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An efficient method for calculating the pair distribution functions of
a ternary hard-sphere system in r space within the Percus—Yevick
approximation
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We present a direct method which allows an accurate and—at the same time—economical
calculation of the pair distribution functions (PDFs) g;(r) of an additive ternary hard-sphere
system within the Percus-Yevick approximation. The approach is based on the fact that for
this approximation the Laplace transforms [§;(s)] of the PDFs are known analytically, so that
the inversion of the g;(s) into r space can be performed exactly. The expressions presented
here allow the determination of the g;(r) for r values up to 8R,, R, being the diameter of the
smallest species; this range in r space should be sufficient for applications in standard algor-
ithms of liquid state theory, such as thermodynamic perturbation theories or integral-equation

approaches.

1. Introduction

Ever since the presentation of the analytic solution of
the Ornstein—Zernike (OZ) equations within the Percus—
Yevick (PY) approximation for hard spheres (HS) [1, 2]
(and their mixtures [3]), this simple model system has
played an important role in liquid state theory. This
still remains valid nowadays, even though, for instance,
recent investigations of the properties of HS in the
framework of sophisticated liquid state theories have
revealed a large variety of phenomena [4] that cannot
be described within the PY concept. HS still represent
the preferred reference system in integral-equation
theories or perturbation methods for determining the
structure and thermodynamics of liquids [5]. Such appli-
cations require numerical algorithms which guarantee
an accurate, yet time consuming determination of the
structure functions of the reference system (mostly in
terms of the pair distribution functions (PDFs) g;(r));
limitations of computing time and memory are particu-
larly crucial if the number of components of the system
is two or larger.

In this contribution we propose an efficient and accu-
rate method for calculating the PDFs of a ternary
system of HS over a r range [0,7R,], R, being the dia-
meter of the smallest species of spheres. This method has
already been pointed out by Wertheim [1] and is based
on the fact that the Laplace transforms of the PDFs
[9;(s)] are known analytically in terms of simple poly-

nomials and exponentials. This simple form allows a
shell-by-shell inversion back into r space, where a shell
is defined as a semi-infinite interval [R, o), R being an
integer multiple of the HS diameter (in the one-compon-
ent case) or an integer or half-integer linear combination
of the HS diameters R; (in the general case of multi-
component systems). This shell method has turned out
to be very useful in practical applications. The form-
alism can easily be extended to those hard-core systems
that can be treated analytically, such as HS Yukawa
(HSY) [6] or adhesive HS (AHS) [7]. Furthermore, a
generalization for the binary case has been given in
[8-12].

The realization of the inverse Laplace transformation
for the §;(s) back into r space relies on the theorem of
residues and gives closed expressions for the g;(r) in
terms of analytic functions (i.e. products of exponen-
tials, polynomials, and step functions, the latter ones
leading to the shell structure of the resulting PDFs).
Although these explicit expressions are rather complex,
their derivation can be achieved mostly with the help of
symbolic languages (such as MATHEMATICA), so
that an efficient numerical implementation (using, e.g.
the new attractive features of Fortran90) is feasible.
Hints for a practical implementation have been summar-
ized in Appendix B.

In principle, the generalization for systems with four
or more components is straightforward, and presents no
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special problems, at least when using the tools men-
tioned above. Nevertheless, (i) the rapidly increasing
complexity of the expressions and (ii) a rapidly
increasing number of shells occurring in the summation
ata given r value impose certain practical limitations on
the use of the resulting expressions.

The paper is organized as follows: in the following
section we present the method, we summarize the
explicit expressions for the g;(s) and the g;(r) resulting
from the inverse Laplace transformation. In the sub-
sequent section we discuss the efficiency and numerical
accuracy of the method as such and present a few
results, leading to a concluding summary. Appendix A
contains those expressions that are too complex to be
presented in the text. In the other Appendix we give
hints for actual numerical implementations.

