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Phase diagram of a symmetric binary fluid in a porous matrix
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The phase behavior of a binary symmetric fluid in thermal equilibrium with a porous matrix has been studied
with the optimized random phase approximation and grand canonical Monte Carlo simulations. Depending o
the matrix properties and the matrix-fluid and fluid-fluid interactions we find three types of phase diagram
characterized by a tricritical point, a tricritical point with a triple point, or a critical end point. Small changes
in the properties of the matrix or in the interactions are demonstrated to lead to drastic modifications of th
phase diagram of the fluid, in qualitative agreement with observations in experimental studies. We show, i
particular, that the change between the different types of phase diagram is triggered not only by the fluid-flui
interactions~internal parameters! but also by the properties of the matrix and of the matrix-fluid potentials
~external parameters!.
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I. INTRODUCTION

In many technological applications where a liquid is
thermal equilibrium with a disordered porous matrix~such as
catalysis, adsorption separation, enhanced oil recovery
others! it is of great importance to understand the influen
of the properties of the adsorbent matrix on the phase be
ior of the fluid. The relevance of this problem is reflected
the large increase in the number of theoretical and exp
mental studies devoted to it~see, e.g.,@1#, and references
therein!.

Experimental studies of binary mixtures in both hig
~silica gels! @2# and low porosity~Vycor! @3# matrices are
numerous and have shown persuasively that the phase
havior is markedly different from that of the bulk syste
under the same conditions. However, in these rather com
systems the combined influence of pore structure, rand
ness, wetting phenomena, capillary condensation, etc.
phase separation is not yet satisfactorily explained. Dis
tanglement of the roles of these various factors can, howe
be done by studying well defined model systems, amen
to either theoretical analysis or computer simulations,
which these factors can be varied in a controlled way.

Such a theoretical approach is followed in the pres
paper for a model of a symmetric binary mixture adsorbed
a porous matrix formed by immobile particles modeled
hard spheres. It generalizes to the mixture case a me
originally proposed by Madden and Glandt@4# and subse-
quently reformulated by Given and Stell@5–7#. In this
method the system composed of the fluid and the por
matrix is described as an ensemble of equilibrium state
the fluid adsorbed in possible configurations of the mat
The essence is to apply the replica trick to evaluate the
thermodynamic averages required to determine the pro
ties of the adsorbed mixture—the first over the fluid parti
configurations at given matrix arrangements, and the sec
over different matrix configurations. The replica trick@8# ex-
ploits a mathematical isomorphism between this pa
quenched system and the limiting case of a correspon
51X/2001/64~1!/011502~14!/$20.00 64 0115
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equilibrium system that consists of the now mobile mat
particles and ofs noninteracting identical copies of the flui
particles. This latter system can be treated by standard liq
state theories@9#. The properties of the quenched system a
then obtained by considering the limits→0 of the properties
of the equilibrium system. Using this formalism one can d
rive the so-called replica Ornstein-Zernike equations~ROZ!,
analogous to the familiar Ornstein-Zernike equations in st
dard liquid state theory, which relate the different correlati
functions of the system. From the knowledge of these
thermodynamic properties can be calculated@10–12#.

As expected, the symmetric binary mixture case exhib
even for thepure mixture, a much richer variety of phas
diagrams than the one component system. Depending on
values of the coupling strengths of the fluid-fluid and matr
fluid interactions, the three different phases equimolar
(G), equimolar liquid (L), or nonequimolar~demixed! fluid
(DF) that can be encountered are arranged in three type
phase diagram which, as in the pure mixture case, diffe
the way the second order transition associated with demix
merges into a first order transition. In the case where the
order transition between the equimolar gas and equim
liquid is absent, thel line ~critical line of the fluid demixing!
ends at a tricritical point~type III! and a first order transition
between an equimolar gas and a demixed fluid appears
the case where theG-L transition exists, thel line either
ends at a tricritical point where a first order transition b
tween an equimolar liquid and a demixed liquid appe
~type II! or ends at a critical end point~CEP! on theG-L
coexistence line~type I!. In a mean-field study of a pure
~bulk! symmetric binary mixture it was shown@13# that the
transition between the different types of phase diagram
triggered by a parametera, i.e., the ratio of the unlike to like
interactions. Here we demonstrate that similar changes
also be induced by the parameters governing the ma
matrix and matrix-fluid interactions. This scenario is co
firmed by performing grand canonical Monte Carlo~GCMC!
simulations@14#.

Although our simple model~hard-sphere Yukawa interac
©2001 The American Physical Society02-1



he
ar

s
u

ed
-

y
s

-
th
ti
d
n
fe
lu

rd

e

1
et

s

e
1

f
e,
ed
e

ize
th
rd
th

a-
to

d

and
n

e
ith
ng
m
led.

o-

ls

re
nce

SCHÖLL-PASCHINGER, LEVESQUE, WEIS, AND KAHL PHYSICAL REVIEW E64 011502
tions are used throughout! does not allow a full description
of the experimental systems it nevertheless can mimic t
characteristic features and bring systematic parameter v
tions within practical reach.

The remaining part of the paper is organized as follow
After description of the potentials that characterize o
model in Sec. II, we present briefly, in Sec. III, the optimiz
random phase approximation~ORPA! that is used as a clo
sure to the ROZ equations and collect the expressions~free
energy, chemical potential, and pressure! that are necessar
to calculate phase diagrams. Section IV contains detail
the GCMC simulations, in particular the distribution of num
bers of particles and histogram reweighting methods
served to locate the various phase transitions. The sec
following ~Sec. V! describes the results: comparison is ma
between simulation results and ORPA predictions and tre
in the variation of the phase diagrams induced by the dif
ent system parameters are discussed. The paper is conc
with a summary of our main results.

