PHYSICAL REVIEW E, VOLUME 64, 011502
Phase diagram of a symmetric binary fluid in a porous matrix
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The phase behavior of a binary symmetric fluid in thermal equilibrium with a porous matrix has been studied
with the optimized random phase approximation and grand canonical Monte Carlo simulations. Depending on
the matrix properties and the matrix-fluid and fluid-fluid interactions we find three types of phase diagram
characterized by a tricritical point, a tricritical point with a triple point, or a critical end point. Small changes
in the properties of the matrix or in the interactions are demonstrated to lead to drastic modifications of the
phase diagram of the fluid, in qualitative agreement with observations in experimental studies. We show, in
particular, that the change between the different types of phase diagram is triggered not only by the fluid-fluid
interactions(internal parameteysbut also by the properties of the matrix and of the matrix-fluid potentials
(external parameters
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[. INTRODUCTION equilibrium system that consists of the now mobile matrix
particles and of noninteracting identical copies of the fluid
In many technological applications where a liquid is in particles. This latter system can be treated by standard liquid
thermal equilibrium with a disordered porous mafisuch as state theorie§9]. The properties of the quenched system are
catalysis, adsorption separation, enhanced oil recovery, dhen obtained by considering the linsit-0 of the properties
others it is of great importance to understand the influenceof the equilibrium system. Using this formalism one can de-
of the properties of the adsorbent matrix on the phase behavive the so-called replica Ornstein-Zernike equatitR®2),
ior of the fluid. The relevance of this problem is reflected inanalogous to the familiar Ornstein-Zernike equations in stan-
the large increase in the number of theoretical and experidard liquid state theory, which relate the different correlation
mental studies devoted to (see, e.g.[1], and references functions of the system. From the knowledge of these the
therein. thermodynamic properties can be calculatéd—12.
Experimental studies of binary mixtures in both high As expected, the symmetric binary mixture case exhibits,
(silica gel$ [2] and low porosity(Vycor) [3] matrices are even for thepure mixture, a much richer variety of phase
numerous and have shown persuasively that the phase bdiagrams than the one component system. Depending on the
havior is markedly different from that of the bulk system values of the coupling strengths of the fluid-fluid and matrix-
under the same conditions. However, in these rather compleiuid interactions, the three different phases equimolar gas
systems the combined influence of pore structure, random(G), equimolar liquid (), or nonequimolafdemixed fluid
ness, wetting phenomena, capillary condensation, etc., ofPF) that can be encountered are arranged in three types of
phase separation is not yet satisfactorily explained. Disenphase diagram which, as in the pure mixture case, differ in
tanglement of the roles of these various factors can, howevethe way the second order transition associated with demixing
be done by studying well defined model systems, amenabl@erges into a first order transition. In the case where the first
to either theoretical analysis or computer simulations, inorder transition between the equimolar gas and equimolar
which these factors can be varied in a controlled way. liquid is absent, thé line (critical line of the fluid demixing
Such a theoretical approach is followed in the presenends at a tricritical pointtype 1) and a first order transition
paper for a model of a symmetric binary mixture adsorbed irbetween an equimolar gas and a demixed fluid appears. In
a porous matrix formed by immobile particles modeled aghe case where th&-L transition exists, thex line either
hard spheres. It generalizes to the mixture case a methahds at a ftricritical point where a first order transition be-
originally proposed by Madden and Glandf] and subse- tween an equimolar liquid and a demixed liquid appears
guently reformulated by Given and Stelb-7]. In this  (type Il) or ends at a critical end poifCEP on the G-L
method the system composed of the fluid and the porousoexistence lingtype ). In a mean-field study of a pure
matrix is described as an ensemble of equilibrium states ofoulk) symmetric binary mixture it was showr3] that the
the fluid adsorbed in possible configurations of the matrixtransition between the different types of phase diagram is
The essence is to apply the replica trick to evaluate the twériggered by a parameter, i.e., the ratio of the unlike to like
thermodynamic averages required to determine the propeinteractions. Here we demonstrate that similar changes can
ties of the adsorbed mixture—the first over the fluid particlealso be induced by the parameters governing the matrix-
configurations at given matrix arrangements, and the secormatrix and matrix-fluid interactions. This scenario is con-
over different matrix configurations. The replica tri@ ex-  firmed by performing grand canonical Monte Caf@CMC)
ploits a mathematical isomorphism between this partlysimulations[14].
guenched system and the limiting case of a corresponding Although our simple modedhard-sphere Yukawa interac-
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tions are used throughgudoes not allow a full description framework of the ORPA closure relation to the ROZ equa-

of the experimental systems it nevertheless can mimic theitions. For full details of the derivation we refer the reader to

characteristic features and bring systematic parameter vari&ef. [12].

tions within practical reach. The ROZ equations relate the fluid-fluid, matrix-fluid, and
The remaining part of the paper is organized as followsmatrix-matrix directc;;(r) and totalh;;(r) correlation func-

After description of the potentials that characterize ourtions. They can be written in compact form as

model in Sec. I, we present briefly, in Sec. lll, the optimized

random phase approximati¢®RPA) that is used as a clo- Noo= Coo™ PoCo0® Noo, (4)
sure to the ROZ equations and collect the expressifras

energy, chemical potential, and pressuieat are necessary ho1= Co1t N01® poCoot P1N11® Co1— P1N12® Coy,

to calculate phase diagrams. Section IV contains details of

the GCMC simulations, in particular the distribution of num- h11= €11+ ho1® poCor+ p1h11® ¢ — prh1®cpo,

bers of particles and histogram reweighting methods that
served to locate the various phase transitions. The section hio=Ciothp® pocgl+ piho®c+pihi®cys
following (Sec. V) describes the results: comparison is made
between simulation results and ORPA predictions and trends

in the variation of the phase diagrams induced by the differ-

ent system parameters are discussed. The paper is concludgﬂetre tge fsuperscnpt ;r tc_ienoflt_ahs tr;e“trar}spose tOf a vetcttt_)r and
with a summary of our main results. ® stands for a convolution. The following matrix notation

has been introduced 2]:

