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Structure factor and electronic structure of compressed liquid rubidium
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We have applied the quantal hypernetted-chain equations in combination with the Rosenfeld bridge func-
tional to calculate the atomic and the electronic structure of compressed liquid rubidium under high pressure
~0.2, 2.5, 3.9, and 6.1 GPa!; the calculated structure factors are in reasonable agreement with experimental
results measured by Tsujiet al. along the melting curve as a whole. It is found that the effective ion-ion
interaction is practically unchanged with respect to the potential at room pressure under these high pressures.
All structure factors calculated for this pressure-variation coincide almost into a single curve if wave numbers
are scaled in units of the Wigner-Seitz radiusa although no corresponding scaling feature is observed in the
effective ion-ion interaction. This scaling property of the structure factors signifies that the compression in
liquid rubidium is uniform with increasing pressure; in absoluteQ values this means that the first peak position
(Q1) of the structure factor increases proportionally toV21/3 ~V being the specific volume per ion!, as was
experimentally observed by Tsujiet al. Obviously, this scaling property comes from a specific feature char-
acteristic for effective ion-ion potentials of alkali liquids. We have examined and confirmed this feature for the
case of a liquid-lithium potential: starting from the liquid-lithium potential at room pressure we can easily find
two sets of densities and temperatures for which the structure factors become practically identical, when
scalingQ in units of a. @S0163-1829~98!00533-5#
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I. INTRODUCTION

Based on density-functional~DF! theory, we have derived
in previous work a set of integral equations which allows
to calculate the ion-ion and the electron-ion correlations i
liquid metal or a plasma, consistent with the bound-elect
structure of the ion using only the atomic numberZA as
input; these integral equations are named the qua
hypernetted-chain~QHNC! equations,1,2 which are derived
from the exact expressions for the ion-ion and electron-
radial distribution functions~RDF! in an electron-ion mix-
ture. Up to now, we have applied this approach to liqu
metallic hydrogen,1 lithium,3 sodium,4 potassium,5 and
aluminum6 obtaining ion-ion structure factors in excelle
agreement with experiments. Since a liquid metal can
considered as a very special type of a high-density plas
we can expect from the successful application of the QH
method to liquid metals that this approach is able to prov
accurate results for a plasma. In such a system, both the
valencyZI and the electron-ion interactionveI(r ) may vary
over a wide range as temperature and density are chan
Our method is in particular suited to treat a plasma, since
able to calculate the ionizationZI and the electron-ion inter
action in a self-consistent manner using the atomic num
of the system as the only input data. In a similar spi
Perrot7 has proposed the neutral-pseudoatom~NPA! theory
to give anab initio calculation of effective ion-ion potential
for plasmas. Gonza´lez et al. have successfully applied thi
theory to alkali liquids8 and alkaline-earth liquids.9 The NPA
method can be derived from the QHNC theory with use
additional approximations;10 the fundamental one is that th
ion-ion correlation is approximated by the step function
PRB 580163-1829/98/58~9!/5314~8!/$15.00
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the determination of the pseudopotential. This model w
called in our approach the jellium-vacancy model4 and was
used to obtain an accurate initial guess for effective ion-
interactions in the iteration solving the QHNC equation.

Recently, we have extended this formalism and have p
formed a first-principles molecular dynamics~MD! simula-
tion based on the QHNC theory for alkali metals near
triple point: in this study those small deviations which we
still observed between experimental results and QHNC d
for the structure factor disappeared completely.11 Neverthe-
less, the calculation of the ion-ion RDF in an MD simulatio
is rather time consuming. Recently, Rosenfeld12 has pro-
posed a bridge functional for hard spheres; its construc
requires only fundamental measures of the hard sphere
combination with the MHNC approach—by replacing th
bridge function by a bridge functional of the reference
system—it was found out that this method is able to g
very accurate results for the structure and thermodynamic
a large variety of one-component and binary liqu
systems.13 Therefore, with replacement of the MD simula
tions by the MHNC method we can obtain accurate res
for the ion-ion and electron-ion RDF’s for dense fluids v
the QHNC method using the Rosenfeld bridge functional

