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Summary. Compared to the simple one-component case, the phase behaviour of binary liquid

mixtures shows an incredibly rich variety of phenomena. In this contribution we restrict ourselves to

so-called binary symmetric mixtures, i.e. where like-particle interactions are equal (F11(r)�F22(r)),

whereas the interactions between unlike ¯uid particles differ from those of likes ones (F11(r) 6�
F12(r)). Using both the simple mean spherical approximation and the more sophisticated self-

consistent Ornstein-Zernike approximation, we have calculated the structural and thermodynamic

properties of such a system and determine phase diagrams, paying particular attention to the critical

behaviour (critical and tricritical points, critical end points). We then study the thermodynamic

properties of the same binary mixture when it is in thermal equilibrium with a disordered porous

matrix which we have realized by a frozen con®guration of equally sized particles. We observe ± in

qualitative agreement with experiment ± that already a minute matrix density is able to lead to

drastic changes in the phase behaviour of the ¯uid. We systematically investigate the in¯uence of the

external system parameters (due to the matrix properties and the ¯uid±matrix interactions) and of the

internal system parameters (due to the ¯uid properties) on the phase diagram.

Keywords. Binary ¯uid mixtures; Fluids in porous media; Phase transitions; Phase stability; Critical

behaviour.

Introduction

The phase behaviour and the critical phenomena encountered in binary mixtures
are considerably more complex than in the case of a pure ¯uid. Following the
Gibbs rule, up to four phases can be observed simultaneously, and the way these
phases can coexist often leads to rather complex phase diagrams. The phase
behaviour is mainly triggered by two mechanisms (and their interrelation): ®rst,
there is the size difference of the particles of the two components and their (partial)
penetrability; second, there is the chemical in¯uence, expressed via the set of the
three interatomic potentials, i.e. the interaction potentials between particles of the
same species and the cross interaction between the unlike particles. The reader
might get an impression of the complexity of the phase behaviour of a binary
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mixture from the review article of Konynenburg and Scott [1]: using a simple
van der Waals model (which incorporates all relevant aspects of a binary mixture),
these authors have classi®ed several types of phase diagrams that can be encoun-
tered for such a system.

In this contribution we consider only a simpli®ed version of a binary ¯uid
mixture, which is usually called symmetric binary mixture in the literature. It is
characterized by the fact that all particles are of the same size (ignoring thus the
in¯uence of particle size on the phase behaviour mentioned above). Further, the
interactions between like particles are equal, only the unlike interaction (between
particles of different species) is different. If we denote the ¯uid particles of the
two species by indices `1' and `2', the set of interactions for a symmetric binary
mixture are thus given by F11(r)�F22(r) 6�F12(r). To further simplify the model,
we assume the same functional form for all interatomic potentials; hence,
F12(r)��F11(r), � being different from 1. We additionally demand that our
system be homogeneous and isotropic; therefore, potentials and the correlation
functions (introduced later) are functions of the distance only. For such a system
we will expect ± apart from solid phases, which are not considered in this contri-
bution ± three different phases: the homogeneous equimolar gas phase (G), the
homogeneous equimolar liquid (L), and the nonequimolar (demixed) ¯uid (DF),
which consists itself of two coexisting phases, a 1-rich and a 2-rich ¯uid. Due to
the symmetry, these two ¯uids have the same density. For �> 1, where the unlike
particle attraction dominates the like one, it is energetically more favourable for the
mixture to exist in the equimolar phase; here we only expect a G-L transition
(similar to that encountered in the one-component case), and no DF will be
observed. In this contribution we have considered the more interesting case, i.e.
�< 1, where we expect both a G-L transition (as in the one-component case) and a
demixing transition as well as the interplay of these two transitions.

The symmetry of our system leads to a reduction of types of phase diagrams
that we encounter [2]: we observe three different archetypes which are
distinguished by the location where the so-called �-line (i.e. the critical line of
the ¯uid demixing transition) intersects the ®rst order G-L coexistence curve. In
type I, where the �-line meets the G-L coexistence curve well below the G-L
critical point, we observe a critical end point (CEP) behaviour. In type II we
observe a triple point (coexistence of G-, L-, and DF-phase) and a tricritical point
(where an equimolar liquid, a 1-rich, and a 2-rich ¯uid become simultaneously
critical); this point is characterized by two vanishing order parameters, the
difference in the densities of the equimolar liquid and the DF-phase, and the
difference in the concentrations of the two coexisting DF-phases. Type III is
characterized again by a tricritical point; however, the G-L transition is suppressed.
The variation I! II! III turns out to be induced by decreasing �.

