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Continuing our investigation into the numerical properties oftitezarchical reference theorywe

study the square well fluid of rangefrom slightly above unity up to 3.6. After briefly touching
upon the core condition and the related decoupling assumption necessary for numerical calculations,
we shed some light on the way an inappropriate choice of the boundary condition imposed at high
density may adversely affect the numerical results; we also discuss the problem of the partial
differential equation becoming stiff for close-to-critical and subcritical temperatures. While
agreement of the theory’s predictions with simulational and purely theoretical studies of the square
well system is generally satisfactory fai=2, the combination of stiffness and the closure chosen

is found to render the critical point numerically inaccessible in the current formulation of the theory
for most of the systems with narrower wells. The mechanism responsible for some deficiencies is
illuminated at least partially and allows us to conclude that the specific difficulties encountered for
square wells are not likely to resurface for continuous potential2082 American Institute of
Physics. [DOI: 10.1063/1.1483258

I. INTRODUCTION core reference system$,was demonstrated early on, the

main focus of research on HRT has since shifted to the richer

In a large part of the density—temperature plane, int("’gnﬁ!)hase behavior of binary systef?s1®Nevertheless, in light
equation theories are a reliable tool for studying thermody- '

. d structural " ¢ h . Iof HRT’s high promise and low penetration into the liquid
namic and structura’ properies of,-among OIhers, simp ?)hysics community, further study and critical assessment of
one-component fluids;unfortunately, in the vicinity of a

i - S . this theory seem worthwhile, even and foremost in the case
liquid—vapor critical point, integral equations are haunted by

a host of difficulties, leading to a variety of shortcomingsOf simple one-component fluids: indeed, it is in this com-
. ' . . aratively simple setting that we may gain important insight
such as incorrect and nonmatching branches of the binod 4 P g Y 9 P 9

. - to the numerical side of the theory, and barring special
classical values at best for the critical exponents, or Otheﬁwechanisms relevant to some specific model system only
d_ewatmns from th_e correct behawo_r_ at the critical any problems uncovered here must be expected to haunt
singularity’? Asymptotically close to the critical point, on the more advanced applications of HRT, too. In our work we
other hand, renormalization groyRG) theory is the instru- '

t of choice for d bing the fluid- i | h have found it convenient to restrict ourselves even further,
ment of chaice Tor describing the fluid, in general, NOWEVET, ., e menting HRT in its usual formulatién®2 for purely
RG approaches do not allow one to derive nonunivers

e . o . ) airwise additive interactiongia a potentialv(r) obtained
guantities from microscopic information only, i.e., from

; . _ from the superposition of an infinitely repulsive hard sphere
knowledge of the forces acting between the fluid’'s part'CIeSserving as rgfefence Systemef(r):v.};(r)pand a predorrr:i-

alone. One of the theories devised to bridge the conceptue&lamIy attractive tai(r), W(0)<0. Here we have made use

gap between these compleme_ntary approaches ibiénar- of the notation introduced previously:superscripts always
chical reference theoryHRT) first put forward by Parola, denote the system a quantity referdhere, “ref” and *hs”

13 : : -
Reatttof,rand co—worlgef’s._ In Fh'z ttr:eory the |tntroduct|on ng for the reference system and hard spheres, respectively; simi-
a cutoff wave numbeQ inspired by momentum space larly, “( Q)” for the system with cutoffQ], and a tilde indi-

th(gg)ry and, fortehvetry vIaIue @’.I.Of all rentormallhzed ptotinual cates Fourier transformation. In the present contribution we
U'd (r)dmteans ta onfytrrlloncr|| |c|at_sy§ ems have tcl) .etcon— pply our recent reimplementation of the théSrp one of
sidered at any stage of the caiculation, consequently, INtegrg, simplest potentials exhibiting phase separation, viz., the

equations may successfully be applied to every system wit| uare well potentiabSM~ <M1 (cf. Sec. Il B of Ref. 19:
Q>0, and critical behavior characterized by nonclassica d P @ (cf. ' 19

critical exponents is recovered only in the lin@Qt—0. oS el (py= sl (p) 4w eh ol ()
While applicability of HRT to a number of interesting

systems, ranging from a lattice gas or Ising mdtie vari- to, r<o

. g v"(r) = @
ous one-component fluii®® even including three-body 0, >0,
interactions:>!* internal degrees of freedotn,or non-hard-

—€, II<\o
WSW[* E,)\,rr](r) —
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Considering density-independent potentials only and chosingerical procedure’s response should provide us with a sig-
the hard-core diameter and the well's depthe as units of nature to be looked out for in other systems, too; also, even
length and energy, respectively, the attractive well’s range within the LOGA/ORPA-style approximation the implemen-
is the sole remaining parameter; in this article we will studytation of the core conditionia approximate ordinary differ-
values of\ from slightly above unity up to 3.6. ential equationgODES9 for the relevant expansion coeffi-

With just one parameter, viz\, to vary, square wells cients easily shown to be inadequate for very short-ranged
obviously make for a convenient test case of HRT and, inpotential4® casts some doubt on the rangehofalues ame-
deed, of liquid state theories in general; consequently, a greaiable to an HRT treatment in the current formulation of the
many simulational and theoretical efforts have been directetheory. Determination of the admissibleange, on the other
at this system, and studies of its phase behavior ab®liid. hand, is particularly interesting in light of Refs. 27 and 47 as
But square wells are also of interest in their own right, servwell as in view of the global renormalization schefie®
ing as—albeit somewhat crude—maodels of a wide variety originally developed by White and co-workers as an exten-
physical systems including, e.g’He, Ne, Ar, H,, CO,, sion of Wilson’s phase-space cell metf®ddo the liquid
CH,, C,Hg, n-pentane, ana-butane>*~*>while current in- ~ state; it is only by combining tests internal to the theory and
terest in this potential derives mainly from the finding thatcomparison with data available by other means that we are
square wells capture the essential features of the interactio@le to answer this question.
found in colloidal system&~4°Yet another motivation for In this contribution, after a sketchy presentation of the
this first application of HRT to square wells comes from aunderlying theory itself(Sec. 1) and the implementation
recent, very accurate simulation stdtlyconfirming and used(Sec. Ill), in Sec. IV we turn to the results of applying
quantifying the presence in the system witk-1.5 of the  HRT to square well systems of variable range. After a short
Yang-Yang (YY) anomaly expected and experimentally sSummary of the critical point's location as obtained from
found for asymmetric fluid4!42 simulation-based and other purely theoretical studies of

Due to the extensive amount of data available in thesquare wells for various values pf(Sec. IV A) we first look
literature the more recent of which will shortly be presentedinto the core condition’s implementation, which provides us
later on, and in view of some of the limitations of HRT in its With a first hint regarding the range afvalues accessible to
current formulation we cannot expect to gain new insightdRT in its current formulation and once more highlights the
into the system at hand with a level of precision comparablélecoupling assumption’s rok&ec. IV B). The latter is also
to that of the more sophisticated simulation schemes. Inimplicated in the correct choice of the boundary condition
stead, in the present contribution our focus of interest lies ofMPosed at high density as discussed, alongside the effect of
some aspects of HRT’s numerical side, specifically on thos#S location in Sec. IVC. A particularly grave aspect of
that are sensitive to the potential’s range: indeed, as statddRT's numerical side is the stiffness of the partial differen-
already in Ref. 19, for a potential as pronouncedly shortdial equation(PDE) for close-to-critical and subcritical tem-
ranged as square wells some of the numerical prob|emgeratures(8ec. IVD), the vestiges of which are evident in
should show up much more prominently than in other systhe results obtained for quasicontinually varyingas pre-
tems like, e.g., the hard-core Yukawa fluid previouslyse”ted in Sec. IVE. A sho_rt summary of our findings and
considere®® where they are, of course, in principle still conclusions ends our contributigBec. V).
present but do not manifest themselves as clearly.