Il. THE SYSTEM pp O ho1
P1= , hor=

—2p1h15®Cyp,

Co1

el o

The system we have studied is a symmetric binary hard- 0 py
sphere Yukawa mixture in equilibrium with a poro(igard-
spherg¢ matrix. All the interactions of the system can be hyy hps Ci1 Cpo
11:( hzz)' o c >’

hoz Co2

written as[ 8= 1/(kgT)]

hio 12 Cx
<
o f=ao h _<h13 h14) c _(013 Cl4> ®
Ay (1= —ﬁexp[—z(r—cr)], r=¢. @ © his hoy)’ © Cia Coa)’
r

whereh,3 (hy,) is the (s—0) limit of the correlation func-
A value 0 of index or j denotes the matrix particles, while 1 tion between particles of species(2) of different replicas.
and 2 denote the two components of the fluid. The diameteFurther,h,, is the (s—0) limit of the correlation function
o is assumed to be equal for all interactions and the  between unlike particles of different replicas. Within the
screening length. The contact values are parametrized as present framework, which describes fluids in contact with
follows: porous media, these functions are called the “blocking
parts” of the correlation functions. The ROZ equations form
Koo=0, Ki1=Ky,, (2)  aset of nine integral equations, eight of them being coupled.
To close these equations we have chosen the ORBA
Kpo=aKy, Ko=Ke=YyKj;. (3)  The basic assumption in this framework is that all pair po-
tentials can be split into a reference péndex “r’ ) and a

We define a reduced temperature ¥ig= o/K, (in the fol-  Perturbation partindex “p”), i.e.,
lowing T* is denoted byT). Further system variables are the B
partial densitieg; of species, the concentration of species 1 @i () =Py (1) + Ppyii(r). (@)

of the fluid x=py/(ps1po), the fluid densitypi=pstpz, e present study thé..;;(r)’s are hard-sphere potentials

and the matrix densitp, (densities will be given in units of : . .
o throughout the papgrin all calculations presented here, qharactenzed by one single hard-sphere diameteEqua

unless otherwise stated, the potentials have been truncatedtle?tn (7) defines®p,;(r) up to a finite contribution inside the

r,=2.50, andzo was chosen to be 2.5: this is for both the core region. In a similar way, the_ correlation functlons_ are
¢ X . ! split into reference and perturbation parts. For convenience
simulations and the theoretical calculations.

we define the matrices Q)=+pipjc;; and (C,);

=/pip; C.ij - The ORPA closure relation assumes that
IlIl. THERMODYNAMIC PERTURBATION THEORY

A. Structure and thermodynamics Cpij(N) == BPy;j(r), r=o, ®
In this section we present the ROZ equations generalizegihile inside the core regionr € o) the Cp:ij's are chosen to

to the binary mixture case. We also give a summary of theyuarantee

relevant thermodynamic expressions that are needed in order

to locate the phase transitions: they were obtained within the hpij(r)=0 for r<o. (9)
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Applying the ORPA to the replicated system and taking the B - 5
limiting cases—0 one obtains the properties of the partly 5 : =—X[Cr11lg=0— (1=X)[CL15]q=0>
quenched system. Pt 11 %00

The free energy density of this systeat,(= — BA/V), is (14
obtained from the free energy of the replicated system,

A™(s)T*, via A*=li A™(s)]* [10,16]. In th IBLrs ~ ~

[A™®R(s)]*, via im__ (d/ds)[A™R(s)]* [10, Eﬂ_nt e Z;Mr,z (10 pgleo X o,
following calculations only the difference betweérd and Pt 1 x00

the free energy of the reference systeii, is required, (15

— = 1 using as an integration constant gat=0 the Carnahan-
A* =A== ALC]+ ALC1+ 5 [p%Cprt p3Cpe ? g g

Starling expression for the excess chemical potential of a
one-component sytem of hard spheres at packing fraejion

+2p0p1Cp01t 2P0P2Cp 027 2p1P2Cp 12lq—0 =(ml6)poos [17],
1
— 5[p1Cp;11+ P2Cp;22lr =0, (10 87—97°+37°
2 ﬁMﬁT(PfZO):W, i=1,2. (16)
where the functional4[ C] is defined as 7
B ~ Further, the ideal parts of the chemical potentials are given
A[C]= f dgq In{(1—p1c5y)(1—pyCs)) by Bul®=In p,(i=1,2) and the perturbation parts of tpg's
2(2m)3 by
_Plpz[ecz]z}
! IBMp;l:BMl_BMr;l
1 ~ ~ ~
- = = ~c 7 = _[PfXCp;ll+ PoCp;01t Pf(l_x)cp;lz—lq=0
[1-p1C11l[ 1= p2aCsal— p1palCial 1
~ ~c ~ ~c + E[Cp;lﬂrzor (17)
X| p1C13(1—p2Cs0) +p2Cay(1—piCyy)
o BMp;ZZIBMZ_ﬂMrQ
+ 20120105+ — [ p1C2y(1— pCS ~ ~ ~
P1P2C14C12 1_PoCoo[pl o1l p2C32) _ —[pf(l—X)Cp;22+pon;oz+prCp;1ﬂq:o
+ ! 18
~ ~ ~ o~ =[Cp2lr-0-
+paCo 1= p1C5) +2p1p2C01CoLsl ] (11 2[ pzzlr=o0 (18