In the second part of the present contribution we investigate this system when it
is in thermal equilibrium with a disordered porous matrix of immobile particles,
realized in our case by a frozen liquid con®guration of particles of the same size as
the ¯uid particles. Investigations of ¯uids that are in equilibrium with a disordered
matrix have become a very challenging ®eld in liquid-state physics during the past
years [3]. Experimental and theoretical studies revealed that a porous matrix (even
if it occupies only a minute fraction of the volume) can have a substantial in¯uence
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on the phase behavior of the liquid: 4He and N2 in high-porosity aerogel [4] are two
examples where the near-critical liquid±vapor (LV) curve is narrowed drastically
under the in¯uence of a matrix. The effects become of course more interesting in
the case that the ¯uid is a binary mixture; for example, experiments on a 3He-4He
mixture inside a highly porous silica-gel or a porous gold matrix have shown a
drastic modi®cation of the super¯uid transition [5]. A deeper understanding of
these obviously very complex effects is all the more desirable as it might help
to predict properties of materials of technological relevance (with widespread
applications in catalysis, adsorption, etc.); for an overview, see Refs. [3, 6, 7].

Our simple model mimics the characteristic features of the matrix±¯uid and
¯uid±¯uid interaction of realistic systems and hence is able to give (at least
qualitative) information of how a variation of the system parameters in¯uences
the phase behaviour. We present results of systematic variations of the system
parameters and their in¯uence on the phase behaviour of these complex systems.
At this occasion one should point out that similar archetypes of phase diagrams
(and sequences of these) are encountered in systems with completely different
interatomic potentials: as examples we list here the Heisenberg ¯uid [8] (a ¯uid
where the particles interact via hard-core and a Heisenberg-type interaction of their
magnetic moments) and the Stockmayer ¯uid [9] (a ¯uid where the particles carry
dipolar moments and interact ± in addition ± via Lennard-Jones potentials). In
contrast to the present system, however, the changes between the three types of
phase diagrams in these two examples are triggered by only one parameter.

In our calculations we have used liquid-state theories that are based on statistical
mechanics for both systems. The central equations are the Ornstein-Zernike (OZ)
equations [10] that relate the correlation functions of the particles of different
species. For the binary case, the OZ-equations are three coupled integral-equations
for the sets of correlation functions, each of them consisting of three functions.
These equations are supplemented with a so-called closure relation that relates these
functions with the set of pair potentials. In this contribution we have used the simple
(and thermodynamically inconsistent) mean spherical approximation (MSA) [11]
and the rather sophisticated (and thermodynamically self-consistent) self-consistent
Ornstein-Zernike approximation (SCOZA) [12]. Despite its simplicity, the MSA
model is able to give qualitative results for the phase diagram; thus, systematic
trends can be worked out on a qualitative basis. However, this approach fails near
the critical region: it is neither able to locate the critical point, nor is it able to give
the correct critical exponents. The more re®ned SCOZA technique, on the other
hand, gives highly accurate results for the phase boundaries and remains accurate
as one approaches the critical region; its application is, however, restricted to the
case of the bulk ¯uid as a consequence of the complexity of its concepts.

We have applied both methods to the case of the bulk ¯uid. We have investi-
gated the in¯uence of the interaction parameter � on the phase behaviour employing
the MSA method, showing that the transition between the types of phase diagrams
can be triggered by this parameter. Hence, in this investigation we re®ne in a
quantitative way a study that was based on a simple mean ®eld approach [2]. The
MSA permits in addition, to identify metastable transitions that might be of relevance
when studying dynamic processes. Using the SCOZA we have studied the stability
of this ¯uid both with respect to mechanical and to chemical aspects.

Calculations on Binary Mixtures 1415



The situation is much more delicate for the system where the ¯uid is in thermal
equilibrium with the porous matrix. Here, a special approach via the so-called
replica trick (explained in more detail below) has to be used: the concept
(introduced to liquid-state physics by Given and Stell [13]) allows to map the
system `¯uid�matrix' (which represents a very special three-component system)
onto the limiting case of a fully equilibrated ¯uid mixture built up by the matrix
and s identical and non-interacting copies of the ¯uid; thermodynamic and
structural properties of the partly quenched original system (`¯uid�matrix') are
then obtained by taking the (s! 0)-limit of the corresponding quantities of the
fully equilibrated replicated system. The formalism arising from this route is rather
complex even for a simple closure relation like the MSA (for more details, cf.
Ref. [14]). Hence, we present only MSA results.

In our investigations we have studied the trends in the phase diagrams of such
a system. Distinguishing between internal parameters (i.e. parameters that
characterize the ¯uid±¯uid interactions) and external parameters (i.e. parameters
that characterize the matrix and the matrix±¯uid interactions) we found that, similar
as in the case of the bulk ¯uid, one can produce ± for a given matrix density ±
trends in the types of phase diagram by varying the internal parameters. However,
it is surprising that such trends can also be induced by varying the external
parameters, keeping the internal parameters ®xed.