2. The method
2.1. Solution of the PY equations for an N-component
system of HS
An N-component system of HS is characterized by
the diameters {R;,...,Ry}, the concentrations
{c1,...,¢en}, the number density p, and the usual HS
interactions which are assumed to be additive, i.e.
R; =1(R;+ R;) with R; = R;. We furthermore define
the S;= 1(R;—R;), the partial number densities
p; = ¢;p, and parameters &, to be

N
7r n
& =€k§=l Pk R (1)

In particular, & =1, is the packing fraction and

n; = (m/6)p; are the partial packing fractions.
Following the work of Baxter [13], the Ornstein—

Zernike (OZ) equations for a N-component system of HS

N
@m=%m+2p4wmm%w—m
k=1
ij=1,....N (2)

can be rewritten as two sets of integral equations, intro-
ducing the factor functions Qy(r)

N
+ ZWZ Pk
k=1

mm[Rk‘,Rk,-—r] ,
x J 4104 (6)Qly(e + 1),

Ski

rey(r) = —Qj(r)

Sij <r< le, (3)
N
rhy(r) = —Qj(r) + 2”2 Pk
k=1

Rjk
xj; dthg(r = YOO —1), Sp<r. (4)
ik

We should also like to mention that, in the present con-
tribution, we follow the notation of [6, 14] that is slightly
different from Baxter’s original notation [13]. The c;(r)
and the hy(r) are the direct and the total correlation
functions, and the PDFs g;(r) are defined as
In combination with the PY closure relation [5], equa-
tions (3) and (4) can be solved analytically with the
following solutions for the factor functions [14]

) 2
—(7‘ - RU) + bj(r - RU)7 Sji <r< Rija
Qy(r) = { 2
0, elsewhere,
(%)
and
_1-6 43RG __3 R&
(1-&) 21 -&)

We now introduce the Laplace transforms of the pair
distribution functions

m®=fmmmem%m 7)

and the QU(S) defined as
A Ry
04 = | dr exp (~sn)0y(r). (8)

Sji

Using (5), we easily find

0;(s) = exp ‘J) {£(s) +exp (sR)) [ (s) + £ ()] }
)
with

f;_{,)(s) = —2aj —_ 25(‘1th} + bj),

f}(s) = —2sa;R; — S*(q;R,R; + 2b;R;). (10)

With all these definitions and after some algebra, equa-
tion (4) can be transformed into

lexp( sRy)

Z gxk [5kj - 27rkak](S)] 82 - ﬁ}a(s) (1 1)

2.2. Explicit expressions for the §i(s)
The set of linear equations for the unknown §;(s)
(i,j=1,...,N) defined by (11) can—at least in prin-
ciple—be solved for arbitrary N. For N = 3, in particu-
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lar, we obtain using Cramer’s rule for i =j

gi(s) = Tz%sl\;((:)) (12)
and for i # j
B(5) = ) = 55.53. (13)

~

The explicit expressions for D(s) and the Nj(s) are
found to be

D(s) = L(s) - i exp (sR;) L") (s)
i=1

—Zexp s(R; + R; ]ﬁ( (s)

i<j

+exp[s(R; + Ry + R3)]LP (s), (14)

Ni(s) = £9(s Z exp (sR;)L l)(s)

D
— exp [s(R; + Ri)IL (s)
with {j,k} = {1,2,3}\ {i} and j<k, (15)
Ny(s) = exp [s(R; + R;)/2][M{ (s) + exp (sRi) M (s)]

with {k} = {1,2,3}\ {i.j}. (16)

The L£’s and M’s are polynomials in s that can be sim-
plified according to the following rules, thereby introdu-
cing reduced polynomials £ and M

£V (s) = LO(s) + £V(s), (17)
£2(s) = £9(s) = £°(5) = £°(9) + £(9),  (198)
L (s) = —£O(s) + i: £ (s)
i=1
+ Z L3(s) ’(s), (19)
i<j
M (s) = =MD (s) + MG (s). (20)

In particular, for the HS case one finds for £ and
the reduced polynomials:

£9(s) =0, (21)
(R; — Ry)’
(1-&)
with ik} ={1,2,3}\{i},  (22)
S3R%£l —6Ry &+ &~ 1
(1-6&)
2 Ri(283 — 2 - 3R;&,)
(1-&)
with {k} = {1,2,3}\ {i,j}, (23)
&(1-&)+38g

+ 48nks

5(3)(3) =965

(1-&)
+a85 o f&) +8s%, (24)
MO (s) = 48n, (R; = R)(Ry — R;)
o (1-&)
with i %] # k, (25)

2+ 37 Re(R; = Ri) (R — Ry) = 3RiRy€
y + 3(‘Rl + Rj)§2 + §3

W)(q) —
M) = s 1-&)
L8 23RRj§2+(Ri+R)(1—§3)
(1-6&)
with i %] # k. (26)

LY (s) being zero, we have been able to extract a
common factor of s° in the above expressions for the
reduced polynomials, but one should note that for the
other analytically solvable models mentioned above—
HSY and AHS—£? will be non-vanishing.

