in our n
approach~the portion that pertains to the Ornstein-Zerni
like equation!. In the case of thesp3 system we will see tha
certain simplifications derived from the linearity of the cl
sure no longer hold, in particular the transversal and lon
tudinal contributions to thep-band will not be identical any
more, and this implies that a certain reformulation of some
the equations has to be done.

As test cases for our non-linear approximation we ha
chosen liquid silicon, for which it was already seen that t
linear approximation works well,2 and liquid carbon, a sys
tem which was studied some time ago by Tight Bindi
Molecular Dynamics by Wanget al.11 In this case, by simple
inspection of the form of the hopping integrals, we know th
deviations from mean field behavior will be important.~The
range of the interaction is half that of the silicon, and t
value of the hopping elements at nearest neighbor distan
doubled.! This can be further confirmed by analyzing the T
density of states~DoS! obtained by Wanget al.11 Liquid
Carbon will thus be a stringent test for our non-linear c
rections, which are the leading ones for interactions of lo
range.

In summary, we will here present an application of t
non-linear corrections proposed by Ho”ye and Lomba6 to the
multi-band problem posed by disordered systems withsp3

TB Hamiltonians. These corrections, that are mostly do
06(24)/10238/10/$10.00 © 1997 American Institute of Physics
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10239Lomba et al.: Tight-binding band structure
nant for relatively low densities, are exact as concerns p
of particles. The explicit form of these corrections will b
presented in Section II. Notice that in Refs. 6–8 notation a
language are somewhat different to that used in Refs. 1 a
which follow closely Winn and Logan’s Green functio
formalism.9,10 Since the corrections are more easily intr
duced in the context of the Drude oscillator problem used
Ref. 6 we will follow in Section II this notation and then i
Section III we will present a clear mapping between bo
formalisms. From thereon we will retake the language of
Green’s function approach. The reformulation of the eq
tions needed by the symmetry breaking effects of the n
linearity ~or of the use of different on-site energies for t
pps andppp Hamiltonian elements! is also discussed in thi
section. Finally, in Section IV we present the results of
theoretical approach and compare them with TBMD da
Here we will also explore the use of direct diagonalization
the TB Hamiltonian matrix while averaging over quench
configurations generated by means of classical potentials
incorporate three body interactions, like the Stillinger-Web
~StW! potential for Silicon12 and Tersoff’s potential for
Carbon.13 A brief discussion about the effect on the ele
tronic structure by the use of empirical three-body inter
tions instead of the self-consistent TB band energy produ
by the TBMD, is also included and will illuminate the role o
the spatial ordering on the electronic structure of these
tems.

II. NON-LINEAR CORRECTIONS TO THE FREQUENCY
SPECTRUM OF A FLUID OF COUPLED VECTOR
DRUDE OSCILLATORS

As described in Ref. 1 the band structure problem o
fluid whose electronic structure is described by means o
sp3 TB Hamiltonian is formally equivalent to the descriptio
of the frequency spectrum of a system of particles with e
bedded three-dimensional Drude oscillators that are coup
Also, as pointed out in Ref. 1 the symmetry of the electro
interactions will be equivalent to those of an ion-dipole m
ture. The corresponding correlation functions at the leve
the MSA can be written as

css~12!5css
000~r !

s10s20
^s0

2&
,

csp~12!5csp
011~r !~ r̂ ŝ2!

s10s2

A^s0
2&^s2

2&
,

cps~12!5cps
101~r !~ r̂ ŝ1!

s1s20

A^s0
2&^s1

2&
,

cpp~12!5cpp
110~r !F110~12!1cpp

112F112~12!
s1s2
^s2&

, ~2.1!

where

f110~12!5 ŝ1ŝ2
~2.2!

f112~12!53~ r̂ ŝ1!~ r̂ ŝ2!2 ŝ1ŝ2

Due to symmetrycps
101(r )52csp

011(r ). The si0 ( i51,2)is the
J. Chem. Phys., Vol. 106,
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scalar amplitude of the Drude oscillator associated with
s-orbital, andsi are the vector quantities describing the d
rection and amplitude of the vectorial oscillator associa
with the p-orbitals. Furthermorer is the relative distance
between the two particles, and the hatted quantities de
unit vectors. Now, according to Eq.~2.14! of Ref. 8 ~with
g(m2)→D(E)), the density of states will be given by

D~E!52 lim
x→01

1

p
ImH 1r0Tr~sRK!J , ~2.3!