In a plasma, density and temperature vary over a w
range. Therefore, in order to check the applicability of t
approach presented here to a strongly coupled plasma~where
no reliable experimental data for particle correlations
available!, it is important to examine to what extent th
QHNC equations can describe a liquid metal in a wide ran
of densities and temperatures. Recently, using high-inten
x rays of synchrotron radiation Tsujiet al.14 measured the
structure factors of liquid Rb at high pressures: 0.2, 2.5, 3
5314 © 1998 The American Physical Society
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PRB 58 5315STRUCTURE FACTOR AND ELECTRONIC STRUCTURE . . .
and 6.1 GPa. These pressure values bring along a com
sion of liquid Rb: the corresponding density values are e
mated to be 1.07, 1.41, 1.56, and 1.95 times the normal d
sity; that is, r s55.27, 4.81, 4.65, and 4.31 in terms of th
Wigner-Seitz radius a5r saB ~aB : Bohr’s radius!,
respectively.15 Tsuji et al. observed that liquid Rb is uni
formly compressed with increasing pressure. In this con
it should be mentioned that Shimojoet al.16 performed first-
principles molecular-dynamics simulation for liquid Rb u
der pressure~0, 2.5, and 6.1 GPa! and compared their result
with the RDF’s extracted from the structure factors measu
by Tsuji et al.: they found that liquid Rb is compressed un
formly at 2.5 GPa, but that some deviation from unifor
compression is observed at 6.1 GPa. In the present w
using the QHNC method in combination with the Rosenf
bridge functional for the reference hard-sphere system
have calculated the structure factors of compressed rubid
the pressure ranging from 0 to 6.1 GPa, and compared t
data with the experimental results. We find reasonable ag
ment with these experimental data, although in two cases
density has to be slightly readjusted. In this context it m
be mentioned that experimental results obtained under t
extreme conditions bear some uncertainty: Tsuji17 reports
that the estimated densities and the height of the main p
in the static structure factor are affected with errors, and
the low-Q behavior of the 6.1 GPa state is rather uncerta
while the positions of the main peaks in theS(Q) are very
accurate. We confirm with our results the uniform compr
sion model. We find out that the effective ion-ion potentia
are insensitive to this pressure variation, a feature whic
obviously typical for liquid alkali metals~we also confirm
these observations for the case of liquid lithium!. We finally
observe that the structure factors coincide in one single cu
if Q is scaled in units of the Wigner-Seitz radiusa.

The paper is organized as follows: in the subsequent
tion we briefly outline the QHNC method and give a fe
details about the Rosenfeld bridge functional. In Sec. III
discuss our results and compare them with experime
data. The paper is concluded by a summary.

II. QHNC THEORY AND THE BRIDGE FUNCTIONAL

In the present section, we give a brief outline of t
QHNC theory and the integration of the Rosenfeld brid
functional in an integral equation approach for a on
component fluid.

Let us consider a liquid metal or a plasma as a mixture
electrons and ions interacting through pair potentialsv i j (r )
@i , j 5e or I#. In this mixture, the ion-ion and electron-io
RDF’s gi I(r ) are identical with the ion- and electron-dens
distributions under the external potential caused by a fi
ion at the origin respectively, since the ions behave a
classical fluid in a liquid metal.2 In general, DF theory en
ables us to provide exact expressions for the density di
butions in an inhomogeneous system caused by an exte
potential. Hence, by applying DF theory to this mixture w
densitiesn0

i , we can derive exact expressions for the ion-i
and electron-ion RDF’s in terms of direct correlation fun
tions~DCF’s! Ci j (r ) and bridge functionsBi I(r ) as follows:2

gII~r !5exp@2bU I
eff~r !#, ~2.1!
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geI~r !5ne
0 f~r uUe

eff!/n0
e , ~2.2!

with

Ui
eff~r ![v i I~r !2

1

b F(
l
E Cil ~ ur2r 8u!

3n0
l @gl I~r !21#dr 81Bi I~r !G ~2.3!

5v i I~r !2G i I~r !/b2Bi I~r !/b. ~2.4!

