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The hierarchical reference theory as applied to square well fluids
of variable range
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Technische Universita¨t Wien, Wiedner Hauptstraße 8–10, A-1040 Vienna, Austria

~Received 30 January 2002; accepted 15 April 2002!

Continuing our investigation into the numerical properties of thehierarchical reference theory, we
study the square well fluid of rangel from slightly above unity up to 3.6. After briefly touching
upon the core condition and the related decoupling assumption necessary for numerical calculations,
we shed some light on the way an inappropriate choice of the boundary condition imposed at high
density may adversely affect the numerical results; we also discuss the problem of the partial
differential equation becoming stiff for close-to-critical and subcritical temperatures. While
agreement of the theory’s predictions with simulational and purely theoretical studies of the square
well system is generally satisfactory forl*2, the combination of stiffness and the closure chosen
is found to render the critical point numerically inaccessible in the current formulation of the theory
for most of the systems with narrower wells. The mechanism responsible for some deficiencies is
illuminated at least partially and allows us to conclude that the specific difficulties encountered for
square wells are not likely to resurface for continuous potentials. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1483258#
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I. INTRODUCTION

In a large part of the density–temperature plane, integ
equation theories are a reliable tool for studying thermo
namic and structural properties of, among others, sim
one-component fluids;1 unfortunately, in the vicinity of a
liquid–vapor critical point, integral equations are haunted
a host of difficulties, leading to a variety of shortcomin
such as incorrect and nonmatching branches of the bino
classical values at best for the critical exponents, or ot
deviations from the correct behavior at the critic
singularity.2 Asymptotically close to the critical point, on th
other hand, renormalization group~RG! theory is the instru-
ment of choice for describing the fluid; in general, howev
RG approaches do not allow one to derive nonunive
quantities from microscopic information only, i.e., fro
knowledge of the forces acting between the fluid’s partic
alone. One of the theories devised to bridge the concep
gap between these complementary approaches is thehierar-
chical reference theory~HRT! first put forward by Parola,
Reatto, and co-workers:2–13 In this theory the introduction o
a cutoff wave numberQ inspired by momentum space R
theory and, for every value ofQ, of a renormalized potentia
v (Q)(r ) means that only noncritical systems have to be c
sidered at any stage of the calculation; consequently, inte
equations may successfully be applied to every system
Q.0, and critical behavior characterized by nonclassi
critical exponents is recovered only in the limitQ→0.

While applicability of HRT to a number of interestin
systems, ranging from a lattice gas or Ising model11 to vari-
ous one-component fluids6–8 even including three-body
interactions,13,14 internal degrees of freedom,15 or non-hard-
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core reference systems,16 was demonstrated early on, th
main focus of research on HRT has since shifted to the ric
phase behavior of binary systems.16–18Nevertheless, in light
of HRT’s high promise and low penetration into the liqu
physics community, further study and critical assessmen
this theory seem worthwhile, even and foremost in the c
of simple one-component fluids: indeed, it is in this com
paratively simple setting that we may gain important insig
into the numerical side of the theory, and barring spec
mechanisms relevant to some specific model system o
any problems uncovered here must be expected to h
more advanced applications of HRT, too. In our work w
have found it convenient to restrict ourselves even furth
implementing HRT in its usual formulation2,19,20 for purely
pairwise additive interactionsvia a potentialv(r ) obtained
from the superposition of an infinitely repulsive hard sphe
serving as reference system,v ref(r )5vhs(r ), and a predomi-
nantly attractive tailw(r ), w̃(0),0. Here we have made us
of the notation introduced previously:19 superscripts always
denote the system a quantity refers to@here, ‘‘ref’’ and ‘‘hs’’
for the reference system and hard spheres, respectively; s
larly, ‘‘( Q)’’ for the system with cutoffQ#, and a tilde indi-
cates Fourier transformation. In the present contribution
apply our recent reimplementation of the theory19 to one of
the simplest potentials exhibiting phase separation, viz.,
square well potentialvsw[2e,l,s] ~cf. Sec. III B of Ref. 19!:

vsw[2e,l,s]~r !5vhs[s]~r !1wsw[2e,l,s]~r !,

vhs[s]~r !5H 1`, r ,s

0, r .s,
~1!

wsw[2e,l,s]~r !5H 2e, r ,l s

0, r .l s.
5 © 2002 American Institute of Physics
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Considering density-independent potentials only and cho
the hard-core diameters and the well’s depthe as units of
length and energy, respectively, the attractive well’s rangl
is the sole remaining parameter; in this article we will stu
values ofl from slightly above unity up to 3.6.

With just one parameter, viz.,l, to vary, square wells
obviously make for a convenient test case of HRT and,
deed, of liquid state theories in general; consequently, a g
many simulational and theoretical efforts have been direc
at this system, and studies of its phase behavior abound.21–33

But square wells are also of interest in their own right, se
ing as—albeit somewhat crude—models of a wide variety
physical systems including, e.g.,3He, Ne, Ar, H2 , CO2,
CH4, C2H6 , n-pentane, andn-butane,33–35while current in-
terest in this potential derives mainly from the finding th
square wells capture the essential features of the interac
found in colloidal systems.36–40 Yet another motivation for
this first application of HRT to square wells comes from
recent, very accurate simulation study31 confirming and
quantifying the presence in the system withl51.5 of the
Yang–Yang ~YY ! anomaly expected and experimenta
found for asymmetric fluids.41,42

Due to the extensive amount of data available in
literature the more recent of which will shortly be presen
later on, and in view of some of the limitations of HRT in i
current formulation we cannot expect to gain new insig
into the system at hand with a level of precision compara
to that of the more sophisticated simulation schemes.
stead, in the present contribution our focus of interest lies
some aspects of HRT’s numerical side, specifically on th
that are sensitive to the potential’s range: indeed, as st
already in Ref. 19, for a potential as pronouncedly sho
ranged as square wells some of the numerical probl
should show up much more prominently than in other s
tems like, e.g., the hard-core Yukawa fluid previous
considered19 where they are, of course, in principle st
present but do not manifest themselves as clearly.

In accordance with the preceding remarks, another
son why application of HRT to square wells might be wor
while lies in the closure underlying seemingly all applic
tions so far of HRT to simple one-component fluids w
hard-sphere reference part: As the usual formulation of H
in these cases relies on anansatz for the two-particle
direct correlation functionc2(r ) very much in the spirit of
Stell’s lowest-orderg-ordered approximation43,44~LOGA! or
the equivalent optimized random-phase approximation45

~ORPA! by Andersen and Chandler, the direct correlati
function can never extend to largerr values than the poten
tial v(r ) itself. In particular, for the square well potenti
vsw[2e,l,s] (r ) we necessarily havec2(r )50 for r .l s so
that all moments ofc2(r ), i.e., *R3d3r c2(r ) r n, n>0, exist,
which is obviously at variance with the correct behavior n
the critical point;46 furthermore, at intermediateQ the direct
correlation function can hardly be considered satisfact
especially19,20 close to r 5l s. While some earlier
publications6,13,47 already blamed unsatisfactory aspects
HRT results on this inadequacy of the closure, square w
should bring out related problems of HRT with the usu
LOGA/ORPA-style closure much more clearly, and the n
Downloaded 22 Jun 2004 to 128.131.48.66. Redistribution subject to AIP
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merical procedure’s response should provide us with a
nature to be looked out for in other systems, too; also, e
within the LOGA/ORPA-style approximation the impleme
tation of the core conditionvia approximate ordinary differ-
ential equations~ODEs! for the relevant expansion coeffi
cients easily shown to be inadequate for very short-ran
potentials20 casts some doubt on the range ofl values ame-
nable to an HRT treatment in the current formulation of t
theory. Determination of the admissiblel range, on the other
hand, is particularly interesting in light of Refs. 27 and 47
well as in view of the global renormalization scheme32–35

originally developed by White and co-workers as an ext
sion of Wilson’s phase-space cell method48 to the liquid
state; it is only by combining tests internal to the theory a
comparison with data available by other means that we
able to answer this question.