The System and the Theoretical Methods

The System

The liquid chosen for this study is a symmetric binary mixture: the like-particle
potentials (the components are denoted by indices `1' and `2') are identical
(F11(r)�F22(r)), whereas the interaction between unlike particles, F12(r), is
different and is related to Fii(r) via F12(r)��Fii(r). This choice restricts the
number of system parameters of a binary mixture drastically and simpli®es sys-
tematic investigations. Nevertheless, a rich phase behaviour is to be expected. For
Fij(r) we have chosen hard-core Yukawa (HCY) potentials:

�Fij�r� � 1 8 r � �
ÿ Kij

r
exp�ÿz�r ÿ ��� 8 r > �

�
�1�

The screening length z and the hard-sphere diameter � are assumed to be equal
for all potentials, whereas the interaction strengths are given by K11�K22 and
K12��K11. Further system parameters are the concentrations of the two species of
the ¯uid, x1� x and x2� 1ÿ x1, and the number density of the ¯uid �f � �1� �2,
�i being the partial densities.

We then bring this binary ¯uid in contact with a disordered porous matrix. This
matrix is assumed to be obtained by rapidly quenching a liquid con®guration of
matrix particles (index `̀ 0''), which are then immobile and not affected by the ¯uid
particles; they interact with the ¯uid particles via potentials F0i(r), i� 1, 2. For
simplicity, the matrix particles have the same size as the ¯uid particles, and again a
HCY potential is assumed for F0i(r): the contact values K0i are related to the ¯uid±
¯uid contact values via K01�K02� yK11, and the number density of the matrix will
be denoted by �0. Further, we assume a pure hard-sphere matrix, i.e. K00� 0.
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We de®ne a reduced temperature via T ?� �/K11 (in the following, T ? is
symbolized by T ), and we put � to unity. The reduced density is hence given by
�?f � � 3�f � �f .

Theoretical Methods

Liquid state theory for the bulk ¯uid

The structural and thermodynamic properties of the system have been calculated
with methods based on statistical mechanics. The systems are assumed to be
homogeneous and isotropic; hence, the correlation functions that describe the
structure of the system depend on the distance of the particles only. The central
correlation function in our approach is the so-called pair distribution function
(PDF), g(r). It is a function of the distance r between two particles and depends
on temperature, density, and the interatomic potential. The PDF measures the
extend to which the structure of a ¯uid deviates from complete randomness. Let us
assume that we pick out one particle of the ¯uid and move with this particle through
the volume that is occupied by the ¯uid. Counting at each time-step the number of
particles separated by a distance r from this particle, we ®nd that 4��g(r)r2dr is the
mean number of particles in a spherical shell of thickness dr and radius r. Since the
¯uid particles become uncorrelated for large distances, lim

r!1 g�r� � 1. One then

introduces the total correlation function via h(r)� g(r)ÿ 1. The direct correlation
function, c(r), is de®ned via the Ornstein-Zernike (OZ) equation [10] via

h�r� � c�r� � �
�

c�r0�h�jrÿ r0j�d3r0 �2�

which expresses that the total correlation between two particles separated by a
distance r is given by the direct correlation between these particles plus the indirect
correlation, mediated via an arbitrary number of other particles in the ¯uid and
expressed by the convolution integral in Eq. (2). For a broader overview over
correlation functions we refer to [11].

In the binary cases these correlation functions are generalized to sets of
correlation functions, introducing pairs of indices (ij) with i, j� 1, 2 and indicating
correlations between particles of species i and j. These functions are denoted by
gij(r), hij(r), and cij(r). The OZ equations (now a set of three coupled integral-
equations) read

hij�r� � cij�r� �
X
k�1;2

�k

�
cik�r0�hkj�jrÿ r0j�d3r0 i; j � 1; 2: �3�

For a given set of hij(r), the OZ equations can be viewed as de®ning relations for
the direct correlation functions cij(r). However, in general, both sets of correlation
functions are unknown. In order to make a solution of the OZ equations possible, a
further relation between these sets of functions and the set of pair potentials, Fij(r),
has to be provided; such a (functional) relation is called a closure relation and can
formally be written as F({cij}, {hij}, {Fij})� 0. Closure relations are derived from
exact expressions of statistical mechanics using simplifying assumptions. Since the
pair distribution functions gij(r) obtained with these (approximate) methods are not
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exact for a given set of pair potentials Fij(r), this leads to an effect that is known in
the literature as thermodynamic inconsistency which will be discussed later. A
considerable number of such closure relations have been used in the literature
during the past years; for an overview, see Refs. [11, 15]. The closure relations
employed here are the mean spherical approximation (MSA) [11, 15] and the self-
consistent Ornstein-Zernike approximation (SCOZA) [12]; they will be discussed
in the subsequent subsections.