2.3. The inverse Laplace transformation back into r
space

Having obtained the §;(s) as presented in the pre-
ceding subsection, we can now analytically perform
the inverse transformation back to r space. This
method has been described in detail in previous papers
[2,10]; therefore we restrict ourselves in the present con-
tribution only to the peculiarities of the ternary case.

First we modify the common denominator of the

gij(s)
I exp[-s(Ri+Ro+ R [ I(s) |
DEs) 29(s) Z(,cm(s))’ (27)

n=0

thereby introducing



746 E. Paschinger et al.

Z(s) = —exp [=s(Ry + Ry + R3)|LO(s)
3
+

i=1
Uiky={1,231\{1}
3

DY

i<j
{(ky={1230\{i.}}

exp [-s(R; + Ry)IL (s)

exp (—sRe)L (s)- (28)

We then obtain for the PDFs g;(r) in r space for the
case i=j

(") = = —l—ij ds
P9 = i 12, £

ST()[L0 () — Yoy €xp (R)L{D(s)
— exp [s(R; + RYILE ()]
RIOTE
X exp {s[r — (Rl + Rz '|' R3)]}

with {j,k} = {1,2,3}\ {i}, (29)

X

and for i #j
1 ]
rg;(r) = %ZO: L ds
sI"(s)exp [s(R; + R;)/2]
X [Mg)) (5) +exp (st)M(l)(s)]
2[£ S)]n+1
x exp {s[r — (R; + Ry + R3)]}
with {k} ={1,2,3}\ {i,j}.- (30)

Integration is to be carried out in these two expressions
along a path C parallel to the imaginary s, axis and to
the right of all poles of the integrand, i.e. the zeros of
L£¥(s).

Unifying (29) and (30), the g;(r) can now be written

as

SQ"G )
ol ’ngjc RO

n=0

x exp {s[r — (eyR; + xRy + a3R3)]}.  (31)

Since the £’s and M'’s are polynomials in s, the Q?,'va(s)
are polynomials in s, too. A straightforward application
of basic rules for multiplying polynomials easily yields
their (rather complex) explicit expressions; these are col-
lected in Appendix A. « stands for the set of the three
non-negative integers or half-integers «;; the possible
values of the «; (and hence the range of summation
over ) in dependence of n,i, and j are also given in
Appendix A.

The transformation of the g;(s) into r space by means
of the explicit integration in (31) relies on the theorem of
residues; again, we refer the reader for details to [2,10].
For a given set {i,j} and fixed values of n and « one finds
(with R = oy R| + aaR; + a3R3) that

50 (5) _ |2niS R
L dsWexp [s(r—R)] = {211'1 ; R,{#} O(r—R),
(32)

where @(x) is the usual Heaviside step function. Sum-
mation is extended over the four zeros s, of [,(3)( ), and
the RZ,’a are the residues of the integrand in (32) for
s=8,, l.e.

jr_ 1o ] d" 11 S0ha(s)
R‘r{,a=—lm1{gs-; ((S—Sr)" O

x exp [s(r — R)]) } (33)

The expressions obtained by an explicit evaluation of
the derivatives in (33) can be rearranged and simplified
by introducing coefficients a;” and by ., yielding the
following, rather simple result for the PDFs in r space

rg(r Z rgi(r

n=0

o0

—ZZZ a)exp [s,(r — R)]

n=0 a r=I

(Zbﬁ;mr— 'O (r — )) )
m=0

To be more specific, the al™ are given by
jr 1 1
Tl {efyis)”

correcting a typo in equation (A 3) of [10]; the bﬁ{j;m are
considerably more complex.