II. THE SYSTEM

The system we have studied is a symmetric binary ha
sphere Yukawa mixture in equilibrium with a porous~hard-
sphere! matrix. All the interactions of the system can b
written as@b51/(kBT)#

bF i j ~r !5H `, r ,s

2
Ki j

r
exp@2z~r 2s!#, r>s.

~1!

A value 0 of indexi or j denotes the matrix particles, while
and 2 denote the two components of the fluid. The diam
s is assumed to be equal for all interactions andz is the
screening length. The contact valuesKi j are parametrized a
follows:

K0050, K115K22, ~2!

K125aK11, K015K025yK11. ~3!

We define a reduced temperature viaT!5s/K11 ~in the fol-
lowing T! is denoted byT). Further system variables are th
partial densitiesr i of speciesi, the concentration of species
of the fluid x5r1 /(r11r2), the fluid densityr f5r11r2,
and the matrix densityr0 ~densities will be given in units o
s3 throughout the paper!. In all calculations presented her
unless otherwise stated, the potentials have been truncat
r c52.5s, andzs was chosen to be 2.5; this is for both th
simulations and the theoretical calculations.

III. THERMODYNAMIC PERTURBATION THEORY

A. Structure and thermodynamics

In this section we present the ROZ equations general
to the binary mixture case. We also give a summary of
relevant thermodynamic expressions that are needed in o
to locate the phase transitions: they were obtained within
01150
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framework of the ORPA closure relation to the ROZ equ
tions. For full details of the derivation we refer the reader
Ref. @12#.

The ROZ equations relate the fluid-fluid, matrix-fluid, an
matrix-matrix directci j (r ) and totalhi j (r ) correlation func-
tions. They can be written in compact form as

h005c001r0c00^ h00, ~4!

h015c011h01^ r0c001r1h11^ c012r1h12^ c01,

h115c111h01^ r0c01
T 1r1h11^ c112r1h12^ c12,

h125c121h01^ r0c01
T 1r1h12^ c111r1h11^ c12

22r1h12^ c12,

where the superscript T denotes the transpose of a vector
^ stands for a convolution. The following matrix notatio
has been introduced@12#:

r15S r1 0

0 r2
D , h015S h01

h02
D , c015S c01

c02
D , ~5!

h115S h11 h12

h12 h22
D , c115S c11 c12

c12 c22
D ,

h125S h13 h14

h14 h24
D , c125S c13 c14

c14 c24
D , ~6!

whereh13 (h24) is the (s→0) limit of the correlation func-
tion between particles of species 1~2! of different replicas.
Further,h14 is the (s→0) limit of the correlation function
between unlike particles of different replicas. Within th
present framework, which describes fluids in contact w
porous media, these functions are called the ‘‘blocki
parts’’ of the correlation functions. The ROZ equations for
a set of nine integral equations, eight of them being coup

To close these equations we have chosen the ORPA@15#.
The basic assumption in this framework is that all pair p
tentials can be split into a reference part~index ‘‘r’’ ! and a
perturbation part~index ‘‘p’’ !, i.e.,

F i j ~r !5F r; i j ~r !1Fp;i j ~r !. ~7!

In the present study theF r; i j (r )’s are hard-sphere potentia
characterized by one single hard-sphere diameters. Equa-
tion ~7! definesFp;i j (r ) up to a finite contribution inside the
core region. In a similar way, the correlation functions a
split into reference and perturbation parts. For convenie
we define the matrices (C)5Ar ir j ci j and (Cr) i j

5Ar ir j cr ; i j . The ORPA closure relation assumes that

cp;i j ~r !52bFp;i j ~r !, r>s, ~8!

while inside the core region (r ,s) the cp;i j ’s are chosen to
guarantee

hp;i j ~r !50 for r ,s. ~9!
2-2
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Applying the ORPA to the replicated system and taking
limiting cases→0 one obtains the properties of the par
quenched system.

The free energy density of this system,Ā!(52bĀ/V), is
obtained from the free energy of the replicated syste

@Arep(s)#!, via Ā!5 lim
s→0

(d/ds)@Arep(s)#! @10,16#. In the

following calculations only the difference betweenĀ! and
the free energy of the reference system,Ār

! , is required,

Ā!2Ār
!52A@C#1A@Cr#1

1

2
@r1

2c̃p;111r2
2c̃p;22

12r0r1c̃p;0112r0r2c̃p;0212r1r2c̃p;12#q50

2
1

2
@r1cp;111r2cp;22# r 50 , ~10!

where the functionalA@C# is defined as

A@C#5
1

2~2p!3E dqH ln$~12r1c̃11
c !~12r2c̃22

c !

2r1r2@ c̃12
c #2%

2
1

@12r1c̃11
c #@12r2c̃22

c #2r1r2@ c̃12
c #2

3Fr1c̃13~12r2c̃22
c !1r2c̃24~12r1c̃11

c !

12r1r2c̃14c̃12
c 1

r0

12r0c̃00

@r1c̃01
2 ~12r2c̃22

c !

1r2c̃02
2 ~12r1c̃11

c !12r1r2c̃01c̃02c̃12
c #G J ~11!

andA@Cr# is obtained from the above expression by sub
tuting the ci j ’s by cr; i j ’s. In the above expressions a tild
denotes the Fourier transform of a function. Further, we h
introduced the ‘‘connected’’ parts of the correlation fun
tions, defined as

c11
c 5c112c13, c12

c 5c122c14, c22
c 5c222c24. ~12!