Once the structure is known in terms of the correlation functions, the
thermodynamic properties can be calculated in a straightforward way. To this end,
statistical mechanics provides different routes, such as the energy, the virial, or the
compressibility route. In the energy route, the excess (over ideal gas) internal
energy U ex is given by

Uex

V
� u � 2�

X
ij

�i�j

�
Fij�r�gij�r�r2dr �4�

where V is the volume of the system. In the virial route, the pressure P is calculated
via

�P � �ÿ 2�

3
�
X

ij

�i�j

�
F0ij�r�gij�r�r3dr �5�

(the prime stands for the derivative of the potentials with respect to the distance).
Finally, the compressibility route relates the isothermal compressibility, �T�
(ÿ1/V)(@V/@P)T , to the zero-q limit of the direct correlation functions via

�

��T

� 1

�red
T

� 1ÿ 1

�

X
ij

�i�j~cij�q � 0� �6�

where the tilde represents a three-dimensional Fourier transform. Further
thermodynamic quantities relevant for the determination of phase equilibria (such
as the free energy A or the chemical potentials �i, i� 1, 2) can be derived from
the above quantities via thermodynamic integration or differentiation (using an
appropriately chosen Maxwell relation).

If the structure functions were exact for the given system, one should obtain the
same results for the thermodynamic properties via each of these three routes; the
system is then called thermodynamically self-consistent. Computer simulations
are one of the few methods that ± apart from size-effects ± provide self-consistent
results. If approximations are introduced in the calculation of the correlation
functions (and this is certainly the case when using closure relations), the different
routes will lead to different results for the thermodynamic properties; the method is
then called thermodynamically inconsistent.

Given the thermodynamic properties, one can then determine the coexistence
parameters of two (or more) coexisting phases (denoted by Greek indices). These
parameters are calculated from the coexistence relations which, for a given
temperature T, read

P����; x�1 � � P����; x�1� �7�
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and

��i ���; x�1 � � ��i ���; x�1� �i � 1; 2�: �8�
For a general binary mixture, up to four phases can coexist.

Liquid state theory for a ¯uid in contact with a porous matrix

The route outlined above for a bulk ¯uid and leading from the set of interactions to
the thermodynamic properties of a system is considerably more complex in the
case where the ¯uid is in contact with a porous matrix. In our investigations the
matrix is obtained by a thermal quench of an equilibrated liquid con®guration
(matrix particles carry the index `0'). Hence, our system represents a very special
three-component ¯uid: the particles of the matrix are assumed to be ®xed in place
and are not affected by the mobile particles of the ¯uid, whereas the ¯uid particles
are allowed to equilibrate in the rigid matrix structure. Physical quantities are
therefore obtained by two successive averages: a ®rst average is taken over the
degrees of freedom of the ¯uid particles (keeping the positions of the matrix
particles ®xed), and a second average is taken over all possible degrees of freedom
of the matrix particles. Perhaps the most promising approach to solve this problem
has been proposed by Given and Stell [13] who have introduced the replica trick
[16] in this ®eld: it exploits an isomorphism between the partly quenched and a
fully equilibrated ¯uid mixture (the so-called replicated system) which consists of
the now mobile matrix particles and of s noninteracting identical copies of the
liquid. The properties of the partly quenched system are obtained by considering
the limit s! 0 of the properties of the equilibrium system which, in turn, can be
treated by standard liquid state theories (see preceding subsection). Applying this
framework for our system, nine OZ-type integral equations [14] (so-called replica
Ornstein-Zernike equations, ROZ) can be derived that relate the direct and total
correlation functions of the ¯uid and of the matrix particles. One of these equations
describes the matrix correlation functions and is decoupled from the other
equations; the remaining eight equations are coupled. Again, they have to be solved
along with a closure relation.

In a similar way one can calculate the thermodynamic properties of the
replicated system (using the standard relations mentioned in the preceding section)
and then apply the limit s! 0. In this manner, thermodynamic relations corre-
sponding to Eqs. (4)±(6) are obtained which are considerably more complicated
and are therefore not reproduced here; for details, see Ref. [14]. The phase
equilibrium between coexisting phases is again calculated by equating the pressure
and the chemical potentials for a given temperature T.