In this contribution, after a sketchy presentation of t
underlying theory itself~Sec. II! and the implementation
used~Sec. III!, in Sec. IV we turn to the results of applyin
HRT to square well systems of variable range. After a sh
summary of the critical point’s location as obtained fro
simulation-based and other purely theoretical studies
square wells for various values ofl ~Sec. IV A! we first look
into the core condition’s implementation, which provides
with a first hint regarding the range ofl values accessible to
HRT in its current formulation and once more highlights t
decoupling assumption’s role~Sec. IV B!. The latter is also
implicated in the correct choice of the boundary conditi
imposed at high density as discussed, alongside the effe
its location in Sec. IV C. A particularly grave aspect
HRT’s numerical side is the stiffness of the partial differe
tial equation~PDE! for close-to-critical and subcritical tem
peratures~Sec. IV D!, the vestiges of which are evident i
the results obtained for quasicontinually varyingl as pre-
sented in Sec. IV E. A short summary of our findings a
conclusions ends our contribution~Sec. V!.

II. THE THEORY

The definite resource on HRT is the review2 by the theo-
ry’s original authors, summarizing its formalism as dev
oped in a series of earlier publications3–8 so that we here
present only an overview of the theory used and of its f
mulation, recapitulating some of our earlier findings;19 the
notation employed here of course coincides with that of
preceding contribution.19

As mentioned already in Sec. I, HRT’s mainstay is t
implementation of the suppression of long-wavelength fl
tuations characteristic of RG methods by means of a ren
malized potentialv (Q). Thus, rather than directly going from
a reference fluid the properties of which are assumed kno
to the fully interacting system, i.e., from pair potentialv ref(r )
to v(r )5v ref(r )1w(r ), HRT proceedsvia a succession of
rather artificial19 intermediate potentialsv (Q)(r ): For every
value of the cutoff wave numberQ, v (Q) is given by

v (Q)~r !5v ref~r !1w(Q)~r !,

w̃(Q)~k!5H w̃~k!, k.Q

0, k,Q
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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4927J. Chem. Phys., Vol. 117, No. 10, 8 September 2002 The hierarchical reference theory
w̃sw[2e,l,s]~k!524p e
sin l s k2l s k cosl s k

k3 ,

where the last line specializes to the square well potentia
Eq. ~1!; obviously, v ref and v are recovered in the limits
Q→` andQ→0,

v (`)~r !5v ref~r !5vhs~r !, v (0)~r !5v~r !5vsw~r !,

allowing HRT to gradually turn on fluctuations of ever in
creasing wavelength by loweringQ from ` to zero
~numerically,19 from Q` to Q0!; as mentioned before, criti
cality ~together with nonclassical critical exponents! and
phase separation~with isotherms rigorously flat in the two
phase region! are obtained in the limitQ→0. In this proce-
dure it is essential to maintain the differential picture impli
by RG theory and to make sure that the transition fromQ to
infinitesimally smaller cutoffQ2dQ is continuous even in
the limit Q→0. The latter requirement necessitates replac
the usual free energyA(Q) and two-particle direct correlation
function c2

(Q)(r ) of the hypothetical system with cutoffQ
and potentialv (Q)(r ), the ‘‘Q system,’’ by suitably modified
quantities, viz.,

bA (Q)

V
5

bA(Q)

V
2

%2

2
@f̃~0!2f̃ (Q)~0!#

1
%

2
@f~0!2f (Q)~0!#,

C (Q)~r !5c2
(Q)~r !1f~r !2f (Q)~r !,

f52b w, b51/kB T,

where % is the number density of the system at hand;
higher-order correlation functionscn

(Q)(r 1 ,...,r n), n>3, are
free from such problems.@Note that all the direct correlation
functions includingC (Q)(r ) are taken to include the ideal ga
terms.2#

With this set of quantities continuous even in the lim
Q→0, viz., A (Q), C (Q), and thecn

(Q) , n>3, HRT is derived
as a nonterminating hierarchy of coupled ODEs at fixed d
sity %, calculating the properties of theQ system by treating
the system at infinitesimally higher cutoffQ1dQ as a ref-
erence system; of these equations, usually only the evolu
equation forA (Q), viz.,

d

d Q S bA (Q)

V D5
Q2

4p2 lnS 12
f̃~Q!

C̃(Q)~Q!
D , ~2!

as well as the important compressibility sum rule

C̃(Q)~0!52
]2

]%2 S bA (Q)

V D ~3!

valid for any cutoffQ directly enter practical calculations.
When combined with a closure on the two-particle lev

Eqs.~2! and ~3! define a PDE in the (Q,%) plane; it is this
PDE that we will concern ourselves with in the remainder
this text. Said closure, reminiscent of LOGA/ORPA but ad
ing one free parameter to allow imposing thermodynam
consistency as embodied in Eq.~3!, is given, just as in our
earlier contribution,19 by
Downloaded 22 Jun 2004 to 128.131.48.66. Redistribution subject to AIP
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C (Q)~r ,% !5f~r ,% !1g0
(Q)~% ! u0~r ,% !1K (Q)~r ,% !,

K (Q)~r ,% !5G (Q)~r ,% !1c2
ref~r ,% !,

~4!

G (Q)~r ,% !5 (
n51

`

gn
(Q)~% ! un~r ,% !,

where we have generalized to density-dependent potent
The basis functionu0(r ,%) is chosen to coincide with20

w(r ,%)/w̃(0,%), and the higher basis functionsun(r ,%),
n>1, vanish outside the core; for our specific choice of ba
functions see Appendix B of Ref. 19. In order to ensure t
both the core condition, i.e.,g(r ,%)50 for r ,s(%) where
g(r ,%) is the pair distribution function, and sum rule~3! are
met it is necessary to choose the correct set of expan
coefficientsgn

(Q)(%), n>0, at every cutoffQ and for every
density%; assuming their validity forQ5` and adopting the
shorthand notations

a (Q)~% !5
]3

]Q]%2 S bA (Q)

V D ,

Î(Q)@c~k,% !,%#5E
R3

d3k

~2p!3

c~k,% !

@ c̃2
(Q)~k,% !#2

~here,c is an arbitrary function ofk and %!, both relations
can be combined to

(
n51

`

Î(Q)
†ũ j~k,% ! @ũn~k,%!2ũ0~k,%! ũn~0,% !#,%‡

]gn
(Q)~% !

