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Criterion for determining clustering versus reentrant melting behavior
for bounded interaction potentials
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We examine in full generality the phase behavior of systems whose constituent particles interact by means
of potentials that do not diverge at the origin, are free of attractive parts, and decay fast enough to zero as the
interparticle separationr goes to infinity. By employing a mean field-density functional theory which is shown
to become exact at high temperatures and/or densities, we establish a criterion that determines whether a given
system will freeze at all temperatures or it will display reentrant melting and an upper freezing temperature.
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I. INTRODUCTION

The phase behavior of systems whose constituent
ticles interact by means of pair potentials diverging at
origin is a problem that has been extensively studied in
last few decades. The whole range of inverse power-law
potentials have been examined, ranging from hard sph
~HS’s! to the one-component plasma~OCP! and it has been
established that excluded volume effects are mainly resp
sible for bringing about the freezing transition. The crys
structure in which a liquid freezes is subsequently de
mined by the steepness of the repulsion, with hard repuls
favoring a face centered cubic~fcc! lattice and soft ones a
body centered cubic~bcc! lattice @1#. Power-law diverging
potentials result into freezing at arbitrarily high tempe
tures. However, the divergence of the potential alone is
enough to cause such a phenomenon, as demonstrate
cently by Watzlaweket al. @2# who employed a logarithmi-
cally divergent pair potential, suitable to describe effect
interactions between star polymers in good solvents. It w
shown that the strength~prefactor! of the logarithmic poten-
tial, determined by the number of armsf of the stars, is
crucial in determining whether the system freezes or rem
fluid at all densities. As a consequence, the phase diagra
star polymers was predicted to display reentrant melting
a critical freezing valuef c534 of arms, such that forf , f c
the system remains always fluid@2#.

Another interesting class of interactions are those wh
do not diverge at the origin, i.e., they are bounded. S
potentials arise naturally as effective interactions betw
the centers of mass of soft, flexible macromolecules suc
polymer chains@3#, dendrimers@4#, polyelectrolytes, etc. In-
deed, the centers of mass of two macromolecules can c
cide without violation of the excluded volume condition
hence bringing about a bounded interaction. Moreover,
same mechanisms that exist for tuning the usual, diverg
interactions between colloidal particles can be applied in
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der to tune the bounded interactions: the solvent qua
temperature, chain length, salt concentration, etc., will
affect the effective potential. Thus, it appears to be usefu
consider such potentials in some generality in order to
able to draw conclusions about the expected phase beha
of systems interacting by means of these.

Two model systems in this category have already b
studied in some detail. One is the penetrable spheres m
~PSM! @5,6#, in which the pair potential is a positive consta
« for distancesr ,s and vanishes otherwise. The other is t
Gaussian core model~GCM!, introduced in the mid 1970’s
by Stillinger @7#. In the GCM, the pair potentialv(r ) has the
form v(r )5« exp@2(r/s)2#, with « being an energy ands a
length scale. It has been shown that the GCM models v
accurately the effective interactions between the center
mass of linear polymer chains@3,8–14#.

The PSM was studied by means of cell-model calcu
tions and computer simulations@6#, liquid-state integral
equation theories@15#, and density-functional theory@16#;
the fluid structure of the PSM has been further studied
cently by Rosenfeldet al. by using ideas based on the un
versality of the bridge functional@17#. It was found that no
reentrant melting takes place because the solid always low
its free energy by allowing for multiply occupied cryst
sites, a mechanism that is called clustering@6#. The cluster-
ing mechanism stabilizes therefore the solid at all tempe
tures. Hence, the topology of the phase diagram of the P
is similar to that of power-law diverging potentials, whe
details about the clustering structure of the solids are di
garded. On the other hand, the GCM has been studied e
more extensively by means of molecular dynamics simu
tions @18,19#, high-temperature expansions@20#, and the dis-
covery of exact duality relations in the crystalline state@21#.
Recently, a full statistical-mechanical study of the GCM w
performed and it was established that the topology of
phase diagram of the GCM resembles that of star polym
Freezing and reentrant melting accompanied by an up
freezing temperature were quantitatively calculated@22#. The
question that arises, therefore, is the following. Given a n
attractive and bounded pair potential which satisfies the
lowing requirements guaranteeing stability and the existe
of the thermodynamic limit@23#: ~i! it is bounded,~ii ! it is
positive definite,~iii ! it decays fast enough to zero at larg