The mean spherical approximation

The closure relation of the mean spherical approximation (MSA) is given by [11]

gij�r� � 0 �r < � � 1� �9�
and

cij�r� � ÿ�Fij�r� �r > � � 1�: �10�
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Whereas the ®rst relation is ± due to the impenetrability of the particles ± exact, the
second relation represents an approximation: one assumes that the long-distance
behaviour of the direct correlation functions (i.e. cij(r)!ÿ�Fij(r) for r!1) is
valid for all distances. As a consequence, the MSA leads to thermodynamically
inconsistent data for the thermodynamic properties. Nevertheless, as will be shown
in subsequent sections, it provides qualitatively good results in comparison with
computer simulation data for systems not too close to phase boundaries or to a
critical region.

The self-consistent Ornstein-Zernike approximation

The self-consistent Ornstein-Zernike approximation (SCOZA) was introduced in
its original version [12] by Hùye and Stell and has been re®ned ever since:
meanwhile, it exists in several versions of different levels of sophistication (for an
overview, Ref. [17]). The aims of the SCOZA are two-fold: ®rst, it overcomes
the lack of thermodynamic inconsistency of the MSA by imposing thermo-
dynamic consistency between the energy and the compressibility route; second, the
SCOZA is well-suited to treat ¯uids near phase transitions and near criticality
accurately.

We present here the formulation of the SCOZA in its simplest version (for the
more sophisticated versions, cf. Ref. [17]); the closure relations now read

gij�r� � 0 �r < � � 1� �11�
and

cij�r� � Kij��; �; x�Fij�r� �r > � � 1�: �12�
A comparison with the MSA closure relations shows that the state-dependent
functions Kij(�, �) replace the prefactor ÿ� in Eq. (10). We use the simplifying
assumption that Kij(�, �, x)�K(�, �, x). In contrast to the MSA, where
K(�,�, x)�ÿ�, this function is not known a priori but is determined in the
SCOZA by imposing consistency between the energy and the compressibility
route, i.e. u (determined via the energy route) and �red

T (calculated via the com-
pressibility route) have to ful®ll the following partial differential equation (PDE):

�
@2u

@�2
� @

@�

�
1

�red
T

�
: �13�

Equation (13) supplemented with the OZ equation (Eq. (3)), the closure relations
(Eqs. (11) and (12)), and Eqs. (4) and (6) represents a partial differential equation
for K(�, �, x), which is transformed (via a rather complex and heavy formalism)
into a (diffusion-type) PDE for u with a known function B(�, u):

B��; u� @u

@�
� � @

2u

@�2
�14�

The steps from Eq. (13) to Eq. (14) are based on the fact that the OZ-equations
supplemented by the closure relations vide supra can be solved semi-analytically
for a HCY-mixture [18±20]. Using these results, the formulation of the SCOZA
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can be derived in a rather straightforward (but cumbersome) way. The numerical
implementation is very demanding.

This simplifying fact represents a considerable advantage for the system
investigated here. However, it also points out the main drawback of the SCOZA: its
application is restricted (at least up to now) to such systems where a basic analytic
concept is available. Hence, it is not surprising, that the SCOZA has been solved up
to now only for HCY-systems and for the lattice gas model [21]. In a more general
case, where such a (semi-)analytic help is not available, all calculations have to be
performed numerically.

Results

Bulk Fluid

Phase diagrams

In the ®rst part of this study we have investigated the phase diagram of the pure
binary symmetric mixture de®ned in the preceding section. For the interaction
parameter �, which characterizes the ratio between the unlike and the like
interactions, we have chosen values smaller than one. This guarantees, that, apart
from the vapour±liquid transition, we shall also encounter a ¯uid±¯uid decom-
position for a suf®ciently small �. We expect the following phases: a homogeneous
(equimolar) gas (G), a homogeneous (equimolar) liquid (L), and a nonequimolar
(demixed) ¯uid (DF). The solid phases have not been considered here.

In some of the ®gures we shall present the MSA data; several of these are
supplemented by results from grand canonical Monte-Carlo simulations performed
by D. Levesque and J.-J. Weis [22] (for details of the simulation, see references in
this paper). The phase diagrams presented are projections of the three dimensional
(T, �, x) phase diagram onto the (x� 1/2) plane. In Fig. 1, such a three-dimensional
presentation is shown; the phase diagram is of type II (see below).