Using the expression~10! for the free energy one can sho
that

S dĀ!

dcp;i j
D ~r !5

22d i j

2
r ir j@gr; i j ~r !1hp;i j ~r !#, ~13!

which means that the minimization ofĀ! with respect to
variations of thecp;i j (r ) inside the core region is equivalen
to the hard-core condition~9!.

The chemical potentialsm i5m i
id1m r; i

ex1mp;i are calcu-
lated as follows~‘‘ex’’ denotes the excess part over the ide
part ‘‘id’’ !: the reference parts are obtained via numeri
integration of the compressibility equation, i.e.,
01150
e
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S ]bm r;1
ex

]r f
D

T,x,r0

52x@ c̃r;11
c #q502~12x!@ c̃r;12

c #q50 ,

~14!

S ]bm r;2
ex

]r f
D

T,x,r0

52~12x!@ c̃r;22
c #q502x@ c̃r;12

c #q50 ,

~15!

using as an integration constant atr f50 the Carnahan-
Starling expression for the excess chemical potential o
one-component sytem of hard spheres at packing fractioh
5(p/6)r0s3 @17#,

bm r; i
ex~r f50!5

8h29h213h3

~12h!3
, i 51,2. ~16!

Further, the ideal parts of the chemical potentials are gi
by bm i

id5 ln ri(i51,2) and the perturbation parts of them i ’s
by

bmp;15bm12bm r;1

52@r fxc̃p;111r0c̃p;011r f~12x!c̃p;12#q50

1
1

2
@cp;11# r 50 , ~17!

bmp;25bm22bm r;2

52@r f~12x!c̃p;221r0c̃p;021r fxc̃p;12#q50

1
1

2
@cp;22# r 50 . ~18!

The pressureP5Pid1Pr
ex1Pp is calculated as follows: the

ideal contribution isbPid5r f ; the reference part to the pres
sure is obtained via numerical integration of

S ]bPr
ex

]r f
D

T,x,r0

52r f$x
2@ c̃r;11

c #q5012x~12x!@ c̃r;12
c #q50

1~12x!2@ c̃r;22
c #q50%. ~19!

The integration constants are irrelevant if one wants to
termine only the phase diagram.

Finally, the perturbation part of the pressure is calcula
from the Gibbs-Duhem relation

bPp5Ā!2Ār
!1b (

i 51,2
r imp;i , ~20!

where the difference of the free energies is taken from
~10!.
2-3
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B. Calculation of the phase diagram

We have determined the phase diagrams by equating,
given temperatureT, the pressureP and the chemical poten
tials m i of the coexisting phases. The general equilibriu
conditions read

m i~r f ,x,T!5m i~r f8 ,x8,T!, i 51,2, ~21!

P~r f ,x,T!5P~r f8 ,x8,T!, ~22!

where the thermodynamic states of the coexisting phase
given by (r f ,x) and (r f8 ,x8). The symmetry of the system
expressed viaF015F02 andF115F22, leads to

m1~r f ,x,T!5m2~r f ,12x,T!, ~23!

P~r f ,x,T!5P~r f ,12x,T!. ~24!

Using these relations we now proceed to the calculation
the phase diagrams. TheG-L coexistence is obtained b
solving the set of equations

m i~r f ,x51/2,T![m f~r f ,x51/2,T!5m f~r f8 ,x51/2,T!,
~25!

P~r f ,x51/2,T!5P~r f8 ,x51/2,T!. ~26!

For the G-DF and L-DF transitions we proceed in two
steps. First we determine the phase diagram of the demi
transition, i.e., we search for two coexisting states with
same fluid density but different compositions by settingr f8
5r f and determining the concentrationsx andx8 of the co-
existing phases. Due to the symmetry of the interactionsx8
512x must hold. Then Eq.~22! is automatically satisfied
while Eq. ~21! reduces to

m1~r f ,x,T!5m2~r f ,x,T!, ~27!

which defines the linex(r f) of the second order demixin
transition if it exists. Along this line the chemical potentia
of the two species are equal by construction and denote
m f„r f ,x(r f),T…. In a second step the solution of the tw
equations

m f~r f ,x51/2,T!5m f„r f8 ,x~r f8!,T…, ~28!

P~r f ,x51/2,T!5P„r f8 ,x~r f8!,T… ~29!

gives the density of the equimolar gas or fluid,r f , and that
of the demixed fluid,r f8 , with concentrationsx(r f8) and 1
2x(r f8), in equilibrium.

As we approach the critical or tricritical point the abo
systems of equations become ill conditioned. In all the ph
diagrams presented in Sec. V we have plotted the coe
ence curves as far as reliable numerical solutions were a
able, the open segments representing those regions whe
numerical solution could be found.

For the determination of the critical temperature and d
sity, Tc and rc , the results were extrapolated under the
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sumption that the coexistence curve can be described b
scaling type law and the law of rectilinear diameters, i.e.

r l2rg5B~T2Tc!
b, ~r l1rg!/25rc1A~T2Tc!.

~30!

Equations~30! were fitted to the coexistence curves by ta
ing A,B, and b as adjustable parameters. Due to the we
known fact that the ORPA~being a conventional liquid stat
theory! fails to describe correctly the critical region@18#, the
values ofb ~generally between 1/3 and 1/2 depending
matrix density! obtained by the curve fitting should not b
considered as reliable estimates of a critical exponent.