n,
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separations, so that it is integrable and its Fourier transf
exists, and~iv! it is free of attractive parts; to which topolog
belongs the phase diagram of the system? In this paper
present an exact criterion which gives an answer to this q
tion and show representative results for model systems
confirm its validity. The rest of the paper is organized
follows: in Sec. II we present the physical arguments s
porting the mean-field theory of the models and in Sec.
we discuss the existence of a spinodal instability in t
theory and its implications on the phase behavior. W
present a systematic comparison between theory and sim
tion in Sec. IV and we draw the generic phase diagrams
such systems in Sec. V. Finally, in Sec. VI we summar
and conclude.

II. THE MODEL AND THE MEAN-FIELD LIMIT

We will work with a general interactionv(r )5«f(r /s)
satisfying the requirements put forward above. Here,« ands
are an energy and a length, respectively, andf(x) is some
dimensionless function. The latter does not have to be a
lytic, i.e., discontinuities in the potential or its derivatives a
allowed. Without loss of generality, we assumef(0)51. Let
us call f̂(Q)5s23f̃(Q) the dimensionless Fourier tran
form ~FT! of the interaction. For more concreteness~and for
the purposes of demonstration! we introduce in addition the
family of bounded potentialsvj(r ) depending on a tunabl
parameterj,

vj~r !5«
11e2s/j

11e~r 2s!/j , ~1!

wherej is a ‘‘smoothing parameter’’ having dimensions
length. The casej50 recovers the PSM whereas asj grows
the interaction becomes smoother. Due to its resemblanc
the Fermi-Dirac distribution, we call this family the Ferm
distribution model~FDM!. The additional factor 11e2s/j in
the numerator of the RHS of Eq.~1! ensures that the poten
tial varies from« at r 50 to zero atr→`, for all j.

We introduce dimensionless measures of temperature
density as

t5
kBT

«
5~b«!21, ~2!

h5
p

6
rs35

p

6
r̄, ~3!

wherekB is Boltzmann’s constant andr5N/V is the density
of a system ofN particles in the volumeV. We will refer to
h as the ‘‘packing fraction’’ of the system.

The key idea for examining the high temperature and
high density limit of such model systems is the followin
We consider in general a spatially modulated density pro
r(r ) which does not vary too rapidly on the scales set by
the interaction. At high densities,rs3@1, the average inter
particle distancea[r21/3 becomes vanishingly small, and
holdsa!s, i.e., the potential is extremely long range. Eve
particle is simultaneously interacting with an enormous nu
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ber of neighboring molecules and in the absence of sh
range excluded volume interactions the excess free energ
the system@24# can be approximated by a simple mean-fie
term, equal to the internal energy of the system:

Fex@r~r !#>
1

2 E E drdr 8v~ ur2r 8u!r~r !r~r 8!, ~4!

with the approximation becoming more accurate with
creasing density. Then, Eq.~4! immediately implies that in
this limit the direct correlation functionc(r ) of the system,
defined as@24#

c~ ur2r 8u;r!52 lim
r~r !→r

d2bFex@r~r !#

dr~r !dr~r 8!
, ~5!

becomes independent of the density and is simply prop
tional to the interaction, namely,

c~r !52bv~r !. ~6!

Using the last equation, together with the Ornstein-Zern
relation@25#, we readily obtain an analytic expression for th
structure factorS(Q) of the system as

S~Q!5
1

11 r̄t21f̂~Q!
. ~7!

