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Abstract
We develop a density functional for hard-sphere mixtures which keeps the
structure of Rosenfeld’s fundamental measure theory (FMT) whilst inputting
the Mansoori–Carnahan–Starling–Leland bulk equation of state. Density
profiles for the pure hard-sphere fluid and for some binary mixtures adsorbed at a
planar hard wall obtained from the present functional exhibit some improvement
over those from the original FMT. The pair direct correlation function c(2)(r)

of the pure hard-sphere fluid, obtained from functional differentiation, is also
improved. When a tensor weight function is incorporated for the pure system
our functional yields a good description of fluid–solid coexistence and of the
properties of the solid phase.

1. Introduction

In 1989 Rosenfeld [1] introduced novel ideas for deriving a density functional theory (DFT)
for hard-sphere mixtures. His approach, which is distinctly different from earlier non-local,
weighted density approximations (WDA) [2], is based on the geometrical properties of the
spheres and is termed fundamental measure theory (FMT). The original version met with
considerable success when applied to a variety of inhomogeneous situations, including the hard-
sphere fluid adsorbed at walls and confined in model pores [1, 2]. Although the original version
could not describe a stable crystalline phase the FMT was refined [3, 4] in order to incorporate
the freezing transition. These refinements and subsequent improvements/modifications of
FMT have all focused on the zero-dimensional limit, i.e. the limit which pertains to a narrow
cavity that can contain at most one sphere. Requiring the DFT to yield the exact free energy
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in the zero-dimensional limit provided new insight into the structure of FMT and suggested
new prescriptions for functionals that could describe situations of extreme confinement [3, 4].
More recently Tarazona and Rosenfeld [5–7] have argued that the hard-sphere free-energy
functional can be constructed solely from the requirement that the functional reproduces the
exact zero-dimensional limit for cavities of different shapes; the equation of state and the
correlation functions of the homogeneous fluid are then given as output from, rather than input
to, the DFT. This particular strategy is reviewed briefly in [6, 8].

One of the main limitations of the original FMT, and indeed of its successors, is that the
underlying bulk fluid equation of state is the Percus–Yevick (PY) compressibility equation,
equivalent to scaled particle theory (SPT). As is well known,for the case of the pure hard-sphere
fluid this implies that the pressure p is overestimated for fluid densities approaching that at
bulk freezing [9]. An important consequence is that ρw , the contact value of the density of the
pure hard-sphere fluid at a planar wall, is significantly overestimated at high bulk (reservoir)
densities. This follows from the wall contact theorem: ρw = βp, where β = 1/kB T . The
density profiles obtained from FMT obey this theorem, with p referring to the underlying
equation of state. Similarly for a ν component mixture of hard spheres at the planar hard wall
the contact values ρwi , for species i = 1, . . . , ν, should satisfy the generalized contact theorem∑

i

ρwi = βp. (1)

A further, potentially more serious, consequence of the inaccuracy of the underlying PY fluid
equation of state is that the FMT, suitably modified to include a tensor measure, predicts
coexisting fluid and solid densities that are rather low w.r.t. computer simulation results [8].

In the present paper we describe a DFT for hard-sphere mixtures which preserves the
basic structure and, hence, much of the elegance of the FMT, while seeking to improve the
overall accuracy by replacing the underlying PY compressibility equation of state by the
empirical Mansoori–Carnahan–Starling–Leland (MCSL) [10] equation, known to provide a
more accurate description of hard-sphere mixtures. Earlier attempts to incorporate the accurate
Carnahan–Starling [11] equation of state into DFT for pure hard-sphere fluids were based on
either the Tarazona WDA [2, 12] or a generating function approach [13]. Here we retain the
weight functions and hence the weighted densities of the original FMT, but modify the ansatz
for the free-energy density that enters the functional. Our modification is similar in spirit to that
employed by Tarazona [8] in his very recent treatment of the one-component system. We find
that our present approach provides a more accurate account of the density profiles, especially
near contact, of both pure hard spheres and mixtures adsorbed at a planar hard wall than that
provided by the original FMT. It also provides a better account of fluid–solid coexistence. The
paper is arranged as follows: in section 2 we describe the original FMT and how this can be
modified to incorporate the MCSL equation of state. We also discuss the self-consistency of
the approach. Section 3 focuses on the fluid phase properties and we show in section 3.1 that
the new functional generates a pair direct correlation function for the pure bulk fluid that is
closer to simulation results that the usual PY solution. Results for density profiles at hard walls
are presented in section 3.2. Solid phase properties are described in section 4. We conclude
with a summary and discussion in section 5.