The wave equation for an electron under the external po
tial Ue

eff(r) is solved to provide the total electron-density d
tribution ne(r ) around a nucleus, which is divided into th
bound-electron and free-electron parts:ne(r uUe

eff)
[ne

0b(r uUe
eff)1ne

0 f(r uUe
eff) by the criterion whether their

eigenfunctions belong to bound or free levels. In Eq.~2.2!,
the free-electron part of the density distributio
ne

0 f(r uUe
eff)/n0

e , becomes identical to the electron-ion RD
the bound-electron partne

0b(r uUe
eff) is taken to form an ion

and contributes to generate the electron-ion interac
veI(r ). These expressions forgi I(r ) can be rewritten in the
form of a set of integral equations for a one-compon
fluid.2 One of them is a usual integral equation for the DC
C(r ) of a one-component fluid:

C~r !5exp@2bveff~r !1g~r !1BII~r !#212g~r !,
~2.5!

with an interactionveff(r) defined by

bveff~Q![bv II~Q!2
uCeI~Q!u2n0

exQ
0

12n0
eCee~Q!xQ

0 ; ~2.6!

the other is an equation for the effective interactionveff(r),
that is expressed in the form of an integral equation for
electron-ion DCFCeI(r ):

B̂CeI~r !5ne
0 f~r uveI2GeI /b2BeI /b!/n0

e212B̂GeI~r !.
~2.7!

In these equations,xQ
0 is the density response function of th

noninteracting electrons with an electron densityn0
e and

g(r )[*C(ur2r 8u)n0
I @gII(r 8)21#dr 8. Furthermore,B̂ de-

notes an operator defined by

FQ@B̂f ~r !#[xQ
0 E eiQ•r f ~r !dr . ~2.8!

It should be kept in mind that the electron-ion DCF in E
~2.6! plays the role of a nonlinear pseudopotential, whi
takes into account nonlinear electron accumulations aro
an ion and the influence of other ions in the form of a line
response expression; if the electron-ion DCFCeI(r ) is re-
placed by a usual pseudopotential2bwb(r ), thenveff(Q) in
Eq. ~2.6! becomes an effective ion-ion interaction in pseud
potential theory based on the linear-response formalism.

From the above formal and exact expressions~2.5!–~2.7!,
the QHNC equations are obtained by introducing the follo
ing five approximations.2

~1! The electron-ion bridge function is neglected in E
~2.7!: BeI.0 ~the HNC approximation!.
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5316 PRB 58JUNZO CHIHARA AND GERHARD KAHL
~2! The bridge functionBII of the ion-electron mixture is
approximated by that of a one-component hard-sphere fl
@modified HNC~MHNC! approximation18#.

~3! The electron-electron DCFCee(Q) in the ion-electron
mixture is approximated by that of the jellium mode
Cee(Q).2bvee(Q)@12Gjell(Q)#, which is written in terms
of the the local-field correction~LFC! Gjell(Q). In our cal-
culation we use the LFC proposed by Geldart and Vosko19

~4! An approximateveI(r ) is obtained by treating a liquid
metal as a nucleus-electron mixture20 in the form:

veI~r !52ZA

e2

r
1E vee~ ur2r 8u!ne

b~r 8!dr 8

1mXC@ne
b~r !1n0

e#2mXC~n0
e!. ~2.9!

Here, ne
b(r ) is the bound-electron distribution andmXC(n)

the exchange-correlation potential in the local-density
proximation, for which we have adopted th
Gunnarsson-Lundqvist21 formula. Actually, the bound-
electron distributionne

b(r ) is determined as the bound
electron part ofne(r uUe

eff)[ne
0b(r uUe

eff)1ne
0 f(r uUe

eff), when
the electron-ion RDF in Eq.~2.7! is calculated from the wave
equation for an electron under the external potentialUe

eff(r)
5veI(r )2GeI(r )/b.

~5! The bare ion-ion interaction is taken as pure Coulo
bic: v II(r )5ZIe

2/r .
Under these approximations, a set of integral equati

~2.5!–~2.7! can be solved; its solution allows the determin
tion of the electron-ion and ion-ion correlations together w
the ionization and the electron bound states.

