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Criterion for determining clustering versus reentrant melting behavior
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We examine in full generality the phase behavior of systems whose constituent particles interact by means
of potentials that do not diverge at the origin, are free of attractive parts, and decay fast enough to zero as the
interparticle separationgoes to infinity. By employing a mean field-density functional theory which is shown
to become exact at high temperatures and/or densities, we establish a criterion that determines whether a given
system will freeze at all temperatures or it will display reentrant melting and an upper freezing temperature.
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[. INTRODUCTION der to tune the bounded interactions: the solvent quality,

temperature, chain length, salt concentration, etc., will all

The phase behavior of systems whose constituent pagffect the effective potential. Thus, it appears to be useful to
ticles interact by means of pair potentials diverging at theconsider such potentials in some generality in order to be
origin is a problem that has been extensively studied in thé&ble to draw conclusions about the expected phase behavior

last few decades. The whole range of inverse power-law paif Systems interacting by means of these.

potentials have been examined, ranging from hard spheres TWO model systems in this category have already been
(HS’s) to the one-component plasné@CP and it has been studied in some detail. One is the penetrable spheres model

established that excluded volume effects are mainly resportfPSM [5,6], in which the pair potential is a positive constant
sible for bringing about the freezing transition. The crystal for distances <o and vanishes otherwise. The other is the

structure in which a liquid freezes is subsequently deter—GaUSS'an core mod¢GCM), introduced in the mid 1970's

mined by the steepness of the repulsion, with hard repulsion?y Stillinger([7]. In the GCM, the pair potential(r) has the

. : orm v (r) =& exfd —(r/0)?], with & being an energy and a
favoring a face cer_ltered cup(tcc) lattice and SOf.t ones a length scale. It has been shown that the GCM models very
body centered cubiébco) lattice [1]. Power-law diverging

; . . o . accurately the effective interactions between the centers of
potentials result into freezing at arbitrarily high tempera

. ) ~~ ““mass of linear polymer chai8,8—-14.
tures. However, the divergence of the potential alone is not o pgM was studied by means of cell-model calcula-

enough to cause such a phenomenon, as demonstrated {5 and computer simulationgs], liquid-state integral
cently by Watzlawelet al. [2] who employed a logarithmi-  gquation theorie§15], and density-functional theorj16];
cally divergent pair potential, suitable to describe effectiveihe fluid structure of the PSM has been further studied re-
interactions between star polymers in good solvents. It wagently by Rosenfeldt al. by using ideas based on the uni-
shown that the strengttprefactoy of the logarithmic poten-  versality of the bridge functiondfL7]. It was found that no
tial, determined by the number of arnfisof the stars, is reentrant melting takes place because the solid always lowers
crucial in determining whether the system freezes or remaings free energy by allowing for multiply occupied crystal
fluid at all densities. As a consequence, the phase diagram eftes, a mechanism that is called clusterifg The cluster-
star polymers was predicted to display reentrant melting anthg mechanism stabilizes therefore the solid at all tempera-
a critical freezing valud =34 of arms, such that for<f.  tures. Hence, the topology of the phase diagram of the PSM
the system remains always fluid]. is similar to that of power-law diverging potentials, when
Another interesting class of interactions are those whicljetails about the clustering structure of the solids are disre-
do not diverge at the origin, i.e., they are bounded. Suclyjarded. On the other hand, the GCM has been studied even
potentials arise naturally as effective interactions betweemore extensively by means of molecular dynamics simula-
the centers of mass of soft, flexible macromolecules such agons[18,19, high-temperature expansiof0], and the dis-
polymer chaing3], dendrimerg4], polyelectrolytes, etc. In- covery of exact duality relations in the crystalline stg2&].
deed, the centers of mass of two macromolecules can coifRecently, a full statistical-mechanical study of the GCM was
cide without violation of the excluded volume conditions, performed and it was established that the topology of the
hence bringing about a bounded interaction. Moreover, thghase diagram of the GCM resembles that of star polymers.
same mechanisms that exist for tuning the usual, divergingreezing and reentrant melting accompanied by an upper
interactions between colloidal particles can be applied in orfreezing temperature were quantitatively calculd@®]. The
guestion that arises, therefore, is the following. Given a non-
attractive and bounded pair potential which satisfies the fol-