This mean-field approximation~MFA! has been put forward
and examined in detail in the context of the Gaussian c
model independently by Langet al. @22# and by Louiset al.
@26#. The model is particularly relevant from the physi
point of view, due to its connection to the theory of effecti
interactions between polymer chains@3,14#. Here, we estab-
lish the validity of the MFA at high densities for bounde
positive-definite interactions in general and we examine
implications for the global phase behavior of such system

Bounded and positive-definite interactions have be
studied in the late 1970’s by Grewe and Klein@27,28#. The
authors considered a slightly different model than the o
considered here, namely, a Kac potential of the form

v~r !5gdc~gr !, ~8!

whered is the dimension of the space andg>0 is a param-
eter controlling the range and strength of the potential. Mo
over, c(x) is a non-negative, bounded and integrable fun
tion

0<c~x!<A,`, C5E ddxc~x!,`. ~9!

Grewe and Klein were able to show rigorously that at t
limit g→0, the direct correlation function of a system inte
acting by means of the potential~8! is given by Eq.~6!
above. The connection with the case we are discussing
is straightforward: as there are no hard cores in the system
a lattice constant to impose a length scale, the only relev
length is set by the density and is equal tor21/3 in our model
and by the parameterg21 in model ~8!. In this respect, the
6-2
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CRITERION FOR DETERMINING CLUSTERING VERSUS . . . PHYSICAL REVIEW E 63 031206
limit g→0 in the Kac model of Grewe and Klein is equiv
lent to the limitr→` considered here. However, in the Ka
model the strength of the interaction goes to zero simu
neously with the increase in its range. Moreover, the valid
of the mean-field expression at large but finite densities
at low temperatures has not been tested in detail.

III. SPINODAL INSTABILITY AND FREEZING

We employ the MFA as a physically motivated workin
hypothesis for now and, by direct comparison with simu
tion results, we will show later that it is indeed valid. With
the framework of this theory, an exact criterion can be f
mulated, concerning the stability of the liquid phase at h
temperatures and densities. The functionf(x) was assumed
to be decaying monotonically from unity atx50 to zero at
x→`. For the functionf̂(Q), there are two possibilities:~i!
It has a monotonic decay from the valuef̂(Q50)
5s23*dxf(x).0 to the valuef̂(Q)50 atQ→`. We call
such potentialsQ1 potentials. Obviously, the Gaussian inte
action belongs to this class.~ii ! It has oscillatory behavior a
largeQ, with the implication that it is a nonmonotonic func
tion of Q, attaining necessarily negative values for cert
ranges of the wave number. We call such potentialsQ6 po-
tentials. Long-range oscillations inQ space imply thatf(x)
changes more rapidly from unity atr 50 to zero atr→` in
the Q6 class than in theQ1 one. Moreover, let us callQ*
the value ofQ at whichf̂(Q) attains its minimum, negative
value.

If we are dealing with aQ6 potential Eq.~7! implies that
S(Q) has a maximum at precisely the wave vectorQ* where
f̂(Q) attains its negative minimum2uf̂(Q* )u and this
maximum becomes a singularity at the ‘‘spinodal line
r̄t21uf̂(Q* )u51, signaling the so-called Kirkwood instabi
ity of the system@28–31#. The theory has a divergence, im
plying that the underlying assumption of a uniform liquid
not valid and the system must reach a crystalline state.
deed, on the basis of the fluctuation-dissipation theor
S(Q) can be interpreted as a response function of the den
to an infinitesimal external modulating field at wave numb
Q @25# and a diverging value of this response functi
clearly signals an instability. If the Fourier transform off(x)
has negative Fourier components, then an increase in
perature can be compensated by an increase in density i
denominator of Eq.~7!, so thatS(Q* ) will have a diver-
gence at allt. We thus conclude thatQ6 systems freeze at a
temperatures.