In accordance with the preceding remarks, another regi. THE THEORY
son why application of HRT to square wells might be worth- . . ;
while lies in the closure underlying seemingly all applica-  1he definite resource on HRT is the rev?ew the theo-
tions so far of HRT to simple one-component fluids with ry’'s original authors, summarizing its formalism as devel-

hard-sphere reference part: As the usual formulation of HRPPEd In a series of earlier publicatidn§ so that we here
in these cases relies on ansatz for the two-particle Present only an overview of the theory used and of its for-

direct correlation functiore,(r) very much in the spirit of Mmulation, recapitulating some of our earlier findirtgsthe
Stell's lowest-ordery-ordered approximatioti*4 (LOGA) or notation employed here of course coincides with that of our

. . . 9
the equivalentoptimized random-phase approximatfon Preceding cqntnbuﬂoﬁ. , , _ ,
(ORPA) by Andersen and Chandler, the direct correlation S mentioned already in Sec. I, HRT's mainstay is the
function can never extend to largewalues than the poten- implementation of the suppression of long-wavelength fluc-
tial v(r) itself. In particular, for the square well potential tuat_lons chara(_:ter(lg)tlc of RG methods bY means .Of a renor-
p-eXol(r) we necessarily have,(r)=0 for r>\ o so malized potentiab*~’. Thus, rather than directly going from
that all moments o€,(r), i.e., [ x3d%r c,(r) r", n=0, exist a reference fluid the properties of which are assumed known

. . . . . f
which is obviously at variance with the correct behavior nea® the lellerrf]teractmg Sy:lt:(:_;:n, €. frgm_ pair potentyéf_l (r) f
the critical point® furthermore, at intermedia® the direct ~ © v(r)=v(r) +w(r), proceeds/ia a succession o

. . . . ificial® i i ialg (Q(r)-
correlation function can hardly be considered satlsfactory,""tlher a;mr?ma} |rf1ftermed|ate Eotentggl)e. (r): Ftc))r every
especialj®® close to r=\co. While some earlier Value of the cutoff wave numbep, v™" is given by

publication§3*" already blamed unsatisfactory aspects of v (r)=0p"(r)+w((r),
HRT results on this inadequacy of the closure, square wells _

should bring out related problems of HRT with the usual WQ (k)= wWk), k>Q
LOGA/ORPA-style closure much more clearly, and the nu- 0, k<Q
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o sin\ o k—\ akcosk ok CQ(r,0)=¢(r,0)+¥P(e) ug(r,e)+ K Q(r,e),
W ehol(k)=—4m e 3 :
K@(r,0)=6(r,0) +c5(r,0),
where the last line specializes to the square well potential of (4)

Eq. (1); obviously, v and v are recovered in the limits GQ(r Q)_E ¥ (o) uy(r,0),
Q—o andQ—0,
(%) ey tef oy h 0)/ N _ _sw, where we have generalized to density-dependent potentials.

oM =v N =o™r), v =v(r)=v™r), The basis functionuy(r,0) is chosen to coincide wit
allowing HRT to gradually turn on fluctuations of ever in- w(r,)/W(0,0), and the higher basis functions,(r,o),
creasing wavelength by lowerin@ from o to zero n=1, vanish outside the core; for our specific choice of basis
(numerically;® from Q.. to Q,); as mentioned before, criti- functions see Appendix B of Ref. 19. In order to ensure that
cality (together with nonclassical critical exponentnd  both the core condition, i.eg(r,e)=0 for r<o(g) where
phase separatiofwith isotherms rigorously flat in the two g(r,p) is the pair distribution function, and sum ru@ are
phase regionare obtained in the limiQ—0. In this proce- met it is necessary to choose the correct set of expansion
dure it is essential to maintain the differential picture impliedcoefficientsy{?(¢), n=0, at every cutofiQ and for every

by RG theory and to make sure that the transition fiQo  densityg; assuming their validity foQ = and adopting the
infinitesimally smaller cutoffQ—dQ is continuous even in shorthand notations

the limit Q— 0. The latter requirement necessitates replacing P [BAQ
the usual free energg(?) and two-particle direct correlation a@(p)= 5 (—>
function c{?(r) of the hypothetical system with cutof® IQde v
and potentiab(?(r), the “Q system,” by suitably modified -0) d*k  @(k,0)
quantities, viz., A [lﬁ(k-Q),Q]ZJ 32m)° [€Q(k,0) 2
BAW@ _ &(Q)_ Q—Z[qﬁ(O)—E(Q)(O)] (here,y is an arbitrary function ok and ), both relations
\Y, Y can be combined to
0 (Q)(Q)
+§[¢(0)—¢<Q>(0)], Z Z;(k, 0) [Tn(k,0)~Tog(k,0) Tn(0,0)1, e]—Q
Cr)=ci(r)+(r)— ¢! A(r), =aQ(0) [k, @) To(k, @), €]
¢p=—pw, B=1ksT, L@ #(Q,0)Tj(Q.0) =1
where ¢ is the number density of the system at hand; the T 2n? C(Q,0)[C(Q,0)—$(Q,0)]
higher-order correlation functionsd(r,...,r,), n=3, are )
free from such problemg$Note that all the direct correlation . ) .-
functions including?Q(r) are taken to include the ideal gas this set of equations _must, o_f course, _bg truncated to a finite
terms?] number H N of basis functions, and it is also necessary to