]Q

5a (Q)~% ! Î(Q)@ ũ j~k,% ! ũ0~k,% !,%#

1
Q2

2p2

f̃~Q,% ! ũ j~Q,% !

C̃(Q)~Q,% ! @ C̃(Q)~Q,% !2f̃~Q,% !#
, j >1;

~5!

this set of equations must, of course, be truncated to a fi
number 11Ncc of basis functions, and it is also necessary
neglect nonlocal contributions to]Î(Q)@c(k,%),%#/]Q to al-
low convenient evaluation at arbitraryQ. Both of these ap-
proximations have been discussed at length in our prev
contribution,19 and while the value ofNcc was found to
strongly influence the quality of the results obtained, de
mination of thegn

(Q)(%) from Eq.~5! and said approximation
for the slowly convergingÎ integrals’Q dependence leads t
systematic deficiencies at smallr in g(r ) as determined from
the Ornstein–Zernike relation.

Unfortunately, for numerical reasons19 it is necessary to
also adopt the so-called decoupling assumption,8 viz.,
a (Q)(%)50; as can easily be seen, this is not only ma
ematically incompatible with thermodynamic consisten
but even suffices to decouple the PDE implied by Eqs.~2!
and ~3! to a set of unrelated ODEs at fixed density on
lacking thermodynamic consistency and thus unable to p
dict clear phase boundaries.19 Furthermore, we cannot rule
out that decoupling may have a significant influence on
solution generated,19 which is particularly troublesome as th
much longer range ofu0(r )}f(r ) when compared with the
other basis functions was originally invoked as justificati
for settinga (Q)(%)50. For square wells, this assumption
certainly even less justified than for the rather long-rang
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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hard-core Yukawa system (z51.8/s) considered in Ref. 19
Returning to the PDE, for the numerical implemen

tion’s benefit we, too, adopted a reformulation in terms of
auxiliary functionf (Q,%) simply related to the modified fre
energy’s derivative with respect toQ. The details of the pro-
cedure leading to a PDE of the form

]

]Q
f ~Q,% !5d00@ f ,Q,%#1d01@ f ,Q,%#

]

]%
f ~Q,% !

1d02@ f ,Q,%#
]2

]%2 f ~Q,% !,

f ~Q,% ! ũ0
2~Q,% !5 lnS 12

f̃~Q,% !

C̃(Q)~Q,% !
D 1

f̃~Q,% !

K̃(Q)~Q,% !
,

~6!

and the coefficient functionsd0i themselves can be found i
Appendix A of Ref. 19, q.v. Ref. 20.

The above formulation~6! of the problem, of course stil
coupled to the ODEs implementing the core condition, ob
ously has to be amended by initial and boundary conditio
While the former easily follow fromgn

(Q`)
50, n>0 @which

is sufficient to also determinef (Q` ,%)#, choice of appropri-
ate boundary conditions is slightly more complicated. If,
is the case in most of the calculations reported here~see
below for exceptions!, the low-density boundary is located
%min50, we can make use of the divergence of the ideal
term 21/% in c̃2

ref to derive not onlyf (Q,0)50 but also
] f (Q,0)/]%50, which alone is, in principle, sufficient to
uniquely determine the solution up to arbitrarily high dens
For computational reasons, however, it is preferable to
stead only impose vanishingf at %min and to supply an ap
proximate condition for calculatingf at %max. Among the
candidates for the constraint to be imposed upon the solu
at %max in addition to the core condition there are two w
should mention here: Starting with Ref. 7, the so-cal
ORPA condition, viz.,g0

(Q)(%max)50, has been used exten
sively. It should, however, be noted that this condition
incompatible with both thermodynamic consistency and
decoupling assumption.19 An alternative first considered in
our previous report19 is the decoupling assumptio
a (Q)(%max)50 itself; of course, this condition is still incom
patible with the compressibility sum rule~3! but this is less
of a problem at a boundary where partial derivatives w
respect to% cannot be evaluated anyway. Another opti
~not pursued in this contribution! is to give up the core con
dition altogether, retaining only the lowest basis functionu0

in the closure~4! and thus effectively replacing Eq.~5! by
Eq. ~3!; this has the added advantage of mathematical c
sistency while still retaining the structure of a PDE so i
portant for obtaining clear phase boundaries,19 see above.

It is one of HRT’s main achievements to allow calcula
ing a fluid’s binodal~coinciding with the spinodal in three
dimensions12! without resorting to Maxwell constructions,12

for subcritical temperatures yielding isotherms rigorously
in density intervals the boundaries of which are readily id
tified with the coexisting densities%v and% l . Thus, as the
isothermal compressibilitykT of the fully interacting system
readily found to be proportional to exp@f2(f̃(0)/K̃(0))#21
Downloaded 22 Jun 2004 to 128.131.48.66. Redistribution subject to AIP
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~cf. Appendix A of Ref. 19!, diverges in the two-phase re
gion, so must the auxiliary functionf (Q,%) in the limit
Q→0. As a direct consequence, the transition from the mo
fied free energyA (Q)(%) to f (Q,%) is not only computation-
ally convenient but also allows us to follow the isotherm
compressibility’s buildup much more easily; even more i
portantly, a simple analysis19,20 of the behavior of the PDE’s
coefficients for largef (Q,%) readily characterizes the PD
as stiff: for any density%P@%v ,% l # and close toQ50, the
true solutionf (Q,%) oscillates rapidly on aQ scale of the
order of exp(2f ), with both an upper bound on the oscilla
tions’ amplitudes and f ’s average slope growing like
1/Q—needless to say that this behavior cannot be rep
duced numerically~see Sec. IV D; q.v. Ref. 19!. Note, how-
ever, that it is not an artifact of the rewriting of the PDE
the form~6! but rather a problem inherent to HRT itself in
formulation based upon Eq.~4!.20

III. NUMERICAL PROCEDURE

The numerical study of HRT for square well systems
varying range parameterl in Sec. IV has only become fea
sible due to our recent reimplementation49 of this theory,
discussed at length in Refs. 19 and 20; we will make use
results obtained with this program exclusively. From a pr
tical point of view, our software provides a means of solvi
a finite-difference approximation to the PDE~6! in an iter-
ated full-approximation scheme, imposing boundary con
tions at densities%min and%max as well as initial conditions
at Q5Q` , generating a solution forQ as low asQ0 while
ensuring numerical soundness of every step by employin
number of criteria. The pivotal parameter governing all
the numerics is a small quantity denotede# characteristic of
the maximum admissible relative error introduced in a sin
step in the2Q direction; due to the paramount importan
of derivatives with respect to%, e# is strictly related to the
coarseness of the density grid.

The only exception to the general strategy of ensurin
numerical quality ofe# at every step in the calculation is th
choice of step sizesDQ in the 2Q direction, at least for
subcritical and close-to-critical temperatures: indeed, in t
part of the (Q,%) plane where the divergence of the isothe
mal compressibility builds up, the PDE’s stiffness~see
above! renders fixed-precision arithmetic and relative erro
bounded bye# incompatible. Consequently, for the calcul
tions reported below we resort to step sizesDQ predeter-
mined in a way analogous to that employed in earl
applications;6,19 still, monitoring and assessing suitable com
ponents of the solution vector in terms ofe# as described in
Sec. III E of Ref. 19 may yield a wealth of information o
the numerical process and its evolution.