C. Numerical details

For the numerical solution of the ORPA we have d
cretized the correlation functions in bothr andq space, using
typically 1024 grid points and a mesh size ofDr 50.01s.
For a given system, we first calculate the correlation fu
tions hr; i j and cr; i j of the reference system by solving th
ROZ equations~4! along with the Percus-Yevick~PY! clo-
sure @9# using the Labik-Malijevsky-Vonka algorithm@19#
adapted to the present problem@20#. Then we solve the
ORPA by minimizingA @Eq. ~11!# to obtain the correlation
functionshp;i j andcp;i j . The advantage of this minimizatio
algorithm lies in the fact that an explicit calculation of th
functional is not required; we only need its derivatives, i.
thehp;i j ’s, which we easily obtain from the so-called residu
ROZ equations@21#. Starting from an initial guess for the
direct correlation functions inside the core region~for in-
stance, the simple RPA expression or the solution at so
lower density! we calculate improved correlation function
with a steepest descent method until we obtain a minimum
the functional within a sufficient accuracy. The step size
this search is triggered by a parameter that expresses q
titatively the degree of violation of the core condition Eq.~9!
by the resulting perturbation parts of the total correlati
functionshp;i j ~cf. @12#!. The iterative algorithm was consid
ered to be converged if the differenceDG i j between two
successive values of the functionsG i j 5(hi j 2ci j )r satisfied

(
i j

(
l

@DG i j ~r l !#
2Dr ,1025. ~31!

In Eq. ~31! the first summation is done over all pairs
indices while the second sum is taken over all grid points
the r mesh. For each system the ROZ equations have b
solved along isotherms separated byDT50.002~0.0001 near
critical regions! with a grid size of 0.005 in density an
0.0125 in concentration.

Phase diagrams were determined from numerical solu
of the equilibrium conditions Eqs.~25!–~29!; these coupled
nonlinear equations were solved via a generalized New
Raphson procedure.

IV. COMPUTER SIMULATIONS

The gas-liquid and demixing transitions of the symmet
binary mixture specified in the preceding section have b
2-4
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studied with a grand canonical simulation technique. T
fluid mixture is adsorbed in a porous matrix formed by im
mobile particles modeled as hard spheres. As already
lined in Sec. III, two thermodynamic averages are required
determine the properties of the adsorbed mixture: one co
sponds to the determination of the equilibrium properties
the mixture in a given matrix configuration, the other to t
mean values of these properties in a properly weighted
semble of matrix configurations. In our simulation th
weighting procedure for the matrix configurations uses
canonical ensemble for a hard-sphere system at a given
sity r0. The equilibrium properties of the two adsorbed flui
are calculated according to the standard scheme of
GCMC simulation at a chemical potentialm f5m15m2 equal
for the two fluids.

Typically a simulation run starts by selecting randomly
configuration of the matrix from those generated in a cano
cal ensemble simulation of a hard-sphere system at den
r0 in a cube of volume 500s3 with periodic boundary con-
ditions. The equilibrium state of the mixture at chemical p
tential m f and temperatureT is then determined by perform
ing three types of trial move: a random insertion of a n
particle into the volumeV containing the fixed matrix par
ticles, a random deletion, and a random displacement
particle. These three trial moves are accepted followin
Metropolis algorithm corresponding to weighting the flu
particle configurations in a grand canonical ensemble.

The matrix densities considered arer0 5 0, 0.05, 0.15,
and 0.30, and the parametersy and a that characterize the
matrix-fluid and fluid-fluid interactions~see Sec. II! are cho-
sen to be 1 and 0.7, respectively. In the caser050 the prop-
erties of the mixture are evaluated without the matrix. T
influence of the latter on the location of the phase transit
can be estimated with respect to this reference phase
gram.

The gas-liquid equilibria and the demixing transitio
have been calculated for the case of apure mixture by cal-
culating the histograms of the number of particles of the t
species,N1 andN2. For a given configuration of theN1 and
N2 particles with positionsRN1

1 5$r1
1 , . . . ,rN1

1 % and RN2

2

5$r1
2 , . . . ,rN2

2 %, we have the histogram

P~N1 ,N2 ,U f ,m f ,T,V!

5
1

N1! N2!

eb m f (N11N2)e2bU f (RN1

1 ,RN2

2 )

J~m f ,V,T!
, ~32!

whereU f(RN1

1 ,RN2

2 ) is the interaction energy of the particle

of the mixture andJ(m f ,V,T) the grand partition function
By summing over the values ofU f(RN1

1 ,RN2

2 ), keepingN1

and N2 fixed, i.e., by integrating over the particle positio
RN1

1 andRN2

2 , we obtain

Pf~N1 ,N2 ,m f ,T,V!

5
1

N1! N2!

eb m f (N11N2)E
V
e2bU f (RN1

1 ,RN2

2 )dRN1

1 dRN2

2

J~m f ,V,T!
.

~33!
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It will be useful to define histograms for the sum and diffe
ence of species numbers,

Pm~Nf ,m f ,T,V!

5 (
N1 ,N2

d„Nf2~N11N2!…Pf~N1 ,N2 ,m f ,T,V!

~34!

and

Pd~Nd ,m f ,T,V!

5 (
N1 ,N2

d„Nd2~N12N2!…Pf~N1 ,N2 ,m f ,T,V!.

~35!

For the systems studied here, the histogramPf is symmet-
ric in N1 andN2. In a three dimensional representation, f
an equimolar mixture~where on averageN1 is equal toN2),
Pf presents a peak in the (N1 ,N2) plane on the lineN1

5N2 at coordinatesN15N2.N̄f /2 (N̄f is the mean value of
Nf) corresponding to a density of the mixturer f5N̄f /V.
The different phase transitions are characterized by the e
tence of several peaks inPf .