and A[C,] is obtained from the above expression by substi-The pressurd®=P“+ P+ P, is calculated as follows: the
tuting thec;;’s by c..;;’s. In the above expressions a tilde ideal contribution is3P“= p; ; the reference part to the pres-
denotes the Fourier transform of a function. Further, we havéure is obtained via numerical integration of

introduced the “connected” parts of the correlation func-

tions, defined as 9BPe*
BP; 2rac =c
. . . 7 == pXTCrulg=0t2X(1=X)[Cr12]q-0
C11=C11—C13, C{;=C1p—Cy4, Czp=Cpo—Cps. (12 Pt ) 1 xpg
Using the expressio(iL0) for the free energy one can show +(1—x)2[7:,°.22]q:0}. (19
that ’
SA* o s The integration constants are irrelevant if one wants to de-
( )(r): d pipilGrij (N +hpi (D1, (13 termine only the phase diagram.
OCp;ij 2 ’ ’ Finally, the perturbation part of the pressure is calculated

_ from the Gibbs-Duhem relation
which means that the minimization &* with respect to
variations of thec;;(r) inside the core region is equivalent o
to the hard-core conditio(®). . ,BPp=A*—Ar*+,8.E Pikbpi » (20)
The chemical potential&i=M;d+ﬂﬁ’i‘+,up;i are calcu- =12
lated as followq‘ex” denotes the excess part over the ideal
part “id”): the reference parts are obtained via numericawhere the difference of the free energies is taken from Eg.

integration of the compressibility equation, i.e., (10).
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B. Calculation of the phase diagram sumption that the coexistence curve can be described by a

We have determined the phase diagrams by equating, atSgaling type law and the law of rectilinear diameters, i.e.,
given temperaturd, the pressur® and the chemical poten- o B _ B
tials u; of the coexisting phases. The general equilibrium 1~ Pe=B(T=To)% (pi+pg)/2=pct A(T—Te). 30
conditions read

Equations(30) were fitted to the coexistence curves by tak-

pilpe X )= pilpy X, 1=1.2, 21 ing A,B, and B as adjustable parameters. Due to the well-
_ ., known fact that the ORPAbeing a conventional liquid state
P(ps, X, T)=P(p; X", T), (22) theory) fails to describe correctly the critical regi¢h8], the

values of 8 (generally between 1/3 and 1/2 depending on
atrix density obtained by the curve fitting should not be
' considered as reliable estimates of a critical exponent.

where the thermodynamic states of the coexisting phases
given by (ps,Xx) and (p; ,x’). The symmetry of the system
expressed via = Pq, andd,=D,,, leads to

m1(ps X, T)=puo(ps, 1=X,T), (23 C. Numerical details
For the numerical solution of the ORPA we have dis-
P(p:, X, T)=P(ps,1—X%,T). (24) cretized the correlation functions in battandq space, using

_ _ _ typically 1024 grid points and a mesh size &f =0.01o.
Using these relations we now proceed to the calculation ofor a given system, we first calculate the correlation func-
the phase diagrams. Th8-L coexistence is obtained by tions h,;; andc,;; of the reference system by solving the

solving the set of equations ROZ equationg4) along with the Percus-YevickPY) clo-
) sure[9] using the Labik-Malijevsky-Vonka algorithril9]
milps X=12T)=pi(ps , x=112T)= pe(ps X=1/2,T), adapted to the present problef@0]. Then we solve the

(29) ORPA by minimizing.A [Eq. (11)] to obtain the correlation
, functionsh,; andc,;; . The advantage of this minimization
P(ps x=112T)=P(p; ,x=1/2]T). (26)  algorithm lies in the fact that an explicit calculation of the
. ) functional is not required; we only need its derivatives, i.e.,
For the G-DF and L-DF transitions we proceed in two theh,,;;’s, which we easily obtain from the so-called residual
steps. First we determine the phase diagram of the demixing 7 equationg21]. Starting from an initial guess for the
transition, i.e., we search for two coexisting states with theyjrect correlation functions inside the core regitfor in-
same fluid density but different compositions by setifg  siance, the simple RPA expression or the solution at some
=ps and determining the concentrationgndx’ of the co-  |ower density we calculate improved correlation functions
existing phases. Due to the symmetry of the interactidns ith a steepest descent method until we obtain a minimum in
=1-x must hold. Then Eq(22) is automatically satisfied, the functional within a sufficient accuracy. The step size in

while Eq. (21) reduces to this search is triggered by a parameter that expresses quan-
titatively the degree of violation of the core condition E®).
pa(pe X T)=pa(ps X, T), (27) by the resulting perturbation parts of the total correlation

. ! . . functionsh,.;; (cf. [12]). The iterative algorithm was consid-
which defines the line(p;) of the second order demixing . 4 1o bé)'Ii:onve[rg(]ed if the differemgd“ij between two

transition if it exists. Along this line the chemlcal potentials successive values of the functiohig = (h;; — c;;)r satisfied
of the two species are equal by construction and denoted by

mi(ps,X(ps),T). In a second step the solution of the two

equations Ej 2% [ATy(r)]?Ar <107 (3D)
wi(pe X=12T)= pilp X(pf), T, @8, Eq. (31) the first summation is done over all pairs of
, , indices while the second sum is taken over all grid points of
Plps . x=112T)=P(ps ,x(ps),T) (29 ther mesh. For each system the ROZ equations have been

) ) ) ) solved along isotherms separatedXdy= 0.002(0.0001 near
gives the density of the equimolar gas or fluid, and that  jsical regions with a grid size of 0.005 in density and
of the demixed fluid,p¢ , with concentration(p¢) and 1 0125 in concentration.