Most of the calculations reported here have be
performed on an equispaced density grid ofN%5100 density
intervals spanning the range from%min50 to %max51/s3,
corresponding to a value ofe#51022; Ncc was usually set
to 7; and the predetermined step sizes star
from DQ521022/s at Q`580/s, plunging to a mere
2531026/s when approachingQ051024/s. When locat-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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4929J. Chem. Phys., Vol. 117, No. 10, 8 September 2002 The hierarchical reference theory
ing the binodal via the divergence of the isothermal co
pressibilitykT we did not require an actual overflow to occ
but instead looked for akT ratio at neighboring densitie
exceeding 104, which is a rather reliable indicator for th
binodal’s location askT typically jumps by far less than two
or by at least some twenty orders of magnitude within o
D%; the reported values for%v and% l are the midpoints of
the density intervals so found. In principle this allows us
locate the coexisting densities and the critical tempera
and density to arbitrary precision, even though the comp
tional cost rises sharply with fallinge# .

IV. APPLICATION TO SQUARE WELLS

As mentioned before, much of the motivation for app
ing HRT in the formulation outlined in Sec. II to the simp
square well model potential is based upon various obse
tions indicating possible limitations of this approximate fo
mulation of HRT for short-ranged potentials. A case in po
is the recent work of Caccamoet al.47 entirely devoted to
several thermodynamically consistent theories’ ability to d
with narrow hard-core Yukawa systems; sure enough, in
case of HRT the shortcomings of the LOGA/ORPA-style c
sure ~4! and, presumably, of the accompanying decoupl
assumption underlying the core condition’s implementat
via Eq. ~5! were manifest already in Refs. 6 and 13 a
recently confirmed by us,19 q.v. Ref. 20.

Of course, any of the problems discussed below o
relate to HRT when implemented along the lines of Secs
and III and not to HRT proper; however, for reasons d
cussed in Ref. 19, alternative formulations almost certa
render the numerics far more demanding and open u
whole new suite of problems regarding the numerical imp
mentation’s soundness, especially when performing Fou
transformations of cutoff-affected functions.20

In the following subsections we will complement th
discussion of Ref. 19 by further investigation into the n
merical nature of HRT; before that, however, it seems pe
nent to reiterate some of the points raised in that publica
as far as they concern the reasoning to be put forward in
following. In particular, according to Sec. IV of Ref. 19, fo
the numerical results to be meaningful the coexisting de
ties %v and% l must maintain a separation of at least seve
density grid spacingsD% from the boundaries at%min and
%max; consequently,b should never exceed some maximu
value,b,bmax, and for the systems considered here and
Ref. 19 and for the typical choices for%min and %max the
binodal’s proximity to the low density boundary rende
bmax largely density grid ande# independent.

Not to be confused withbmax is the lowest temperatur
kB /bmax,# numerically accessible to the program with pred
termined step sizes: this is the temperature below which
program of Sec. III never reachesQ'Q0 or produces abnor
mal results; note thatbmax,# may be larger or smaller tha
bmax, depending on the chosen combination of physical
tential, approximations in the formulation used~the bound-
ary conditions in particular!, and the choice of paramete
affecting the numerical work.

Regarding the implementation of the core condition
sketched in Sec. II, the main conclusion of Ref. 19 was t
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a minimum ofNcc57 basis functions in addition tou0 were
necessary for acceptable results despite residual defec
g(r ) close to the origin; a short discussion of the core co
dition’s slightly different role for square wells will be pre
sented below~Sec. IV B!.

The critical density%c predicted by HRT, it should be
noted, is virtually always in reasonable agreement with
erature data as shortly presented in Sec. IV A; indeed, HR
even able to reproduce the marked rise in%c predicted by
Refs. 21, 27, and 29 forl→11 as opposed to the rigorousl
constant value in Ref. 28. Due to the satisfactory%c values
obtained numerically we will henceforth exclude%c from the
discussion; for a demonstration of both%c’s insensitivity to
variation of parameters of the numerical procedure and
quantitative agreement with the data of Sec. IV A see Fig
and 2.

In this context it may be of interest that the HRT es
mate for the critical density presents no difficulties for t
hard-core Yukawa fluid considered in Ref. 19, either, nor
there any mention of such difficulties in any of the oth
publications on this topic that we are aware of; indeed,
theory’s numerical problems primarily lie in the solution
small-Q behavior for close-to-critical and subcritical tem
peratures on the one hand and the use of mutually incom
ible assumptions prompted by the need to employ dec
pling without giving up thermodynamic consistency on t
other hand. Both of these aspects of HRT pertain to differ
parts of the (Q,%) plane, located close to the high-densi
boundary for the role mathematical inconsistencies play
at not too largeQ and%;%c for the pathological behavio
related to coexistence; they will be discussed in Secs. I
and IV D, respectively, and their vestiges will also be seen
the results of applying HRT in the formulation of Sec. II
square wells of quasicontinually varying rangelP]1,3.6] in
Sec. IV E.

A. Non-HRT results for square wells

For comparison purposes we have collected in Table
and II the critical temperatures of various square well s
tems as obtained from simulations~Table I! or by purely
theoretical means~Table II!; the data included have bee
published within the last decade.

Of the simulation based results included in Table I, on
those of Ref. 26 forlP$1.25,1.375,1.5,1.75,2% have been
obtained by molecular dynamics~MD!; most of the other
simulation studies rely on one or the other variant of t
Monte Carlo ~MC! method: Among these, the Gibbs e
semble MC~GEMC! calculations of Ref. 21 set out to dete
mine critical exponents,b in particular; that work’s finding
of b;1/2 for l52 as opposed to the expectedb;1/3 found
for l up to 1.75 prompted reexamination of the square w
fluid with l52 by GEMC augmented by finite-size scalin
~FSS! techniques,22 refuting the mean field value for the e
fective exponent.

Especially in the critical regime, grand canonical M
~GCMC! simulations incorporating histogram reweightin
and FSS offer some advantage over GEMC due to the latt
restriction to fixed temperature; such an approach has b
applied to square wells withl51.5 and 3 in Ref. 23; a more
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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elaborate GCMC scheme not biased towards the Ising
versality class and taking into account the YY anomaly h
recently been applied to31 l51.5, see above. Yet anothe
method goes under the name of thermodynamic-
temperature-and-density-scaling MC~TDSMC!; it was ap-
plied to the case ofl51.5 and analyzed in terms of a
effective Hamiltonian in Refs. 24 and 25.

Also included in Table I are the results of Ref. 27, e
ploying a MC scheme modified to take advantage o
speed-up possible by combining simulation data with an a
lytical ansatzfor the chemical potential; the efficiency of th
approach originally devised to study phase separation all
a large number of systems to be considered.~The error
bounds given for these ‘‘modified MC’’ results in Table
have been obtained from the different results displayed
Ref. 27 for different parameter settings.!