The gas-liquid transition between the equimolar flui
corresponds to the existence of two peaks, located along
line N15N2 at coordinatesN15N2.N̄f

g/2 and N15N2

.N̄f
l /2, associated with the gas and liquid densitiesr f

g

.N̄f
g/V and r f

l .N̄f
l /V, respectively. The coexistence b

tween an equimolar gas or liquid and a demixed fluid m
ture results in the appearance of three peaks. One is situ
on the lineN15N2 at N15N2.N̄f

g/2 or N15N2.N̄f
l /2, cor-

responding to the density of the equimolar gas or liqu
phase. The two other peaks are symmetric with respect to
line N15N2 and are located in the (N1 ,N2) plane on the line
N152N21N̄f

d f whereN̄f
d f corresponds to the density of th

demixed fluid,r f
d f5N̄f

d f/V. The existence of a second ord
demixing transition becomes apparent by a progress
broadening of the peak of the equimolar phase situated
the lineN15N2. As m f is increased at fixedT, it splits into
two peaks symmetrical with respect to the lineN15N2 and
located on the lineN152N21N̄f

d f .
Since the gas-liquid transition is of first order, the value

m f , for which the gas and liquid phases~equimolar or de-
mixed! are in equilibrium along an isotherm, is estimated
the value where the two or three peaks of the histogramPf
are of equal height, i.e., where the maximum probabilities
the different phases are equal.

The histogramPm can be used to identify the first orde
fluid-fluid transitions: it then shows two peaks at differe
values ofNf . If it is a gas-liquid transition without demix-
ing, the two values forNf at which these peaks occur corr
spond to nearly identical values ofN1 and N2, or, equiva-
lently, to a single peak in the histogramPd for Nd50. If the
first order fluid-fluid transition is a demixing transition, the
the histogramPd has three peaks: one of these peaks atNd
2-5
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50 corresponds to the gas phase at low density and e
concentration, and the other two represent the demi
phase. The finite values ofNd ~equal in absolute value bu
with opposite sign! at which the peaks occur quantify th
difference in the concentrations of the two fluids in the m
ture: this corresponds, taking into account the symmetry

FIG. 1. HistogramP̄f ~as defined in the text! for the equimolar-
gas–demixed-liquid transition of a binary fluid in contact with
porous matrix (r050.15) as a function ofN1 and N2 at T50.61.
Increasing gray levels indicate increasing values of the histogr

FIG. 2. HistogramP̄f ~as defined in the text! for equimolar-
liquid–demixed-fluid equilibrium of a binary fluid in contact with
porous matrix (r050.05) as a function ofN1 and N2 at T50.68.
Increasing gray levels indicate increasing values of the histogr
01150
al
d

-
f

the system, with equal probability to either the caseN1
.N2 or the caseN1,N2.

As already mentioned above, the second order demix
transition is accompanied by a broadening of the peak inPf

along the lineN152N21N̄f
d f , and, as a consequence, of th

peak inPd at Nd50, followed by a splitting into two sym-
metric peaks asm f increases. The location of the transitio
line is obtained by searching for the maximum value of t
width of the peak atNd50 before it splits into two separat
peaks; this is approximately equivalent to looking for t
largest value of̂ Nd

2& while the histogramPd still has only
one peak atNd50.

In the presence of a matrix, for a configurationRN0

0

5$r1
0 , . . . ,rN0

0 % defined by the~fixed! positions of the matrix

.

.

FIG. 3. HistogramsP̄d ( P̄m) ~as defined in the text! for
equimolar-liquid–demixed-fluid equilibrium of a binary fluid i
contact with a porous matrix (r050.05) as a function ofxd

5Nd /N(r f) at T50.68.
2-6
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particles, the energy of the mixture will be a function ofRN0

0 ,

implying a similar dependence for the histogram

Pf~N1 ,N2 ,m f ,T,V;RN0

0 !

5
1

N1! N2!

3

eb m f (N11N2)E
V
e2bU f (RN1

1 ,RN2

2 ,RN0

0 )dRN1

1 dRN2

2

J~m f ,V,T;RN0

0 !
,

~36!

as well as for the histogramsPm and Pd derived fromPf .

FIG. 4. Same as Fig. 3 but for an equimolar-gas–equimo
liquid equilibrium.
01150
The calculation of the histograms in the presence of a ma
therefore requires a canonical average over the config
tions RN0

0 , according to

P̄f~N1 ,N2 ,m f ,T,V!5
1

Z0
E

V
e2bU(RN0

0 )

3Pf~N1 ,N2 ,m f ,T,V;RN0

0 !dRN0

0

~37!

~and similar expressions for the histogramsP̄m andP̄d). The
locations of the phase transitions from these histograms
made in a similar way as described above for the case of
mixture in the absence of the matrix. They hence rely on
values ofN1 and N2 having maximum probabilities that in

r- FIG. 5. HistogramsP̄d ( P̄m) ~as defined in the text! for the
second order demixing transition of a binary fluid in contact with
porous matrix (r050.15) as a function ofxd5Nd /N(r f) at T
50.65.
2-7
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the case of a first order transition are equal~equal heights of

the peaks in the histogramP̄f).
Once a certain number of simulations has been perform

one can apply the histogram reweighting method@22# to de-
termine the values ofm f that lead to peaks of equal heigh

in P̄f . This method has been used in the literature to st
the phase transitions of binary mixtures~see@23#! and can be
applied here straightforwardly to the case of a pure mixt
(r050). The histogramP at chemical potentialm f can be
computed fromn calculated histograms with chemical pote
tials m f

1 , . . . ,m f
n according to the expression

FIG. 6. Monte Carlo isothermsr f versus fugacity exp(bmf), at
T50.70, 0.71, 0.72, 0.73, and 0.80~from left to right! for a bulk
binary mixture. Solid triangles, second order demixing; so
squares,G-DF or L-DF equilibrium; black diamonds,G-L equi-
librium. The dashed line is a linear interpolation between sec
order demixing points on isotherms, giving an approximate loca
of the l line.