If we are dealing with aQ1 potential@f̂(Q) monotonic#,
then Eq.~7! implies thatS(Q) is also a monotonic function
of Q at high densities@22#. For such potentials, one ca
always find a temperature high enough, so that the assu
tions of Eq.~4! hold and then Eq.~7! forces the conclusion
that freezing of the system is impossible at such temp
tures. This does not imply, of course, that such systems
not freeze at all; one simply has to go to a low enou
temperature and density, so that the mean-field assump
does not hold and the interaction is much larger that
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thermal energy. Then, the system will display a hard-sph
type of freezing, to be discussed more explicitly below. A
upper freezing temperaturetu must exist forQ1 potentials,
implying that such systems must remelt att,tu upon in-
crease of the density. Hence, we reach the conclusion
Q1 systems display an upper freezing temperature and r
trant melting. The criterion says nothing about the crys
structure of the solid, however, which always depends on
details of the interaction as well as the density@22,32#.

For potentials is in theQ1 class, the mean-field argu
ments presented above hold not only at high temperat
but also at low ones, provided that the requirementrs3@1
is satisfied, because these are molten at high densities fo
nonzero temperatures. The validity of the mean-field the
for Q1-type systems, even at very low temperatures, w
confirmed recently by direct comparison with simulation r
sults for the particular case of the Gaussian potential@22#. If
the potential is in theQ6 class, the mean field approximatio
holds provided that the system is not already frozen, as
will confirm shortly. Moreover, both kinds of systems di
play an unusual kind of ‘‘high density ideal gas’’ limit. In
deed, taking the expression~7! for S(Q) and using the rela-
tion S(Q)511 r̄ĥ(Q) @25#, where ĥ(Q) is the
dimensionless Fourier transform of the pair correlation fu
tion h(r ) of the uniform fluid, we obtain

ĥ~Q!52
t21f̂~Q!

11 r̄t21f̂~Q!
. ~10!

At low Q’s, wheref̂(Q) is of order unity, the term pro-
portional to the density in the denominator dominates in
limit of high densities andĥ(Q) scales as21/r̄→0. At high
Q’s, the Fourier transformf̂(Q) in the numerator is itself
small, with the result thatĥ(Q), and hence also the correla
tion functionh(r ), is approaching zero. This, in turn, mea
that the radial distribution functiong(r )5h(r )11 is very
close to unity in this limit and deprived of any significa
structure for all values ofr and it only has some small struc
ture at smallr, which is in fact more pronounced forQ6

potentials than forQ1 ones. In this limit, the hypernette
chain ~HNC! closure becomes exact, as the exact relat
g(r )5exp@bv(r)1h(r)2c(r)2B(r)#, combined with the lim-
its g(r )→1, h(r )→0, andc(r )→2bv(r ) forces the bridge
function B(r ) to vanish. Moreover, Eqs.~7! and ~10! reveal
that the systems obey a scaling law, namely that the fu
tions S(Q) and th(r ) do not depend onr̄ and t separately
but only on the ratior̄/t.

Systems in theQ6 class freeze before the spinodal
reached. In order to make quantitative predictions, we inv
the empirical Hansen-Verlet freezing criterion@33,34#, which
states that a system crystallizes whenS(Q) at its main peak
attains, approximately, the valueS(Q* )5Sm>3. Although
this criterion was originally put forward for hard, atom
interactions~HS, Lennard-Jones, etc.!, recent detailed analy
ses have demonstrated that it holds for the freezing and
remelting transitions of ultrasoft particles such as star po
mers@2,35# and even for the nondiverging Gaussian intera
6-3
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tion @22#. Hence, we assume that it is valid for the gene
class of systems we consider here and combining it with
~7!, we obtain the equation of the freezing linet f(h) as

t f~h!5
6uf̂~Q* !u
p~12Sm

21!
h>2.864uf̂~Q* !uh. ~11!