2. Theory

2.1. Rosenfeld fundamental measure theory

Since what follows is based strongly on Rosenfeld’s ideas and the experience gained by
applications of the FMT it is useful to recall some known features of the FMT. In order
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to construct a density functional for a mixture consisting of ν species of hard spheres, with
ν � 1, Rosenfeld used the exact low density result for the excess (over ideal gas) Helmholtz
free-energy functional, valid in the limit where all the one-body densities {ρi (r)} → 0,

βFex [{ρi}] = − 1
2

∑
i, j

∫
d3r

∫
d3r ′ ρi (r)ρ j(r

′) fi j (|r − r′|) (2)

as a starting point. He noted that the Mayer f function, defined by

fi j (r) = exp(−βVi j(r)) − 1 (3)

where Vi j(r) is the pair potential between two species i and j , can be decomposed into the
form

− fi j (r) = ωi
3 ⊗ ω

j
0 + ωi

0 ⊗ ω
j
3 + ωi

2 ⊗ ω
j
1 + ωi

1 ⊗ j
2 −�ωi

2 ⊗ �ω j
1 − �ωi

1 ⊗ �ω j
2 (4)

for a hard-sphere mixture, with the weight functions given by

ωi
3(r) = �(Ri − r), (5)

ωi
2(r) = δ(Ri − r), (6)

ωi
1(r) = ωi

2(r)

4π Ri
, (7)

ωi
0(r) = ωi

2(r)

4π R2
i

, (8)

�ωi
2(r) = r

r
δ(Ri − r), (9)

�ωi
1(r) = �ωi

2(r)

4π Ri
, (10)

where �(r) is the Heaviside function and δ(r) is the Dirac delta function. The symbol ⊗ in
equation (4) denotes the convolution of the weight functions. It is important to note that the
deconvolution, equation (4), would appear to be unnecessarily complicated if only a pure hard-
sphere fluid were to be considered. For a mixture,however, this particular structure is suggested
by that of the exact one-dimensional functional of the mixture of hard rods [14, 15]. It is also
interesting to note that an alternative deconvolution of the Mayer f function, suggested by
Kierlik and Rosinberg [16], avoids vector-like weight functions but introduces instead weights
containing first and second derivatives of the Dirac delta function. Although it was proven
later that both choices of weight functions lead to an equivalent functional for the hard-sphere
mixture [17], it now appears that Rosenfeld’s choice is more general in its scope. In particular,
it allows for an approximate generalization to convex non-spherical hard particles [18, 19].
Here we will follow the notation and the choice of weights given in equation (4).

The weight functions give rise to a set of weighted densities {nα(r)} for the ν-component
mixture. These are defined as

nα(r) =
ν∑

i=1

∫
d3r ′ ρi (r − r′)ωi

α(r′), (11)

i.e. the sum of the convolutions of the density profiles of each species with its weight
function. α labels the four scalar and two vector weights. In the bulk, where the density
profiles reduce to constant bulk densities ρi

bulk , both vector-like weighted densities �n1 and
�n2 vanish while the scalar weighted densities reduce to the so-called SPT [20] variables:
n3 → ξ3 = 4π

∑
i ρi

bulk R3
i /3, n2 → ξ2 = 4π

∑
i ρi

bulk R2
i , n1 → ξ1 = ∑

i ρi
bulk Ri and

n0 → ξ0 = ∑
i ρi

bulk . Note that ξ3 then corresponds to the total packing fraction.
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As an appropriate ansatz for the excess free-energy functional, Rosenfeld used the low-
density limit, {ρi (r)} → 0, equation (2) and dimensional analysis to write the excess free-
energy functional in the form

βFex [{ρi}] =
∫

d3r ′ 
({nα(r′)}) (12)

with 
, the reduced free-energy density, a function of the weighted densities:


 = f1(n3)n0 + f2(n3)n1n2 + f3(n3) �n1 · �n2 + f4(n3)n
3
2 + f5(n3)n2 �n2 · �n2. (13)