In a ®rst step we have applied the (simple and thermodynamically inconsistent)
MSA (Eqs. (9) and (10)). The results are shown in Fig. 2 for ®ve different �-values.
One can clearly follow the strong in¯uence of the parameter �: for �� 0.9 we
observe a coexistence between the G and the L phases. There is probably no ¯uid-
¯uid phase separation: the existence of a DF phase and the corresponding transition
is characterized in these ®gures by the so-called �-line, the critical line of the ¯uid±
¯uid demixing transition: for a given temperature T, the critical density for this
demixing transition is given by �c(T); these values of �c(T) represent the �-line as a
function of T. For densities larger than �c(T) we observe the DF phase, whereas for
densities smaller than �c(T) we encounter the equimolar phase. As we decrease �,
this �-line approaches the G-L coexistence line from the high-density side and
intersects this ®rst order transition in a so-called critical end point (CEP); here, a
non-critical vapour coexists with a critical nonequimolar (demixed) ¯uid (DF).
Such a phase diagram will be called a type I phase diagram. Below the CEP
temperature one observes a triple line where a vapour coexists with a 1-rich and a
2-rich ¯uid. By further decreasing �, the �-line intersects the G-L coexistence
curve at temperatures close to the G-L critical point, leading to a so-called

Calculations on Binary Mixtures 1421



tricritical point: here L and DF become critical simultaneously, characterized by
two vanishing order parameters; such a phase diagram is denoted to be of type II.
We also observe a point where four phases (L, G, 1-rich DF, 2-rich DF) coexist. In
addition, we encounter in phase diagrams of type I and II the usual critical point of
the G-L phase coexistence. Finally, upon further decreasing � we observe the type
III phase diagram, where the G-L transition is completely suppressed. Again we
obtain a tricritical point where the L and the DF phase become simultaneously
critical. Apart from the stable phase transitions we have also depicted in these
®gures the metastable phase equilibria; they are of relevance for the dynamic
properties of the system (for a more detailed discussion, see Refs. [2, 22]). A
comparison with computer simulations shows that the MSA gives reasonably good
results for the bulk case.

Stability

The semi-analytic character of the SCOZA formalism offers the possibility to study
the stability of our system in detail. As shown in Ref. [20], the mechanical stability
(i.e. with respect to L-G separation) and the chemical stability (i.e. with respect to
the demixing transition) can be studied using the semi-analytical expressions of the

Fig. 1. Phase diagram of a binary bulk mixture in (T, �f, x)-space; the curves in the (x� 1/2) plane

represent the phase diagram that will be presented in the following ®gures (thick black and grey

lines); demixing transitions are depicted for several isothermal planes by the thin grey lines in the

high density regime; the critical points of this demixing transition are connected by the �-line;

from Ref. [23]
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MSA formalism. In Fig. 3 we depict this border, which in (T, �, x)-space is a
surface: above this surface, the system is stable, whereas below it is unstable. The
mechanical instability is expressed by a divergence of �red

T : it is encountered only
along the (x� 1/2) line on this surface. The onset of the chemical instability, on the
other hand, is characterized by a change in the sign of (@2G/@x2), where G is the
Gibbs free energy [15].

Fig. 2. Variation of � of the phase diagram of the binary symmetric bulk mixture from MSA:

�� 0.65, 0.70, 0.75, 0.80, and 0.90 (from top to bottom); full line: G-L, G-DF, or L-DF coexistence

curves; dotted line: metastable G-L transition; dashed line: �-line; symbols: grand canonical Monte

Carlo simulations from Ref. [22]
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Fluid in a Porous Matrix

We have now brought our bulk ¯uid in thermal equilibrium with a porous matrix.
Four parameters can be varied: (i) �, the ratio between unlike and like ¯uid particle
interactions, (ii) y, the ratio between the matrix±¯uid interactions and the potential
of the like ¯uid particles: positive and negative values of y correspond to at-
tractive and repulsive matrix±¯uid interactions, (iii) the matrix density �0 and (iv)
the screening length z of the potentials. In an effort to enable a comparison with the
computer simulations we have truncated our HCY-potentials (unless otherwise
stated) at a cut-off radius of rc� 2.5 �.

Comparison with simulations

We have ®rst compared the MSA data with simulation results. The computer
simulations were carried out for four different matrix densities �0� 0, 0.05, 0.15,
and 0.3 at �� 0.7, y� 1, z�� 2.5, and rc� 2.5 � (for technical details, see Ref. [22]
and references quoted therein). The results are shown in Fig. 4. For �0� 0 one
observes a type II phase diagram: a ®rst order G-L transition with a critical
temperature of Tc� 0.72±0.73 and a critical density �c� 0.35 and a line of second
order demixing transitions terminating at a tricritical point with a temperature of
Ttc� 0.73, slightly higher than the critical temperature, and a density of �tc� 0.57.
As we increase the matrix density, the temperature range within which the
equimolar liquid exists decreases, and the phase diagram becomes a type I

Fig. 3. Surface separating the stable (above) from the unstable (below) states of a symmetric binary

bulk ¯uid in (T, �f, x) ± space (z�� 1.8, �� 0.65); see text
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diagram. At �0� 0.3 the phase diagram reveals (within accuracy of the simulation
results) a tricritical point in the temperature range 0.49±0.52, or possibly a critical
end point.