The valueuf̂(Q* )u determines the slope of the freezing lin
at the high (t,h) part of the phase diagram.

IV. COMPARISON WITH SIMULATIONS

We now wish to put these arguments in a strong te
using the concrete family of the FDM, given by Eq.~1!. First
of all, we have calculated the Fourier transform of the pot
tial vj(r ) of Eq. ~1! numerically, establishing that membe
of the FDM withj,jc belong to theQ6 class and member
with j.jc50.49697 to theQ1 one. The GCM is also a
member of the latter class that we will discuss in what f
lows.

A. Systems displaying clustering

As examples of systems displaying clustering transitio
we have taken the extreme~and by now well-studied case!
casej50 ~the PSM! as well as the casej50.1 of the Fermi
distribution model of Eq.~1!. We have performed stan
dard Monte Carlo~MC! NVT simulations for a large num
ber of values for the temperature and density. We begin w
the PSM for which the analytical expression~7! takes the
form

S~Q!5F1124ht21S sin~Qs!2~Qs!cos~Qs!

~Qs!3 D G21

. ~12!

The high-temperature–high-density freezing line of E
~11! takes for this choice ofj the form t f(h)51.033h. To
test the analytical expression of Eq.~12!, we move along the
‘‘diagonal’’ t5h, a combination that lies almost on th
Hansen-Verlet estimate for the location of the freezing li
In Fig. 1 we show the comparison of the analytical resu
with those obtained from the MC simulations forS(Q) and
we also demonstrate that the MC curves for the quan
t„h(r )… all collapse onto a single line, amply demonstrati
the validity of the mean-field approximation for the PSM.
order to further investigate the validity of the MFA, we ha
performed MC simulations in a variety of thermodynam
points and we present a selection of the obtained results.
present a selection of these in Figs. 2 and 3 and discuss
below.

In Fig. 2~a! we show a comparison between the MC a
MFA results for the radial distribution functiong(r ) along
the ‘‘diagonal’’ t5h. It can be seen that the agreeme
between the two is already very good att5h54.0 and
thereafter it improves markedly with increasing temperat
and density. The results obtained from the present theory
of the same quality as those obtained by Fernaudet al. @15#,
who used the sophisticated zero-separation~ZSEP! closure
to investigate the liquid structure of the system. This c
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sure involves three self-consistency parameters, determ
in such a way that the virial-compressibility, Gibb
Duhem and zero-separation consistency conditions
fulfilled. At the same time, the present results are of
same quality as the recently obtained results of Rosen
et al. @17#, based on ideas of the universality of the brid
functional.

In Fig. 2~b! we perform the same comparison but now
fixed temperaturet55.0 and increasing packing fractionh.
As can be seen, at this temperature, the MFA, which w
originally formulated as a high-density approximatio
proves to perform extremely well even at intermediate pa
ings,h50.5, for instance. This is a direct consequence of
boundedness of the interaction combined with a tempera
t@«. Indeed, for small densities, the direct correlation fun
tion tends to the Mayer function,c(r )>exp@2bv(r)#21
@25#. If we are dealing with a bounded interaction at hig

FIG. 1. ~a! The productt„h(r )… for a FDM with j50 PSM,
along the diagonalt5h at high packing fractions, as obtained fro
MC simulations. The results close tor 50 are noisy due to poor
statistics there. All results collapse onto a single curve.~b! The
corresponding structure factorsS(Q), shown together with the ana
lytical result of Eq.~12!.
6-4
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temperature, we can linearize the exponential, obtain
c(r )>2bv(r ) at low densities, which matches with th
MFA expression, Eq.~6!, at high densities, thus leading t
the conclusion that the MFA is an excellent approximation
all densities. For unbounded interactions the linearization
the exponential is evidently impossible.