For the MHNC closure relation we have used in this wo
the parametrization for the bridge function of a suitably ch
sen hard-sphere reference system that was proposed rec
by Rosenfeld.12 In this version of the MHNC the universalit
hypothesis of the bridgefunction18 ~which ‘‘justifies’’ the
MHNC! is generalized to the level of the bridgefunctionalof
the reference system. This functional can be calculated v
easily for the general case of an inhomogeneous system
hard spheres22 involving only fundamental measures; th
functional is then specialized—as required for our case—
system of homogeneous hard spheres. This fundame
measure bridge functional is given in terms of characteri
quantities of theindividual spheres and involves only inte
grations over known functions. Furthermore, in this appro
the functional can be optimized by imposing the test-part
~or source-particle! self-consistency, which is realized by th
transition from an inhomogeneous system to a homogene
one if the source of the external potential becomes a par
of the liquid.23 The Ornstein-Zernike equation is then solv
for the structure function of the homogeneous system al
with the closure relation where the bridge function is calc
lated by means of the abovefunctional, assuming that the
universality hypothesis is valid. The obtained structure fu
tion is then fed into the bridge functional yielding an im
proved bridge function. This procedure is iterated until n
merical self-consistency is obtained in a sense that
structure function of the preceding step differs only marg
ally from the present step.

This method, which we denote by QHNC-MH, is in fa
able to produce accurate data for the structure factors o
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as demonstrated in Fig. 1 in the direct comparison with
periments at the triple point~313 K andr s55.388!; the re-
sults of the neutron-scattering24 and x ray25 experiments are
denoted by the open and full circles, respectively.

III. RESULTS AND DISCUSSION

In this section, we apply the QHNC-MH method to ca
culate the structure factors for compressed liquid-rubidi
under high pressure~0.2, 2.5, 3.9, and 6.1 GPa!, i.e., exactly
the same pressure values under which Tsujiet al.14 per-
formed their experiments to measure the structure fact
The corresponding densities are estimated by these au
to be 1.07, 1.41, 1.56 and 1.95 times the normal density;
temperatures are 370, 520, 540, and 570 K, respectively

In a first step we apply our method to the 3.9 GPa st
and examine how accurately the MHNC equation~in combi-
nation with the Rosenfeld bridge function! is able to repro-
duce the RDF obtained in an MD simulation for the sam
potential derived by the QHNC-MH method: the comparis
is shown in Fig. 2, where the QHNC-MH result~full curve!
is found to be undistinguishable from the MD RDF~open
circles!. This comparison confirms that the QHNC-M
method is able to produce reliable structure data that ar
accurate as those obtained in computer experiments eve
compressed liquids at high densities; hence, MD simulati

FIG. 1. Ion-ion structure factorSII(Q) for liquid Rb at a tem-
perature of 313 K; the QHNC-MH method~in combination with the
Rosenfeld bridge functional! yields a structure factor~full curve! in
excellent agreement with results observed by the neutron scatte
~Ref. 24! ~open circles! and x ray~Ref. 25! ~full circles!.

FIG. 2. Ion-ion RDFgII(r ) at a pressure of 3.9 GPa~full curve!
calculated by the QHNC-MH method: results are undistinguisha
from those obtained in MD simulations~open circles!.
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PRB 58 5317STRUCTURE FACTOR AND ELECTRONIC STRUCTURE . . .
are no longer required in this study.
We can therefore proceed to compare the QHNC-MH

sults withexperimentaldata for all high-pressure states: th
structure factors calculated for pressures ranging from 0.
6.1 GPa are plotted by full curves in Fig. 3 in comparis
with the experimental results shown by full circles. We ha
found that our method gives structure factors in reasona
agreement with experiment for 0.2 and 6.1 GPa, in particu
in view of the difficulties occurring in experiments und
high pressure~cf. discussion in the Introduction!. However,
in the case of 2.5 and 3.9 GPa, the agreement between
theoretical and experimental results is not so convincing
systematic deviation between the data sets is observed
their analysis of their experiment, Tsujiet al.14 estimated the
density of liquid Rb under pressure from the measured lat
constant of crystalline Rb including corrections for the th
mal expansion and the volume jump at melting. Howev
according to Tsuji,17 there remains an uncertainty in th
evaluation of the density that may be responsible for th

FIG. 4. The reestimated structure factorSII(Q) ~full curve! of
liquid Rb at 3.9 GPa where the Wigner-Seitz radiusa has been
decreased by a factor of 1/1.05 as a unit of length; reasonable a
ment with experimental results~Ref. 14! ~open circles! is observed.