—X(p¢), in equilibrium. Phase diagrams were determined from numerical solution
As we approach the critical or tricritical point the above of the equilibrium conditions Eqg25)—(29); these coupled
systems of equations become ill conditioned. In all the phas@onlinear equations were solved via a generalized Newton-

diagrams presented in Sec. V we have plotted the coexisRaphson procedure.
ence curves as far as reliable numerical solutions were avail-
able, the open segments representing those regions where no V. COMPUTER SIMULATIONS
numerical solution could be found.
For the determination of the critical temperature and den- The gas-liquid and demixing transitions of the symmetric
sity, T, and p., the results were extrapolated under the asbinary mixture specified in the preceding section have been
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studied with a grand canonical simulation technique. Thdt will be useful to define histograms for the sum and differ-
fluid mixture is adsorbed in a porous matrix formed by im- ence of species numbers,
mobile particles modeled as hard spheres. As already out-

lined in Sec. llI, two thermodynamic averages are required to Pm(N¢, s, T,V)

determine the properties of the adsorbed mixture: one corre-

sponds to the determination of the equilibrium properties of _ _

the mixture in a given matrix configuration, the other to the N%z S(Ns—(N1+N2))P(Ny,Na, s, T,V)

mean values of these properties in a properly weighted en-

semble of matrix configurations. In our simulation the (34)

weighting procedure for the matrix configurations uses th

canonical ensemble for a hard-sphere system at a given den-

sity pg. The equilibrium properties of the two adsorbed fluids Pa(Ng, s, T,V)

are calculated according to the standard scheme of the

GCMC simulation at a chemical potentja} = ;= u, equal

for the two fluids. P SR :NEN 8(Ng—(N1—=N2))P(Ny,Na, us, T, V).
Typically a simulation run starts by selecting randomly a 1

configuration of the matrix from those generated in a canoni- (35

cal ensemble simulation of a hard-sphere system at density ] ) )

po in a cube of volume 508° with periodic boundary con- ~ For the systems studied here, the histogfnis symmet-

ditions. The equilibrium state of the mixture at chemical po-fic in N; andN,. In a three dimensional representation, for
tential s and temperatur@ is then determined by perform- an equimolar mixturéwhere on averaghl, is equal toN,),

ing three types of trial move: a random insertion of a newP; presents a peak in theN¢,N,) plane on the lineN,;
particle into the volume/ containing the fixed matrix par- =N, at coordinatedN;=N,=N;/2 (N; is the mean value of
ticles, a random deletion, and a random displacement of ﬁlf) corresponding to a density of the mixtupezﬁflv.

particle. _These t_hree trial moves are accgpte_d followmg Fhe different phase transitions are characterized by the exis-
Metropolis algorithm corresponding to weighting the fluid
tence of several peaks ;.

article configurations in a grand canonical ensemble. e . . .
P g g The gas-liquid transition between the equimolar fluids

The matrix densities considered gsg = 0, 0.05, 0.15, .
and 0.30, and the parametersand o that characterize the corresponds to the existence of two peaks, located along the

matrix-fluid and fluid-fluid interactionésee Sec. Mlare cho-  line N;=N, at coordinatesN;=N,=Nf/2 and N;=N;
sen to be 1 and 0.7, respectively. In the cage 0 the prop- zﬁ'fIZ, associated with the gas and liquid densitjgs
erties of the mixture are evaluated without the matrix. The~=N9/v and pl=N}/V, respectively. The coexistence be-

influence of the latter on the location of the phase transitiofyeen an equimolar gas or liquid and a demixed fluid mix-
can be estimated with respect to this reference phase digyre results in the appearance of three peaks. One is situated
gram. o . iy ____on the lineN; =N, atN; =N,=N¥/2 orN;=N,=N!/2, cor-

The gas-liquid equilibria and the demixing transitions responding 1,[0 thze de;sityzof tfhe equ%molér gafls or liquid

have_ been ca_lculated for the case giware mixture by cal- hase. The two other peaks are symmetric with respect to the
culating the histograms of the number of particles of the twd:

speciesN; andN,. For a given configuration of thid; and ¢ N1=N_ and are located in thé\y,N2) plane on the line

N, particles with positionsRY ={rL (1} and R? N;=—N,+N¢" whereN?" corresponds to the density of the
1 N ; sy df_\gdf ;
={r2,...r%}, we have the histogram dem!xgd fIU|d,pf_ =N /V. The existence of a second orde_r
2 demixing transition becomes apparent by a progressive
P(Ny,N»,Us s, T,V) broadening of the peak of the equimolar phase situated on
- the lineN;=N,. As u; is increased at fixed, it splits into
1 eBuiNitNa) = BUHRY Ry two peaks symmetrical with respect to the liNg=N, and
- N;! N,! E(ws,V,T) 32 |ocated on the lineN;=—N,+ N?f.

Lo . _ _ Since the gas-liquid transition is of first order, the value of
whereUy(Ry ,Ry,) is the interaction energy of the particles 4, for which the gas and liquid phasésquimolar or de-
of the mixture and= (u¢,V,T) the grand partition function. mixed are in equilibrium along an isotherm, is estimated by

By summing over the values bff(Rﬁ ,Rﬁ ), keepingN;  the value where the two or three peaks of the histogPam
1 2

andN, fixed, i.e., by integrating over the particle positions are Of equal height, i.e., where the maximum probabilities of
RL andR2 . we obtain the different phases are equal.
Ny 2’

The histogramP,,, can be used to identify the first order
Pi(Ny, Ny, ur,T,V) fluid-fluid transitions: it then shows two peaks at different
e values ofN;. If it is a gas-liquid transition without demix-