FIG. 7. Adsorption isothermsr f versus fugacity exp(bmf), at
T50.49, 0.50, 0.51, and 0.52~from left to right! for a binary mix-
ture in contact with a porous matrix of densityr050.30. Symbols
as in Fig. 6.
01150
d

y

e

P~N1 ,N2 ,U f ,m f ,T,V!

5

(
i 51,n

P~N1 ,N2 ,U f ,m f
i ,T,V!eb m f (N11N2)e2bU f

(
i 51,n

sie
b m f

i (N11N2)e2bU fe2 f i

,

~38!

where exp(2fi)5J(mf)/J(mf
i ) andsi is the number of entries

in histogramP at chemical potentialm f
i . The values off i are

evaluated self-consistently.
In the presence of the matrix the histograms depend

the configuration of the matrix. Equation~38! allows us to
calculate the histogramP(N1 ,N2 ,U f ,m f ,T,V;RN0

0 ) from

the histograms calculated with different chemical potenti

d
n

FIG. 8. Variation with matrix densityr0 of the phase diagram o
a binary fluid mixture in contact with a porous matrix (a50.7, y
51, and zs52.5): comparison between MC and ORPA resul
r050,0.05, 0.15, and 0.30~from top to bottom!. Symbols: GCMC
simulations~diamonds,G-L equilibrium; squares,G-DF or L-DF
equilibrium; triangles,l line!. Lines: ORPA results~full line,
G-L,G-DF, or L-DF coexistence curve; dotted line, metastab
G-L transitions; dashed line,l line!.
2-8
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for the same configurationRN0

0 . The average over the histo

gramsP(N1 ,N2 ,U f ,m f ,T,V;RN0

0 ) that are calculated in this

way is then obtained via Eq.~37!. This reweighting proce-
dure can be advantageously replaced by an approxim
procedure, where Eq.~38! is applied to the histograms ave
aged over the configurations of the matrix, substituting

exp(2fi) an average functionJ̄(m) independent of theRN0

0

for the partition functionsJ(m;RN0

0 ). In this work the valid-

ity of this approximate procedure to determine the chem
potential that corresponds to a phase transition has b
checked by performing simulations at the transition chem
potentials determined in this way.

Figures 1 and 2 give examples of the histogramsP̄f pro-
jected onto the (N1 ,N2) plane for the first orderG-DF and
L-DF transitions. Figure 2 demonstrates the difficulties e
countered in an accurate location of the phase transition
means ofP̄m and P̄d . These histograms, corresponding
projections ofP̄f onto planes located at the linesN15N2 or
N152N2, respectively, are given in Fig. 3 and clearly sho
that their peaks accumulate contributions stemming from
peaks ofP̄f which are associated with different phases. T
possibility of such a superposition biasing the heights a
widths of the peaks ofP̄m and P̄d justified the use ofP̄f to
locate the transitions. As illustrated in Figs. 4 and 5 su
ambiguities do not occur for theG-L transition and the sec
ond order demixing transition. TheG-L transition is well
identified by the existence of two peaks of equal height
P̄m and the symmetric peak inP̄d at xd5Nd /N50. The
onset of the second order transition is clearly visible from

FIG. 9. Demixing transitionof a binary fluid in contact with a
porous matrix of densityr050.15 (a50.7, y51, andzs52.5):r f

as a function of concentrationx for T50.62. The symbols denot
GCMC simulations~diamonds,G-L equilibrium; squares,L-DF
equilibrium; crosses, first order demixing transition!, the lines the
ORPA results.
01150
ed

n

l
en
l

-
by

e
e
d

h

n

e

very broad peak inP̄d , which signals the expected larg
fluctuations of the relative concentration of the two spec
on the l line, while the peak inP̄m remains narrow and
centered onr f .

In the range of fugacities exp(bmf) considered for each
isotherm 10 to 25 simulations have been realized. For e
matrix configuration 803106 Monte Carlo~MC! trial moves
have been performed; averages were taken over 6–10 di
ent matrix configurations in the gas phase and 10–12 c
figurations in the liquid phase. Near the phase transitio
averages were taken over 20–42 matrix configurations. W
803106 MC trial moves the fluid densities for one matr
configuration could be estimated with a precision of the
der of 0.1–0.2 %. The estimate of the error of the densi
averaged over the matrix configurations can obviously
biased by using too small a number of these configuratio
From error analysis using sub-blocks in calculations w
;40 matrix configurations, we conclude that the error of t
fluid densities can reliably be estimated to be 2–3 % if
number of matrix configurations is;10.

V. RESULTS

A. Comparison with simulations

The computer simulations, carried out for four differe
matrix densitiesr050, 0.05, 0.15, and 0.3 ata50.7,y
51,zs52.5, andr c52.5s, have been compared with ORP
results. MC results for isotherms of the bulk system,r050,
and adsorption isotherms of the system with lowest poros
r050.3, are shown in Figs. 6 and 7. In the range of tempe
turesT'0.7–0.8 one observes, forr050, a first orderG-L
transition with critical temperatureTc'0.72–0.73 and criti-
cal densityrc'0.35 and a line of second order demixin
transitions terminating at a tricritical point with temperatu
Ttc'0.73, slightly higher than the critical temperature, a
densityr tc'0.57. This diagram is of type II. When the ma
trix density increases, the temperature range within wh
the equimolar liquid exists decreases and the phase diag
evolves toward a type I diagram. Atr050.3 the phase dia-
gram in the temperature range 0.49–0.52 reveals that~within
the accuracy of the simulation results! the tricritical tempera-
ture, or possibly the temperature of the critical end point
close to and slightly below the critical temperatu
(;0.51).