*Email address: likos@thphy.uni-duesseldorf.de lowing requirements guaranteeing stability and the existence
"Present address: Bayer AG, Central Research Divisionof the thermodynamic limif23]: (i) it is boundedii) it is
D-51368 Leverkusen, Germany positive definite(iii) it decays fast enough to zero at large

1063-651X/2001/68)/0312069)/$15.00 63 031206-1 ©2001 The American Physical Society



C. N. LIKOS, A. LANG, M. WATZLAWEK, AND H. LOWEN PHYSICAL REVIEW E63 031206

separations, so that it is integrable and its Fourier transforrber of neighboring molecules and in the absence of short-
exists, andiv) it is free of attractive parts; to which topology range excluded volume interactions the excess free energy of
belongs the phase diagram of the system? In this paper, whe systeni24] can be approximated by a simple mean-field
present an exact criterion which gives an answer to this queserm, equal to the internal energy of the system:

tion and show representative results for model systems that
confirm its validity. The rest of the paper is organized as
follows: in Sec. Il we present the physical arguments sup-
porting the mean-field theory of the models and in Sec. Il
we discuss the existence of a spinodal instability in thiswith the approximation becoming more accurate with in-
theory and its implications on the phase behavior. Wecreasing density. Then, E¢d) immediately implies that in
present a systematic comparison between theory and simul#is limit the direct correlation function(r) of the system,
tion in Sec. IV and we draw the generic phase diagrams ofi€fined ag24]

such systems in Sec. V. Finally, in Sec. VI we summarize
and conclude.

1
Falpnl=3 | [ arario(r=rpme), @

S*BFelp(r)]
op(r)op(r')

becomes independent of the density and is simply propor-
We will work with a general interaction(r)=e¢(r/ o) tional to the interaction, namely,
satisfying the requirements put forward above. Herend o
are an energy and a length, respectively, &gd) is some c(r)=—pu(r). (6)

dimensionless function. The latter does not have to be anaL-J . he | . h ith the O in-Zernik
lytic, i.e., discontinuities in the potential or its derivatives are 2S"d the last equation, together with the Omstein-Zernike

allowed. Without loss of generality, we assugg)=1. Let relation[25], we readily obtain an analytic expression for the

us call $(Q)=0c 3¢(Q) the dimensionless Fourier trans- structure factoS(Q) of the system as
form (FT) of the interaction. For more concretenéand for

the purposes of demonstratjowe introduce in addition the S(Q)=——.
family of bounded potentials .(r) depending on a tunable 1+pt 1(Q)
parametet,

c(r=r'[;p)=—lim ®)
p(r)—p

IIl. THE MODEL AND THE MEAN-FIELD LIMIT

)

This mean-field approximatioMFA) has been put forward
1+e ¢ and examined in detail in the context of the Gaussian core
vr)=e 1+l orE D model independently by Langt al.[22] and by Louiset al.
[26]. The model is particularly relevant from the physics
where¢ is a “smoothing parameter” having dimensions of point of view, due to its connection to the theory of effective
length. The casé=0 recovers the PSM whereas égrows  interactions between polymer chaifg14]. Here, we estab-
the interaction becomes smoother. Due to its resemblance ttsh the validity of the MFA at high densities for bounded,
the Fermi-Dirac distribution, we call this family the Fermi positive-definite interactions in general and we examine its
distribution modelFDM). The additional factor + e~ “’¢ in implications for the global phase behavior of such systems.
the numerator of the RHS of E¢l) ensures that the poten- Bounded and positive-definite interactions have been