FIG. 3. Structure factorsSII(Q) of liquid Rb under high pres-
sures: 0.2, 2.5, 3.9, and 6.1 GPa; the QHNC-MH results~full curve!
are compared with experiment~Ref. 14! ~full circles!. The densities
corresponding to these pressures are 1.07, 1.41, 1.56, and
times the normal densityn0 , respectively.
-
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deviations. Therefore, we have modified the density for
3.9 GPa case: when decreasing the ion-sphere ra
~Wigner-Seitz radius! a @a5(3V/4p)1/3 and V being the
specific volume per ion# by a factor of 1/1.05 we can find
indeed a reasonable agreement between the theoretica
experimental results for the 3.9 GPa state, as shown in
4; a similar agreement is found also for the 2.5 GPa cas
the Wigner-Seitz radiusa is decreased by 5%.

It should be mentioned that the concept of our QHN
method is for high pressures as reliable and valid as for
room pressure, since all the approximations entering
method remain valid as the pressure is increased. This
can be seen from the result for the electronic structure, wh
will be discussed in the following. The bound levels of th
ion in compressed liquid Rb are almost the same as thos
room pressure. As a consequence, the electron-ion RD
remain—as displayed in Fig. 5—almost unchanged for
five states considered. The electron-ion DCFCeI(r ) is deter-
mined by Eq.~2.7!. Figure 6 illustrates the pressure variatio
of the electron-ion DCFCeI(r ), which—as noted above—
plays the role of a nonlinear pseudopotential in the expr
sion for the effective ion-ion interaction@cf. Eq. ~2.5!#; also
the electron-ion DCF does not change significantly un
these pressure variations. For liquid alkalis, it is well know
that the Ashcroft pseudopotential provides effective pair

ee-

FIG. 5. The electron-ion RDF’sgeI(r ) of liquid Rb under pres-
sure~ranging from 0 to 6.1 GPa!; note that thegeI’s remain almost
unchanged under pressure variation.

FIG. 6. The electron-ion DCF’sCeI(r ) of liquid Rb under pres-
sure~ranging from 0 to 6.1 GPa!; these functions play the role of
nonlinear pseudopotentialwb(r ) to determine the effective ion-ion
interaction. The dash-dotted curve denotes the Ashcroft pseud
tential with r c51.27 Å.

.95
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5318 PRB 58JUNZO CHIHARA AND GERHARD KAHL
tentials which produce with standard liquid state theor
RDF’s in good agreement with experiments, if the core
dius r c is properly adjusted. In Fig. 6, we plotted the As
croft pseudopotential with the core radiusr c52.40aB
51.27 Å, which produces for the state~T5313 K, r s
55.388! practically the same structure factor as obtained
the QHNC-MH method~cf. Fig. 1! using the Gerdart-Vosko
LFC. It is interesting that—although the Ashcroft pseudop
tential is quite different from the QHNC pseudopotential
room pressure—these two pseudopotentials produce a
most identical structure factor.

Here, note that the electron-ion structure factorSeI(Q),
the Fourier transform of the electron-ion RDF, is written
the following form:

SeI~Q!5An0
I n0

e CeI~Q!xQ
0 /D~Q! ~3.1!

5
r~Q!

AZI

SII~Q!, ~3.2!

where

r~Q![
n0

eCeI~Q!xQ
0

12n0
eCee~Q!xQ

0 , ~3.3!

D~Q![@12n0
I CII~Q!#@12n0

eCee~Q!xQ
0 #

2n0
I n0

euCeI~Q!u2xQ
0 . ~3.4!