Comparison of the phase diagrams with ORPA results
illustrated in Fig. 8. Atr050 excellent agreement is ob
tained for theG-L and L-DF transition densities, the fluid
concentrations of the demixed phase, and thel line. This
agreement deteriorates, however, with increasingr0. Al-
though in the ORPA the same sequence of types of ph
diagram occurs as in the simulations and general trends~low-
ering of the critical temperature and narrowing of theG-L
coexistence curve with increasing matrix density! are cor-
rectly reproduced, marked differences are observed o
quantitative level. In particular, forr0>0.15, the critical
temperature is found to be higher than in the simulatio
also the ratio of the critical to tricritical or end point tem
perature increases withr0, while it remains close to 1 in the
2-9
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FIG. 10. Variation witha of the phase diagram of the binary fluid mixture in thermal equilibrium with a porous matrix from ORPA~a!
(r050):a50.65, 0.70, 0.75, 0.80, and 0.90~from top to bottom!; ~b! (r050.1,y50): a50.68, 0.70, 0.72, and 0.80~from top to bottom!;
~c! (r050.1,y51):a50.65, 0.70, 0.73, and 0.75~from top to bottom!. Full line, G-L, G-DF, or L-DF coexistence curves; dotted line
metastableG-L transition; dashed line,l line.
e
ar
d

ty
s
th
in

o
ifi

he
re
e

ul

rd-

e-

e

be

ists

ith
simulations. Furthermore, the critical density shifts to low
values in contrast to the simulations where it remains ne
constant. On the other hand, the concentrations of the
mixed phase remain accurate even at a high matrix densi
illustrated in Fig. 9 forr050.15. As noted in the previou
section, the determination of the equilibrium densities of
different phases in the simulations is affected by uncerta
ties of the order of 2–3 % forr0Þ0 and;1 % for r050. In
view of these error bars the difference between the the
and the simulations at the higher matrix densities is sign
cant. The major source of error is likely to be found in t
use of the ORPA, in particular in that of the PY type closu
to solve the ROZ equations for the reference hard-sph
system in the framework of the replica theory@24#. Differ-
ences of similar size between simulation and ORPA res
were observed in the one component case@25#.
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B. Variation of a

The variation of the phase diagram witha ~ratio of the
interaction strengths of unlike and like particles! is shown in
Fig. 10 for the matrix densitiesr050 and 0.1. In the latter
case the matrix-fluid interaction was either a pure ha
sphere (y50) or a hard-sphere1 Yukawa interaction (y
51). For the bulk mixture we observe—in qualitative agre
ment with the mean-field results of Wildinget al. @13#—
variation of the phase diagram from type III to type II to typ
I as we increasea from 0.65 to 0.90. Ata50.9 no demixing
transition could be observed down to a temperatureT
50.55, below which the ORPA equations could no longer
solved. At this temperature anda value a freezing transition
is also possible and the demixing transition no longer ex
in the fluid phase. Over the range ofa values considered the
critical temperature and density do not vary appreciably w
2-10
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FIG. 11. Variation withy of
the phase diagram of the binar
fluid mixture in thermal equilib-
rium with a porous matrix from
ORPA. ~a! (r050.05,a50.7): y
53.5,2,1,0,21 ~from top to bot-
tom!; ~b! (r050.10,a50.73): y
52,1,0,21 ~from top to bottom!.
Full line, G-L, G-DF, or L-DF
coexistence curves; dotted line
metastableG-L transition; dashed
line, l line.
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a. An increase of the matrix density from 0 to 0.1~at y
51) does not alter this behavior or the sequence of ph
diagrams~from type III to type I! but lowersTc andTtc by
;10% and shifts the densities of the tricritical and CE
points to slightly lower densities. A change ofy from 1 to 0
at fixed matrix densityr050.1 lowersTc by ;10%, shifts
rc from ;0.32 to;0.26, and delays the appearance of
CEP as one increasesa.

C. Variation of y

The variation with the parametery ~expressing the ratio
between the fluid-fluid and the matrix-fluid interactions! is
shown in Fig. 11 for the two casesr050.05,a50.7 andr0
50.1,a50.73. A positive value ofy represents an attractio
between matrix and fluid particles while a negative va
represents a repulsion. For the lower matrix densityr0
50.05, the sequence of phase diagrams is found to
type III→type II→type III wheny decreases from positive t
01150
se

e

e

e

negative values. AG-L transition appears neary;2 ~a pre-
cise location cannot be found due to numerical problems
the critical region as mentioned above! and exists only in a
small range ofy values extending roughly from 2 to20.5.
The phase diagram is again of type III for the more stron
repulsive matrix-fluid interactionsy521. A qualitatively
similar behavior is observed for the larger matrix dens
r050.1; here the type II phase behavior occurs at least
0,y,2.