With this set of quantities continuous even in the limit neglect nonlocal contributions &9 y(k,¢),1/dQ to al-
Q—0, viz., AQ, ¢ and thec!?, n=3, HRT is derived low convenient evaluation at arbitray. Both of these ap-
as a nonterminating hierarchy of coupled ODEs at fixed denprommaﬂons have been discussed at length in our previous
sity o, calculating the properties of th@ system by treating contribution;® and while the value ofN.. was found to
the system at infinitesimally higher cutafi+dQ as a ref- strongly influence the quality of the results obtained, deter-
erence system; of these equations, usually only the evolutiofination of they(?)(¢) from Eq.(5) and said approximation

equation forA (@, viz., for the slowly converging integrals'Q dependence leads to
- systematic deficiencies at smalin g(r) as determined from
a BA(Q)> B Q_Z ~ $(Q) 2 the Ornstein—Zernike relation.
dQ\ Vv | 4x? : Q) ’ Unfortunately, for numerical reasadhist is necessary to

also adopt the so-called decoupling assumplioviz.,
aQ(p)=0; as can easily be seen, this is not only math-
BAQ@ ematically incompatible with thermodynamic consistency
v ) (3 but even suffices to decouple the PDE implied by E@s.
and (3) to a set of unrelated ODEs at fixed density only
valid for any cutoffQ directly enter practical calculations. lacking thermodynamic consistency and thus unable to pre-
When combined with a closure on the two-particle level,dict clear phase boundari&sFurthermore, we cannot rule
Egs.(2) and(3) define a PDE in the@,0) plane; it is this  out that decoupling may have a significant influence on the
PDE that we will concern ourselves with in the remainder ofsolution generatetf, which is particularly troublesome as the
this text. Said closure, reminiscent of LOGA/ORPA but add-much longer range dfig(r)« ¢(r) when compared with the
ing one free parameter to allow imposing thermodynamimther basis functions was originally invoked as justification
consistency as embodied in E@®), is given, just as in our for settinga(?)(9)=0. For square wells, this assumption is
earlier contributiort? by certainly even less justified than for the rather long-ranged

as well as the important compressibility sum rule

C(Q)(O)— _ ?(
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hard-core Yukawa systenz€ 1.8/0) considered in Ref. 19. (cf. Appendix A of Ref. 19, diverges in the two-phase re-
Returning to the PDE, for the numerical implementa-gion, so must the auxiliary functiof(Q,¢) in the limit
tion’s benefit we, too, adopted a reformulation in terms of anQ— 0. As a direct consequence, the transition from the modi-
auxiliary functionf(Q, ) simply related to the modified free fied free energyd (Y(g) to f(Q, ) is not only computation-
energy’s derivative with respect @. The details of the pro- ally convenient but also allows us to follow the isothermal

cedure leading to a PDE of the form compressibility’s buildup much more easily; even more im-
5 5 portantly, a simple analysis®° of the behavior of the PDE’s
—f(Q,0)=dod f,Q,0]+dof,Q,0]1—F(Q,0) coefficients for largef (Q, o) readily characterizes the PDE
9Q Je as stiff: for any densityo e[ @, ,0,] and close taQ=0, the
92 true solutionf(Q, o) oscillates rapidly on & scale of the
+d02[f,Q,Q]Wf(Q,Q), order of exp(f), with both an upper bound on the oscilla-
@ tions’ amplitudes andf’'s average slope growing like
$(Q,0) $(Q,0) 1/Q—needless to say that this behavior cannot be repro-
f(Q,Q)TJO(Q,Q)zln( 1- =) ) = , duced numericallyfsee Sec. IV D; g.v. Ref. 29Note, how-
C¥(Q.e)) K¥(Q.0) © ever, that it is not an artifact of the rewriting of the PDE in

the form(6) but rather a problem inherent to HRT itself in a
and the coefficient functiong; themselves can be found in formulation based upon Ed4).%°
Appendix A of Ref. 19, g.v. Ref. 20.
The above formulatio6) of the problem, of course still
coupled to the ODEs implementing the core condition, obvi-
ously has to be amended by initial and boundary conditions" NUMERICAL PROCEDURE

While the former easily follow from}’waw)ZO' n=0 [which The numerical study of HRT for square well systems of
is sufficient to also determinEQ.., )], choice of appropri-  varying range parameterin Sec. IV has only become fea-
ate boundary conditions is slightly more complicated. If, assible due to our recent reimplementaftdrof this theory,

is the case in most of the calculations reported heee discussed at length in Refs. 19 and 20; we will make use of
below for exceptions the low-density boundary is located at results obtained with this program exclusively. From a prac-
2min=0, we can make use of the divergence of the ideal gagical point of view, our software provides a means of solving
term —1/¢ in T5' to derive not onlyf(Q,0)=0 but also 4 finite-difference approximation to the POE) in an iter-
9f(Q,0)/9e =0, which alone is, in principle, sufficient to ated full-approximation scheme, imposing boundary condi-
uniquely determine the solution up to arbitrarily high density.tions at densitie® i, and ¢ . as well as initial conditions
For computational reasons, however, it is preferable to inat Q=Q.., generating a solution fa® as low asQ, while
stead only impose vanishirfgat ¢, and to supply an ap-  ensuring numerical soundness of every step by employing a
proximate condition for calculating at @ma. Among the  number of criteria. The pivotal parameter governing all of
candidates for the constraint to be imposed upon the solutioghe numerics is a small quantity denotegdcharacteristic of

at @ max IN addition to the core condition there are two we the maximum admissible relative error introduced in a single
should mention here: Starting with Ref. 7, the SO-Ca"edstep in the— Q direction; due to the paramount importance
ORPA condition, viz.,y5? (@ ma) =0, has been used exten- of derivatives with respect to, e, is strictly related to the
sively. It should, however, be noted that this condition iscoarseness of the density grid.

incompatible with both thermodynamic consistency and the The only exception to the general strategy of ensuring a
decoupling assumptiofi. An alternative first considered in numerical quality ofe, at every step in the calculation is the
our previous repotf is the decoupling assumption choice of step sizedQ in the —Q direction, at least for
a'9(0ma) =0 itself; of course, this condition is still incom- subcritical and close-to-critical temperatures: indeed, in that
patible with the compressibility sum rul@) but this is less  part of the Q,0) plane where the divergence of the isother-
of a problem at a boundary where partial derivatives withmal compressibility builds up, the PDE’s stiffnegsee
respect tog cannot be evaluated anyway. Another optionabove renders fixed-precision arithmetic and relative errors
(not pursued in this contributigns to give up the core con- hounded bye, incompatible. Consequently, for the calcula-
dition altogether, retaining only the lowest basis functigh  tions reported below we resort to step size® predeter-

in the closure(4) and thus effectively replacing E@5) by  mined in a way analogous to that employed in earlier
Eq. (3); this has the added advantage of mathematical conapplications®*° still, monitoring and assessing suitable com-
SiStency while still retaining the structure of a PDE so im- ponents of the solution vector in termsgjag described in

portant for obtaining clear phase boundariésge above.  Sec. Il E of Ref. 19 may yield a wealth of information on
It is one of HRT’'s main achievements to allow calculat- the numerical process and its evolution.
ing a fluid’s binodal(coinciding with the spinodal in three Most of the calculations reported here have been

dimension$) without resorting to Maxwell constructiod$, performed on an equispaced density gridgf= 100 density

for subcritical temperatures yielding isotherms rigorously flatintervals spanning the range from,,j,=0 t0 @ =1/,

in density intervals the boundaries of which are readily idencorresponding to a value af,=10"2; N, was usually set
tified with the coexisting densitieg, and@,. Thus, asthe to 7; and the predetermined step sizes started
isothermal compressibility of the fully interacting system, from AQ=-10"?%¢ at Q.=80/r, plunging to a mere
readily found to be proportional to eMp-(A(0)/K(?)]-1  —5x10 % when approachin@,=10"*/¢. When locat-