The structure of equation (33) being the same as in the
binary case, we can use the expressions presented in
equations (A 4)—(A 11) of [10] for the by, ., by applying
the following simple rules:

(34)

(a) rearrange upper and lower indices so that the
bpa,a, Of the binary case match the U7, of the
ternary case;

(b) replace the Q, 4,a,(s) by the QF(s);

(c) set u(s) =1 in [10].

3. Discussion
The shell structure of the ternary case is substantially
more complex than in the simple one-component or even
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in the binary case. For a given n value we find subshells
Sy.a> Characterized by the triple of « values, a, i.e.

Spa = {rlr = (1R| + 3Ry + a3R3)}, (35)

where the ranges for the {a;,,, a3} for the different
combinations of i and j are given in (A 2), (A4), (A6),
and (A 8) of Appendix A. If we define the smallest left
boundary of the n subshells (for a given pair of i and j) by

fon = min {a R} + ayRy + a3R;}, (36)

one can show that, if R, is the smallest diameter,
ron = (n+ 1)R;. Then the expressions presented in this
contribution in combination with those in [10] can be
used for r values up to ry7. It should be added that an
extension to higher values of n is in principle straightfor-
ward; however, a practical realization might be limited
by the rapidly increasing complexity of the coefficients
a™ and b¥7,, and a rapid increase in the number of
subshells occurring in the summation of (34); in particu-
lar, the latter leads to a loss in numerical accuracy to be
demonstrated in detail below. If the restriction r < rq7 is
violated, contributions of subshells belonging to higher
n values will be neglected, which, as a consequence,
would lead to wrong results.

We demonstrate our method for a ternary system that
is characterized by the set of {R;} = {1,1.2,1.45}, the
set of concentrations {c;} ={0.2,0.5,0.3}, and a
packing fraction = 0.4. In figure 1(a) we present the
pair distribution function gy, (r), in figure 1(b) we dis-
play the corresponding shell structure S, (q, a o} A
closer analysis shows (i) that for r=7Ry, g (r) is
made up of contributions of 140 subshells (cf. (34))
and (ii) that the largest and the smallest of these con-
tributions are 27.64 and —50.36.

Large positive and negative contributions in equation
(34) inevitably lead to numerical compensation errors
and hence represent a drawback of this method, as
already pointed out in [10]. Extensive numerical tests
show that, in the case of HS, limitation of the r range
to ry; represents a reasonable compromise: even for
high packing fractions the PDFs are practically unity
at such distances. However, the situation might be dif-
ferent for other hard-core systems: for we know from
the one-component case [11] that—depending on the
choice of the system parameters—the PDFs for HSY
fluids exhibit pronounced oscillations even for rather
large distances. If in such a case the evaluation of the
PDFs for r > rq7 is required we recommend to comple-
ment the shell method by implementing the asymptotic
method, which is explained in detail in [11] and—using
the expressions presented in this paper—can easily be
generalized for the N-component case: for larger dis-
tances this method gives numerically more reliable
results than the shell method.

n=35
(231 subshells)

n=4
(146 subshells)

n=3
(85 subshells)

n=2
(44 subshells)

n=1
(19 subshells)

n=0
(6 subshells)

o

\
| st | shir) X008

4 b B \ \
I ' : ‘
.5 . \

gulr)

|

I I8 + 1 1 Il I 1 1 I IV )
0 2 4 6 /R

Figure 1. Shell structure (top), partial PDFs giy(r) (middle);
and total PDF g;,(r) (bottom) for a ternary HS system as
defined in the text. r values are given in units of Ry, i.e. the
smallest of the three HS diameters. Top panel: subshells
Spq (as defined in equation (35)) for n=0,...,5; total
number of subshells for a given n are noted in brackets.
Middle panel: partial PDFs g7, (r) as defined in equation
(34) for n = 0,...,4; the different functions are labelled by
the respective multiplier, unless it is unity. Bottom panel:
total PDF g,,(r) as given in equation (34).

We have implemented the shell method in a For-
tran90 code on a Linux-PC. Evaluation for the whole
set of the gy(r) over a range [Ry,r07] (R; being the
smallest diameter) on a grid with a spacing of 0.05 R,
typically takes 18 CPU seconds (on a Pentium processor
of the first generation); a closer check shows that most
of this time (i.e. 63%) goes into the calculation of the
coefficients bﬁ{;;m. CPU times of this order of magnitude
can be considered reasonable, hence the method is well
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suited for practical applications such as perturbation
theories, where the structure of the reference system
must be calculated quite frequently for the determination
of the system parameters of the reference system.