tial varies frome atr=0 to zero atr — o, for all & studied in the late 1970’s by Grewe and Kl¢Rv7,28. The
We introduce dimensionless measures of temperature arabthors considered a slightly different model than the one
density as considered here, namely, a Kac potential of the form
KeT . v(r)=»"(yr), ®)
t=——=(Be) 7, 2
whered is the dimension of the space ang=0 is a param-
- - eter controlling the range and strength of the potential. More-
= gPUSZgE 3) ggﬁr, #(x) is a non-negative, bounded and integrable func-

wherekg is Boltzmann’s constant ang=N/V is the density g
of a system oN particles in the volume&/. We will refer to O=y¢(x)=A<=, C:f d™Xgh(x) <oe. ©)
7 as the “packing fraction” of the system.

The key idea for examining the high temperature and/oiGrewe and Klein were able to show rigorously that at the
high density limit of such model systems is the following. limit y— 0, the direct correlation function of a system inter-
We consider in general a spatially modulated density profileacting by means of the potentiéB) is given by Eq.(6)

p(r) which does not vary too rapidly on the scateset by = above. The connection with the case we are discussing here
the interaction. At high densitiepo®> 1, the average inter- is straightforward: as there are no hard cores in the system or
particle distancea=p~'"® becomes vanishingly small, and it a lattice constant to impose a length scale, the only relevant
holdsa<a, i.e., the potential is extremely long range. Every length is set by the density and is equapto®in our model
particle is simultaneously interacting with an enormous numand by the parametey ! in model(8). In this respect, the
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limit y—0 in the Kac model of Grewe and Klein is equiva- thermal energy. Then, the system will display a hard-sphere
lent to the limitp—co considered here. However, in the Kac type of freezing, to be discussed more explicitly below. An
model the strength of the interaction goes to zero simultaupper freezing temperatutg must exist forQ™ potentials,
neously with the increase in its range. Moreover, the validityimplying that such systems must remelttatt, upon in-
of the mean-field expression at large but finite densities andrease of the density. Hence, we reach the conclusion that
at low temperatures has not been tested in detail. Q" systems display an upper freezing temperature and reen-
trant melting. The criterion says nothing about the crystal
structure of the solid, however, which always depends on the
[1l. SPINODAL INSTABILITY AND FREEZING details of the interaction as well as the den$R@2,32.
. _ _ For potentials is in theQ* class, the mean-field argu-
We employ the MFA as a physically motivated working a5 presented above hold not only at high temperatures
hypothesus for now and, by direct comparison W'.th sw_nu_la—but also at low ones, provided that the requirements 1
tion results, we wil ?hOW later that it is '”d.ee‘?' valid. Within is satisfied, because these are molten at high densities for all
the framework of this theory, an exact criterion can be for-n,,, 0 temperatures. The validity of the mean-field theory
mulated, concerning thglstablllty of thg liquid phase at h'ghfor Q*-type systems, even at very low temperatures, was
temperatures and densm_es. The f““Ct!W) was assumed confirmed recently by direct comparison with simulation re-
to be decaying monotgmcally from unity at=0 to zero at g5 for the particular case of the Gaussian potefizi2). If
x— . For the function$(Q), there are two possibilitiesi)  the potential is in th@* class, the mean field approximation
It has a monotonic decay from the valug(Q=0) holds provided that the system is not already frozen, as we
=0 3[dx¢(x)>0 to the valuep(Q) =0 atQ—oo. We call ~ Will confirm shortly. Moreover, both kinds of systems dis-
such potential® ™ potentials. Obviously, the Gaussian inter- Play an unusual kind of “high density ideal gas” limit. In-
action belongs to this claséi) It has oscillatory behavior at deed, taking the expressiéf) for S(Q) and using the rela-
large Q, with the implication that it is a nonmonotonic func- tion S(Q)=1+ph(Q) [25], where h(Q) is the
tion of Q, attaining necessarily negative values for certaindimensionless Fourier transform of the pair correlation func-
ranges of the wave number. We call such potent@fspo-  tion h(r) of the uniform fluid, we obtain
tentials. Long-range oscillations @ space imply that(x)

changes more rapidly from unity at=0 to zero atr —o° in . t13(Q)
the Q* class than in th&@™ one. Moreover, let us cal, h(Q)=— — (10)
the value ofQ at which ¢(Q) attains its minimum, negative 1+pt""&(Q)
value.
If we are dealing with @~ potential Eq.(7) implies that At low Q's, where¢(Q) is of order unity, the term pro-