The ORPA allows us to determine the metastableG-L
transitions ~hidden below theG-DF coexistence curve!;
these are marked in Fig. 11 by dotted lines. From the figu
it is apparent that, when the matrix is strongly attractivey
53.5), thel line ~extended into theG-DF coexistence re-
gion! intersects the metastable first orderG-L coexistence
line at a density smaller than the~metastable! critical density
rc

G-L , while for the repulsive matrix-fluid interaction (y
521) the intersection is observed for densities larger th
2-11
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FIG. 12. Variation with matrix
densityr0 of the phase diagram o
the binary fluid mixture in thermal
equilibrium with a porous matrix
from ORPA. ~a! (y50,a50.7):
r050, 0.05, 0.10, and 0.15~from
top to bottom!; ~b! (y51,a
50.7): r050, 0.05, 0.15, and
0.30 ~from top to bottom!. Full
line, G-L, G-DF, or L-DF coex-
istence curves; dotted line, meta
stableG-L transition; dashed line,
l line.
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G-L . As pointed out by Wildinget al. @13# in their mean-

field study of a symmetric binarybulk mixture, these differ-
ences in the metastable equilibrium may be of relevance
the dynamic properties of the system. Therefore, when
the case of a repulsive matrix, the fluid is quenched from
high temperature state into the coexistence region slig
below the metastable critical point one can expect ‘‘tw
stage demixing.’’ This means, that the system will first se
rate into aG and aL phase; then the equimolar liquid wi
demix @13#. In contrast, for an attractive matrix (y53.5), the
fluid will demix and phase separate simultaneously~’’one-
stage demixing’’@13#!.

D. Variation of r0

The influence of the matrix density on the phase diagr
of the mixture is shown in Fig. 12 for two values 0 and 1
the parametery anda50.7. As discussed in the compariso
of simulation and theoretical results, in both cases, atr0
50, we have a type II diagram characterized by a tricriti
point where thel line of the second order demixing trans
tion terminates as well as a triple point where theG, the L,
and theDF coexist. As we increaser0, at y51 ~attractive
tail in the matrix-fluid interaction! the tricritical temperature
Ttc decreases; atr0;0.3 the first order transition betwee
the L and theDF has vanished, giving rise to a CEP atTcep
01150
or
in
a
ly
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f

l

~type I phase diagram!. It can be seen that the existence o
CEP leads to a kink in theG-L curve, clearly visible in the
ORPA data, a phenomenon that has been discussed
simulation study of the pure mixture in@26#. The situation is
completely different if the matrix-fluid interactions are har
sphere potentials (y50). We now arrive with increasingr0
at a type III phase diagram; forr0;0.1 theG-L transition
becomes metastable and hidden below theG-DF transition
~type III phase diagram!. As discussed in the previous sub
section, the metastableG-L transition can lead to a two stag
demixing.

E. Variations of z and r c

The change in phase diagram entailed by variation of
screening lengthz of the Yukawa potential is shown in Fig
13 for r050.10, a50.68, andy50. A change ofzs from 2
to 3 mainly lowers the tricritical temperature and the critic
temperature of the metastableG-L transition, but otherwise
leaves the critical density and type of phase diagram~type
III ! unchanged.

Increasing the range of the Yukawa potential fromr c
52.5s ~the value at which most of the ORPA calculatio
have been performed to allow comparison with the M
simulations! to 8s raises the critical temperature while pr
serving the shape of the phase diagram~see Fig. 14!. We
observe a narrowing of theG-L coexistence region.
2-12
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VI. CONCLUSIONS

Results obtained within the framework of the ROZ int
gral equation theory in combination with the ORPA closu
have provided detailed information on the influence of m
trix density and parameters defining the interactions betw
the particles of the~symmetric! binary mixture and between
the mixture and the matrix particles.

Mean-field theory predicts for a binary symmetric bu
mixture ~of the type considered here! the existence of three
generic phase diagrams. These phase diagrams are als
tained in the present study by the ROZ theory and by sim
lation for both the bulk and adsorbed mixtures. A ma
achievement of this work is to supply a nonambiguous c
respondence between the interactions in the partly quen
system~mixture plus porous matrix! and the type of phase
diagram to which they give rise. In the bulk binary mixtu
the change in phase diagram is triggered by only one par
eter ~the parametera); this is also the case in other bu
systems, such as for instance the Heisenberg or Stockm
fluid where the change in the type of phase diagram is t
gered by the ratio of the strengths of the isotropic and an
tropic interactions@27,28#. In the present system the situatio
is more complex, bringing into play a combination of seve
parametersa, y ~the ratio of fluid-fluid and matrix-fluid in-
teractions!, and the porosity~via r0). Small changes in eac
of these parameters have been shown to lead to qualita

FIG. 13. Variation with screening lengthz of the phase diagram
of the binary fluid mixture in thermal equilibrium with a porou
matrix from ORPA. Parameters:y50, a50.68, andr050.10.
zs52, 2.5, and 3~from top to bottom!. Full line, G-L, G-DF, or
L-DF coexistence curves; dotted line, metastableG-L transition;
dashed line,l line.
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changes of the phase diagrams. In particular, for a given fl
and matrix, it is apparent that the phase diagram can
changed drastically by varying the porosity of the mediu
which is the parameter most readily controllable in expe
ment.

In the simulations, care has been taken to average ov
sufficiently large number of matrix configurations to redu
the systematic statistical error to the level of a few perce
Finite size effects have not been taken into account so
Outside the critical region, previous simulations perform
for a one component fluid in a hard-sphere matrix@25# for
different system volumes do not reveal notable quantita
size effects on the system properties. In the critical region
the absence of a firmly established scheme for analysi
finite size effects in a disordered medium, the latter are
ficult to estimate. They can possibly shift the critical or tri
ritical point by a small amount, although the effect is e
pected to be too small to preclude a quantitative compari
between theory and simulations.

Comparison between simulations and theory has disclo
the necessity for improving ORPA theory in the domain
matrix densitiesr0.0.1. Effort in this direction is in
progress. We also plan to extend theory and simulation
systems comprising long range Coulomb and dipolar in
actions such as electrolyte solutions.
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SCHÖLL-PASCHINGER, LEVESQUE, WEIS, AND KAHL PHYSICAL REVIEW E64 011502
the Laboratoire de Physique The´orique~Universitéde Paris-
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