Hence, Eq.~3.2! can be represented inr space as

n0
egeI~r !5r~r !1n0

I E r~ ur2r 8u!gII~r 8!r 8, ~3.5!

which states that the free-electron distributionn0
egeI(r )

around an ion can be described exactly by the superpos
of surrounding ‘‘neutral pseudoatoms.’’ Each ion carries
screening electron-cloudr(r ) @with *r(r )dr5ZI#, and
makes it thus electrically neutral~including the core elec-
trons! as if it were an atom. Therefore, in this formalism
liquid metal can be considered to be composed by neu
pseudoatoms. Using Eq.~3.3!, the free-electron density dis
tribution of a pseudoatom is calculated for liquid Rb und
high pressures~cf. Fig. 7!: the results indicate that th
electron-density distribution of a pseudoatom suffers no
nificant change outside of the core region~the region within
about 2 Å where the bound-electron density is large! under
this pressure variation. The dash-dotted curve in this fig
denotes the electron-density distribution of a pseudoatom
termined via the Ashcroft pseudopotential, which does
produce the inner-core structure. The inner part of the d
sity distribution does not contribute to the ion-ion effecti
interaction significantly; the outer part~from around 2 Å
onwards!, where the bound-electron density becomes ne
gible, may be important to determine the ion-ion interacti
Summarizing, we can conclude that a pseudoatom includ
bound electrons remains almost unchanged in compariso
room pressure even when the density is increased by a fa
of nearly 2~high pressure state 6.1 GPa!. On the other hand
Tsuji et al. expected that a hard-sphere model26 might be
successfully applied to describe the structure of liquid alk
metals and that the effective diameter of the hard sph
s
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should vary with pressure due to the change in the scree
effect; that is, the size of a pseudoatom is assumed to
changed with pressure. Based on this model, the effec
hard-sphere radiussH is considered to vary under pressu
variation keeping the packing fractionh5pn0

I sH
3 /6 to be

constant at a value of 0.45; this leads to a unifor
compression model in which the position of first peakQ1 in
the structure factor should increase proportionally to (n0

I )1/3

with increasing pressure.
We also find in our approach that the effective ion-i

interaction for liquid Rb is practically invariant under the
pressure variations~cf. Fig. 8!. It remains almost the same a
the potential at room pressure, in particular, in the reg
where the first peak of the ion-ion RDF appears under th
high pressures: the large black circle in Fig. 8 denotes
first peak position~3.89 Å! of the ion-ion RDF at the pres
sure 6.1 GPa. It should be noted that the effective ion-

FIG. 7. The electron-density distributionr(r ) of a pseudoatom
in liquid Rb under pressure~ranging from 0 to 6.1 GPa!; the
5s-electron density distribution of a free atom is displayed for co
parison~small full circles!. r(r ) is plotted in units ofaB

23 ~aB being
the Bohr radius!. The dash-dotted curve indicates the density dis
bution calculated with use of the Ashcroft pseudopotential, wh
cannot describe an inner-core structure due to the pseudization

FIG. 8. The effective ion-ion interactionveff(r) of liquid Rb
under pressure~ranging from 0 to 6.1 GPa!; the effective interaction
for compressed liquid Rb remains practically unchanged with
spect to room pressure. The large black circle denotes the first
position of the ion-ion RDF at pressure 6.1 GPa; the potential in
vicinity of this point contributes mainly to the structure factor. Th
Ashcroft potential is plotted by the thin dash-dotted curve.
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PRB 58 5319STRUCTURE FACTOR AND ELECTRONIC STRUCTURE . . .
potential ~dash-dotted curve! determined from the Ashcrof
pseudopotential has almost the same gradient in the repu
region as the potential obtained from the QHNC-M
method. In contrast to the hard-sphere model, where the
sential repulsive part of the effective ion-ion potential sho
be scaled in units ofa, no scaling feature is observed for th
effective ion-ion interaction in units of the Wigner-Seitz r
dius a. Nevertheless, all the calculated structure factors
all these five pressure values~with densities estimated b
Tsuji et al.14! almost coincide in one single curve when sc
ing the wave number in units of the Wigner-Seitz radiusa
~as shown in Fig. 9!. In this figure, a deviation between ca
culated and experimental results is in the lowQ region. We
know from Tsuji17 that the experimental values in this regio
are affected with large error bars and we expect that th
deviations between theoretical and experimental results
disappear when more refined experimental data are availa
In this context, it should be noticed that this scaling prope
can be ascribed generally to a specific feature character
for ion-ion potentials of alkali liquids as will be discusse
below.