S(Q) has a maximum at precisely the wave vec@qrwhere  portional to the density in the denominator dominates in the
[ﬁ(Q) attains its negative minimumr|<%(Q*)| and this  limit of high densities and(Q) scales as- 1/p— 0. At high
maximum becomes a singularity at the “spinodal line” Q's, the Fourier transformp(Q) in the numerator is itself

pt 1 #(Q,)|=1, signaling the so-called Kirkwood instabil- small, with the result tha(Q), and hence also the correla-
ity of the systen]{28-31]. The theory has a divergence, im- tion functionh(r), is approaching zero. This, in turn, means
plying that the underlying assumption of a uniform liquid is that the radial distribution functiog(r)=h(r)+1 is very

not valid and the system must reach a crystalline state. Inclose to unity in this limit and deprived of any significant
deed, on the basis of the fluctuation-dissipation theoremstructure for all values aof and it only has some small struc-
S(Q) can be interpreted as a response function of the densityyre at smallr, which is in fact more pronounced f@~

to an infinitesimal external modulating field at wave numberpotentials than foiQ™ ones. In this limit, the hypernetted
Q [25] and a diverging value of this response functionchain (HNC) closure becomes exact, as the exact relation
clearly signals an instability. If the Fourier transformefx) g(r) =exd Bu(r)+h(r)—c(r)—B(r)], combined with the lim-
has negative Fourier components, then an increase in tens g(r)—1, h(r)—0, andc(r)— — Bv(r) forces the bridge
perature can be compensated by an increase in density in thgnhction B(r) to vanish. Moreover, Eqs$7) and (10) reveal
denominator of Eq(7), so thatS(Q,) will have a diver-  that the systems obey a scaling law, namely that the func-
gence at alt. We thus conclude th&* systems freeze at all tjons S(Q) andth(r) do not depend op andt separately
temperatures. but only on the ratig/t.

If we are dealing with @@* potential[ $(Q) monotonid, Systems in theQ™ class freeze before the spinodal is
then Eq.(7) implies thatS(Q) is also a monotonic function reached. In order to make quantitative predictions, we invoke
of Q at high densitied22]. For such potentials, one can the empirical Hansen-Verlet freezing criteri88,34], which
always find a temperature high enough, so that the assumptates that a system crystallizes wi#®Q) at its main peak
tions of Eqg.(4) hold and then Eq(7) forces the conclusion attains, approximately, the vall&Q, ) =S, =3. Although
that freezing of the system is impossible at such temperathis criterion was originally put forward for hard, atomic
tures. This does not imply, of course, that such systems dmteractionsHS, Lennard-Jones, efcrecent detailed analy-
not freeze at all; one simply has to go to a low enoughses have demonstrated that it holds for the freezing and the
temperature and density, so that the mean-field assumptioemelting transitions of ultrasoft particles such as star poly-
does not hold and the interaction is much larger that theners[2,35] and even for the nondiverging Gaussian interac-
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tion [22]. Hence, we assume that it is valid for the general 35 - . - .
class of systems we consider here and combining it with Eq. 20 % 1
(7), we obtain the equation of the freezing lin€z) as . t=1=80
s or=n=100
615(Q,)| N seneRe
. N
t =————1-1n=2.86 . 11 20 F .
i(7) w1-5.5 " 46(Q,)[7 (11
2 15} _
The value| ¢(Q, )| determines the slope of the freezing line SZ,' ol i
at the high {,») part of the phase diagram.
05 E
IV. COMPARISON WITH SIMULATIONS 00 b ]
We now wish to put these arguments in a strong test, 5| i
using the concrete family of the FDM, given by Ed). First — (2)
of all, we have calculated the Fourier transform of the poten- -10,5 o v " 25 2
tial v¢(r) of Eq. (1) numerically, establishing that members ' | R ' |