where r0 is the total number density of particles,s is a
diagonal matrix whose elements ares i i5Mi /\

2, with Mi

the reduced ‘‘mass’’ of each oscillator andK252\2v21i .
Having a four-band problem we will have four reduce
‘‘masses’’ that will account for the different on-site energi
that correspond to each atomic orbital involved. The ene
is connected to the frequency throughE5\2v21 const. in
the equivalent harmonic oscillator problem. The cruc
quantity in ~2.3! is RK , where theK52 i\v is the imagi-
nary frequency introduced by the path integral formalism
quantized oscillators. As shown in Ref. 6,RK contributes to
the internal energy in a way that turns out to be precis
what the Green’s function for the TB Schro¨dinger equation
does in Winn and Logan’s formalism.

Now, if we incorporate corrections beyond the MSA
Ref. 8 it was shown that for low density~see Eq.~2.16!
therein!

RKi j
5E rssisjds1E rs1rs2s1is1 j

3F ev

G~r !
2
1

2
v22v21Gds1ds2dr , ~2.4!

where rs is the density of ‘‘free’’ particles and
v5s1iC i j (12)s2 j with C i j denoting the chain bond as define
in Refs. 6 and 8. Here and in the rest of this part the vec
s also includes the fourth components0 of Eq. ~2.1!, i.e.,
i , j50 is included. To leading orderv is the MSA pair cor-
relation function. The configurational functionG(r ) is a
quenching factor that was introduced to cancel out the ef
of induced correlations that otherwise would originate fro
the internal degrees of freedom when using statistical m
chanical theory of systems at thermal equilibrium. Here
note that according to the ideas of Ref. 6 the leading n
linear contribution to the frequency spectrum will stem fro
the formation of ‘‘diatomic’’ particle pairs. The chemica
equilibrium between these ‘‘diatomic’’ species and t
atomic ‘‘free’’ species will be governed by a law of mas
action ~Eq. ~2.6! in Ref. 6!. It must be recalled here that i
accordance with this picture first introduced by Onsage
continuous degree of freedom will be equivalent to a mixtu
of different species. The first term in Eq.~2.4! gives the
No. 24, 22 June 1997
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10240 Lomba et al.: Tight-binding band structure
MSA type linear contribution to the frequency spectru
while the second gives the one from particle pairs. Now
one incorporates the law of mass action and the quenc
factorG(r ) in Eq. ~2.4! ~Eq. ~2.16! in Ref. 6! one can also
write

RKi j
5

r

r f
E rssisjds1r2~a21D1! i j2r2~a21D2! i j , ~2.5!

where we have defined

r fai j
215E rssisjds, ~2.6!

by which one gets

RK5ra21@ I1rD12rD2#. ~2.7!

Herer is the total density (r0 of Refs. 6 and 8! while r f is
the density of free particles (r of Refs. 6 and 8!. The pref-
actor r/r f in Eq. ~2.5! compensates thês1is1 j& term in-
cluded in D2 as explained below~2.17!. The RK can be
approximated or replaced by

RK5r@ae
211ra21D1#, ~2.8!

where the effectiveae5a1rD2a. Due to the symmetry of
the sp andps interactions, the off-diagonal elements ofRK

must satisfyRK
sp52RK

ps , and this equality is broken if one
rewrites Eq.~2.8! precisely as was done in Eq.~4.6! of Ref.
6. If the symmetry condition is broken at some stage of
iterative process of solution, the numerical stability will b
badly affected, therefore we will retain here the form of E
~2.8! in our calculation in contrast to the scheme followed
Refs. 7 and 8. The first correction term in Eqs.~2.5! or ~2.7!
will be

r2@a21D1# i j5E rs1rs2ŝ1i ŝ1 jF ev

G~r !
2v21Gdŝ1dŝ2dr .

~2.9!

The Gaussian type integration~2.9! can be performed, and
one gets

r2@a21D1# i j5E r2@M212M0
21# i j

11dr , ~2.10!

where the two particleM matrix is composed of 434 sub-
matrices, such that

M5SM11 M12

M21 M22D . ~2.11!

The submatrices involved are

M115M225a ~2.12!

and

M125M215S C 0

0 C 8
D . ~2.13!

The chain bond matrices can be decomposed in their
ments according to the spherical harmonic projections i
reference frame with thez-axis joining the particle centers
also called axial frame1 ~i.e. lower indices vs. upper indices!.
J. Chem. Phys., Vol. 106,
,
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The relation between the axial and spatial coefficients~those
defined in a space fixed reference frame! is given by

C 000
ss 5C ss

000, C 010
sp 5C sp

011/A3,
~2.14!