In Fig. 3 we present a comparison between MC and M
at fixed packing fractionh53.0 and increasing temperatur
As can be clearly seen, the validity of the MFA improv
with increasing temperature. For bounded interactions,
increasing temperature implies a ‘‘washing-out’’ of the co
relation effects caused by the~increasingly weak! interaction
effects and a tendency of the system towards the partic
‘‘high-density ideal gas’’ limit characterized by the tenden
of the functiong(r ) towards unity. However, it is an inter
esting peculiarity of these systems that unlike the usual id
gas, the limitg(r )→1 @or, equivalently,h(r )→0# does not
imply a corresponding limitS(Q)→1. Though the Fourier

FIG. 2. ~a! The functiong(r ) of the PSM for selected point
along the ‘‘diagonal’’ t5h as obtained from theory~thick lines!
and simulation~thin lines!. ~b! Same but now for fixed temperatur
t55 and increasing packing fractionh.
03120
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transform ofh(r ),ĥ(Q), tends to zero asr21, this is com-
pensated by the large densityr, so that the structure facto
S(Q)511rĥ(Q) displays the signature of strong orderin
through the pronounced peaks seen in Figs. 1~b! and 3~b!.

Further, we performed MC simulations at selected poi
deeply inside the regiont,t f(h), finding that the obtained
structure factors displayed Bragg peaks and hence confi
ing the prediction that the system is frozen there. Putting
our results together, we draw in Fig. 4 a semiquantitative
phase diagram of the PSM, accompanied by an assess
of the validity of the MFA at selected thermodynamic poin
The MFA appears to be an excellent approximation at
densities above the temperaturet53.0. Hence, we take a
an estimate for the freezing line abovet53.0 the MFA-
Hansen-Verlet linet f51.033h>h; for lower temperatures
we simply connect the point (h,t)5(3.0,3.0) with the point
(h,t)5(0.5,0), which obtains from the consideration that

FIG. 3. ~a! Same as Fig. 2~b! but now for fixedh53.0 and
increasing temperature.~b! The structure factors at the thermod
namic points of~a!, comparison between theory~lines! and simula-
tion ~points!.
6-5
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t50 the PSM reduces to the hard sphere system wh
is known to freeze at a fluid densityhHS>0.5. The mono-
tonic shape of the freezing curve for low temperatures ar
from detailed considerations there, which can be found
Ref. @6#.

Next we present in Fig. 5~a! comparison for the FDM
with j50.1. For this choice ofj, the Hansen-Verlet-base
freezing line takes the formt f50.712h. The selected points
lie in the fluid region and the comparison indicates on
more the excellent accuracy of the MFA both forg(r ) and
for S(Q). The radial distribution functiong(r ) of this model
is deprived of the jump atr 5s seen in the PSM; the latter i
caused by the discontinuity of the PSM potential there. Ho
ever, a similarity between theg(r )’s of the j50 andj50.1
models is that they both attain their maximum values at
overlaps between the particlesr 50 and thereafter they de
cay rapidly, featuring a depletion region aroundr's. This
is a characteristic pointing to a strong clustering property
the fluid phase, a property thereafter inherited by the inc
ent thermodynamically stable crystal; the number of partic
‘‘sitting on top of each other’’ and thereby occupying th
same crystal site scales linearly with density. In order
corroborate this claim, we can argue in two different wa
using the liquid as a reference point.

First, let us consider the number of particlesNc in the
fluid phase whose centers are, on average, within a dist
s from a given particle. The numberNc is given by the
formula

Nc5114prE
0

s

r 2g~r !dr. ~13!

In Fig. 6 we show the function 4pr 2g(r ) within a par-
ticle diameters for a sequence of points along the freezi
line of the PSM. As all these curves tend to a comm

FIG. 4. The phase diagram of the PSM, along with the poi
where the mean field theory brings excellent agreement with si
lation ~filled circles!, fairly good agreement~empty squares!, and no
good agreement~crosses!. These symbols should help delineate t
domain of validity of the mean-field theory.
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limit with increasing density, the integral 4p*0
sr 2g(r )dr

tends to a constant and henceNc}r at high densities, where
the second term on the RHS of Eq.~13! dominates.