of the FDM with é< &, belong to theQ™ class and members
with £>¢.=0.49697 to theQ™ one. The GCM is also a 15

member of the latter class that we will discuss in what fol-
lows. 30 | 0r=n=60 1
AR o/=1=80
A. Systems displaying clusterin P ¢t=n=100
3 playing 9 25 F o, Ar=1=120 T
As examples of systems displaying clustering transitions, Analytic

we have taken the extremiand by now well-studied case
caseé=0 (the PSM as well as the casé=0.1 of the Fermi
distribution model of Eq.(1). We have performed stan-
dard Monte CarlodMC) NVT simulations for a large num-
ber of values for the temperature and density. We begin with
the PSM for which the analytical expressién takes the
form

S(Q)

-1

(12 0.0 i s '
0 5 10 15 20

Qo

S(Q)=|1+24pt™*

sinQa) — (QG)COS(QU)>
(Qo)°

The high-temperature—high-density freezing line of Eg. _
(11) takes for this choice of the formt(75)=1.033. To FIG. 1. (@ The productt(h(r)) for a FDM with £&=0 PSM,

test the analytical expression of E32), we move along the along the diagonal= # at high packing fractions, as obtained from
“diagonal” t=7, a combination that lies almost on the MC simulations. The results close te=0 are noisy due to poor

Hansen-Verlet estimate for the location of the freezing Iine.StatiStiCS there. All results collapse onto a single cu. The

In Fig. 1 we show the comparison of the analytical resultﬁcﬁirégf‘:::j'tngfSEtruflt;)re factdiQ), shown together with the ana-
with those obtained from the MC simulations 16(Q) and 422
we also demonstrate that the MC curves for the quantitsure involves three self-consistency parameters, determined
t(h(r)) all collapse onto a single line, amply demonstratingin such a way that the virial-compressibility, Gibbs-
the validity of the mean-field approximation for the PSM. In Duhem and zero-separation consistency conditions are
order to further investigate the validity of the MFA, we have fulfilled. At the same time, the present results are of the
performed MC simulations in a variety of thermodynamic same quality as the recently obtained results of Rosenfeld
points and we present a selection of the obtained results. Wet al. [17], based on ideas of the universality of the bridge
present a selection of these in Figs. 2 and 3 and discuss thefinctional.
below. In Fig. 2(b) we perform the same comparison but now at
In Fig. 2(a) we show a comparison between the MC andfixed temperaturé=5.0 and increasing packing fractiop
MFA results for the radial distribution functiog(r) along  As can be seen, at this temperature, the MFA, which was
the “diagonal” t=7. It can be seen that the agreementoriginally formulated as a high-density approximation,
between the two is already very good &t n=4.0 and proves to perform extremely well even at intermediate pack-
thereafter it improves markedly with increasing temperaturengs, »=0.5, for instance. This is a direct consequence of the
and density. The results obtained from the present theory at@oundedness of the interaction combined with a temperature
of the same quality as those obtained by Fernetual. [15], t>e&. Indeed, for small densities, the direct correlation func-
who used the sophisticated zero-separatibSEP closure  tion tends to the Mayer functiong(r)=exd—pBv(r)]—1
to investigate the liquid structure of the system. This clo-[25]. If we are dealing with a bounded interaction at high
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20 25 3.0 0 5 10 15 20
0o
FIG. 2. (a? The functiong(r) of_the PSM for sele_cted.points FIG. 3. (3 Same as Fig. ®) but now for fixed =3.0 and
along the “diagonal”t=7 as obtained from theorfthick lines increasing temperaturéb) The structure factors at the thermody-
and simulation(thin lines. (b) Same but now for fixed temperature namic points of(a), comparison between theofjnes) and simula-
t=>5 and increasing packing fraction tion (points.