Although the trends in the types of phase diagrams are reproduced qualitatively
in the simulations, it becomes obvious from Fig. 4 that the quantitative agreement
between MSA data and simulation results deteriorates as we increase the matrix
density: whereas for the pure bulk ¯uid (�0� 0) we have excellent agreement (both
for the two ®rst-order transitions and for the position of the �-line), marked
differences between these two sets of data appear as the matrix density increases.

Fig. 4. Variation of the phase diagram of a binary ¯uid mixture in contact with a porous matrix with

matrix density �0 (�� 0.7, y� 1, z�� 2.5): comparison between grand canonical Monte Carlo

(GCMC) and MSA results; �0� 0, 0.05, 0.15, and 0.30 (from top to bottom); symbols: GCMC

simulations (diamonds: G-L equilibrium; squares: G-DF or L-DF equilibrium; triangles: �-line);

lines: MSA results (full line: G-L, G-DF or L-DF coexistence curve; dotted line: metastable G-L

transitions; dashed line: �-line); from Ref. [22]
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The critical temperatures obtained in the simulations are considerably lower than
for the MSA data, whereas the critical densities are shifted to higher values. In
addition, Fig. 5 shows the demixing transition for one of the systems: these phase
diagrams are horizontal (isothermal) cuts through the three-dimensional phase
diagram of Fig. 1. It is surprising, that ± in contrast to the phase diagrams presented
in Fig. 4 (projections onto the (x� 1/2) plane) ± the concentrations of the demixed
phase agree very nicely with simulation data even at high matrix densities. It is
obvious that these differences are due to de®ciencies of the MSA.

Variation of �

The variation of the phase diagram with � (ratio of the interaction strengths
between unlike and like particles) is shown in Fig. 6 for a matrix density of
�0� 0.1. z� was chosen to be 2.5; variation of this parameter for the bulk ¯uid was
already discussed before. In an effort to study in addition the in¯uence of the
matrix±¯uid interaction we have considered a pure hard sphere (y� 0) and a HCY
(y� 1) matrix±¯uid interaction. Although qualitatively the sequence of types of
phase diagrams is the same in the two series (type III! type II! type I), the
character of the matrix±¯uid interaction leads to quantitative changes: keeping
the matrix density ®xed to �0� 0.1, the change of y from 1 to 0 (i.e. from an
attractive HCY interaction to a pure hard sphere matrix) lowers Tc by ca.10%,
shifts �c from �0.32 to �0.26, and delays the appearance of the CEP as one
increases �.

Fig. 5. Demixing transition of a binary ¯uid in contact with a porous matrix of density �0� 0.15

(�� 0.7, y� 1, z�� 2.5): �f as a function of concentration x for T� 0.62; the symbols denote GCMC

simulations (diamonds: G-L equilibrium; squares: L-DF equilibrium; crosses: ®rst order demixing

transition), the lines MSA results; from Ref. [17]
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Variation of y

The parameter y is the ratio between the ¯uid±¯uid and the matrix±¯uid
interactions; y> 0 represents an attraction between matrix and ¯uid particles,
whereas y< 0 represents a repulsion. The in¯uence of y on the phase behaviour is
shown in Fig. 7 for two different pairs of (�0,�) with z�� 2.5: (i) �0� 0.05,
�� 0.7; (ii) �0� 0.1, �� 0.73. For the lower matrix density, �0� 0.05, the
sequence of phase diagrams is found to be type III! type II! type III when y
decreases from positive to negative values. A G-L transition appears near y� 2 (a
precise location cannot be found due to numerical problems in the critical region as

Fig. 6. Variation of the phase diagram of the binary ¯uid mixture in thermal equilibrium with a

porous matrix from MSA with �; left column (�0� 0.1, y� 0): �� 0.68, 0.70, 0.72, and 0.80 (from

top to bottom); right column (�0� 0.1, y� 1): �� 0.65, 0.70, 0.73, and 0.75 (from top to bottom);

full line: G-L, G-DF or L-DF coexistence curves; dotted line: metastable G-L transition; dashed line:

�-line; from Ref. [22]
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mentioned above) and exists only in a small range of y-values, extending roughly
from 2 to ÿ0.5. The phase diagram is again of type III for the more strongly
repulsive matrix±¯uid interaction y�ÿ1. The matrix density has only a minor
in¯uence on the qualitative sequence of the types of phase diagrams: for the

Fig. 7. Variation of the phase diagram of the binary ¯uid mixture in thermal equilibrium with a

porous matrix from MSA with y; left column (�0� 0.05, �� 0.7): y� 3.5, 2, 1, 0, ÿ1 (from top to

bottom); right column (�0� 0.10, �� 0.73): y� 2, 1, 0, ÿ1 (from top to bottom); full line: G-L,

G-DF, or L-DF coexistence curves; dotted line: metastable G-L transition; dashed line: �-line;

from Ref. [22]
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larger matrix density �0� 0.1, the type II phase behaviour occurs at least for
0< y< 2.