Downloaded 22 Jun 2004 to 128.131.48.66. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 10, 8 September 2002 The hierarchical reference theory 4929

ing the binodal via the divergence of the isothermal com-g minimum ofN,=7 basis functions in addition ta, were
pressibility x+ we did not require an actual overflow to occur necessary for acceptable results despite residual defects of
but instead looked for ac ratio at neighboring densities g(r) close to the origin; a short discussion of the core con-
exceeding 18 which is a rather reliable indicator for the dition’s slightly different role for square wells will be pre-
binodal’s location ascy typically jumps by far less than two sented belowSec. IV B.

or by at least some twenty orders of magnitude within one  The critical densityp . predicted by HRT, it should be
Ag; the reported values fag, and ¢, are the midpoints of noted, is virtually always in reasonable agreement with lit-
the density intervals so found. In principle this allows us toerature data as shortly presented in Sec. IV A; indeed, HRT is
locate the coexisting densities and the critical temperaturgyen able to reproduce the marked risegin predicted by

and density to arbitrary precision, even though the computarefs. 21, 27, and 29 for— 1+ as opposed to the rigorously

tional cost rises sharply with falling; . constant value in Ref. 28. Due to the satisfactogyvalues
obtained numerically we will henceforth excludg from the
IV. APPLICATION TO SQUARE WELLS discussion; for a demonstration of bagh’s insensitivity to

As mentioned before, much of the motivation for apply- variation of parameters of the numerical procedure and the
ing HRT in the formulation outlined in Sec. Il to the simple quantitative agreement with the data of Sec. IV A see Figs. 1
square well model potential is based upon various observand 2.
tions indicating possible limitations of this approximate for-  In this context it may be of interest that the HRT esti-
mulation of HRT for short-ranged potentials. A case in pointmate for the critical density presents no difficulties for the
is the recent work of Caccamet al?’ entirely devoted to hard-core Yukawa fluid considered in Ref. 19, either, nor is
several thermodynamically consistent theories’ ability to deathere any mention of such difficulties in any of the other
with narrow hard-core Yukawa systems; sure enough, in th@ublications on this topic that we are aware of; indeed, the
case of HRT the shortcomings of the LOGA/ORPA-style clo-theory’s numerical problems primarily lie in the solution’s
sure (4) and, presumably, of the accompanying decouplingsmall-Q behavior for close-to-critical and subcritical tem-
assumption underlying the core condition’s implementatiorperatures on the one hand and the use of mutually incompat-
via Eqg. (5) were manifest already in Refs. 6 and 13 andible assumptions prompted by the need to employ decou-
recently confirmed by u¥ g.v. Ref. 20. pling without giving up thermodynamic consistency on the

Of course, any of the problems discussed below onlyother hand. Both of these aspects of HRT pertain to different
relate to HRT when implemented along the lines of Secs. Iparts of the Q,¢) plane, located close to the high-density
and Il and not to HRT proper; however, for reasons dis-boundary for the role mathematical inconsistencies play and
cussed in Ref. 19, alternative formulations almost certainlyat not too largeQ and ¢~ o, for the pathological behavior
render the numerics far more demanding and open up eelated to coexistence; they will be discussed in Secs. IVC
whole new suite of problems regarding the numerical imple-and IV D, respectively, and their vestiges will also be seen in
mentation’s soundness, especially when performing Fouriethe results of applying HRT in the formulation of Sec. Il to
transformations of cutoff-affected functioffs. square wells of quasicontinually varying range ]1,3.6] in

In the following subsections we will complement the Sec. IVE.
discussion of Ref. 19 by further investigation into the nu-
merical nature of HRT; before that, however, it seems perti—A - Non-HRT results for square wells
nent to reiterate some of the points raised in that publication ~For comparison purposes we have collected in Tables |
as far as they concern the reasoning to be put forward in thand Il the critical temperatures of various square well sys-
following. In particular, according to Sec. IV of Ref. 19, for tems as obtained from simulatiori$able ) or by purely
the numerical results to be meaningful the coexisting densitheoretical meangTable Il); the data included have been
ties o, andp, must maintain a separation of at least severapublished within the last decade.
density grid spacingag from the boundaries ag ., and Of the simulation based results included in Table I, only
O max; consequentlys should never exceed some maximumthose of Ref. 26 fom €{1.25,1.375,1.5,1.75}2have been
value, B< Bmax. and for the systems considered here and irobtained by molecular dynamid®D); most of the other
Ref. 19 and for the typical choices f@r,, and 0. the  simulation studies rely on one or the other variant of the
binodal’'s proximity to the low density boundary renders Monte Carlo (MC) method: Among these, the Gibbs en-
Bmax largely density grid ané, independent. semble MC(GEMC) calculations of Ref. 21 set out to deter-

Not to be confused wittB,,, iS the lowest temperature mine critical exponentsg in particular; that work’s finding
Kg/BmaxxNumerically accessible to the program with prede-of S~ 1/2 forA =2 as opposed to the expectged-1/3 found
termined step sizes: this is the temperature below which thér A up to 1.75 prompted reexamination of the square well
program of Sec. lll never reach€s~Q, or produces abnor- fluid with A=2 by GEMC augmented by finite-size scaling
mal results; note thaB ..+ may be larger or smaller than (FSS techniqueg? refuting the mean field value for the ef-
Bmax: depending on the chosen combination of physical pofective exponent.

tential, approximations in the formulation usétie bound- Especially in the critical regime, grand canonical MC
ary conditions in particulay and the choice of parameters (GCMC) simulations incorporating histogram reweighting
affecting the numerical work. and FSS offer some advantage over GEMC due to the latter’s

Regarding the implementation of the core condition agestriction to fixed temperature; such an approach has been
sketched in Sec. Il, the main conclusion of Ref. 19 was thaapplied to square wells with=1.5 and 3 in Ref. 23; a more
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elaborate GCMC scheme not biased towards the Ising unitABLE I. The critical temperaturd’; of square well systems for various
versality class and taking into account the YY anoma|y haé/alues of\ as predicted by simulations and simulation-based theoretical