Each term in (13) has the dimension of number density, i.e. (length)−3. In order to ensure
that the ansatz, equations (12) and (13), recovers the deconvolution of the Mayer f function,
equation (4), it is necessary to require that to lowest order in n3 the unknown functions f 1, f2, f3

have expansions of the form f1 = n3 +O(n2
3), f2 = 1+O(n3) and f3 = −1+O(n3). Moreover,

f4 = 1/24π + O(n3), and f5 = −3/24π + O(n3).
Although the ansatz in equation (13) is constructed to reproduce exactly the low-density

limit, it is clear that for intermediate and high densities this ansatz must ensure that the weight
functions, and hence the weighted densities, required by the low-density limit are sufficient to
approximate the simultaneous interaction of three or more spheres. The functions f1, . . . , f5

can be determined by requiring that the resulting functional satisfies a thermodynamic
condition. In the original derivation Rosenfeld used the SPT equation [20]

lim
Ri →∞

µi
ex

Vi
= p, (14)

with Vi = 4π R3
i /3 the volume of a spherical particle with radius Ri and µi

ex the excess chemical
potential of species i . This relation, which we will discuss in more detail in section 2.3, relates
the excess chemical potential for insertion of a big spherical particle with a radius Ri , to the
leading-order term pVi in the reversible work necessary to create a cavity big enough to hold
this particle. The pressure entering equation (14) can be determined self-consistently in terms
of the weighted densities from equation (13). The solution found by Rosenfeld [1] and denoted
RF is

f RF
1 (n3) = − ln(1 − n3), (15)

f RF
2 (n3) = 1

1 − n3
, (16)

f RF
3 (n3) = − f RF

2 (n3), (17)

f RF
4 (n3) = 1

24π(1 − n3)2
, (18)

f RF
5 (n3) = −3 f RF

4 (n3), (19)

and it is straightforward to see that these solutions satisfy the aforementioned conditions for the
low-density limit. It is worthwhile to note that the conditions f3 = − f2 and f5 = −3 f4, that
fix the dependence of the functional on the vector weighted densities �n1 and �n2, follow from
equation (14) only if it is assumed that the SPT differential equation, which is by construction a
bulk equation, remains valid for slightly inhomogeneous situations. Since the vector weighted
densities vanish in the bulk limit it is, strictly speaking, impossible to determine the functions
f3 and f5 from bulk thermodynamics alone. Given the success of the Rosenfeld functional
in various applications we choose to retain the conditions (17) and (19) in the subsequent
modifications.
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The resulting functional, that we refer to as the original Rosenfeld (RF) functional, is
usually written in the form 
 = 
1 + 
2 + 
3 with


RF
1 = −n0 ln(1 − n3), (20)


RF
2 = n1n2 − �n1 · �n2

1 − n3
, (21)


RF
3 = n3

2 − 3n2�n2 · �n2

24π(1 − n3)2
. (22)

Although this functional was found to be very successful and often very accurate in
accounting for various properties of highly inhomogeneous fluid phases, it failed to predict the
fluid to solid phase transition of the pure hard-sphere system. This failing was first remedied
empirically by Rosenfeld et al [3, 4] who modified the dependence of 
3 on the weighted
densities n2 and �n2, taking into account certain features of ‘dimensional crossover’. The
modifications were found to perform better than the original Rosenfeld DFT for densely packed
fluids in spherical cavities—a situation of extreme confinement [21, 22]

Subsequently Tarazona and Rosenfeld [5–7] derived an FMT especially designed to study
the properties of the one-component hard-sphere solid. They began with the so-called zero-
dimensional limit which considers a narrow cavity that can hold at most a single sphere.
Starting with the free-energy function for this narrow pore, functionals are derived for higher
embedding dimensions. A three-dimensional functional based on this idea reproduces the
original Rosenfeld functional. In [7] it is pointed out, however, that there are shapes of zero-
dimensional cavities which cannot be described by the particular set of weight functions chosen
in the original FMT. The problem becomes more acute with increasing embedding dimension.
In order to remedy this defect, Tarazona [7] introduced a new second-rank tensor-like weight
function ωm2(r) and adapted the contribution 
3 to the functional. In the notation introduced
in [23], we write the tensor weight function as