The theoretical predictions for the critical temperatu
listed in Table II comprise a second-order analytic pertur
tion theory29 ~APT2! applicable to 1,l<2 and claimed ac-
curate forl>1.4 as well as the hard-sphere van der Wa
~HSvdW! equation of state.28 In addition, though not listed in
Table II, we have utilized the non-square-well-speci
Okumura-Yonezawa~OY! estimate50 for bc , primarily as a
starting value when looking for the critical temperature
our HRT calculations; forvsw[2e,l,s] , the OY prediction is
kBTc /e50.425l320.273.

B. The core condition

Ever since application of HRT to continuous fluid
started, the implementation of the core condition has bee
major issue, probably motivating adoption of the closure~4!
and variants thereof for non-hard-sphere reference syste16

despite its known deficiencies in the first place; indeed, i
no coincidence that several studies7,11,15,18 primarily con-
cerned with the RG aspect of the theory chose to comple
eliminate the core condition. When applying HRT as a re
lar liquid state theory, on the other hand, this is not an opti
too great is the effect this may have on both correlation fu
tions and phase behavior.19 From Table III where we compile
the critical temperatureTc51/kBbc for various square wel
potentials as functions of the numberNcc11 of basis func-
tions in the closure~4!, just as in Ref. 19 we find virtually
constant critical temperatures for 1<Ncc<4; on the other
hand, the amount of variation seen upon further increas
Ncc strongly depends onl, which immediately carries ove
to the pair distribution functiong(Q0)(r ,%) and its compat-
ibility with the core condition: Forl53, the longest-ranged
potential considered in Table III,g(Q0)(r ,%)50, r ,s, holds
reasonably well except very close tor 50 even forNcc51;
when increasing the number of basis functions all the wa
Ncc510, the pair distribution function has to be corrected
very small r only, yielding a ug(Q0)(r ,%)u that remains
bounded by some 1022 of the contact valueg(Q0)(s1,%)
for all r ,s; the corresponding small change ing(Q0)(r ,%)
and C (Q0)(r ,%) is reflected in the near-constant predictio
for bc evident from Table III.

Similarly, for l51.5 andl52 and within theNcc range
considered, the implementation of the core condition d
not convincingly improve except for supercritical tempe
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tures and intermediate densities; this time, however, the
distribution functions remain far from compatible with th
core condition even forNcc510, and neitherbc nor
g(Q0)(r ,%) itself nor, for that matter, the final values of th
LOGA/ORPA expansion coefficientsgn

(Q0)(%) indicate that

the expansion~4! for C̃(Q)(k,%) might be close to conver
gence. But if the quality ofg(Q0)(r ,%) improves only little if
at all, the remaining deficiencies are probably to be blam
on the approximation for the poorly convergent integra
derivative with respect toQ mentioned earlier@cf. Eq. ~12!
of Ref. 19# rather than on an insufficient number of bas
functions; on the other hand, even though the decoup
assumption cannot directly affect the pair distribution fun
tion’s compliance with the core condition, the approximati
of neglecting the non-local term in]Î(Q)@c(k,%),%#/]Q is
on the same level as that of settinga (Q)(%)50, as was
stressed by the authors of Ref. 8 upon jointly introduci
these two assumptions. Thus, combining the above find
regarding the core condition with the analogous analysis
Sec. IV of Ref. 19 and with that contribution’s investigatio

TABLE I. The critical temperatureTc of square well systems for variou
values ofl as predicted by simulations and simulation-based theoret
analyses, and the corresponding references. The acronyms used for la
the method employed in obtaining these results are given in Sec. IV A of
text.

l kBTc(l)/e Method

1.05 0.3751~1! mod. MC ~Ref. 27!
1.1 0.4912~4! mod. MC ~Ref. 27!
1.15 0.5942~35! mod. MC ~Ref. 27!
1.2 0.692~1! mod. MC ~Ref. 27!
1.250 0.764~4! GEMC ~Ref. 21!
1.25 0.78 MD~Ref. 26!

0.7880~6! mod. MC ~Ref. 27!
1.3 0.8857~7! mod. MC ~Ref. 27!
1.375 0.974~10! GEMC ~Ref. 21!

1.01 MD ~Ref. 26!
1.4 1.076~8! mod. MC ~Ref. 27!
1.5 1.2179~3! GCMC~YY ! ~Ref. 31!

1.2180~2! GCMC ~Ref. 23!
1.219~8! GEMC ~Ref. 21!
1.222 TDSMC~Refs. 24 and 25!
1.226 TDSMC~Refs. 24 and 25!
1.246~5! TDSMC ~Refs. 24 and 25!
1.27 MD ~Ref. 26!
1.302~8! mod. MC ~Ref. 27!

1.65 1.645~5! mod. MC ~Ref. 27!
1.75 1.79 MD~Ref. 26!

1.811~13! GEMC ~Ref. 21!
1.8 2.062~8! mod. MC ~Ref. 27!
2 2.61 MD ~Ref. 26!

2.648~14! GEMC1FSS~Ref. 22!
2.666~85! GEMC1FSS~Ref. 22!
2.678~27! GEMC1FSS~Ref. 22!
2.6821~8! GEMC1FSS~Ref. 22!
2.684~51! GEMC1FSS~Ref. 22!
2.721~89! GEMC1FSS~Ref. 22!
2.730~14! GEMC1FSS~Ref. 22!
2.764~23! GEMC ~Ref. 21!
2.778~7! mod. MC ~Ref. 27!

2.2 3.80~1! mod. MC ~Ref. 27!
2.4 5.08~2! mod. MC ~Ref. 27!
3 9.87~1! GCMC ~Ref. 23!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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into the decoupling assumption’s possible effect~cf. Fig. 2 of
Ref. 19! we are led to the conclusion that decoupling po
certainly no less a problem here than for the hard-c
Yukawa potential studied there.

C. High-density boundary condition

Numerically, there are two ways for the implementati
of Sec. III to fail to reachQ5Q0 , both, of course, easily
detected by the ‘‘monitoring’’ variant of our code~cf. Sec.
III E of Ref. 19!: due to the solution’s pathological behavi
whereverf (Q,%) is large~cf. Sec. IV D!, or because of in-
appropriate boundary conditions at high density. As for
latter—an issue intimately linked to the decouplin
assumption—the immediate reason for the program’s fai
is a near-discontinuity in the numerical solution close to
boundary: For the moment setting aside the decoupling
sumption and other approximations, in the application
HRT with the closure~4! at any point (Q,%) in the interior
of the PDE’s domain the core condition uniquely determin
the gn

(Q)(%), n>1, for giveng0
(Q)(%); this expansion coef-

ficient is then determined by imposing thermodynamic c
sistency as embodied in the compressibility sum rule~3!. At
a boundary, i.e., for%P$%min ,%max%, however, the second
density derivative cannot be evaluated reliably so that so
other condition must be imposed; in the calculations repo
here ~with the obvious exception of those for Fig. 4! we
always choose%min50 so that the divergence of the ideal g
term in C̃ (Q) provides f (Q,%)50 as a convenient and un
problematic boundary condition. For%5%max, on the other
hand, we are in principle free to use any suitable approxim
tion for the structural and thermodynamic properties of theQ
system and to calculatef (Q,%max) from said approximation,
thereby providing the necessary boundary condition for
PDE ~6!; but for practical reasons it is desirable to use
same LOGA/ORPA form for theQ system’s direct correla
tion function at%max as in the rest of the problem’s doma
so that, in particular, the LOGA/ORPA prescriptio
g0

(Q)(%max)50 is a natural choice of boundary condition.
general, however, due to the PDE’s diffusion like charac
any condition imposed at%max that is incompatible with the

TABLE II. The critical temperatureTc of square well systems for variou
values ofl as predicted by purely theoretical means, and the correspon
references. The acronyms used for labeling the method employed in ob
ing these results are given in Sec. IV A of the text.

l kBTc(l)/e Method

1.125 0.587 APT2~Ref. 29!
1.25 0.751 HSvdW~Ref. 28!