. o analyses, and the corresponding references. The acronyms used for labeling
recemly been appl|ed o= 1.5, see above. Yet another the method employed in obtaining these results are given in Sec. IV A of the

method goes under the name of thermodynamic- Ofeyt
temperature-and-density-scaling MCDSMC); it was ap-

plied to the case oh=1.5 and analyzed in terms of an A keTc(N)/ e Method
effective Hamiltonian in Refs. 24 and 25. 1.05 0.37511) mod. MC (Ref. 27
Also included in Table | are the results of Ref. 27, em- 1.1 0.49124) mod. MC (Ref. 27
ploying a MC scheme modified to take advantage of a 1.15 0.594235) mod. MC (Ref. 27
speed-up possible by combining simulation data with an ana- 12 0.6921) mod. MC (Ref. 27
. . . - . 1.250 0.7644) GEMC (Ref. 2J)
lytical ansatzfor the chemical potential; the efficiency of this 1925 0.78 MD(Ref. 26
approach originally devised to study phase separation allows 0.78806) mod. MC (Ref. 27
a large number of systems to be consider€the error 1.3 0.88577) mod. MC (Ref. 27
bounds given for these “modified MC” results in Table | 1.375 106917410) (EA%M(; (F«?ZféZJ)
have been qbtamed from the dlﬁgrent results displayed in 14 1'.07(68) rod. A/Té(Ref. 2
Ref. 27 for different parameter settings. 15 1.21793) GCMC(YY) (Ref. 31
The theoretical predictions for the critical temperature 1.218G2) GCMC (Ref. 23
listed in Table Il comprise a second-order analytic perturba- 1.2198) GEMC (Ref. 2J)
tion theory® (APT2) applicable to kA<2 and claimed ac- 1;52 13232229;& ;i ang ;Jg
. ers. an
curate for)\zl._4 as well %s the he}rd—sphere van Qer Waals 1.2465) TDSMC (Refs. 24 and 25
(HSvdW) equation of staté® In addition, though not listed in 127 MD (Ref. 26
Table 1I, we have utilized the non-square-well-specific 1.3028) mod. MC (Ref. 27
Okumura-Yonezaw#QY) estimaté® for 8., primarily as a 1.65 1.64%5) mod. MC (Ref. 27
starting value when looking for the critical temperature in ~ 1.75 1.79 MD(Ref. 26
our HRT calculgtions; fopS"-<Mal the OY prediction is 18 12'.%16];;)3) gig{lcm(g?;e?z )
kgT./e=0.425."—0.273. > 261 MD (Ref. 26
2.64814) GEMC+ FSS(Ref. 22
B. The core condition 2.66685) GEMC+ FSS(Ref. 22
. L . . 2.67827) GEMC+ FSS(Ref. 22
Ever since application of HRT to continuous fluids 2.68218) GEMC+FSS(Ref. 22
started, the implementation of the core condition has been a 2.68451) GEMC+ FSS(Ref. 22
major issue, probably motivating adoption of the closi4he 2.72189) GEMC+FSS(Ref. 22
and variants thereof for non-hard-sphere reference syStems 273014 GEMC+ FSS(Ref. 22
despite its known deficiencies in the first place; indeed, it is 2.76423) GEMC (Ref. 29
pite 1t ! place; | * 2.7787) mod. MC (Ref. 27
no coincidence that several studiés™*® primarily con- 22 3.801) mod. MC (Ref. 27
cerned with the RG aspect of the theory chose to completely 2.4 5.082) mod. MC (Ref. 27
eliminate the core condition. When applying HRT as a regu- 3 9.811) GCMC (Ref. 23

lar liquid state theory, on the other hand, this is not an option:
too great is the effect this may have on both correlation func-
tions and phase behavittFrom Table Il where we compile
the critical temperaturd& .= 1/kg8. for various square well
potentials as functions of the numbidg.+1 of basis func-

tions in the closurd4), just as in Ref. 19 we find virtually  ~ o) . X
constant critical temperatures for<IN..<4; on the other g™o(r,e) itself nor, for that matter, the final values of the

: - (Qo) -
hand, the amount of variation seen upon further increasing@CGA/ORPA expansion coefficients,™(¢) indicate that

N.. strongly depends o, which immediately carries over the expansior(4) for C(9(k,e) might be close to conver-
to the pair distribution functioy(®(r,0) and its compat- gence. But if the quality off?0)(r, ) improves only little if
ibility with the core condition: Foi =3, the longest-ranged at all, the remaining deficiencies are probably to be blamed
potential considered in Table 11§?9(r,0)=0,r <o, holds  on the approximation for the poorly convergent integrals’
reasonably well except very close te-0 even forN,=1;  derivative with respect t@ mentioned earliefcf. Eq. (12)
when increasing the number of basis functions all the way t®f Ref. 19 rather than on an insufficient number of basis
N.= 10, the pair distribution function has to be corrected forfunctions; on the other hand, even though the decoupling
very small r only, yielding a|g(®d(r,p)| that remains assumption cannot directly affect the pair distribution func-
bounded by some I8 of the contact valug(Q) (o +,0) tion’s compliance with the core condition, the approximation
for all r<o; the corresponding small change gfo)(r, o) of neglecting the non-local term wZ{Q[ y(k,0),0]/4Q is
and C(Qo(r,p) is reflected in the near-constant predictionson the same level as that of setting?(¢)=0, as was
for B, evident from Table Ill. stressed by the authors of Ref. 8 upon jointly introducing
Similarly, for A=1.5 and\ =2 and within theN.. range  these two assumptions. Thus, combining the above findings
considered, the implementation of the core condition doesegarding the core condition with the analogous analysis of
not convincingly improve except for supercritical tempera-Sec. IV of Ref. 19 and with that contribution’s investigation

tures and intermediate densities; this time, however, the pair
distribution functions remain far from compatible with the
core condition even forN..=10, and neitherB. nor
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TABLE II. The critical temperaturd’ of square well systems for various TABLE Ill. The dependence of the critical temperature of square well sys-
values of\ as predicted by purely theoretical means, and the correspondingems on the numbe .+ 1 of basis functions retained in Eqd) and(5) for
references. The acronyms used for labeling the method employed in obtaivarious values ok. For N> 0, the decoupling assumption was imposed as

ing these results are given in Sec. IV A of the text. high-density boundary condition, whereas the LOGA/ORPA condition
Y{?(0ma)=0 served the same purpose fdg.=0; other parameters were
N kgT.(N\)/e Method chosen as indicated in Sec. Ill.
1.125 0.587 APTZRef. 29 _ — _
196 0.751 HSvAWRES. 29 Nee kgTe(A=1.5)/e kgTc(A=2)/e kgTc(A=3)/e
0.850 APT2(Ref. 29 0 1.209 437035 2.660 946132 9.891 032299
1.375 0.978 HSvdWRef. 29 1 1.190 668034 2.682 489105 9.899 937479
1.08 APT2(Ref. 29 2 1.203 326035 2.686 289105 9.900 8944798
15 1.249 HSvdWRef. 28 3 1.200 152035 2.686 078105 9.900 894478
1.33 APT2(Ref. 29 4 1.197 136034 2.685 655105 9.900 8944798
1.625 1.61 APT2Ref. 29 5 1.287 448040 2.527 365093 9.737 080462
1.75 1.859 HSvdWRef. 28 6 1.098 329029 2.742 404110 9.822 07147)
1.93 APT2(Ref. 29 7 0.984 757047 2.914 768124 9.867 502475
1.85 2.23 APT2Ref. 29 8 1.070 878027 2.744 830110 9.773 324466
2 2.506 HSvdWRef. 28 9 1.216 338036) 2.749 695110 9.887 510477
2.79 APT2(Ref. 29 10 1.207 58835 2.937 591126 9.748 208464

into the decoupling assumption’s p_ossuble effett Flg. 20f  goution for 0<0ma by Necessity induces a corresponding
Ref. _19 we are led to the conclusion that decoupling POSES ear-discontinuity inf(Q, o) close to the boundary; within
certainly no less a problem here than for the hard-corgne framework of a finite-difference scheme this is reflected
Yukawa potential studied there. in a mismatch off(Q,0ms) and the solution at densities