ωm2(r) = ω2(r)(rr/r2 − 1̂/3), (23)

with 1̂ denoting the unit matrix. This gives rise to a new tensor weighted density nm2 . The
new 
T

3 term of the Tarazona FMT is given by [7, 23]


T
3 = 1

24π(1 − n3)2
(n3

2 − 3n2�n2 · �n2 + 9(�n2nm2 �n2 − Tr(n3
m2

)/2)), (24)

and the application of the augmented functional to the hard-sphere solid provided an excellent
account of simulation results for the equation of state and for other properties of the solid.
The extension of this approach to hard-sphere mixtures requires the introduction of a new
third-rank tensor-like weight function [24].

2.2. Derivation of the new functional

Building upon the ideas presented so far, we are now ready to construct a new functional. We
retain the same weight functions and the same form (12) for the functional but use a different
thermodynamic condition in order to specify the coefficients f1, . . . , f5 of the ansatz (13).
In contrast to existing FMT functionals which output the equation of state (for fluid states
this is the PY compressibility equation), we use the MCSL equation of state [10], which is a
generalization to the ν-component hard-sphere fluid of the accurate,one-component Carnahan–
Starling equation of state [11], as an input. We prescribe the functions f1, . . . , f5, retaining the
two conditions (17) and (19), such that the equation of state which underlies the new functional
is the MCSL pressure. For this approach to be feasible it is important that the MCSL equation
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of state is based on the same SPT variables ξ0, . . . , ξ3 which enter the PY compressibility
equation of state underlying the original FMT. The MCSL pressure is given by

βpMCSL = n0

1 − n3
+

n1n2

(1 − n3)2
+

n3
2

12π(1 − n3)3
− n3n3

2

36π(1 − n3)3
, (25)

where {nα} ≡ {ξα} for the bulk fluid. The final term in (25) is absent in the PY result.
Incorporating the deconvolution of the Mayer f function and imposing the conditions (17)

and (19), we employ an ansatz for 
 of the form


 = f1(n3)n0 + f2(n3)(n1n2 − �n1 · �n2) + f4(n3)(n
3
2 − 3n2�n2 · �n2). (26)

In order to determine the three unknown functions f1, f2, and f4 we note that the pressure and
the grand potential �bulk of a bulk mixture are related by

�bulk = −pV , (27)

where V is the total volume, �bulk = (β−1
bulk + f id
bulk − ∑

i µiρi )V , f id
bulk =

β−1 ∑
i ρi

bulk (ln λ3
i ρ

i
bulk − 1) is the ideal gas free-energy density and µi = ∂(β−1
bulk +

f id
bulk )/∂ρ

i
bulk is the chemical potential of species i . Equation (27) requires that the pressure

should satisfy the equation

−βp = 
bulk −
3∑

α=0

∂
bulk

∂nα

nα − n0, (28)

with the sum over the scalar weighted densities only; recall that {nα} ≡ {ξα} for the bulk fluid.
Substituting (25) and (26) into (28) we obtain a differential equation which can be solved easily
and we find f1(n3) = f RF

1 (n3), f2(n3) = f RF
2 and

f4(n3) = n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

. (29)

The resulting excess free-energy function is given by


 = −n0 ln(1 − n3) +
n1n2 − �n1 · �n2

1 − n3
+ (n3

2 − 3n2�n2 · �n2)
n3 + (1 − n3)

2 ln(1 − n3)

36πn2
3(1 − n3)2

(30)

which should be compared with the original Rosenfeld form, equations (20)–(22). Note that
in the low-density limit we obtain limn3→0 f4(n3) = 1/(24π), i.e. the same value as from the
original Rosenfeld functional (see equation (22)). Thus we are guaranteed to recover the exact
low-density limit.