C 110
pp 5

1

3
@C pp

11012C pp
112#, C 111

pp 5
1

3
@C pp

1122C pp
110#.

This expressions will hold for the expansion coefficients
all correlation functions involved in this treatment. With th
one gets for the chain bond

C5S C 000
ss

C 010
sp

C 100
ps

C 110
pp D and C 85S C 111

pp 0

0 C 111
pp D . ~2.15!

As mentioned above, theC klm
ab are the coefficients of the

spherical harmonic expansion of the chain bond functions
a reference frame in which thez-axis lies alongr . The quan-
tity M0 appearing in Eq.~2.10! is nothing butM with the
chain bonds switched off, and hence

@M0#
115@M0#

225a, and @M0#
125@M0#

2150. ~2.16!

Thus, by straightforward inversion of the block diagonal m
trix ~2.11! and with use of the expression~2.10!, one gets the
first correction term inRK . As was shown in Ref. 7, the
D1 term will be responsible for the appearance of the win
of the band, that are absent in the linear approximatio
Now, to compute the second contribution, we have from R
8 that

r2@a21D2# i j5E rs1rs2~s1is1 j2^s1is1 j&!
1

2
v2ds1ids2 jdr .

~2.17!

The term between angular brackets in the integrand inclu
the effect of the equilibrium constant of the pairing reactio
Ks1s2

. This can be concluded from Eqs.~2.16! and~2.20! of
Ref. 6 and Eq.~2.16! of Ref. 8. From the former two equa
tions it follows that only the12v

2 term in Ks1s2
gives a net

contribution to the total density. The first term of the latt
equation represents only the density of ‘‘free’’ particl
while the first term of Eq.~2.7! means total density. So th
second term in Eq.~2.17! compensates for this difference
After some algebra one gets

r2a21D25r2E a21M12a21M12a21dr ~2.18!

which, as defined below Eq.~2.8! gives us the effective
quantity

ae5a1rE M12a21M12dr . ~2.19!

Note that even ifa is still a diagonal quantity, this no longe
holds for its effective counterpart, since the chain bond m
trix incorporates thesp correlations. Now, by insertion o
Eqs.~2.10! and ~2.19! into Eq. ~2.8! and using Eq.~2.3! we
get an energy spectrum that incorporates non-linear cor
tions, provided we know how to calculate the chain bo
elements. In principle one can calculate them in an itera
procedure following the scheme of the Exponential Hyp
No. 24, 22 June 1997
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10241Lomba et al.: Tight-binding band structure
vertex Approximation,14 but this can be an ill-conditioned
problem. Therefore, following the lines of Refs. 7 and 8 w
will here simply approximate the chain bond functions
their values in the MSA, which are nothing but the MS
total correlation functions,hab(12). This will only be done
in the non-linear terms. Otherwise we use the Ornste
Zernike ~OZ! equation with the SSCA linear closure. Som
modifications with respect to the equations in Ref. 1 w
have to be implemented at this level, to account for the sp
ting of the transversal and longitudinal components ofRK ,
in particular concerning the coefficients of the elements
RK entering the OZ equation.

III. NON-LINEAR CORRECTIONS IN WINN-LOGAN’S
FORMALISM

Now, if we want to incorporate the corrections intr
duced in the previous section into the formalism used
Refs. 1 and 2 we have to carefully map the needed quanti
When comparing Eq.~2.3! for the energy spectrum with th
corresponding expression for the density of states evalu
from the average diagonal Green’s function,

D~E!5 lim
j→01

1

p
Im$TrG~E1 i j!% ~3.1!

one sees that

RK /r5G~E!, ~3.2!

where we know thatsK2↔E1 const.;s5M /\2. Then, our
energyequation~2.8! with non-linear corrections~Eqs.~3.3!
and ~3.4! in Ref. 1! will read

G~z!5ae
211ra21D1 , ~3.3!

where

a5S ass . . . . . . 0

A apps
A

A appp
A

0 . . . . . . appp

D , ~3.4!

with elements,

ass~z!5a0ss~z!1c000
ss ~0!5~«s2z!1c000

ss ~0!,

apps
~z!5a0pps

~z!1c110
pps~0!5~«ps

2z!1c110
pp ~0!, ~3.5!