Even if the liquid-rubidium potential under these press
variations can be considered as invariant with respect to
one at room pressure~neglecting small deviation!, we have
also observed the above mentioned scaling property in
structure factor~cf. Fig. 9!; this means that the liquid
rubidium potential has a very special feature. For ageneral
liquid ~the Lennard-Jones potential for example!, it is impos-
sible to display the structure factor of two different stat
scaled in length units in such a way that they practica
coincide. For a liquid alkali metal such a scaling prope
canbe observed: to examine this, let us consider liquid Li
a further example. At first we calculate the effective ion-i
interaction of liquid Li at room pressure~470 K, n0 with r s
53.308!, and assume—as for Rb—that the effective Li p
tential is unchanged with respect to the one at room press
Then, we can easily find the following three sets of tempe
tures and densities:~470 K, n0!, ~600 K, 1.34n0!, and ~750
K, 2.37n0!, i.e. states for which the structure factors can
scaled almost in a single curve in units ofa, as demonstrated
in Fig. 10; here, open circles denote the result of the neut
scattering experiment27 at room pressure. The above set
densities and temperatures have been chosen just be
these states exhibit a clear scaling. As mentioned before

FIG. 9. Structure factorsSII(Q) of liquid Rb calculated for 0,
0.2, 2.5, 3.9, and 6.1 GPa; all results are scaled in units of
Wigner-Seitz radiusa and practically coincide in one curve; th
experimental result~Ref. 14! for 6.1 GPa is plotted by full circles
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ion-ion potentials based on both Ashcroft and t
QHNC-MH pseudopotentials yield an almost identical stru
ture factor. However, the Ashcroft and QHNC-MH pseud
potentials are quite different from each other as is shown
Fig. 8; nevertheless, it is confirmed that this Ashcroft ion-i
potential has also the same scaling property for the sa
states as examined by the QHNC-MH method. This fact
be interpreted that the structure factor is determined ma
by the repulsive part of the ion-ion interaction where bo
potentials have almost the same gradient as was show
Fig. 8. For alkali liquid metals, this scaled structure factor
not very sensitive to states specified by the plasma param
G[be2/a and r s[a/aB in the sufficiently high-density re-
gion. This is the main reason why structure factors of
alkali liquids ~from Li to Cs! near the triple point coincide
almost in a single curve when scalingQ in units of the
Wigner-Seitz radiusa, as was observed experimentally28,29

and theoretically.30,11,31

This scaling property in the structure factors of liquid R
signifies that the first peak of the structure factor appe
almost at the same positionQ1a ~in scaled units! for all these
pressures; this means that the position of the first peakQ1 in
the structure factor~taken in absolute values! should increase
proportionally to x5(V/V0)21/3, where V0 is the specific
volume at room pressure. In our calculation, this peak po
tion in reduced units is estimated from Fig. 9 to beQ1a
54.30, from which we obtain the relationQ151.51x be-
cause ofa5r saB52.58/x; this linear relation is plotted in
Fig. 11. In this figure, the full and the open circles denote
experimental points obtained for several states by T
et al.;32 in particular, the five full circles represent thos
states which we have investigated in our theoretical stu
i.e., for pressure values 0, 0.2, 2.5, 3.9, and 6.1 GPa, res
tively. Theseexperimental Q1 points in Fig. 2.7 are close to
the linear relation which was determined from thecalculated
structure factors; thus, this figure demonstrates that
uniform-compression model~corresponding to a linear rela
tion denoted by the full line! is indeed valid, although there
is some uncertainty due to difficulties in estimating the de
sity and to problems in experiments under high pressure
general.

e

FIG. 10. Structure factorsSII(Q) of liquid Li calculated for two
states,~1.34n0 , 600 K! and~2.34n0 , 750 K!, under the assumption
that the effective ion-ion interaction is the same as that for ro
pressure. The structure factor~full curve! of liquid Li at room pres-
sure is also plotted for comparison; when scaled in units of
Wigner-Seitz radiusa, all three structure factors practically coin
cide in a single curve. The experimental data~Ref. 27! ~neutron
scattering! at room pressure is plotted by open circles.
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IV. CONCLUSIVE DISCUSSION

The QHNC method in combination with the Rosenfe
bridge functional has been shown to reproduce the exp
mental structure factors of liquid Rb under high pressu
~ranging from 0 to 6.1 GPa! in general with a reasonable
sometimes even with a rather good accuracy; this has to
seen in particular in view of the experimental uncertaint
~peak height, density values, low-Q behavior! which are
caused by the extreme experimental conditions. For the
of 2.5 and 3.6 GPa the experimentally estimated dens
have to be readjusted in terms of a 5% variation of
Wigner Seitz radiusa. Furthermore we observe that th
structure factors coincide almost in one single curve if wa
numbers are scaled in units ofa ~Fig. 9!. This indicates
clearly that liquid Rb is uniformly compressed as the pr
sure is increased: this, in turn, signifies that the first p
positionQ1 of the structure factors increases proportional
(V/V0)21/3 ~Fig. 11!.