0.850 APT2~Ref. 29!
1.375 0.978 HSvdW~Ref. 28!

1.08 APT2~Ref. 29!
1.5 1.249 HSvdW~Ref. 28!

1.33 APT2~Ref. 29!
1.625 1.61 APT2~Ref. 29!
1.75 1.859 HSvdW~Ref. 28!

1.93 APT2~Ref. 29!
1.85 2.23 APT2~Ref. 29!
2 2.506 HSvdW~Ref. 28!

2.79 APT2~Ref. 29!
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solution for %,%max by necessity induces a correspondi
near-discontinuity inf (Q,%) close to the boundary; within
the framework of a finite-difference scheme this is reflec
in a mismatch off (Q,%max) and the solution at densitie
close by, i.e.,f (Q,%max2iD%) for small i>1, and the mis-
match’s severity may serve as a direct measure for the in
propriateness of the boundary condition at%max in relation to
the approximations applied at densities in ]%min ,%max@.

On the other hand, the numerics become intractable
less we adopt the decoupling assumption, and the only
to consistently usea (Q)(%)50 without abandoning the cor
condition is to decouple the HRT-PDE to a set of ODEs
fixed density only;19 this, unfortunately, removes all traces
thermodynamic consistency from the equations and ther
precludes obtaining clear phase boundaries.19 It is therefore
necessary to restrict decoupling to the implementation
the core condition only while retaining the structure of
PDE together with the compressibility sum rule~3! despite
the latter’s incompatibility with decoupling. Thus, fo
%min,%,%max, both C̃(Q)(0,%)52]2(bA (Q)/V)/]%2 and

a (Q)(%)50 are used for different parts of the problem;
%max, however, again any approximation allowing calcu
tion of f (Q,%max) may be used, so that it is tempting to on
again resort to the LOGA/ORPA condition of vanishin
g0

(Q)(%max) or variants thereof.
But due to the decoupling assumption’s possibly lar

effect, any boundary condition that does not incorpor
a (Q)(%max)50—and bear in mind thatg0

(Q)(%max) and
a (Q)(%max) cannot both vanish at the same time for gene
cutoff Q—will once again incur a fatally large mismatch; i
however, we must resort to decoupling anyway, it see
preferable to consistently apply it for the boundary conditi
rather than to inconsistently combine it with a condition ali
to the theory; also, though the mismatches’ magnitudes fr
imposing a (Q)(%max)50 alone or from mixing it with the
LOGA/ORPA conditiong0

(Q)(%max)50 generally do not dif-
fer much as long as the PDE’s stiffness does not play a
~e.g., for l51.5, as long as we restrict ourselves toQ
;8/s or higher, or tob!bc!, the former approach fare
better than the other one more often than not. It is only

g
in-

TABLE III. The dependence of the critical temperature of square well s
tems on the numberNcc11 of basis functions retained in Eqs.~4! and~5! for
various values ofl. For Ncc.0, the decoupling assumption was imposed
high-density boundary condition, whereas the LOGA/ORPA condit
g0

(Q)(%max)50 served the same purpose forNcc50; other parameters were
chosen as indicated in Sec. III.

Ncc kBTc(l51.5)/e kBTc(l52)/e kBTc(l53)/e

0 1.209 437~035! 2.660 946~132! 9.891 032~298!
1 1.190 663~034! 2.682 489~105! 9.899 937~478!
2 1.203 326~035! 2.686 289~105! 9.900 894~478!
3 1.200 152~035! 2.686 078~105! 9.900 894~478!
4 1.197 136~034! 2.685 655~105! 9.900 894~478!
5 1.287 443~040! 2.527 365~093! 9.737 080~462!
6 1.098 329~029! 2.742 404~110! 9.822 071~471!
7 0.984 757~047! 2.914 763~124! 9.867 502~475!
8 1.070 878~027! 2.744 830~110! 9.773 324~466!
9 1.216 333~036! 2.749 695~110! 9.887 510~477!

10 1.207 583~035! 2.937 591~126! 9.748 203~464!
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this sense, i.e., presupposing a LOGA/ORPA-likeansatz
even at%max and application of decoupling in the impleme
tation of the core condition according to Eq.~5! at all %, that
the results are largely independent of the choice of bound
condition as claimed, forb,bc , in Ref. 8.

In the numerical work we find that such a mismatch
present whenever the calculation proceeds via mathem
cally inconsistent or conflicting approximations; in the ca
of square wells with their comparatively short potent
range, however, the problems are much more severe tha
other systems so thatbmax,# is rather small and even drop
below bc for most of thel interval from 1 to 2~cf. Sec.
IV E!. Restricting ourselves tob,bmax,# and Q5Q0 , the
mismatch is typically reflected in an increase by one orde
magnitude in the three-point finite-difference estimate
e.g., u]2f (Q0 ,%)/]%2u right at the boundary over the nea
constant values at slightly lower densities; apart from a p
tive correlation withe# , the mismatch’s severity is qualita
tively unaffected by a change in parameters of the numer
procedure or the choice and location of the boundary co
tion ~with the above provisions!.

Another effect worth mentioning in connection with th
boundaries is the influence their locations, viz.,%min and
%max, may have. The basic mechanism and its implicatio
for the coexisting densities were already mentioned in
opening remarks of this section; here we only want to po
out that the noncriticality enforced by the boundary con
tions not only may unduly distort the binodal predicted
HRT as demonstrated in Fig. 1, very small%max may also
allow one to reachQ5Q0 at higherb, thus effectively rais-
ing bmax,# while loweringbmax.

Sometimes, however, the expectation of the bino
keeping a separation from the boundary of severalD% at
least does not hold, and a preposterous two-phase re
appears very close to%max or, very rarely, close to%min ; e.g.,
for l51.88 andb50.392/e the equations can be solved a
the way down toQ5Q051024/s, predicting an unrealistic
two-phase region extending from 0.845(5)/s3 to
0.995(5)/s3. This behavior turns out to come from the in
Downloaded 22 Jun 2004 to 128.131.48.66. Redistribution subject to AIP
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terplay of the mismatch at%max and the numerical treatmen
of the stiffness of the PDE.

D. The region of large f „Q,%…

For subcritical temperatures the HRT-PDE’s true so
tion’s erratic behavior in that part of the (Q,%) plane where
f (Q,%) is large and the isothermal compressibility’s dive
gence is built up~cf. Sec. II, q.v. Ref. 20! obviously eludes
reliable numerical realization; in particular, whilee# still
characterizes the level of accuracy in auxiliary calculatio
the same can no longer be true for the accuracy of the PD
discretization as this would require step sizesDQ so small as
to cause floating point underflow upon evaluating, e.g.,Q
2(Q2DQ), thus rendering finite differences numerical
insignificant.