appp
~z!5a0ppp

~z!2c111
ppp~0!5~«pp

2z!2c111
pp ~0!,

where z5E1 i j, and we have assumed that the on-s
Hamiltonian elements«ps

and «pp
might be different de-

pending on the type of TB parameterization.15 In Eq. ~3.5!
thecklm

ab are the spherical harmonic expansion coefficients
the direct correlations functions corresponding to the inter
degrees of freedom, which are connected with those of E
J. Chem. Phys., Vol. 106,
-
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f
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~2.1! by transformations~2.14!. Now, since a general prop
erty of these expansion coefficients is th
c111(0)52c110(0), it is clear that when«ps

5«pp
then

apps
5appp

, thus establishing the equality between the lo
gitudinal and transversal components ofGpp when the clo-
sure is linear. In any case, for the systems to be dealt w
here, the threep-components ofa ~but not ofG) will be
identical, although we will keep the different notation for th
sake of generality. Now, we still have to find the values
cklm

ab (0) but this is a straightforward task if one recalls th
the hklm

ab (r )50 for r inside the overlap region, and uses t
OZ relation ~Eq. ~3.16! in Ref. 1!. Note that here we use
lower caseh andc for the total and direct correlation func
tions, to avoid confusion with the chain bond functionC .
The cklm

ab (0) can now be expressed in terms of convolutio
of h andc. In the MSA case one will simply haveae5a,

GMSA5a21, ~3.6!

and thecklm
ab (0) in Eq. ~3.5! expressed as convolutions v

the OZ equation is precisely the energy as in Eq.~3.22! of
Ref. 1. ~Note that in the MSAcklm

ab (r )5Vklm
ab (r ) outside the

particle core, whereV represents the interaction.! But if we
want to go beyond the linear approximation we just have
retain the chain bond terms inae and calculateD2, which as
already mentioned will no longer be diagonal. When goi
beyond the low density limit, we can introduce finite dens
corrections along the line suggested in Ref. 8, which mo
fies Eq.~2.19! into

ae5a1
1

rE M12a21M12@~m22r2!g~r !1r2#dr , ~3.7!

whereg(r ) is the pair distribution function of the quenche
fluid andm5r(]bP/]r)21, i.e. m/r is the bulk isothermal
compressibility. TheD1 term requires some further elabor
tion. With arbitrary density corrections we can rewrite E
~2.10! as

ra21D154p
m2

r E D~r !g~r !r 2dr, ~3.8!

where we have defined the quantity

D~r !5@M21#112@M0
21#11,

which by inversion of Eq.~2.11! can be explicitly written as

D~r !5S D232 . . . 0

A D33 A

0 . . . D44

D , ~3.9!

where by use of computer algebra we find

D335D445
appp

appp

2 2h111
pp2

2
1

appp

~3.10!

and
No. 24, 22 June 1997
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D2325
1

dS apps

2 ass2assh110
pp22apps

h100
ps h010

sp 2d/ass assh110
pp h010

sp 1apps
h000
ss h010

sp

2~assh110
pp h010

sp 1apps
h000
ss h010

sp ! apps
ass
2 2apps

h000
ss22assh100

ps h010
sp 2d/apps

D ~3.11!
n
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Z
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d5apps

2 ass
2 2ass

2 h110
pp222apps

assh010
sp h100

ps 1h010
sp2h100

ps2

22h110
pp h100

ps h010
sp h000

ss 2apps

2 h000
ss21h110

pp2h000
ss2.

In these expressions we will here use MSA chain bo
functions,hklm

ab . Note that in Eq.~3.10! one can see the fa
miliar form of the denominator of theD1 corrections terms,
whose poles will give rise to the wings of the spectrum, a
from Eqs. ~3.9! and ~3.11! it follows that the transversa
components will be completely decoupled from the longi
dinal term, and that the off-diagonal elements of theG ma-
trix will fulfill Gsp52Gps. We retain the boldface in the
matrix elements ofG, since in accordance to the discussi
in Ref. 1 these terms will be vectors of the for
Gsp5Gsp(1,0,0) and similarly forGps which now will be a
column vector. Let us also recall that theGpp element will be
a 333 diagonal matrix with elements (Gpp)115Gs