. ) N close by, i.e..f(Q,0ma—1Ap) for smalli=1, and the mis-
C. High-density boundary condition match’s severity may serve as a direct measure for the inap-

Numerically, there are two ways for the implementationPropriateness of the boundary conditiorpgf, in relation to
of Sec. Il to fail to reachQ=Q,, both, of course, easily the approximations applied at densities Py}, ,0ma.-
detected by the “monitoring” variant of our codef. Sec. On the other hand, the numerics become intractable un-
IILE of Ref. 19): due to the solution’s pathological behavior less we adopt the decoupling assumption, and the only way
whereverf(Q, ) is large(cf. Sec. IVD), or because of in- to consistently use(?(¢)=0 without abandoning the core
appropriate boundary conditions at high density. As for thecondition is to decouple the HRT-PDE to a set of ODEs at
latter—an issue |nt|mate|y linked to the decoup"ng fixed denSity Only"l:g thiS, Unfortunately, removes all traces of
assumption—the immediate reason for the program’s failuréhermodynamic consistency from the equations and thereby
is a near-discontinuity in the numerical solution close to thePrecludes obtaining clear phase boundatids.is therefore
boundary: For the moment setting aside the decoupling agiecessary to restrict decoupling to the implementation of
Sumption and other approxima’[ions, in the app]ication oﬁhe core condition onIy while retaining the structure of a
HRT with the closureg4) at any point Q,0) in the interior ~PDE together with the compressibility sum rul® despite
of the PDE’s domain the core condition uniquely determineghe latter’s incompatibility with decoupling. Thus, for
the \@(e), n=1, for given y{?(g); this expansion coef- @min<@<Cmax, both C?(0,0)=—*(BAQ/IV)/59? and
ficient is then determined by imposing thermodynamic con-(9(p)=0 are used for different parts of the problem; at
sistency as embodied in the compressibility sum (BleAt o however, again any approximation allowing calcula-
a boundary, i.e., forR € {0 min,Omay, however, the second tion of f(Q,0,a) May be used, so that it is tempting to once
density derivative cannot be evaluated reliably so that somggain resort to the LOGA/ORPA condition of vanishing
other condition must be imposed; in the calculations reported/gQ)(QmaQ or variants thereof.
here (with the obvious exception of those for Fig) e But due to the decoupling assumption’s possibly large
always choos@ =0 so that the divergence of the ideal gaseffect, any boundary condition that does not incorporate
term in C(9) providesf(Q,0)=0 as a convenient and un- a(Q(@m,)=0—and bear in mind thaty{?(g@m.) and
problematic boundary condition. F@r= 0 .., on the other (@ (p,,.,) cannot both vanish at the same time for generic
hand, we are in principle free to use any suitable approximaeutoff Q—will once again incur a fatally large mismatch; if,
tion for the structural and thermodynamic properties of@he however, we must resort to decoupling anyway, it seems
system and to calculat Q, 0,50 from said approximation, preferable to consistently apply it for the boundary condition
thereby providing the necessary boundary condition for theather than to inconsistently combine it with a condition alien
PDE (6); but for practical reasons it is desirable to use theto the theory; also, though the mismatches’ magnitudes from
same LOGA/ORPA form for th€ system’s direct correla- imposing a{? (¢ ,0=0 alone or from mixing it with the
tion function atg ., as in the rest of the problem’s domain LOGA/ORPA conditiony{? (o ma) =0 generally do not dif-
so that, in particular, the LOGA/ORPA prescription fer much as long as the PDE's stiffness does not play a role
ng)(Qmax)=0 is a natural choice of boundary condition. In (e.g., for A=1.5, as long as we restrict ourselves @
general, however, due to the PDE’s diffusion like character-8/o- or higher, or toB<pg.), the former approach fares
any condition imposed at .« that is incompatible with the better than the other one more often than not. It is only in
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this sense, i.e., presupposing a LOGA/ORPA-li&asatz  terplay of the mismatch at ., and the numerical treatment
even ato ., and application of decoupling in the implemen- of the stiffness of the PDE.

tation of the core condition according to E§) at all ¢, that
the results are largely independent of the choice of boundar
condition as claimed, foB<f., in Ref. 8.

In the numerical work we find that such a mismatch is  For subcritical temperatures the HRT-PDE's true solu-
present whenever the calculation proceeds via mathematiion’s erratic behavior in that part of th&(e) plane where
cally inconsistent or conflicting approximations; in the casef(Q,¢) is large and the isothermal compressibility’s diver-
of square wells with their comparatively short potential gence is built upcf. Sec. Il, g.v. Ref. 2Dobviously eludes
range, however, the problems are much more severe than ieliable numerical realization; in particular, while; still
other systems so th@,, » iS rather small and even drops characterizes the level of accuracy in auxiliary calculations,
below B, for most of the interval from 1 to 2(cf. Sec. the same can no longer be true for the accuracy of the PDE’s
IVE). Restricting ourselves t@<B.» and Q=Qg, the  discretization as this would require step siA€3 so small as
mismatch is typically reflected in an increase by one order ofo cause floating point underflow upon evaluating, eQ.,
magnitude in the three-point finite-difference estimate of,—(Q—AQ), thus rendering finite differences numerically
e.g.,|0*f(Qq.0)/de?| right at the boundary over the near- insignificant.
constant values at slightly lower densities; apart from a posi- Consequently, in this respect we have to give up our
tive correlation withe;, the mismatch’s severity is qualita- strategy of controlling the numerical procedure so as to lo-
tively unaffected by a change in parameters of the numericatally ensure a quality of; at least, turning to predetermined
procedure or the choice and location of the boundary condistep size¥ AQ in addition to fixedAg, to which similar
tion (with the above provisions concerns apply® on such a coarse mesh of(e) points