Consequently, in this respect we have to give up o
strategy of controlling the numerical procedure so as to
cally ensure a quality ofe# at least, turning to predetermine
step sizes19 DQ in addition to fixedD%, to which similar
concerns apply;20 on such a coarse mesh of (Q,%) points
underlying the finite-difference scheme, however, the t
solution cannot even be represented adequately, and the
merical approximation forf (Q,%) obtained from the PDE’s
discretization with these far too large step sizes cannot
trusted to faithfully represent even the average behavio
f (Q,%).

This inadequacy of the step sizes is reflected in vari
peculiarities of the solution vector obtained in the numeri
procedure; indeed, when monitoring the evolution off (Q,%)
and the core condition coefficientsgn

(Q)(%), our code readily
detects the plummeting step sizes necessary and signal
incompatibility of the behavior seen with the assumption
smoothness underlying finite-difference schemes. Anot
telltale sign is iterated corrector steps’ failure to conver
when f (Q,%) is large: even though implicit schemes like th
one we employ20 are the standard treatment for stiff system
the rapid growth of the oscillations’ amplitudes renders
finite-difference equations themselves unstable under it
ll

r
e

-
y

e

t
r

FIG. 1. The binodal of the square we
system withl53 as obtained for dif-
ferent values ofe# and %max; cf. the
discussion in Sec. IV C. Note that fo
this rather long-ranged system th
critical point’s location is virtually un-
affected by variation of these param
eters. Also, imposing the boundar
condition at %max50.5/s3 clearly in-
duces a shift in%v to higher and, to a
lesser degree, in% l to lower values
even well above the temperatur
where% l gets close to%max, which is
readily interpreted as an effect brough
about by stiffness; the results fo
%max50.5/s3 and e#50.005 do not
differ much from those with the same
%max and e#50.01 except in the bi-
nodal’s vapor branch’s shift being
somewhat smaller.
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tion; only when resigning on any control of the numeric
error and refraining from iterations of the corrector step
the step sizesDQ chosen allow one to force advancingQ all
the way toQ0 in remarkably many cases. Also, comparis
of f (Q0 ,%) as obtained with different sets of step sizesDQ
reveals that, for%v,%,% l , the evolution off (Q,%) seen
numerically is driven by the number and size ofQ steps only
and certainly does not correspond to an average o
oscillations;20 the same mechanism is also responsible fo
small DQ dependence of the critical temperaturebc .

By the same token, due to thed01 andd02 terms in Eq.
~6!, the PDE’s stiffness and the related problems have a
rect bearing on the solution outside the coexistence reg
even if the numerical predictions there turn out rather ins
sitive to variation of parameters of the numerical procedu
in particular, we expect a gradual but non-negligible dist
tion ~in addition to the effects of numerical differentiatio
close to the near-discontinuity! of the binodal, increasing
with falling temperature.

E. HRT results for square wells

In light of the preceding exposition as well as of th
discussion in Ref. 19 it may at first seem surprising that H
in the formulation of Sec. II has a record of being high
applicable to a variety of systems~cf. Sec. I!; also, as we
shall see in a moment, even for square wells, a system
pected to be particularly vulnerable to the problems just o
lined, we find reasonable estimates of the critical points’
cations for a wide range ofl values. Still, the mechanism
sketched in Secs. IV C and IV D as well as the difficulti
presented in Ref. 19 remain and manifest themselves num
cally in a number of ways.

For a first orientation, let us look at the results summ
rized in Figs. 2 and 3 where the critical temperatureTc and
density%c are shown as functions ofl; the underlying cal-
culations have been obtained withe#51022, imposing de-
coupling in a consistent way at%max51/s3 and with
Ncc115711 basis functions in the expansion~4! of the
LOGA/ORPA function G (Q). With the exception of some
spurious results atl;1.1, whereverbc,bmax,# the critical
temperature in general compares quite favorably with
data of Tables I and II; from the calculations we have p
formed for a large number of systems in the range 1,l
<3.6 and ignoring some isolated results, a critical poin
found for 1.06<l<1.24, for 1.45<l<1.53, and for
l>1.939; calculations with Ncc55 yield analogous
results,20 with bc,bmax,# in a somewhat larger part of th
parameter range, viz., for 1.09<l<1.58 and forl>1.896,
but will not be considered in the following in view of th
considerations of Sec. IV B and of other defects that turn
to be larger than forNcc57.

For the moment setting aside the data forl,1.939,
HRT’s predictions for the critical temperature are genera
found to be in satisfactory agreement with thebc(l) curve
expected from the simulation-based and theoretical res
presented in Sec. IV A. Embedded into this regular ove
behavior ofbc as a function ofl, however, we find a numbe
of depressions and elevations ofbc , some of which canno
be seen on the scale of Fig. 2 but from the numeric res
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only;20 others, however, are so strong as to render the crit
temperature a nonmonotonic function ofl, which is certainly
not expected on the grounds of the literature presente
Sec. IV A, the data of Refs. 27–29 in particular.

FIG. 2. The critical temperatureTc ~dots in upper panel! and critical density
%c ~bars in lower panel! of square well systems forl ranging from close to
unity up to 3.6 as obtained from calculations with parameters chose
indicated in Sec. III; also included are the non-HRT predictions listed
Tables I and II, labeled by the acronyms introduced in Sec. IV A and alre
used in those tables. The ticks on the top border of the figure’s frame i
cate thel values considered; of the 200-odd systems we looked at,bmax,#

exceededbc only in thel ranges indicated in Sec. IV E or for some isolate
l values outside those ranges. The three boxes in the upper panel ind
the parameter ranges displayed at larger scale in Fig. 3. In the lower p
the bars show the coexisting densities found according to the prescrip
of Sec. III for the highest-temperature subcritical isotherm calculated
locating the critical temperature, which explains the apparent difference
%c’s accuracy; the smallest%c intervals shown coincide with the spacin
D%51022/s3 of the density grid.

FIG. 3. The critical temperature data of Fig. 2 for values of the square w
range parameterl close to 1.1, 1.5, and 2 at larger scale; the symb
coincide with those used in Fig. 2.
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In light of Sec. IV D it is of course tempting to simpl
attribute this behavior to the difficulties previously di
cussed, especially since the critical point is located in
region of largef (Q0 ,%) by definition; the peculiar distribu
tion of l values affected, however, suggests that these p
lems of the numerical procedure are triggered by a spe
mechanism. Indeed, a closer look at the core condition fu
tion C̃(Q)(Q,%) for fixed density% reveals, for every single
one of thel values implicated that we checked, that t
combination of terms pertaining tow(r ) or vhs(r ) alone~of
rangesls ands, respectively! regularly and quite frequently
reduces the amplitude of this function’s swings about
ideal gas value of21/%; the same happens only occasio
ally for l values removed from these irregularities so tha
is, in fact, possible to quite reliably determine whether or
a givenl is affected from a plot ofC̃(Q)(Q,%) for %;%c

alone as illustrated in Fig. 4. It will come as no surprise t
most of the irregularities occur whenl, the ratio of the two
characteristic lengths present in the model, is close t
simple fraction: among the shifts inTc most obvious are

those wherel is close to 2~cf. Fig. 3!, 21
4 , 21

7 , 21
9, and 21

12,
and in retrospect it seems justified to also include the sm

parameter range aroundl51 1
2 in this list, see below; the

effect is less obvious from Fig. 2 but still discernible at 21
2 ,

2 1
3, and 22

3, whereas for 214 and 23
4 it is so small as to make

the plot ofbc(l) appear smooth while the irregularities a
still evident from the numerical values; also note that, on
again,%c is hardly affected.