pp ,
(Gpp)225(Gpp)335Gp

pp .
In the above paragraph we have run into a rather su

complication when we now want to translate t
r -dependent form of the matrix OZ equations~Eq. ~3.7! in
Ref. 1! into molecular OZ equations in which the usual r
tational invariant expressions can be applied, as was don
Ref. 1. It turns out that, neitherGsp (Gps) nor Gpp are the
simple rotational invariants considered so far any more, si
due to the non-linear terms theGpp Þ const.I , by which it is
not invariant during the rotation operation, which also is t
case forGsp. Consequently, when we want to go from th
matrix to the angular dependent form of the OZ equation~i.e.
when going from Eq.~3.7! to Eq. ~3.10! in Ref. 1! we will
have to construct angular functions from the matrix qua
tiesGsp, (Gps) andGpp and perform carefully the convolu
tions, as was done for the correlation functions. Thus,
will also have functions of the form

Gsp~v3!5Gspŝ3, ~3.12!

Gpp~v3!5 ŝ3G
ppŝ3 . ~3.13!

Now, it turns out that a number of new convolution relatio
will make feasible the connection between the matrix form
lation of the OZ equation and the molecular version. As
Ref. 1, we will have for any two matrices~or vectors! A and
B,

AB53E ~Aŝ!~ ŝB!dv, ~3.14!

where ŝ is a unit vector whose orientation is described
v. Also, for any two matrices~or vectors! A andB of the
appropriate dimensions, and any diagonal matrixGpp
J. Chem. Phys., Vol. 106,
d
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AGppB5
15

2 E ~Aŝ!~ ŝGppŝ!~ ŝB!dv2
1

2
Tr$Gpp%AB.

~3.15!

Besides it is easy to write down the explicit angular dep
dence ofGpp(v), which is simply given by

Gpp~v!5~Gs
pp2Gp

pp!cos2 u1Gp
pp , ~3.16!

where cosu5ŝz and s is the equivalent harmonic oscillato
amplitude for thep-band. Now, if one takes into account th
aforementioned convolutions and rewrites Eq.~3.7! of Ref. 1
in terms of angular functions which are then expanded
spherical harmonics, only one class of terms will dese
special attention, namely those products of the form

F~12!5s1AG
ppBs2 ~3.17!

which when expanded in spherical harmonics lead to

Fklm5~21!m~Gs
pp12Gp

pp!(
l

AklmBl lm15~Gs
pp2Gp

pp!

3(
l,x

A~2l11!~2x11!S l x 2

0 0 0D
3S l x 2

m 2m 0DAklmBx lm , ~3.18!

where we have used the convolution relations~3.14! and
~3.15!, together with Eq.~3.16!, and we have performed th
substitution

cos2 u5SA16p

5
Y20~u!11D /3. ~3.19!

In Eq. ~3.18! the quantities

S k l n

m 2m 0D
are 3-J Wigner symbols that occur due to the composit
rules of the spherical harmonics. If we now focus on the c
k,l<1, which is the relevant situation for us

Fkl05~Gs
pp12Gp

pp!(
l
Akl0Bll012~Gs

pp2Gp
pp!Ak11B1l1 ,

~3.20!

Fkl152~Gs
pp12Gp

pp!(
l
Akl1Bll11~Gs

pp2Gp
pp!Ak11B1l1 .

With all these relation5 it is then possible to get the new O
equation, that again, as in Ref. 1 will be decoupled in
transversal (m51) and longitudinal components (m50)
No. 24, 22 June 1997
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m50

S h̃ss h̃010
sp

h̃100
ps h̃110

pp D 5S c̃ss c̃010
sp

c̃100
ps c̃110

pp D 1rS h̃ss h̃010
sp

h̃100
ps h̃110

pp D
3S Gss A3Gsp

A3Gps 3Gs
pp D S c̃ss c̃010

sp

c̃100
ps c̃110

pp D .
~3.21!

m51

h̃111
pp 5h̃111

pp 23rGp
pph̃111

pp c̃111
pp , ~3.22!

The tilde in the above expressions denotes Fourier transfo
Now, the SSCA/EMA closure will be

cklm
ab 5g~r !Vklm

ab 1~g~r !21!@hklm
ab 2cklm

ab #, ~3.23!

whereas the MSA closure is obtained by replacing the p
distribution function,g(r ), by 1 outside a distance that ind
cates the onset of the overlap region while it is 0 inside. N
that Eq.~3.7! was derived as a leading contribution beyo
the MSA. By use of the SSCA/EMA closure~3.23! part of
this, namely ther2(g(r )21) term, is already included to
leading order and should thus be deleted to avoid dou
counting.