temperature, we can linearize the exponential, obtaining N
c(r)=—Bu(r) at low densities, which matches with the transform ofh(r),h(Q), tends to zero ap™*, this is com-
MFA expression, Eq(6), at high densities, thus leading to pensated b){ the large densijty so that the structure factor
the conclusion that the MFA is an excellent approximation atS(Q) =1+ ph(Q) displays the signature of strong ordering
all densities For unbounded interactions the linearization ofthrough the pronounced peaks seen in Figb) and 3b).
the exponential is evidently impossible. Further, we performed MC simulations at selected points
In Fig. 3 we present a comparison between MC and MFAdeeply inside the regiot<t;(#), finding that the obtained
at fixed packing fractiony=3.0 and increasing temperature. structure factors displayed Bragg peaks and hence confirm-
As can be clearly seen, the validity of the MFA improvesing the prediction that the system is frozen there. Putting alll
with increasing temperature. For bounded interactions, aour results together, we draw in Fig a semiquantitative
increasing temperature implies a “washing-out” of the cor-phase diagram of the PSM, accompanied by an assessment
relation effects caused by tliimcreasingly weakinteraction  of the validity of the MFA at selected thermodynamic points.
effects and a tendency of the system towards the particularhe MFA appears to be an excellent approximation at all
“high-density ideal gas” limit characterized by the tendency densities above the temperature 3.0. Hence, we take as
of the functiong(r) towards unity. However, it is an inter- an estimate for the freezing line above3.0 the MFA-
esting peculiarity of these systems that unlike the usual idedflansen-Verlet lind;=1.033p= 7; for lower temperatures,
gas, the limitg(r)—1 [or, equivalentlyh(r)—0] does not we simply connect the pointz{t)=(3.0,3.0) with the point
imply a corresponding limiS(Q)—1. Though the Fourier (#,t)=(0.5,0), which obtains from the consideration that at
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FIG. 4. The phase diagram of the PSM, along with the points
where the mean field theory brings excellent agreement with simu- 3.0 T T T
lation (filled circles, fairly good agreemeriempty squaresand no

good agreemer(trosses These symbols should help delineate the a5 | .?\ i
domain of validity of the mean-field theory. ’ fh% — 1=40,1=40
R e t=4.0,m=50
t=0 the PSM reduces to the hard sphere system whict 20 & rlh TTo-t=60,m=80 1
1 ¥

is known to freeze at a fluid densityys=0.5. The mono-
tonic shape of the freezing curve for low temperatures arises
from detailed considerations there, which can be found inz
Ref.[6].

Next we present in Fig. (8 comparison for the FDM
with £=0.1. For this choice of, the Hansen-Verlet-based
freezing line takes the formy=0.712y. The selected points
lie in the fluid region and the comparison indicates once
more the excellent accuracy of the MFA both fpfr) and

for S(Q). The radial distribution functiog(r) of this model 00 - . s T 20
is deprived of the jump at= o seen in the PSM; the latter is 06

caused by the discontinuity of the PSM potential there. How-

ever, a similarity between thg(r)’s of the §&=0 and¢=0.1 FIG. 5. (8 Comparison between theorithick lines and

models is that they both attain their maximum values at fullsimulation (thin lines results forg(r) of a FDM system withé
overlaps between the particless0 and thereafter they de- =0.1. (b) Comparison for the structure factor$ines: theory;
cay rapidly, featuring a depletion region arourrd o. This points: simulation for the same system at the thermodynamic
is a characteristic pointing to a strong clustering property inpoints of(a).

the fluid phase, a property thereafter inherited by the incipi-

ent thermodynamically stable crystal; the number of particlegmit with increasing density, the integral 7 Jr2g(r)dr

“sitting on top of each other” and thereby occupying the tends to a constant and herldgx p at high densities, where

same crystal site scales linearly with density. In order tothe second term on the RHS of Ed.3) dominates.

corroboratg tr_ns claim, we can argue in two different ways, Second, we can use the waveveagy at which the fluid
using the liquid as a reference point. . . .
structure factor has a maximum in order to estimate for the