As the derivation of the new functional has followed that of the original Rosenfeld FMT
very closely, it faces similar problems when it is applied to the freezing transition. However,
the same procedures that remedied the failings for the original FMT can be used for the new
functional. Thus, it is possible to follow the empirical procedure of [3, 4] and modify the
dependence of 
3 on the weighted densities n2 and �n2 in the new functional. This approach
would enable the functional to treat a hard-sphere mixture. Equally well it is possible to follow
Tarazona [7] who introduced a tensor-like weighted density in order to study the properties
of the one-component hard-sphere solid. This is the route we employ here, i.e. in the present
calculations for the solid phase we replace the term (n3

2 − 3n2�n2 · �n2) in equation (30) by the
numerator of Tarazona’s expression (24) so that the present 
3 is given by


3 = n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

(n3
2 − 3n2�n2 · �n2 + 9(�n2nm2 �n2 − Tr(n3

m2
)/2)). (31)
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2.3. Test for self-consistency

As mentioned in section 2.1, Rosenfeld [1] used the scaled particle equation (14) to determine
the functions f1, . . . , f5. Here we re-examine this equation in the context of self-consistency
for the functional.

First we note that the excess chemical potential of inserting a single big hard sphere of
species i and radius Ri into a fluid of hard spheres is the reversible work done to create a cavity
that is large enough to hold this inserted hard sphere. In SPT one starts with a pointlike cavity
and increases its size until it is sufficiently large. Clearly, when increasing the cavity size one
must work against the pressure of the fluid resulting in a term pVi , where Vi = 4π R3

i /3. Since
the surface area of the sphere is also increased, work must also be done against the surface
tension. This second term is proportional to the surface area Ai = 4π R2

i . Moreover for finite
values of Ri the surface tension will also depend on the radius of curvature so there will be an
additional term that is proportional to Ri . If, however, we divide the excess chemical potential
by the volume Vi it is easy to see that equation (14) follows and that it is exact in the limit
Ri → ∞.

The connection to FMT can be made by noting that the excess chemical potential takes
the form

βµex
i =

3∑
α=0

∂
bulk

∂nα

∂nα

∂ρi
bulk

(32)

= ∂
bulk

∂n3
Vi +

∂
bulk

∂n2
Ai +

∂
bulk

∂n1
Ri +

∂
bulk

∂n0
, (33)

and we used the definition of the SPT variables nα ≡ ξα given earlier. Equation (33) has
precisely the same form as the SPT expansion so it is clear that for any FMT functional the
coefficient of the leading volume term should be identified with βp, i.e. the relation

∂
bulk

∂n3
= βp (34)

should be obeyed.
In the derivation of the original Rosenfeld functional equation (34) is imposed, i.e. the

left-hand side of equation (28) is identified with −∂
bulk/∂n3 and the resulting SPT
differential equation is solved. The pressure which results is the SPT or, equivalently, the
PY compressibility equation of state. For the present functional, however, equation (34) is not
imposed and we find from equation (30) that

∂


∂n3
= n0

1 − n3
+

n1n2

(1 − n3)2
− n3

2(2 + n3(n3 − 5))

36πn2
3(1 − n3)3

− n3
2 ln(1 − n3)

18πn3
3

, (35)

which evidently is different from the MCSL equation of state (25). The difference arising
from this inconsistency was examined within the context of the one-component fluid where
the pressure input into the theory is the accurate Carnahan–Starling equation of state, pCS .
We show both the Carnahan–Starling equation of state (solid curve) and the pressure obtained
from equation (35) (dashed curve) in figure 1. The deviation between these two curves is at
most 2%. In contrast, the PY compressibility equation of state pc

PY , also shown in figure 1
(dotted curve), overestimates the pressure of a hard-sphere fluid close to freezing by up to 7%.
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Figure 1. The equation of state of the pure hard-sphere fluid versus packing fraction η. For the
present DFT the Carnahan–Starling pressure is imposed by the theory. The pressure given by
β−1∂
/∂n3 in equation (35) deviates very slightly from Carnahan–Starling, attesting to the high
degree of self-consistency of the approach.