It must be mentioned that in contrast to our result, S
mojo et al.16 conclude from their result obtained in the firs
principles MD simulations that some deviation from unifor
compression exists for the 6.1 GPa state, though liquid R
compressed uniformly at 2.5 GPa. Their experimental RD
for 2.5 and 6.1 GPa are obtained by a Fourier transform
the experimental structure factors of Tsujiet al. On the basis
of the RDF’s they observe a different behavior than on
basis of the structure factor, although they have used
same experimental structure factors and Rb states as we
~i! the first peak position in the RDF at 2.5 GPa follows t
uniform compression model, while the first peak position
the RDF at 6.1 GPa shows a deviation from the unifo

FIG. 11. The position of the first peakQ1 in the structure factor
for liquid Rb as a function of (V/V0)21/3; open and full circles
represent experimental results~Ref. 32!. In particular, the full
circles are the points determined from the experimental struc
factors under pressure: 0, 0.2, 2.5, 3.9, and 6.1 GPa plotted in
1 and 3. The solid line denotes our calculated results~uniform com-
pression model! derived from the first peak position (Q1a54.30) in
the scaled structure factor in Fig. 9.
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compression model. Thus they have asserted that their
culated result agrees with the experiment.~ii ! In contrast to
their RDF’s, the experimental structure factor at 2.5 G
shows a substantial deviation from the uniform compress
compared to the 6.1 GPa state; the positionQ1 of the first
peak inSII(Q) lies far away from the uniform compressio
line in Fig. 11 while, on the other hand, the experimen
structure factor at 6.1 GPa shows that the uniform comp
sion model is still valid: theQ1 point for 6.1 GP in Fig. 11 is
very close to the uniform compression line.

According to Tsuji,17 this discrepancy between the co
clusions based on the RDF’s and the structure factors is
sible, since there is some experimental ambiguity in
value of the peak height in the structure factor while the pe
position is accurate and reliable. Nevertheless, from all
experimental data displayed in Fig. 11, we can conclude
liquid Rb is compressed uniformly up to a pressure of 6
GPa; however, a more detailed discussion if deviations fr
the uniform compression model~cf. Fig. 11! have any physi-
cal meaning is not very conclusive, due to the uncertainty
the evaluation of the experimental density and the difficult
encountered in experiments under high pressure.

It is interesting to notice that the structure factors of co
pressed liquid Rb coincide practically in one single curve
wave numbers are scaled in units of the Wigner-Seitz rad
a, despite the fact that the effective ion-ion interaction
mains under pressure unchanged with respect to room p
sure; this means that interaction potentials of liquid alk
metals have a special characteristic property, as we h
demonstrated and confirmed in addition for the case of liq
Li in Fig. 10. The neutral pseudoatom in compressed liq
Rb remains almost unchanged under pressure varia
which, in turn, is the reason why the effective ion-ion inte
action remains practically invariant, similar to stat
independentinteractions, such as the one for liquid argon

We have demonstrated in this contribution that the QHN
method can treat the ‘‘outer-structure’’ problem~i.e., calcu-
lation of the ion-ion and electron-ion RDF’s! and the ‘‘inner-
structure’’ problem~i.e., calculation of the electronic struc
ture of the ion! in a self-consistent way using the atom
number as the only input data: therefore, this method can
considered to be very useful to treat a plasma, where
ionizationZI is not known beforehand and where there is
way of constructing a pseudopotential to give the effect
ion-ion interaction. From the successful results for co
pressed liquid Rb presented here we can conclude tha
QHNC method is expected to be nicely applicable for plas
states in a wide range of densities and temperatures.
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