First, let us consider the number of particlds in the : o .
fluid phase whose centers are, on average, within a distané%mce constana of the incipient crystal through the relation
axQ, . For the models at hand, this maximum is entirely

o from a given particle. The numbeX. is given by the . - ) > ;
formula determined by the pair potential; unlike in usual fluids fea-

turing diverging interactions, for whic®, scales ap'®, in

our cas€Q, knows nothing about the density. Thus, all post-
freezing crystals have the same lattice constant, although
their average density is a linear function of the temperature.
In Fig. 6 we show the function #r?g(r) within a par- This clearly shows that clustering must take place in the
ticle diametero for a sequence of points along the freezingcrystal: by allowing more and more particles to occupy the
line of the PSM. As all these curves tend to a commonsame lattice sites, a practically constant effective density of

NC=1+4qrprrzg(r)dr. (13
0
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FIG. 6. The quantity 4r2g(r) within the diameters of the
PSM along the freezing liné=#. All the curves converge to a 1.1 T T T T T
single one at high densities, indicating that the integral

. . i 1.0

47pf3r2g(r)dr scales linearly with density.
0.9
clusters is maintained in the crystal, thus leading to a 08
density-independent lattice constant. 0.7
6 0‘6
B. Systems displaying reentrant melting = 05

We now turn our attention to the opposite case, namely  ,
pair potentials belonging to th@* class. As an example
within the FDM family, we have taken the model with pa-
rameteré=0.6 and performed a comparison between MC 02
and MFA results. A characteristic example is shown in Fig. |
7. As can be seen in Fig(d, unlike the case oQ™-class

0.3

potentials, the radial distribution function is completely de- 90 4 5 0 B 20 25 30
prived of any structure, although the thermodynamic param- 0o

eters are in the same regime as those presented in Figs. 2, 3,

and 5. In fact, in the present casg(r) has a minimum at ~ FIG. 7. (@ Comparison between theorithick lines and
r=0, not a maximum. This complete lack of structure is Simulation (thin Im_es) results forg(r) of a FDM _system with
reflected in the shape &(Q), shown in Fig. Tb). £=0.6. (b) Comparison for the structure fact8(Q) (lines: theory;

These characteristic features for B¢ class are not an points: simulation for the same system at the thermodynamic point
of (a).

artifact of the relatively high temperature chosen in the re-
sults of Fig. 7. They persist even at extremely low tempera-

tures, provided the density is high enough. This has beefities at arbitrarily small but finite temperatures is the uni-
amply demonstrated recently for the case of the Gaussial®rm fluid.

core model, another member of t& class[22]. In order to

stress this point we present in Fig. 8 thé) and S(Q) of V. GENERIC PHASE DIAGRAMS

the GCM att=0.01 andz=6.0. Thoughg(r) displays some We now tumn to the opposite limit of the low-

;trl#;tttfj rri: %Ff) ;c;r;eZiinghifsérrlé%ﬁ%g?cffga) er]tc))i\g;rirll 0 temperature—low-density part of the phase diagram. There,

9 - . : y trartly following the original ideas of Stillingef7], a HS mapping
small but finite temperature, a high enough density can b%an be performed, as follows. The Boltzmann factor exp
found for which the MFA is valid and then the assumption N)] of the é)tential variés monotonically from the
that a uniform phase exists leads consistently to a fluid whicll; P P y

has ideal-gas behavior, i.e., vanishingly small correlations\./"’llue exp( e)=0 (since fe>1 therg atr=0 fo unity at

These liquids are different from usual ideal gases in thatgztoégnSVQizl?tﬁt)szgﬁsgrgr?lgfr;ggtit\?etr?:: dO; ahgg?ji:\ﬁ?;r;
e.g., their pressurd® and isothermal compressibilityt y ) P

scale, respectively, aB~p? and y;~tp 2. Nevertheless, 7HS through the relation
they are thermodynamically stable. Hence, for potentials in
theQ™ class, the equilibrium phase for sufficiently high den- exfg — Bv(ops) 1= 1/2. (14
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1.1 T T T T T