4. Conclusion

In this contribution we have presented an accurate,
rapid, and efficient numerical method for calculating the
pair distribution functions of a ternary hard-sphere
system within the Percus—Yevick approximation over a
representative range of r values; this range should be
sufficiently large for most practical applications, and
so the method represents a powerful tool in variational
or perturbative calculations in liquid-state physics. It is
based on the fact that the Laplace transforms of the
PDFs are known analytically within the framework pre-
sented: this allows one to perform the transformation
back into r space analytically using the theorem of resi-
dues. Although the expressions required for the actual
calculation are rather complex, the method itself is
numerically very stable and easy to use: all expressions
required for a practical implementation (along with
practical hints) have been given here (and in a previous
publication). Furthermore, the expressions we present
here are sufficiently general to allow an extension to
other hard-core systems (such as hard-sphere Yukawa
systems or adhesive hard spheres) that are similar to the
hard-sphere case in that they can be treated fully analy-
tically in one or the other liquid state approximation.

This work was supported by Osterreichischer For-
schungsfonds under project number P11194-PHY and
the OENB under project number 6241.

Appendix A: Explicit expressions for the Q7 (s)

It is important to point out that the expressions for
the Q,,,( ) presented in the following are by no means
unique; other, equivalent formulations can easily be
derived, which becomes particularly evident for the
unlike case, since gi5(r) = g,;(r). Furthermore,
restricting ourselves in the present contribution to the
HS case, we find £© to be zero, so that we are able to
neglect a number of terms involving positive powers of
this function. For other hard core systems, such as HSY
or AHS, this polynomial will be non-zero and the
expressions for the Qf{,a(s) must be readily generalized;
the resulting expressions for the Qﬁ{,a(s) are considerably
more complex but can be calculated in a straightforward
manner using symbolic languages.

In the following we give the explicit expressions for
the 0y ,(s) introduced in (31) along with the ranges for
the indices (which follow from the fact that ‘1/N! =
for negative integer N).

One finds:
fori=j
l A )\2 A—n|
L) =g Y 3
‘ n|=)\1 n2=/\2

5 [.cé? ()" (L3 ()"
n; ! nz!

[£(122) (S)]2+2n—n, —ny—a—on—a3

24+2n—n —nm—0o; —ay —az)!

[Lgl) (S)]-—l-n+n|+a2+a3

(=l =n+n +a;+a3)!
£230) I
(=1=n+m+a, +a3)

l+n—n —ny—a3
[£19)]

(I+n—-n —ny—a3)! (AD)
with

A=min(l +n—-03,2+2n—a; — a; — a3),
Al =max (0,1 +n— o, — a3),
Ay =max (0,1 +n—a — az),
a;=0,...,1+n,
a,=0,...,1+n,
a3 =max (0,1+n—a; —a),...,

min (1 +n,2+2n— a; — ay). (A2)

Fori=1landj=2

|A —-Xy A-ny ]n-,

=5y > bk

)’ll—/\| nw—)n

[[:(123) (S)] 14+2n—n) —ny—o) —s —0s3

X
(2—|—2n——n1—n2—al—al—a3)!

2
MEHOIE
ml (=i—n+m+a+a)

[Lgl)(s)]%wl—nl —na—Qa
Gtn-m-moa)

(] (s))Erertes

[ﬁ )]"'l n+ny+o) +a;

(— 1—n+n1+a1+a2).
X (=3 =n+nm+a+ )L ()M (s)
+2+2n—n—nm-—o;— 0 — )

x LD ()M ()] (A3)
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with
A=min(l+n—0,2+2n—a; —a —a),
A =max (0,1 +n— o — ),

Ay = max (0,5 +n—a; — a3),

o =53+

— 1
az——i,...