Second, we can use the wavevectorQ* at which the fluid
structure factor has a maximum in order to estimate for
lattice constanta of the incipient crystal through the relatio
a}Q

*
21. For the models at hand, this maximum is entire

determined by the pair potential; unlike in usual fluids fe
turing diverging interactions, for whichQ* scales asr1/3, in
our caseQ* knows nothing about the density. Thus, all po
freezing crystals have the same lattice constant, altho
their average density is a linear function of the temperatu
This clearly shows that clustering must take place in
crystal: by allowing more and more particles to occupy t
same lattice sites, a practically constant effective density

s
u-

FIG. 5. ~a! Comparison between theory~thick lines! and
simulation ~thin lines! results forg(r ) of a FDM system withj
50.1. ~b! Comparison for the structure factors~lines: theory;
points: simulation! for the same system at the thermodynam
points of ~a!.
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clusters is maintained in the crystal, thus leading to
density-independent lattice constant.

B. Systems displaying reentrant melting

We now turn our attention to the opposite case, nam
pair potentials belonging to theQ1 class. As an example
within the FDM family, we have taken the model with p
rameterj50.6 and performed a comparison between M
and MFA results. A characteristic example is shown in F
7. As can be seen in Fig. 7~a!, unlike the case ofQ6-class
potentials, the radial distribution function is completely d
prived of any structure, although the thermodynamic para
eters are in the same regime as those presented in Figs.
and 5. In fact, in the present case,g(r ) has a minimum at
r 50, not a maximum. This complete lack of structure
reflected in the shape ofS(Q), shown in Fig. 7~b!.

These characteristic features for theQ1 class are not an
artifact of the relatively high temperature chosen in the
sults of Fig. 7. They persist even at extremely low tempe
tures, provided the density is high enough. This has b
amply demonstrated recently for the case of the Gaus
core model, another member of theQ1 class@22#. In order to
stress this point we present in Fig. 8 theg(r ) and S(Q) of
the GCM att50.01 andh56.0. Thoughg(r ) displays some
structure up tor'2s, the structure factorS(Q) shows no
signature of some kind of ordering@40#. At any arbitrarily
small but finite temperature, a high enough density can
found for which the MFA is valid and then the assumpti
that a uniform phase exists leads consistently to a fluid wh
has ideal-gas behavior, i.e., vanishingly small correlatio
These liquids are different from usual ideal gases in th
e.g., their pressureP and isothermal compressibilityxT
scale, respectively, asP;r2 and xT;tr22. Nevertheless,
they are thermodynamically stable. Hence, for potentials
theQ1 class, the equilibrium phase for sufficiently high de

FIG. 6. The quantity 4pr 2g(r ) within the diameters of the
PSM along the freezing linet5h. All the curves converge to a
single one at high densities, indicating that the integ
4pr*0

sr 2g(r )dr scales linearly with density.
03120
a

ly

.

-
-

, 3,

-
-
n

an

e

h
s.
t,

n
-

sities at arbitrarily small but finite temperatures is the u
form fluid.

V. GENERIC PHASE DIAGRAMS

We now turn to the opposite limit of the low
temperature–low-density part of the phase diagram. Th
following the original ideas of Stillinger@7#, a HS mapping
can be performed, as follows. The Boltzmann factor e
@2bv(r)# of the potential varies monotonically from th
value exp(2b«)>0 ~sinceb«@1 there! at r 50 to unity at
r→` and has a close resemblance to that of a hard sp
system. We can thus define an effective hard sphere diam
sHS through the relation

exp@2bv~sHS!#51/2. ~14!

l

FIG. 7. ~a! Comparison between theory~thick lines! and
simulation ~thin lines! results for g(r ) of a FDM system with
j50.6. ~b! Comparison for the structure factorS(Q) ~lines: theory;
points: simulation! for the same system at the thermodynamic po
of ~a!.
6-7
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Writing v(r )5«f(r /s) and using the fact thatf(x) is a
monotonic function in order to establish that the inve
function f21(x) exists, we can rewrite Eq.~14! as

sHS5sf21~ t ln 2!. ~15!