Now the coefficients of the electronic interaction a
given by

V000
ss 5Vss, V010

sp 5Vs
sp/A3,

V110
pp 5Vs

pp/3, V111
pp 5V1121

pp 52Vp
pp/3.

Explicit expressions for silicon and carbon will be given
the next section. Now, if one solves Eqs.~3.21!–~3.22! with
the MSA closure@Eq. ~3.23! with a step function forg(r )#
one gets a set correlation functionshklm

ab that inserted into Eq.
~3.5! will generate the first linear approximation toG. If one
goes beyond the linear approximation, one simply has
insert the correlation functions~recall thatC klm

ab is approxi-
mated byhklm

ab ) into Eqs.~3.9!, ~3.8! and ~3.7!, to generate
the corrections that go into Eq.~3.3! and finally get our non-
linear approximation toG, which is then inserted back int
the OZ equations, and the procedure is repeated until s
factory convergence is achieved.

IV. AN APPLICATION TO LIQUID SILICON AND
CARBON

As mentioned in the Introduction we have here used
standard Tight Binding Hamiltonian with the empirical p
rameterization of Goodwinet al.3 for Silicon and the mode
of Wanget al.11 for Carbon. The thermodynamic state und
consideration for Si corresponds to a temperature of 174
and a density of 2590 kg m23, close to the triple point. Fo
liquid carbon we have considered a thermodynamic s
also in the vicinity of the melting transition, namely a tem
perature of 5000 K and a density of 2000 kg m23. Explicitly
we have dealt with the following parameterization of the T
Hamiltonian,
J. Chem. Phys., Vol. 106,
m.
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Vss~r !5Vss~r 0! f ~r !, Vs
pp~r !5Vs

pp~r 0! f ~r !,

Vp
pp~r !5Vp

pp~r 0! f ~r !, Vs
sp~r !5Vs

sp~r 0! f ~r ! ~4.1!

Vs
ps~r !52Vs

sp~r !,

with

f ~r !5S r 0r D 2expH 2F2S rr cD
nc

1S r 0r cD
ncG J . ~4.2!

The numerical parameters for silicon were taken fro
Virkkunenet al.,16

Vss~r 0!521.820 eV, Vs
sp~r 0!51.960 eV,

Vs
pp~r 0!53.060 eV, Vp

pp~r 0!520.870 eV,
~4.3!

«s526.173 eV, «p52.122 eV,

r c53.6 Å, nc56.48,

r 052.35 Å is the equilibrium nearest-neighbor distance
the diamond lattice for Si. In the case of Carbon, we have11,17

Vss~r 0!525.00 eV, Vs
sp~r 0!54.70 eV,

Vs
pp~r 0!55.50 eV, Vp

pp~r 0!521.55 eV,
~4.4!

«s522.99 eV, «p53.71 eV,

r c52.18 Å, nc56.5,

and r 051.536 Å is again the equilibrium nearest-neighb
distance of the diamond lattice. The repulsive energy nee
for the TB Molecular Dynamics~but irrelevant to our inte-
gral equation approach! is constructed in both cases from
sum of two-center potentials whose explicit expressions
be found in Ref. 16 for silicon and Ref. 17 for carbon.

We have run TB Molecular Dynamics for both system
for 64-particle samples in order to generate reference res
and pair correlation functions that served as structural in
for the theory. In order to check the sensitivity of the ba
structure to changes in the structural input we have also
termined the structure of liquid Silicon and Carbon by mea
of classical Monte Carlo simulations in which triplet pote
tials give account of the particular coordinations dominan
these systems. As already mentioned, we have used
Stillinger-Weber potential12 to model liquid silicon and Ter-
soff’s interaction for liquid carbon13 ~in both cases using 216
particles!. In Figs. 1 and 2 it can be seen that whereas
StW potential reproduces reasonably well the TBMD resu
for the pair structure, there is a considerable discrepa
between the results for Si carbon obtained using Terso
potential and TBMD. Apparently, Tersoff’s potential leads
nearest neighbor distances too large in liquid phases,
hence one sees a displacement of the position of all the p
in g(r ). Now, if one compares the DoS obtained by diag
nalization and averaging for both systems~Figs. 3 and 4!, it
is clear that the results obtained when using configurati
generated according to the StW potential are in reason
good agreement with TBMD, whereas for liquid carbon t
situation is the opposite. On one hand, the displacemen
the peaks ofg(r ) decreases the overlap in the hopping term
No. 24, 22 June 1997
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10244 Lomba et al.: Tight-binding band structure
by which the width of the band shrinks. On the other han
the central peak (p-band! splits in two in the TBMD results
whereas when configurations from Tersoff’s potential a
used the splitting is missing. A plausible explanation of th
difference can be inferred from the value of the average c
ordination number, which for the TBMD results11 is 2.4 and
for the Tersoff’s potential simulation is in our case 3.4
Somehow, this is telling us that the particles in our TBMD
simulations tend to be organized in chains, whereas trip
configurations seem to be more dominant when one u
Tersoff’s potential. These features have already been w
characterized in the explicit analysis of configurations pe
formed in Refs. 11 and 13 for various states of liquid an
amorphous carbon. Thus, in view of our simulation results
seems that the formation of linear chains enhances the sp