8NN [ ae BUARE RZ )yl 2 ing, the two values foN at which these peaks occur corre-
1 e AT fve NN, dRNldRNz spond to nearly identical values &f; and N,, or, equiva-
= Ny! N, = VT lently, to a single peak in the histograify for Ny=0. If the

first order fluid-fluid transition is a demixing transition, then
(33)  the histogramP4 has three peaks: one of these peakhlat
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FIG. 1. HistogranP; (as defined in the texfor the equimolar- "'.
gas—demixed-liquid transition of a binary fluid in contact with a 0.020 | . ]
porous matrix po=0.15) as a function oN; andN, at T=0.61. ) .
Increasing gray levels indicate increasing values of the histogram. *
. [}
_ . 0.015 |+ .
=0 corresponds to the gas phase at low density and equal . .
concentration, and the other two represent the demixed E
phase. The finite values ™ (equal in absolute value but i ° .
with opposite sigh at which the peaks occur quantify the 0.010 - . ]
difference in the concentrations of the two fluids in the mix- . .
ture: this corresponds, taking into account the symmetry of I .
0.005 | N e
300 T &
HHH ® .
0.000 e e
01 02 03 04 05 06 07
Pt
206 FIG. 3. HistogramsP4 (P,) (as defined in the textfor
equimolar-liquid—demixed-fluid equilibrium of a binary fluid in
contact with a porous matrixpg=0.05) as a function ofxy
Z"‘ :Nd/N(pf) atT=0.68.
the system, with equal probability to either the cdsde
100 >N, or the caseN;<<N,.
As already mentioned above, the second order demixing
transition is accompanied by a broadening of the pedR;in
along the lineN; = —N,+N¢", and, as a consequence, of the
peak inP4 at Ng=0, followed by a splitting into two sym-
metric peaks ag:; increases. The location of the transition
0 line is obtained by searching for the maximum value of the
0 100 200 300

N,

FIG. 2. Histogramsf (as defined in the textfor equimolar-
liquid—demixed-fluid equilibrium of a binary fluid in contact with a
porous matrix po=0.05) as a function oN; andN, at T=0.68.

width of the peak aN4=0 before it splits into two separate
peaks; this is approximately equivalent to looking for the
largest value of N3) while the histogranPy still has only
one peak aN4=0.

In the presence of a matrix, for a configuratiditﬁIO

Increasing gray levels indicate increasing values of the histogram.Z{rg, - ,rﬁo} defined by théfixed) positions of the matrix
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FIG. 4. Same as Fig. 3 but for an equimolar-gas—equimolar-

liquid equilibrium.
particles, the energy of the mixture will be a functior‘RﬁO,
implying a similar dependence for the histogram

Pi(N1,Ng, ¢, T,V; R(h)lo)

1
~Ng!IN!

B wi(Np+ Nz)f

1 2 0
Vefﬁuf(RNl,RNZ,RNO)deIl dRr%lz
= .0
E(us,V. TRy

X
(36)

as well as for the histograni®,, and P4 derived fromP; .

PHYSICAL REVIEW E64 011502

""" LI I e B B B B
0.006 . . -
o, ..o..o ..
. ° ¢
0.004 - ¢ .
[ ]
[ ]
L ]
0.002 —
. °
.
.
[ )
0.000 lese® L.\ .. R L —eoe
-0.6 -0.3 0.0 0.3 0.6
Xy
T T T
0.06 o* .
L .
.
[ ]
0.04 - B
[ [
o .
1A
L . .
0.02 - B
i . .
L4 .
d .
- .---I...\ I BN, P PN
040 045 050 055 060 065

P:

FIG. 5. HistogramsP, (P,,) (as defined in the tektfor the
second order demixing transition of a binary fluid in contact with a
porous matrix po=0.15) as a function okq=Ny/N(p;) at T

=0.65.

The calculation of the histograms in the presence of a matrix
therefore requires a canonical average over the configura-

tions Ry, , according to

1 0
J e_BU(RNo)
\

0

Pf(NliNZi/-Lf ’T’V):Z

XPr(Ny,No, e, T,ViRY D ARY,
(37)

(and similar expressions for the histograRys andP,). The
locations of the phase transitions from these histograms are
made in a similar way as described above for the case of the
mixture in the absence of the matrix. They hence rely on the
values ofN; and N, having maximum probabilities that in
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L . L ! L . L L
0.03 0.04 0.05 0.08 0.07 0.08 0.09 0.10
exp(Bu)

FIG. 6. Monte Carlo isothermg; versus fugacity exgu), at
T=0.70, 0.71, 0.72, 0.73, and 0.&om left to right for a bulk
binary mixture. Solid triangles, second order demixing; solid
squaresG-DF or L-DF equilibrium; black diamondsG-L equi-
librium. The dashed line is a linear interpolation between second
order demixing points on isotherms, giving an approximate location
of the A line.

the case of a first order transition are eq{egjual heights of

the peaks in the histograiy).

Once a certain number of simulations has been performed
one can apply the histogram reweighting meth?#] to de-
termine the values ofi; that lead to peaks of equal heights

in P¢. This method has been used in the literature to study
the phase transitions of binary mixturese[23]) and can be
applied here straightforwardly to the case of a pure mixture
(pp=0). The histogranP at chemical potentiak; can be

T*

T*

T*

T*

0.78]
0.74]
0.70|
0.66|
062}

074}
070}
0.66|
062}

0.66
0.62}
0.58¢

054} /i

0.58}
0.54}
0.50F

0.46}
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058l [/
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Ps

FIG. 8. Variation with matrix density, of the phase diagram of

computed fromm calculated histograms with chemical poten- & binary fluid mixture in contact with a porous matri® 0.7, y

tials Mfl o M? according to the expression =1, andzo=2.5): comparison between MC and ORPA results.
po=0,0.05, 0.15, and 0.3(Grom top to bottom. Symbols: GCMC
simulations(diamondsG-L equilibrium; squaresz-DF or L-DF
' ' equilibrium; triangles,\ line). Lines: ORPA results(full line,
05 G-L,G-DF, or L-DF coexistence curve; dotted line, metastable
G-L transitions; dashed line, line).
ol | $
P(Nl,Nz,Uf s Mf ,T,V)
60-3 r .Eln P(Nl,NZ,Uf,,uif,T,V)eB'“f(NﬁNZ)e*’BUf
1=1|
02 f S sef Ry(Ny+Np) o= BUrg—Ti
01} (39
o . . . . where expt-f))=E(u)/E(ui) ands, is the number of entries
02 04 0.6 08 1.0 12 in histogramP at chemical potentigk} . The values of; are

10° exp(BiLy) evaluated self-consistently.