We now use the known fact hard spheres freeze athHS
>0.5 together with Eq.~15! above in order to obtain the low
temperature-low density freezing line of the system as

t f~h!5
1

ln 2
f@~2h!21/3#. ~16!

As the limit f(x)→0 is attained forx→` only, it follows
that the low-temperature–low-density freezing line of t
systems goes toh50 at t f50. Eq. ~16! is valid for all po-
tentials we consider here; however, forQ1 potentials, com-
bining the HS-like freezing at low temperatures and densi
with the fact that at high densities the fluid has to be sta

FIG. 8. Same as Fig. 7 but for the Gaussian core model
03120
e

s
e,

derived in the preceding section, we can draw the conclus
that such systems must display reentrant melting and an
per freezing temperature.

We have now taken Eq.~16! for the low-t and low-h
freezing line of the FDM and combined it with the analyt
expression at the opposite limit, Eq.~11!, in order to draw
schematically the evolution of the phase diagram of the FD
as a function ofj, for j,jc . The results are shown in Fig. 9
With increasingj, the slopes of the high-t freezing lines
decrease; at the limitj→0, corresponding to the PSM, th
low-t freezing line approaches the horizontal axis vertica
as is dictated by the fact that the PSM becomes equivalen
the HS system there@6#. In the inset of Fig. 9, we show the
phase diagram for a system withj50.6.jc , showing reen-
trant melting behavior. The evolution of the phase diagr
from a clustering to a reentrant melting behavior can be e
ily visualized from this picture.

Finally, it is important to point out that Stillinger ha
proven that any system interacting by means of a poten
which ~i! is differentiable at least four times,~ii ! vanishes
strongly enough at infinity to be integrable, and~iii ! is 11 at
the origin, will inevitably lead to a reentrant melting pha
diagram under the assumption that the competing cry
structures have single lattice site occupancy@7#. We can
therefore now complete the statement and say that if a
tential belongs to theQ1 class, then it will freeze into crys
tals of single occupancy and then remelt upon increase of
density. But if it belongs to theQ6 class, then it will freeze
into a clustered solid at any temperature. Clustering app
therefore to be the crucial mechanism for crystal stabilizat
in these systems.

VI. SUMMARY AND CONCLUDING REMARKS

To summarize, we have established a criterion for
topology of the phase diagrams resulting from repulsi
bounded interactions, which is very simple in its formulati

FIG. 9. The evolution of the phase diagram ofQ6 FDM’s
with j. To the right of the freezing lines the system is solid and
the left fluid. Inset: the phase diagram of aQ1 FDM with j.jc ,
obtained by solving the HNC and employing the Hansen-Ve
criterion. Below the bell-shaped curve the system is solid and ab
fluid.
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and states that if the Fourier transform of the pair poten
is positive definite, then the system shows reentrant mel
but if not then it freezes at all temperatures, into cluste
crystals with multiple occupied sites. We have also est
lished that at temperatures exceeding the interac
strength the mean-field theory is reliable at all densities
its accuracy improves quickly with increasing temperatu
We close with the remark that there is a certain similar
between the ideas put forward here and the considerat
on freezing for systems featuring of diverging interactio
at infinite spatial dimensions@36–39#. However, in the
ith

er

e

-

er

03120
l
g
d
-
n
d
.

ns
s

latter case, the direct correlation function is given by t
Mayer function f (r )5exp@2bv(r)#21 of the interaction
potential and not by2bv(r ) as in the case at hand.
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