Another effect worth mentioning in connection with the underlying the finite-difference scheme, however, the true
boundaries is the influence their locations, vie,,, and  solution cannot even be represented adequately, and the nu-
©@max, May have. The basic mechanism and its implicationsnerical approximation fof (Q,¢) obtained from the PDE’s
for the coexisting densities were already mentioned in thaliscretization with these far too large step sizes cannot be
opening remarks of this section; here we only want to pointrusted to faithfully represent even the average behavior of
out that the noncriticality enforced by the boundary condi-f(Q,0).
tions not only may unduly distort the binodal predicted by  This inadequacy of the step sizes is reflected in various
HRT as demonstrated in Fig. 1, very small,,,x may also peculiarities of the solution vector obtained in the numerical
allow one to reaclQ =Q, at higherg, thus effectively rais- procedure; indeed, when monitoring the evolutiorf @, 0)
iNg Bmax#While lowering B . and the core condition coefficienjé,Q’(g), our code readily

Sometimes, however, the expectation of the binodabetects the plummeting step sizes necessary and signals the
keeping a separation from the boundary of sevévaglat incompatibility of the behavior seen with the assumption of
least does not hold, and a preposterous two-phase regi@moothness underlying finite-difference schemes. Another
appears very close 1©@,,,, or, very rarely, close t@ ,,; €.9., telltale sign is iterated corrector steps’ failure to converge
for A=1.88 andB=0.392k the equations can be solved all whenf(Q,p) is large: even though implicit schemes like the
the way down tocQ=Q,=10 %/ ¢, predicting an unrealistic one we emplo$f are the standard treatment for stiff systems,
two-phase region extending from 0.§89/0° to the rapid growth of the oscillations’ amplitudes renders the
0.9955)/0°. This behavior turns out to come from the in- finite-difference equations themselves unstable under itera-

5. The region of large f(Q,0)

FIG. 1. The binodal of the square well
system withA =3 as obtained for dif-
ferent values ofe; and @, cf. the
discussion in Sec. IV C. Note that for
this rather long-ranged system the
critical point’s location is virtually un-
affected by variation of these param-
eters. Also, imposing the boundary
condition at @ ,,=0.5/0" clearly in-
duces a shift irp, to higher and, to a
lesser degree, ip, to lower values
% even well above the temperature

%% wherep, gets close t@ ., Which is

€4 = 0.005, omax = 0.5/03
readily interpreted as an effect brought

N
@
3 o
v J— —_ n .
€# = 0.005, omax = 1'0/(; &> about by stiffness; the results for
‘eq = 0.01, Pmax = 0.5/0‘ o Oma=0.5l0° and €,=0.005 do not

< . .

o —_ _ 3 differ much from those with the same
€4 = 0'01’ Omax = 1‘0/0 . Qmax and €,=0.01 except in the bi-
nodal's vapor branch’s shift being

somewhat smaller.
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tion; only when resigning on any control of the numerical
Oy gning y A GEMC (1991) K

error and refraining from iterations of the corrector step do 18t ¥ HSvdW (1992) ,
the step sizedA Q chosen allow one to force advanciQuall 16} + APT2 (1994)

the way toQq in remarkably many cases. Also, comparison % mod. MC (1996)

of f(Qq,0) as obtained with different sets of step sizZe® M4r x GEMC+FSS (1997) 4
reveals that, fop,<@<g,, the evolution off(Q,e) seen 12| >k TDSMC (1998)

numerically is driven by the number and size@fteps only ks T. 10l * MD (1999)

* GCMC (1999)
€ |k GCMC(YY) (2001) -,
--- OY (2000)

and certainly does not correspond to an average over
oscillations?° the same mechanism is also responsible for a
small AQ dependence of the critical temperatgg.
By the same token, due to thi; anddgy, terms in Eq.

(6), the PDE’s stiffness and the related problems have a di-
rect bearing on the solution outside the coexistence region
even if the numerical predictions there turn out rather insen- :
sitive to variation of parameters of the numerical procedure; ’ ' ' ' ' '

in particular, we expect a gradual but non-negligible distor- 0.5 '*H_
tion (in addition to the effects of numerical differentiation il
close to the near-discontinujtyof the binodal, increasing 0.4f AL
with falling temperature. peo’ *
0.3}
E. HRT results for square wells Yﬁ:&\ . HII;EIIWI"H""""|'||||IM|||||||||||||||F||
In light of the preceding exposition as well as of the :ﬁff—
discussion in Ref. 19 it may at first seem surprising that HRT 02 15 320 325 30 33
in the formulation of Sec. Il has a record of being highly A

applicable to a variety of systenisf. Sec. ); also, as we

shall see in a moment, even for square wells, a system exl/G. 2. The critical temperaturg, (dots in upper pangand critical density

. . O (bars in lower panglof square well systems for ranging from close to
pected to be particularly vulnerable to the problems just OUtunity up to 3.6 as obtained from calculations with parameters chosen as

lined, we find reasonable estimates of the critical points’ l0+ndicated in Sec. III; also included are the non-HRT predictions listed in
cations for a wide range of values. Still, the mechanisms Tables I and I, labeled by the acronyms introduced in Sec. IV A and already

sketched in Secs. IVC and IVD as well as the difficultiestsed in those tables. The ticks on the top border of the figure’s frame indi-

resented in Ref. 19 remain and manifest themselves numeffo thel values considered; of the 200-odd systems we lookefik
P ’ éxceede(ﬁC only in the\ ranges indicated in Sec. IV E or for some isolated

cally in a number of ways. \ values outside those ranges. The three boxes in the upper panel indicate
For a first orientation, let us look at the results summa-the parameter ranges displayed at larger scale in Fig. 3. In the lower panel,
rized in Figs. 2 and 3 where the critical temperatiligeand the bars show the coexisting densities found according to the prescriptions

d it h f ti of th derlvi | of Sec. Il for the highest-temperature subcritical isotherm calculated in
ensityg. areé snown as tunctions ai, thé underlying cal- locating the critical temperature, which explains the apparent differences in

culations have been obtained wigg=10"2, imposing de- o.'s accuracy; the smallegt, intervals shown coincide with the spacing
coupling in a consistent way apm.—=1/c> and with  Ag=10"%/¢ of the density grid.