FIG. 7. Adsorption isothermg; versus fugacity expus), at
T=0.49, 0.50, 0.51, and 0.5&om left to right for a binary mix-
ture in contact with a porous matrix of densjiy=0.30. Symbols

011502-8

In the presence of the matrix the histograms depend on
the configuration of the matrix. Equatid38) allows us to
calculate the histograrrP(Nl,Nz,Uf,,uf,T,V;RE,O) from

as in Fig. 6. the histograms calculated with different chemical potentials
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09T T T T T T T T 1 very broad peak inPy4, which signals the expected large
08 fluctuations of the relative conceﬂtration of the two species
’ on the\ line, while the peak inP,, remains narrow and
07 | - centered orps .
In the range of fugacities expf) considered for each
0.6 . isotherm 10 to 25 simulations have been realized. For each
matrix configuration 88 10° Monte Carlo(MC) trial moves
05 o 7] have been performed; averages were taken over 6—10 differ-
Pt | ' | ent matrix configurations in the gas phase and 10-12 con-
0.4 1% figurations in the liquid phase. Near the phase transitions,
03 I o _ averages were taken over 20—42 matrix configurations. With
80x 10° MC trial moves the fluid densities for one matrix
02 | - configuration could be estimated with a precision of the or-
der of 0.1-0.2%. The estimate of the error of the densities
0.1 . averaged over the matrix configurations can obviously be
Ly Ly biased by using too small a number of these configurations.

From error analysis using sub-blocks in calculations with
~40 matrix configurations, we conclude that the error of the
fluid densities can reliably be estimated to be 2—3 % if the
number of matrix configurations is 10.

0
0 010203040506070809 1

T

FIG. 9. Demixing transitiorof a binary fluid in contact with a

porous matrix of densitp,=0.15 (¢=0.7,y=1, andzo=2.5): p¢ V. RESULTS
as a function of concentrationfor T=0.62. The symbols denote '
GCMC simulations(diamonds,G-L equilibrium; squares|.-DF A. Comparison with simulations

equilibrium; crosses, first order demixing transifiothe lines the

ORPA results. The computer simulations, carried out for four different

matrix densitiespp=0, 0.05, 0.15, and 0.3 ak=0.7y
=17z0=2.5, andr,=2.50, have been compared with ORPA
results. MC results for isotherms of the bulk system=0,
gramsP(Ny,No, U, ps,T,V; R%O) that are calculated in this and adsorption isotherms of the system with lowest porosity,
way is then obtained via Eq37). This reweighting proce- po=0.3, are shown in Figs. 6 and 7. In the range of tempera-
dure can be advantageously replaced by an approximatddresT~0.7—0.8 one observes, fpp=0, a first orderG-L
procedure, where E@38) is applied to the histograms aver- transition with critical temperatur€.~0.72-0.73 and criti-
aged over the configurations of the matrix, substituting incal densityp.~0.35 and a line of second order demixing
exp(~f)) an average functiog(lu) independent of th&ﬂ, transitions terminating at a tricritical _p_oint with temperature
- . 0 . 0 T,~0.73, slightly higher than the critical temperature, and

for the partition funcnonﬁ(,u,RNo). In this work the valid- densityp,.~0.57. This diagram is of type II. When the ma-
ity of this approximate procedure to determine the chemicalrix density increases, the temperature range within which
potential that corresponds to a phase transition has begRe equimolar liquid exists decreases and the phase diagram
checked by performing simulations at the transition chemicabyglves toward a type | diagram. A= 0.3 the phase dia-
potentials determined in this way. B gram in the temperature range 0.49—0.52 reveals(#ittin

Figures 1 and 2 give examples of the histogrdPgro-  the accuracy of the simulation resultke tricritical tempera-
jected onto the {l;,N,) plane for the first orde6G-DF and  ture, or possibly the temperature of the critical end point, is
L-DF transitions. Figure 2 demonstrates the difficulties en<close to and slightly below the critical temperature
countered in an accurate location of the phase transitions bf~0.51).

means ofP,, and Py. These histograms, corresponding to  Comparison of the phase diagrams with ORPA results is

At = ; _ illustrated in Fig. 8. Atpo=0 excellent agreement is ob-
projections ofP; onto planes located at the lindg =N, or fiit 0 o " .
N, = — N, respectively, are given in Fig. 3 and clearly ShOWtalned for theG-L andL-DF transition densities, the fluid

that their peaks accumulate contributions stemming from thgoncentrations of the demixed phase, and Xhéne. This

— . - agreement deteriorates, however, with increasig Al-
peaks ofP; which are associated with different phases. Th hgough in the ORPA the same sequence of typesg of phase
possibility of such a gjperpoiition biasing the hei_ghts an