FIG. 1. Pair distribution function for liquid Silicon, obtained from TBMD
~filled circles! and Monte Carlo simulation using StW potential~hollow
circles!.

FIG. 2. Pair distribution function for liquid Carbon, obtained from TBMD
~filled circles! and Monte Carlo simulation using Tersoff’s potential~hollow
circles!.
J. Chem. Phys., Vol. 106,
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ting betweenpps andppp levels, as this is what one sees in
the p-band calculated from the TBMD results.

Now, once we have available structural information, we
can proceed to solve the SSCA/EMA and the non-linear a
proximation. The results for Silicon are presented in Fig. 5
As was found in Ref.2 the SSCA/EMA already gives re-
markably good results. However, the incorporation of th
non-linear terms adds a fine correction to the peak. It has
be pointed out however, that the non-linear terms had to b
switched off in the region where thes contribution is domi-
nant to avoid divergence, both when using MSA chain bond
or when these were approximated by the SSCA/EMAhab.
This type of failure is also present in linear approximation
at high density.19 In principle, for the value ofm in Eqs.~3.7!
and ~3.8! we have used the result of the integration of the
simulated pair distribution function, i.e.

FIG. 3. Total Density of States for liquid Silicon from TBMD~filled circles!
and by direct diagonalization over configurations generated by Monte Car
simulation using StW potential~hollow circles!.

FIG. 4. Total Density of States for liquid Carbon from TBMD~filled
circles! and by direct diagonalization over configurations generated b
Monte Carlo simulation using Tersoff’s potential~hollow circles!.
No. 24, 22 June 1997
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10245Lomba et al.: Tight-binding band structure
m5rS 114prE
0

`

r 2~g~r !21!dr D .
In the case of Silicon~but not for Carbon! this value is ex-
tremely low (m/r50.08) and as a consequence the effec
the non-linear corrections on the DoS is negligible. Ho
ever, it is possible to find a value ofm that introduces cor-
rections in the desired direction. In this case we have fo
thatm50.5r 0

23 (r 0 is our scaling distance! leads to a perfec
agreement with simulation~in the low density limitm5r,
and in our caser50.728r 0

23). In Fig. 6 we have plotted the
s andp contributions to thep band, and one sees that it
precisely the displacement in the position of thes band that
actually brings the whole theoretical prediction to a bet
agreement with the simulation. In the results presented
Figs. 5 and 6 we have used the TBMDg(r ) as input for the
theoretical calculations. To illustrate the effect of using t
StW pair distribution functions we can see in Fig. 7 a com-
parison between the SSCA/EMA results obtained using b
sets of structural data. We see that the discrepancies a
the same sort as found in Fig. 3.

The situation for Carbon is essentially different. No
m/r50.7 and the non-linear corrections will be more impo
tant. The smaller cutoff radius~2.1 Å vs. 3.6 Å in Silicon!

FIG. 5. Total and partial Density of States for liquid Silicon from TBM
~hollow circles!, SSCA/EMA ~dashed lines! and non-linear theory~solid
lines!.
J. Chem. Phys., Vol. 106,
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and the much larger values of the hopping parameters in
duce strong deviations from the mean field behavior t
seems to be characteristic of liquid Silicon. Also, in Carb
the difference between theppp and pps hopping terms~7
eV at nearest neighbor separation! is larger than in Silicon
('4 eV!. This will inforce a more directional structure wit
lower coordinations. As mentioned before for this thermod
namic state chain formation will be very much favored. Th
particular feature we expect is reflected in a large differe
between theppp andpps contribution to the DoS that is no
captured by linear approaches.