3. Fluid phase properties

3.1. Pair direct correlation function c(2)(r)

In this section we employ the new functional (30) to derive the direct pair correlation functions
c(2)

i j (r) for a bulk fluid mixture. These are defined within DFT as

c(2)

i j (|r − r′|) = − δ2βFex

δρi(r)δρ j(r′)

∣∣∣∣
ρi (r)=ρi

bulk ,ρ j (r′)=ρ
j
bulk

(36)

and can be calculated from an FMT functional such as the original Rosenfeld functional or (30)
via

c(2)
i j (r) = −

∑
α,β

∂2


∂nα∂nβ

ωi
α ⊗ ω

j
β . (37)

For the Rosenfeld functional equation (37) generates the well known PY pair direct correlation
functions c(2),PY

i j (r), which are polynomials of third order in r for r � Ri + R j and which
vanish identically for r > Ri + R j . Since we employ the same weight functions as Rosenfeld,
it is clear that the new functional will also generate direct correlation functions which vanish
for r > Ri + R j . Moreover we know that for small densities the present functional reduces
to that of Rosenfeld suggesting that the direct correlation functions should reduce to the PY
result in the same limit.

Following the notation of [1] we introduce the functions

χ(α) = ∂2


∂nα∂n3
(38)
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Figure 2. Comparison between MC simulation data [25] for the pair direct correlation function of
a pure hard-sphere fluid c(2)(r) (symbols), the present theory (full curve) and PY theory (dashed
curve) for packing fraction η = 0.8π/6 ≈ 0.4189. Both the present and PY theories yield
c(2)(r) = 0 for r > 2σ whereas simulations give a rapidly decaying positive tail in this region.

for α = 0, . . . , 3. Given the new form of 
3 we must introduce the additional function

χ(22) = ∂2


∂n2∂n2
. (39)

Then we rewrite equation (37) as

−c(2)
i j (r) = χ(3)(ωi

3 ⊗ ω
j
3) + χ(2)(ωi

3 ⊗ ω
j
2 + ωi

2 ⊗ ω
j
3)

+ χ(1)(ωi
3 ⊗ ω

j
1 + ωi

1 ⊗ ω
j
3) + χ(22)(ωi

2 ⊗ ω
j
2 − �ωi

2 ⊗ �ω j
2)

+ χ(0)(ωi
3 ⊗ ω

j
0 + ωi

0 ⊗ ω
j
3 + ωi

2 ⊗ ω
j
1 + ωi

1 ⊗ ω
j
2 − �ωi

2 ⊗ �ω j
1 − �ωi

1 ⊗ �ω j
2),

(40)

which should be compared with the corresponding result in [1]. For the one-component bulk
fluid equation (40) simplifies considerably and the resulting direct correlation function, like
the PY direct pair correlation function, is a polynomial of third order in r . However, the
coefficients are different:

c(2)(r) = −1 + η(4 + η(3 − 2η))

(1 − η)4
+

(
2 − η + 14η2 − 6η3

(1 − η)4
+

2 ln(1 − η)

η

)
r

σ

−
(

3 + 5η(η − 2)(1 − η)

(1 − η)4
+

3 ln(1 − η)

η

)(
r

σ

)3

, r � σ, (41)

and c(2)(r) = 0 for r > σ . Here σ = 2R is the hard-sphere diameter. Equation (41) reduces
to the PY result at first order in η. For η > 0, equation (41) predicts a value of c(2)(r = 0)

which is always less negative than the corresponding PY result. At r = σ both theories yield
very similar results. Generally the agreement between equation (41) and the simulation results
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of [25] is improved with respect to the PY results. An example is shown in figure 2 where
we compare c(2)(r) for a pure hard-sphere fluid obtained from the present theory (full curve),
equation (41), with that obtained by PY theory (dashed curve) [9] and with the simulation
data of [25] for η = 0.8π/6 ≈ 0.4189. Note that in PY theory and in the present treatment
c(2)(r) is negative for r � σ and is identically zero for r > σ , while the pair direct correlation
function obtained in the simulation has a fast decaying positive tail for r > σ .

3.2. Hard-sphere fluid at a planar hard wall

A direct test for the new functional in an inhomogeneous situation is the calculation of the
density profile of a hard-sphere fluid close to a planar hard wall. The system is characterized
by the external potentials

Vi (z) =
{

∞ for z < Ri

0 otherwise.
(42)

In this section we examine the accuracy of the present functional for a pure hard-sphere
fluid and for a binary mixture of hard spheres close to a planar hard wall by comparing density
profiles calculated by minimizing the grand potential functional

�[{ρi}] = Fex [{ρi}] +
∫

d3r f id({ρi }) +
ν∑

i=1

∫
d3r ρi (z)(Vi(z) − µi ) (43)

with those from simulation.
We begin by calculating density profiles of a pure hard-sphere fluid at a planar hard wall

for various packing fractions η = πρbulkσ
3/6 of the bulk fluid far from the wall. For all values

of η in the liquid phase, i.e. η < η f = 0.494, we find that the overall agreement between
the results of the present DFT and those of the original Rosenfeld functional is very good.
Furthermore we find that both the present theory and the original Rosenfeld functional yield
density profiles which agree very well with MC simulation results from [26]. One example of
the level of agreement between the different approaches, for η = 0.4257, is shown in figure 3.