All these observations seem to indicate that indeed
the interplay of the two different length scales and the res
ing partial oppression of a significant portion of the oscil
tions of C̃(Q)(Q,%) that cause the discrepancy of HRT a
literature results for the critical temperature around certail
values even though a smooth interpolation of HRT’s pred
tions froml values nearby is well compatible with the da

FIG. 4. The core-condition functionC̃(Q)(Q,%) for %50.3/s3, b50.2/e
and for two different rangesl of the square well potential, on arbitrar
scales; the horizontal lines correspond to the ideal gas value21/%. Note
that, forl53 ~upper curve!, the peak of every single one of the function
swings is partially reduced, which is the case less than half the time—an
rather highQ only—for l52.9 ~lower curve!. We have excluded the dat
for Q,10/s so that the effects of the PDE’s stiffness are still negligible;
underlying calculations have been performed by solving the ODEs co
sponding to consistent application of the decoupling assumption at the
sity indicated.
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presented in Sec. IV A. Even though we currently can
pinpoint the precise mechanism by which this unphysi
behavior of HRT arises and, in particular, cannot distingu
between the closure’s inadequacy and the PDE’s stiffnes
the main culprit—though the latter is certainly implicated
some degree—two conclusions may be drawn quite saf
for one, as long as we stay clear of values ofl*2 that are
close to simple fractions, or restrict ourselves tol*2.7
where the effects are rather small, we can probably trust
numerical results—with thecaveatsof Ref. 19 and Secs
IV C and IV D—to the same degree of confidence as th
obtained for the hard-core Yukawa system in Ref. 19. A
secondly, it is only in the presence of discontinuities in t
potential that certain lengths feature prominently in the r
evant functions’ Fourier transforms and can so give rise
problems of the kind outlined above; consequently, as lo
as we confine ourselves to continuousw(r ,%), which still
includes most of the potentials popular in liquid state ph
ics, the unphysical shifts inbc seen for certain paramete
combinations are likely not an issue, whereas the same p
lems are expected to resurface, e.g., for the multistep po
tial also defined in Sec. III B of Ref. 19.

Another lesson to be drawn from the findings presen
here as well as in Ref. 19 is that, as a general rule, con
sions should never be drawn from isolated results alone;
only through the combination and meticulous scrutiny o
set of related calculations that meaningful information can
extracted from HRT calculations: due to the problems rela
to the implementation of the core condition, to the nature a
location of the boundary conditions, and to the PDE’s st
ness, any single calculation must be considered as of un
tain standing. As an example,20 the analog of Fig. 1 forl
51.5 shows a considerably larger variation in the bino
and the critical point’s location, which is consistent with th
above conclusions regarding the reason forbmax,# rising
abovebc in a narrow region around thisl value, whereas
any one of the phase boundaries found in itself is a perfe
plausible candidate for the ‘‘true’’ HRT binodal.

V. CONCLUSION

In conjunction with the findings of Ref. 19, the discu
sion of Sec. IV provides quite coherent a picture of HRT
numerical side as well as of some peculiarities encounte
for square wells. Most prominently, we see a marked dep
dence of the quality of the results on the potential’s ran
confirming the trend of decreasing accuracy for narrower
tentials reported47 for the hard-core Yukawa fluid; it has lon
been accepted6,13,47 that the simplistic but computationall
convenient19 closure~4! has a part in this, and an improve
closure has recently been proposed.51 Still, as far as numeri-
cal application of HRT is concerned, the closure cannot
discussed without reference to the decoupling assump
and to the approximate implementation of the core condit
via ODEs coupled to the HRT-PDE; while the former h
been found problematic both for square wells~present con-
tribution! and for the hard-core Yukawa fluid considered
Ref. 19 and should probably not be trusted easily for a
system, the severity of the difficulties brought about by t
simplified treatment of the core condition sensitively d
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pends on the potential type and parameters chosen: fo
continuous and rather long-ranged Yukawa potential witz
51.8/s, g(Q0)(r ,%) can be made sufficiently small withi
the core, and the square well fluid withl53 fares equally
well at least. From the discussion of Sec. IV B and the d
of Table III, however, it becomes apparent that sma
l—we have looked atl51.5 andl52 in particular—incurs
substantial problems, with residual defects in the pair dis
bution functions attributed to the ill-justified approximatio
of neglecting some slowly converging integrals19,20 in the
core condition, but Table III demonstrates not only thel
dependence of the results’ sensitivity to the numberNcc11
of basis functions retained in the truncated equation~5! when
varying Ncc in the range 0<Ncc<10: while the virtually
constant critical temperature predicted forl53 seems trust-
worthy and is, indeed, well compatible with simulation r
sults ~cf. Table I!, the amount of variation inbc for l51.5
and, to a much lesser degree, forl52 precludes accurat
determination of the critical temperature; this is a first in
cation that the theory might be able to handle square w
with l53 quite reliably, whereas problems cannot be den
for l52, andl51.5 seems largely out of reach for HRT
the present formulation. This is confirmed by the results
tained by quasicontinuous variation ofl in the range 1,l
<3.6 as shown, forNcc57, in Fig. 2: the critical point is
accessible only in part of this parameter range, and not o
the critical temperature at fixedl but also the boundaries o
the l intervals where HRT is able to reach temperatures
low asTc strongly depend onNcc ~cf. Sec. IV E!.

Applicability of HRT to only a restrictedl range is, of
course, again related to the pronounced short-rangedne
the square well potential; to explain it, however, we have
invoke not only the LOGA/ORPA-style closure and the a
proximate implementation of the core condition but also
other difficulties encountered in the numerical procedure
highlighted in this and our previous contribution, viz., th
decoupling assumption~Ref. 19!, inappropriate boundary
conditions ~Sec. IV C! and, most importantly, the PDE’
stiffness for thermodynamic states of high compressibi
~Sec. IV D!. All of these are, in principle, always present
some degree in numerical applications of HRT; it may pro
valuable that Secs. IV C and IV D provide distinct signatu
readily detected by the implementation of Sec. III that mig
be looked out for in more advanced applications of
theory, too.

Related to these difficulties is a peculiar effect specific
square wells~Sec. IV E!: close to certainl values, simple
fractions in particular, we see shifts in the critical tempe
ture that render HRT’s predictions much less compatible w
simulations and other theoretical descriptions of the squ
well fluid than would be expected from the results obtain
for l values close by; the mechanism for triggering the
local distortions of thebc(l) curve is illuminated at least to
the point of linking it to the presence of a discontinuity in t
potential’s perturbational part. All in all, the numerical ev
dence as well as comparison with literature data suggest
the formulation of HRT sketched in Sec. II is well able
deal with square wells and to locate their critical points
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reasonable accuracy forl*2 as long as certain values a
avoided, or else forl*2.7.
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