_ o iagram occurs as in the simulations and general trdods
widths of the peaks oPy, and P4 justified the use oP; to  ering of the critical temperature and narrowing of BeL
locate the transitions. As illustrated in FIgS 4 and 5 Sucrboexistence curve with increasing matrix denﬁi&ye cor-
ambiguities do not occur for thé-L transition and the sec- rectly reproduced, marked differences are observed on a
ond order demixing transition. Th&-L transition is well  quantitative level. In particular, fop,=0.15, the critical
identified by the existence of two peaks of equal height inemperature is found to be higher than in the simulations;
P, and the symmetric peak iRy at x;=Ny/N=0. The also the ratio of the critical to tricritical or end point tem-
onset of the second order transition is clearly visible from theperature increases wifby, while it remains close to 1 in the

for the same configuratioﬁﬁo. The average over the histo-
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FIG. 10. Variation witha of the phase diagram of the binary fluid mixture in thermal equilibrium with a porous matrix from ORPA.
(po=0):2¢=0.65, 0.70, 0.75, 0.80, and 0.9Mom top to botton; (b) (p;=0.1y=0): «=0.68, 0.70, 0.72, and 0.8&rom top to bottony;
(©) (pp=0.1y=1):0=0.65, 0.70, 0.73, and 0.78rom top to bottom. Full line, G-L, G-DF, or L-DF coexistence curves; dotted line,
metastableG-L transition; dashed liney line.

simulations. Furthermore, the critical density shifts to lower B. Variation of &

values in contrast to the simulations where it remains nearly The variation of the phase diagram with (ratio of the
constant. On the other hand, the concentrations of the d&nteraction strengths of unlike and like partiolés shown in
mixed phase remain accurate even at a high matrix density 8¢ 10 for the matrix densitieg,=0 and 0.1. In the latter
illustrated in Fig. 9 forpo=0.15. As noted in the previous case the matrix-fluid interaction was either a pure hard-
section, the determination of the equilibrium densities of thesphere y=0) or a hard-spherer Yukawa interaction y
different phases in the simulations is affected by uncertain=1). For the bulk mixture we observe—in qualitative agree-
ties of the order of 2-3 % fgs,#0 and~1 % forpp=0.In  ment with the mean-field results of Wildinet al. [13]—
view of these error bars the difference between the theoryariation of the phase diagram from type Il to type Il to type
and the simulations at the higher matrix densities is signifi4 as we increase from 0.65 to 0.90. Aiz= 0.9 no demixing
cant. The major source of error is likely to be found in thetransition could be observed down to a temperatiire
use of the ORPA, in particular in that of the PY type closure=0.55, below which the ORPA equations could no longer be
to solve the ROZ equations for the reference hard-sphersolved. At this temperature andvalue a freezing transition

system in the framework of the replica thed24]. Differ- is also possible and the demixing transition no longer exists
ences of similar size between simulation and ORPA result$ the fluid phase. Over the range @fvalues considered the
were observed in the one component cig&. critical temperature and density do not vary appreciably with
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FIG. 11. Variation withy of
074 ol the phase diagram of the binary
' | fluid mixture in thermal equilib-
0.70 0601 rium with a porous matrix from
T* 066 T* | ORPA. (8 (pg=0.050¢=0.7): y
0.561 =3.5,2,1,0--1 (from top to bot-
0.62- L/ tom); (b) (pp=0.100=0.73): y
0.58 052 F =2,1,0-1 (from top to botton.
L Full line, G-L, G-DF, or L-DF
068 0.56 coexistence curves; dotted line,
: e metastableG-L transition; dashed
line, \ line.
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a. An increase of the matrix density from O to 0@ty  negative values. A-L transition appears negr2 (a pre-
=1) does not alter this behavior or the sequence of phasgise location cannot be found due to numerical problems in
diagrams(from type IIl to type ) but lowersT; and Ty by  the critical region as mentioned abgwand exists only in a
~10% and shifts the densities of the tricritical and CEPsma| range ofy values extending roughly from 2 te 0.5.
points to slightly lower densities. A changepfrom 1100 The phase diagram is again of type Il for the more strongly
at fixed matrix densityo=0.1 lowersT, by ~10%, shifts  renyisive matrix-fluid interactiong=—1. A qualitatively

p from ~0.32 t0~0.26, and delays the appearance of thegjmilar pehavior is observed for the larger matrix density

CEP as one increases po=0.1; here the type Il phase behavior occurs at least for
- o<y<2.
C. Variation of y The ORPA allows us to determine the metastaBlé.

The variation with the parametgr (expressing the ratio transitions (hidden below theG-DF coexistence curye
between the fluid-fluid and the matrix-fluid interactipris  these are marked in Fig. 11 by dotted lines. From the figure,
shown in Fig. 11 for the two casgg=0.050=0.7 andp, it is apparent that, when the matrix is strongly attractiye (
=0.12=0.73. A positive value of represents an attraction =3.5), the\ line (extended into th&-DF coexistence re-
between matrix and fluid particles while a negative valuegion) intersects the metastable first ordgrL coexistence
represents a repulsion. For the lower matrix dengity line at a density smaller than tlimetastablecritical density
=0.05, the sequence of phase diagrams is found to bpS'L, while for the repulsive matrix-fluid interactiony (
type lll—type ll—type Il wheny decreases from positive to = —1) the intersection is observed for densities larger than
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0601 058] / from ORPA. (3) (y=0,2=0.7):
0660 " po=0, 0.05, 0.10, and 0.18rom
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- 062. =0.7): py=0, 0.05, 0.15, and
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pSt. As pointed out by Wildinget al. [13] in their mean-  (type | phase diagramit can be seen that the existence of a
field study of a symmetric binargulk mixture, these differ- CEP leads to a kink in th&-L curve, clearly visible in the
ences in the metastable equilibrium may be of relevance foPRPA data, a phenomenon that has been discussed in a
the dynamic properties of the system. Therefore, when, ifimulation study of the pure mixture [26]. The situation is
the case of a repulsive matrix, the fluid is quenched from a{;ompletely different if the matrix-fluid interactions are hard-
high temperature state into the coexistence region slightl ?hetre poltlelntﬁllsy(= dq). We 'nfow ir(;“ietxv'tg 'Ectrg?g.r:%%
below the metastable critical point one can expect “two a type 1l phase diagram, Tqio—o. eb- iy
stage demixing.” This means, that the system will first sepa-becOmes metastable and hidden below Gi®F transition
rate into aG and aL phase; t,hen the equimolar liquid will (type Ill phase diagraim As discussed in the previous sub-
. P ’ € equim 4 section, the metastab(-L transition can lead to a two stage
demix[13]. In contrast, for an attractive matriy € 3.5), the