Variation of �0

The in¯uence of the matrix density �0 on the phase diagram of the mixture is
shown in Fig. 8 for two values of the parameter y (y� 0 and 1) and �� 0.7; we
assume z�� 2.5. As discussed in the comparison of simulation and theoretical
results, in both cases we have a type II diagram characterized by a tricritical point

Fig. 8. Variation of the phase diagram of the binary ¯uid mixture in thermal equilibrium with a

porous matrix from MSA with matrix density �0; left column (y� 0, �� 0.7): �0� 0, 0.05, 0.10, and

0.15 (from top to bottom); right column (y� 1, � � 0.7): �0� 0, 0.05, 0.15, and 0.30 (from top to

bottom); full line: G-L, G-DF, or L-DF coexistence curves; dotted line: metastable G-L transition;

dashed line: �-line; from Ref. [22]
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at �0� 0, where the �-line of the second order demixing transition terminates, as
well as a triple point where G, L, and DF coexist. As we increase �0, at y� 1
(attractive tail in the matrix±¯uid interaction) the tricritical temperature Ttc

decreases; at �0� 0.3 the ®rst order transition between L and DF has vanished,
giving rise to a CEP at Tcep (type I phase diagram). It can be noted that the
existence of a CEP leads to a kink in the G-L curve, clearly visible in the MSA
data, a phenomenon which has been discussed in a simulation study of the pure
mixture [24]. It is rather surprising that for the case of a pure hard sphere matrix±
¯uid interaction (y� 0) a different scenario is observed: increasing �0 now leads to
a type III phase diagram; for �0� 0.1 the G-L transition becomes metastable and
hidden below the G-DF transition (type III phase diagram). This points out very
nicely the strong in¯uence of the matrix (external system parameter) on the phase
behaviour of the ¯uid.

Variation of z

Finally, we have varied the screening length z of the potential. Since its in¯uence is
less dramatic than any of the other system parameters, we do not present a ®gure
but rather summarize the results: variation of the screening length z� from 2 to 3
lowers the tricritical temperature and the critical temperature of the metastable G-L
transition; the type of the phase diagram is unaffected.

Conclusions

In this contribution we have discussed the phase behaviour and the criticality of a
binary ¯uid mixture, restricting ourselves to a symmetric binary ¯uid. Here the
potentials between the like particles are equal, but differ, on the other hand, from
the unlike interactions; the attraction between particles of different species is
assumed to be weaker than the like particle interaction. We have ®rst considered
the case of the binary bulk ¯uid and have calculated structural and thermodynamic
properties via the simple (and thermodynamically inconsistent) MSA and the
sophisticated (and thermodynamically self-consistent) SCOZA models. We have
seen ± leaving the solid phases aside ± three coexisting phases: the equimolar gas
(G), the equimolar liquid (L), and the nonequimolar (demixed) ¯uid (DF). As a
consequence of the symmetry of the system we encounter three types of phase
diagrams that are characterized by the different loci where the �-line (i.e. the line
of critical points of the DF transition) intersects the second order G-L transition.
We show by using the simple MSA that the three types of phase diagram are
induced by the parameter that measures the strength of the unlike interaction. The
SCOZA helps us to get more quantitative results: we have calculated critical points
and have given a stability analysis (both with respect to mechanical as well as to
chemical stability). We then immerse this symmetric binary mixture in a porous
matrix, realized by a frozen con®guration of a liquid. Structural and thermo-
dynamic quantities are again calculated from liquid state theory; however, one has
to apply a special trick (replica trick) to take into account the fact that in this
special ternary mixture (binary liquid�matrix) the matrix particles interact with
the liquid particles, but are assumed to be immobile: there is no structural response
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of the ¯uid to the matrix. Here we have used only MSA to calculate the properties
of the ¯uid. By systematically varying the system parameters we have shown that
the trends between the three types of phase diagrams are not only triggered by the
internals system parameters (i.e. the parameters that characterize the ¯uid), but also
by varying the external parameters (i.e. the matrix properties and the interaction
¯uid±matrix). This might be of relevance for technological applications (catalysis,
adsorption, etc.) where the phase behaviour of the ¯uid can be in¯uenced by
varying the (chemical) properties of the matrix. Extension of this concept by
considering ¯uids with orientational interactions (dipolar and molecular ¯uids) and
charged particles is currently in progress and will be presented in due course.
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