N¢+1=7+1 basis functions in the expansigd) of the
LOGA/ORPA function G(?). With the exception of some

spurious results at~1.1, whereverB < Bnax« the critical _ ! L .
temperature in general compares quite favorably with thdemperature a nonmonotomcfunctlon)qfwhlch is certainly _
not expected on the grounds of the literature presented in

data of Tables | and II; from the calculations we have per- : ;
formed for a large number of systems in the rangeil Sec. IVA, the data of Refs. 27—29 in particular.
=3.6 and ignoring some isolated results, a critical point is
found for 1.06sA=<1.24, for 1.45A=<1.53, and for

only;?° others, however, are so strong as to render the critical

A=1.939; calculations with N.=5 vyield analogous 110 ° . + 13! :
results?® with B.< Bmax#iN @ somewhat larger part of the R EE A kX Lt
parameter range, viz., for 1.8 <1.58 and forA =1.896, R i 1P ..
but will not be considered in the following in view of the kg T. 108 - # 1.2 A
considerations of Sec. IV B and of other defects that turn out * 128 §
to be larger than foN .= 7. 10.6 4k 111 12,7

For the moment setting aside the data f0#1.939, % Y P :i
HRT's predictions for the critical temperature are generally loa “
found to be in satisfactory agreement with Bg(\) curve T e L
expected from the simulation-based and theoretical results 1.0 1.1 1.2 14 1.5 1.95 2.00 2.05

presented in Sec. IVA. Embedded into this regular overall A

behavior Of’BC asa funcuon. oh, however, we fmq a number FIG. 3. The critical temperature data of Fig. 2 for values of the square well
of depressions and elevatlpnsﬁé, some of which C_annOt range parametek close to 1.1, 1.5, and 2 at larger scale; the symbols
be seen on the scale of Fig. 2 but from the numeric resultsoincide with those used in Fig. 2.
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presented in Sec. IVA. Even though we currently cannot
pinpoint the precise mechanism by which this unphysical
behavior of HRT arises and, in particular, cannot distinguish
= M MM A=3 between the closure’s inadequacy and the PDE’s stiffness as
o lw \IJ W W the main culprit—though the latter is certainly implicated to
= l\\ some degree—two conclusions may be drawn quite safely:
,% I\- A\ J\-V-".V"‘-v-"-.:-‘ ,3‘_:,_2;9 for one, as long as we stay clear of values\ef2 that are
V vV close to simple fractions, or restrict ourselves Nez2.7
where the effects are rather small, we can probably trust the
IJ | | : | | | | numerical results—with theaveatsof Ref. 19 and Secs.
10 20 30 40 — 50 60 70 80 IV C and IV D—to the same degree of confidence as those

Q obtained for the hard-core Yukawa system in Ref. 19. And

N VO . secondly, it is only in the presence of discontinuities in the

FIG. 4. The core-condition functiod™(Q,e) for =0.3i", f=0.2l  iantia| that certain lengths feature prominently in the rel-
and for two different rangea of the square well potential, on arbitrary . ) . . .

scales; the horizontal lines correspond to the ideal gas valilp. Note ~ €Vant functions Fpurler tranSformS and can so give rise to

that, forx =3 (upper curv the peak of every single one of the function's problems of the kind outlined above; consequently, as long
swings is partially reduced, which is the case less than half the time—and a4s we confine ourselves to continuowsr,o), which still

rather highQ only—for A =2.9 (lower curvg. We have excluded the data includes most of the potentials popular in quuid state phys-

for Q<10/s so that the effects of the PDE's stiffness are still negligible; the . . . . .
Q 7 gl ics, the unphysical shifts if8, seen for certain parameter

underlying calculations have been performed by solving the ODEs corre*
sponding to consistent application of the decoupling assumption at the defombinations are likely not an issue, whereas the same prob-
sity indicated. lems are expected to resurface, e.g., for the multistep poten-
tial also defined in Sec. Il B of Ref. 19.
Another lesson to be drawn from the findings presented

In light of Sec. IVD it is of course tempting to simply here as well as in Ref. 19 is that, as a general rule, conclu-
attribute this behavior to the difficulties previously dis- sions should never be drawn from isolated results alone; it is
cussed, especially since the critical point is located in theénly through the combination and meticulous scrutiny of a
region of largef(Q,,0) by definition; the peculiar distribu- set of related calculations that meaningful information can be
tion of A values affected, however, suggests that these protextracted from HRT calculations: due to the problems related
lems of the numerical procedure are triggered by a specidp the implementation of the core condition, to the nature and
mechanism. Indeed, a closer look at the core condition fundocation of the boundary conditions, and to the PDE'’s stiff-
tion C(9(Q, o) for fixed densityo reveals, for every single N€SS, any _single calculation must be considergd as of uncer-
one of theX values implicated that we checked, that the@in standing. As an exampf@ the analog of Fig. 1 fon
combination of terms pertaining (r) or v"(r) alone(of ~ =1.5 shoyv; a co'nS|derabI.y Iarger variation in the pmodal
ranges\o anda, respectively regularly and quite frequently and the critical point’s Iocat_|on, which is consistent _vv_lth the
reduces the amplitude of this function’s swings about the2Pove conclusions regarding the reason Biay s rising
ideal gas value of-1/o; the same happens only occasion- 2P0Ve S in a narrow region around this value, whereas
ally for \ values removed from these irregularities so that itany one of the phase boundaries found in itself is a perfectly

is, in fact, possible to quite reliably determine whether or notlausible candidate for the “true” HRT binodal.

a given\ is affected from a plot of(Q(Q,e) for o~o,
alone as illustrated in Fig. 4. It will come as no surprise thatV' CONCLUSION
most of the irregularities occur whey the ratio of the two In conjunction with the findings of Ref. 19, the discus-
characteristic lengths present in the model, is close to aion of Sec. IV provides quite coherent a picture of HRT's
simple fraction: among the shifts i, most obvious are numerical side as well as of some peculiarities encountered
those whera is close to 2cf. Fig. 3, 2%, 22, 23, and 2%, for square wells. Most prominently, we see a marked depen-
and in retrospect it seems justified to also include the smafiénce of the quality of the results on the potential's range,
parameter range around=1% in this list, see below; the comjrmlng the trend of decreasing accuracy f_or narrower po-
. . ; L i tentials reportet! for the hard-core Yukawa fluid; it has long
effect is less obvious from Fig. 2 but still discernible gt,2 been acceptéd®*” that the simplistic but computationally
23, and %, whereas for 2 and 2} it is so small as to make conveniertt® closure(4) has a part in this, and an improved
the plot of B.(\) appear smooth while the irregularities are closure has recently been proposégtill, as far as numeri-
still evident from the numerical values; also note that, onceg| application of HRT is concerned, the closure cannot be
again,o is hardly affected. discussed without reference to the decoupling assumption
All these observations seem to indicate that indeed it isand to the approximate implementation of the core condition
the interplay of the two different length scales and the resultyia ODEs coupled to the HRT-PDE; while the former has
ing partial oppression of a significant portion of the oscilla-been found problematic both for square wefisesent con-
tions of C{9(Q, o) that cause the discrepancy of HRT and tribution) and for the hard-core Yukawa fluid considered in
literature results for the critical temperature around centain Ref. 19 and should probably not be trusted easily for any
values even though a smooth interpolation of HRT’s predicsystem, the severity of the difficulties brought about by the
tions from\ values nearby is well compatible with the data simplified treatment of the core condition sensitively de-
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pends on the potential type and parameters chosen: for threasonable accuracy far=2 as long as certain values are
continuous and rather long-ranged Yukawa potential with avoided, or else fok=2.7.

=1.8/0, g% (r,0) can be made sufficiently small within
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