With these previous considerations in mind, we can n
take a look at Fig. 8, where we have plotted the total D
and thes and p contributions as obtained from the TBMD
and the SSCA/EMA with non-linear corrections added~solid

FIG. 6. Totalpp-contribution to the Density of States in liquid Silicon from
TBMD ~hollow circles!, pps ~solid lines!, ppp contributions~dash-dotted
line! from the non-linear theory and totalpp contribution from the SSCA
~dashed line!. Note that the totalpp-contribution is normalized to one, so
that we haveDpp5(Dpps12Dppp)/3.

FIG. 7. SSCA/EMA Total Density of States for liquid Silicon with struc
tural input from TBMD~solid line!, and from Monte Carlo simulation with
StW potential~dashed line!.
No. 24, 22 June 1997
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10246 Lomba et al.: Tight-binding band structure
line! and without ~dashed line!. When compared with the
good performance of the theory for Silicon, the results n
look rather disappointing. The approximation fails to rep
duce the considerable symmetry of the band with respec
its center of gravity~close to the on-site energy of thep
orbitals,«p53.71 eV!. Taking into account that the interac
tion is quasi-nearest neighbors, the symmetry of the b
~which is connected with a vanishingly small third mome!
can also be ascribed to the formation of coordinations wh
do not allow for odd number of hops between particles, a
the case in chains, trigonal and tetrahedral coordination18

The long range of the interactions in silicon bypasses th
limitations and leads to a relatively large and negative th
moment of the energy distribution. As mentioned above,
may speculate that in order to capture these features p
erly, three-body correlations will have to be incorporate
For instance, a rescaling of distances in the configurati
generated using Tersoff’s potential would bring its cor
sponding pair distribution function to a good agreement w
its TBMD counterpart. This would certainly cure the diffe
ence of band width observed in Fig. 4 but we have chec
that it would not give rise to the splitting of thep peak. This
we regard as a clear indication that this feature will only

FIG. 8. Total and partial Density of States for liquid Carbon from TBM
~hollow circles!, SSCA/EMA ~dashed lines! and non-linear theory~solid
lines!.
J. Chem. Phys., Vol. 106,
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accounted for if the three particle correlation function is
corporated in some way.

Nonetheless, it can be seen that the non-linear cor
tions account to a certain extent for the wings of the sp
trum ~in particular the high energy wing of thes-band con-
tribution, cf. center of Fig. 8! and the peaks of thep-band
show some traces of the electronic structure exhibited by
simulation, namely a peak around 13 eV and a shoulder
eV. If we now take a look at theppp andpps contributions
depicted in Fig. 9 we first notice that the non-linear theo
predicts large differences between both terms, in cont
with the results for Silicon~Fig. 6!. Thep band presents a
shoulder in the vicinity of the central peaks of the simulat
DoS at 5 eV. Also, the theoreticalp peak lies on top of the
maximum of the TBMD at 13 eV, but this is clearl

FIG. 9. Totalpp-contribution to the Density of States in liquid Carbon fro
TBMD ~hollow circles!, pps ~solid lines!, ppp contributions~dash-dotted
line! from the non-linear theory and totalpp contribution from the SSCA
~dashed line!. Note that the totalpp-contribution is normalized to one, so
that we haveDpp5(Dpps12Dppp)/3.

FIG. 10. SSCA/EMA Total Density of States for liquid Carbon with stru
tural input from TBMD~solid line!, and from Monte Carlo simulation with
Tersoff’s potential~dashed line!.
No. 24, 22 June 1997
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10247Lomba et al.: Tight-binding band structure
overestimated. At low energy even the linear theory p
forms somewhat better. As to the use of pair correlatio
generated using Tersoff’s potential we in Fig. 10 comp
the SSCA/EMA solution using both TBMD and Tersoff
Monte Carlog(r ). Although the width and height of the
bands reflect somehow the different spatial structure,
simulated bands shown in Fig. 4 are more dissimilar, pr
ably due to the effect of the three body correlations that
not enter the theoretical approaches presented herein.

In summary, we have presented results for non-lin
corrections to the SSCA/EMA for silicon and carbo
Whereas the corrections lead to accurate results for liquid
in the case of Carbon only some qualitative features of
DoS are reproduced. It seems clear that in this case
strongly directional effects of the structure affect the DoS
an extent that can only be accounted for by involving thr
body correlation functions.
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