fluid will demix and phase separate simultaneouSiyne- demixing.
stage demixing"[13]). E. Variations of zand r
D. Variation of py The change in phase diagram entailed by variation of the
. i . screening lengtfz of the Yukawa potential is shown in Fig.
The influence of the matrix density on the phase diagram 3 for po=0.10, =0.68, andy=0. A change oo from 2
of the mixture is shown in Fig. 12 for two values 0 and 1 ofto 3 mainly lowers the tricritical temperature and the critical
the parametey and«=0.7. As discussed in the comparison temperature of the metastalBL transition, but otherwise
of simulation and theoretical results, in both casesp@t leaves the critical density and type of phase diagfaype
=0, we have a type Il diagram characterized by a tricriticallll ) unchanged.
point where thex line of the second order demixing transi-  Increasing the range of the Yukawa potential fram
tion terminates as well as a triple point where thetheL, =2.50 (the value at which most of the ORPA calculations
and theDF coexist. As we increasp,, aty=1 (attractive  have been performed to allow comparison with the MC
tail in the matrix-fluid interactionthe tricritical temperature simulations to 8o raises the critical temperature while pre-
T,. decreases; giy~0.3 the first order transition between serving the shape of the phase diagrésee Fig. 14 We
theL and theDF has vanished, giving rise to a CEPTa,,  observe a narrowing of th&-L coexistence region.
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0.56}
T . FIG. 14. Variation with cutoff radius. of the phase diagram of
0521 the binary fluid mixture in thermal equilibrium with a porous matrix
- from ORPA. Top curver, .= 2.50; bottom curver .=80. The other
048+ parameters arg=1, «=0.7, andpy,= 0.05. Full line,G-L, G-DF,

0 0'1 0'2 0'3 0'4 0'5 0|6 0'7 0.8 or L-DF coexistence curves; dotted line, metastabie transition;
: : ) . ¢ : ‘ : dashed line) line.

Pr

FIG. 13. Variation with screening lengthof the phase diagram changes of the phase diagrams. In particular, for a given fluid
of the binary fluid mixture in thermal equilibrium with a porous &nd matrix, it is apparent that the phase diagram can be
matrix from ORPA. Parameterg;=0, a=0.68, andp,=0.10.  changed drastically by varying the porosity of the medium,
zo=2, 2.5, and 3from top to botton). Full line, G-L, G-DF, or  Which is the parameter most readily controllable in experi-
L-DF coexistence curves; dotted line, metastaBk. transition; ment.
dashed line line. In the simulations, care has been taken to average over a

sufficiently large number of matrix configurations to reduce
VI. CONCLUSIONS the systematic statistical error to the level of a few percent.
Finite size effects have not been taken into account so far.

Results_obtalned V.V'thm th_e ff?‘meWP”‘ of the ROZ inte- Outside the critical region, previous simulations performed
gral equation theory in combination with the ORPA closureﬁ_Jr a one component fluid in a hard-sphere maf@s] for
have provided detailed information on the influence of ma-

; . _ . ; different system volumes do not reveal notable quantitative
trix density and parameters defining the interactions betwee Y q

. o ) Size effects on the system properties. In the critical region, in
the pa}rtlcles of thésymmt_etrlc) b|'nary mixture and between the absence of a firmly established scheme for analysis of
the mixture and the matrix particles.

Mean-field theory predicts for a binary symmetric bulk finite size effects in a disordered medium, the latter are dif-

mixtur_e (of the type considered heréhe e>§istence of three :I-Ezglt%gi?rgstz ;—rkrlglll caamn opuonst,sgll{hztlghtklﬁ ecrg]:;:;:ltoi;tré():(_
generic phase diagrams. These phase diagrams are al_so cted to be too small to preclude a quantitative comparison
talned in the present study by the ROZ thepry and by SIMUE cwveen theory and simulations,

Iatlo_n for both th‘.a bulk a!”d adsorbed mixtures. A major Comparison between simulations and theory has disclosed
achievement of this work Is to sup_ply a nonambiguous €Olthe necessity for improving ORPA theory in the domain of
respondence between the interactions in the partly quench atrix densitiespy>0.1. Effort in this direction is in
system(mlxturg plus porous matr)xand the type . phase progress. We also plan to extend theory and simulations to
diagram to which they give rise. In the bulk binary mixture systems comprising long range Coulomb and dipolar inter-
the change in phase diagram is triggered by only one parame.. o< <uch as electrolyte solutions

eter (the parametew); this is also the case in other bulk '

systems, such as for instance the Heisenberg or Stockmayer
fluid where the change in the type of phase diagram is trig-
gered by the ratio of the strengths of the isotropic and aniso- )
tropic interaction$27,28. In the present system the situation ~ This work was supported by the s@rreichische Fors-

is more complex, bringing into play a combination of severalchungsfond under Projects No. P13062-TPH, No. P14371-
parametersy, y (the ratio of fluid-fluid and matrix-fluid in- TPH, and No. W004, the Wiener Handelskammer, and a
teractions, and the porosityvia py). Small changes in each grant through the Programme d’Actions Igtees AMA-

of these parameters have been shown to lead to qualitati@EUS. E.P. and G.K. acknowledge the warm hospitality at
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