1
7§+n7
a3=max(0,1+n—a1—a2),...,

min (1 +n,2 4+ 2n—a; — o). (A4)

Fori=1land j=3

A=)y A—ny (’)(

o =2y 5 L2l

nl—)\l nz—)vy

[[’(122) (S)] 14+2n—n; —Hy =] —Qa — Q3

(2+2n—n1 — Ny — &) —02—03)!
[£(2) ] [‘C(l‘) (S)] —3—nt+n +ar+ay
n2! (——é-—*ﬂ+ﬂ1+0¢2+a3)!

P30 i

(%+n—nl "‘Yl2"&3)!
[E-()l) (S)]—l—n+n2+a1+a3
(=1 —=n+ny + o +oa3)!

X [(=3—n+n —+—a2+a3) 5 (S)M(O)( )
+@2+2n—n —ny—ay; —op—03)
x £ () M3 ()] (A5)
with
A=min(}+n-03,242n- 0o — 0oy — ),
Al =max (0,5 +n—a — a3),

Ay =max (0,1 +n— o —az),

| 3
al—i,...,i-f-n,
a,=0,...,14+n,

- L lan—a —
as=max(—3,1+n—0a; —a),...,

min (} +n,2+2n— o — o). (A6)

Fori=2andj=3

23 __ =
l’l,a(s) - 2

PEELD i

(2+2n—n1—n2-—a1—a2—a3)!
NEHO)E
m!  (=1=n+n +a+a)

[£(31) (S)]‘5+n—n1 —ny—a3
G+n—ny—n—a)

[c(ll) (S)]—l—n+n|+ag+a3

[,Cf(,l ) (s)]—%—n+nz+a1+ag

(—l—n+n2+6¥| + a3)!
x [(=4 = n+m+a; +a3) L3 (IMS (5)
+24+2n—n —nm
x £4)(5) MG 9] (A7

—al_a2”a3)

with
A=min(A+n—03,2+2n—0a; —ay— ),
A =max (0,1 +n—ap — ),
do =max (0, +n— oy —a3),

ay=0,...,1+n,

Q =%,...,%+n,
oz =max(—1,1+n—oy—a),...,
min (} + 1,2 +2n — a; — ay). (A8)

Special care must be taken when implementing equa-
tions (A3), (AS5), and (A7) for the unlike case: the
factor in square brackets (last two lines) must be split
up in order to avoid negative exponents of the £’s in the
nominators and negative arguments in the factorials in
the denominators.

Appendix B: Hints for a numerical implementation
We have implemented this method in a Fortran90
program. The central problem here was the calculation
of the coefficients a’” and bf’,;m These coeﬂicwnts are
introduced in (33) and can be calculated from the QF (s)
and the basic polynomials £ and M and their deriva-
tives with respect to s. However, since the explicit deter-
mination of the polynomials Qﬁ{‘a(s) is too cumbersome
we found it more convenient to proceed as follows (i.e. a
route which is, in addition, less prone to errors): using
the new features of Fortran90 we have created for a
polynomial p(x) = > [, p;x a new data type (POLY-
NOMIAL), which contains the degree of the poly-
nomial, n, and the array of coefficients (p;,i=
.,n). For this derived data type we have defined
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the usual polynomial operations, such as the sum and
the product of two polynomials, the derivative of a poly-
nomial and the evaluation of a polynomial p(x) for a
given x.

For the actual evaluation of the Qf{,a(s) at the zeros s,
further considerations can substantially reduce com-
puting time and memory requirements: as is obvious
from equation (A1), the Qf,"’,(s) for like cases differ
only in a prefactor, so that all three of them can be
evaluated in one step.

For the calculation of the PDFs in the unlike case it is
more economical (in particular with respect to memory
requirements) to implement the expressions for the bl,zjm
and the Q,l,‘za(s), and to obtain the corresponding expres-
sions for the other two cases by systematic permutation
of the radii, i.e. RI — Rz, RZ — R3, and R3 — Rl‘

Finally, when evaluating the PDFs via (34) the like
and the unlike cases can be merged: for instance, by
shifting the indices «; and «; for the unlike case i =1

and j = 2 in (A 3) and (A 4) according to
O!l—%—‘?C—!l and a2+%'—’6{2 (Bl)

we find exactly the same range for &;, &,, and &; as for
the oy, oy, and o3 in the like case, which makes a
common implementation possible.
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