10 |
09 -
;SO Gaussian model
0.8 t=0.01,m=6.0 _
0.7 -
(@) n
0.6 . . . . .
00 05 10 15 20 25 3.0 FIG. 9. The evolution of the phase diagram @f FDM's
r/G with & To the right of the freezing lines the system is solid and to
the left fluid. Inset: the phase diagram ofd FDM with &> ¢,
1.1 — — . —_— obtained by solving the HNC and employing the Hansen-Verlet
o o _ criterion. Below the bell-shaped curve the system is solid and above
1or REGEORER-e° fluid.
09
08 L derived in the preceding section, we can draw the conclusion
that such systems must display reentrant melting and an up-
07 1 per freezing temperature.
—~ 06 1=001,m=6.0 We have now taken Eq16) for the lowt and low-
gl 05 - freezing line of the FDM and combined it with the analytic
) expression at the opposite limit, E(L1), in order to draw
04 - . schematically the evolution of the phase diagram of the FDM
03 ] as a function o€, for ¢<¢.. The results are shown in Fig. 9.
With increasingé, the slopes of the high-freezing lines
02 1 decrease; at the limig—0, corresponding to the PSM, the
01 f ® 7 low-t freezing line approaches the horizontal axis vertically,
00 . . as is dictated by the fact that the PSM becomes equivalent to
0 5 10 15 20 the HS system thers]. In the inset of Fig. 9, we show the
Qo phase diagram for a system wig=0.6> ¢, showing reen-

trant melting behavior. The evolution of the phase diagram
from a clustering to a reentrant melting behavior can be eas-

Writing o(r) = é(r/o) and using the fact thas(x) is a ' Visualized from this picture.

monotonic function in order to establish that the inverse Finally, it is |mportan'g to p0|_nt out that Sllinger has_
function ¢ ~1(x) exists, we can rewrite Eq14) as proven that any system interacting by means of a potential

which (i) is differentiable at least four timesii) vanishes
L strongly enough at infinity to be integrable, afiid) is +1 at
ops=o¢ (tin2). (15  the origin, will inevitably lead to a reentrant melting phase
diagram under the assumption that the competing crystal
We now use the known fact hard spheres freezepgs  structures have single lattice site occupan@y. We can
=0.5 together with Eq(15) above in order to obtain the low therefore now complete the statement and say that if a po-
temperature-low density freezing line of the system as tential belongs to th@™ class, then it will freeze into crys-
tals of single occupancy and then remelt upon increase of the
1 density. But if it belongs to th@= class, then it will freeze
ti(m)= |—¢[(277)‘1’3]. (16 into a clustered solid at any temperature. Clustering appears
n2 . : U
therefore to be the crucial mechanism for crystal stabilization
in these systems.

FIG. 8. Same as Fig. 7 but for the Gaussian core model.

As the limit ¢(x)—0 is attained forx—oo only, it follows
that the low-temperature—low-density freezing line of the
systems goes t@=0 att;=0. Eq. (16) is valid for all po-
tentials we consider here; however, fQf potentials, com- To summarize, we have established a criterion for the
bining the HS-like freezing at low temperatures and densitiesopology of the phase diagrams resulting from repulsive,
with the fact that at high densities the fluid has to be stablebounded interactions, which is very simple in its formulation

VI. SUMMARY AND CONCLUDING REMARKS

031206-8
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and states that if the Fourier transform of the pair potentialatter case, the direct correlation function is given by the
is positive definite, then the system shows reentrant meltinlayer function f(r)=exd—pBv(r)]—1 of the interaction
but if not then it freezes at all temperatures, into clustereghotential and not by- Bv(r) as in the case at hand.

crystals with multiple occupied sites. We have also estab-

lished that at temperatures exceeding the interaction

strength the mean-field theory is reliable at all densities and ACKNOWLEDGMENTS

its accuracy improves quickly with increasing temperature. i
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