Only very close to the wall—see the inset of figure 3—is there a small difference between
the results of original Rosenfeld functional and those of the present theory. The reason for
this small difference lies in the difference between the underlying equations of state. It was
shown in [27, 28] that density functional theories based on a WDA should satisfy the wall
contact theorem for planar hard walls, equation (1). For a pure hard-sphere fluid treated by
the Rosenfeld functional the pressure is given by the PY compressibility equation of state
pc

PY which, for high packing fractions, is significantly too high compared to simulations (see
figure 1). The present DFT is constructed in such a way that the underlying equation of state is
given by that of MCSL, which in the case of a pure fluid reduces to the well known Carnahan–
Starling equation of state pCS . Recall that the latter is found to be in good agreement with
simulations and predicts a pressure which is smaller than that given by pc

PY (see figure 1).
Thus for small distances from the wall the density profiles calculated from the present

DFT should be closer to simulation than the density profiles obtained from the Rosenfeld
functional, as is illustrated in the inset of figure 3. For this particular value of η the difference
between pc

PY and pCS is about 5%. It follows that the same difference is also found between
the contact values of the density profiles obtained by the Rosenfeld functional and by the
present DFT. Note that we have checked numerically that the contact theorem is satisfied for
both functionals.

As a second application we focus on a binary hard-sphere mixture. We have calculated
the density profiles of both components for various values of the packing fraction of the small
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Figure 3. Density profile of a one-component hard-sphere fluid at a planar hard wall for η = 0.4257.
The full curve denotes the density profile of the present theory, the dashed curve that of the original
Rosenfeld functional and the symbols denote results obtained from simulation [26]. The results
from the two DFTs lie almost on top of each other except for values of z very close to contact (see
inset).

spheres, ηs , and that of the big spheres, ηb, and various size ratios q = σs/σb and compared
results with simulation data from [29] and with results obtained using the original Rosenfeld
functional [30]. As was the case for the pure fluid, we observe good overall agreement between
the various approaches. In figure 4 we show a comparison for the density profile of the small
spheres (a) and that of the big spheres (b) of a binary hard-sphere mixture with ηs = 0.0047,
ηb = 0.3859 and q = σs/σb = 1/3. Once again we find that the only significant deviation
between results obtained from the present DFT and those from the Rosenfeld functional are
for values of z very close to the wall. This is illustrated in the inset to figure 4(b).

Both DFTs satisfy the contact theorem, equation (1). For the present functional the sum
of the contact densities equals βpMCSL , while for the original functional the sum is equal to
βpc

PY , the scaled particle result. It is important to emphasize that the sum rule (1) does not
allow us to make statements about the contact densities ρwi ≡ ρi (R+

i ) of individual species; it
pertains to the total density.

The results for the density profiles shown in figures 3 and 4 were obtained without
tensor contributions to the DFT, i.e. we take nm2 ≡ 0. Including the tensor contribution,
see equation (31), for the one-component case yields almost identical results.

4. Solid phase properties

Having shown that the present functional treats both the bulk and the inhomogeneous fluid
phase accurately, we now study some properties of the one-component hard-sphere (bulk)
solid. To this end we parametrize the density profile of the solid using the usual Gaussian form
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Figure 4. Density profiles of the small spheres (a) and the big spheres (b) of a binary hard-sphere
mixture with diameters σb = 3σs , ηs = 0.0047 and ηb = 0.3859. The symbols, full curve and
dotted curve denote simulation data from [29], results obtained from the present theory and the
Rosenfeld functional, respectively. The results from the two DFTs lie almost on top of each other
except for values of z very close to contact—see inset to (b). Note that contact occurs at z = σs/2
for ρs (z) and at z = 3σs/2 for ρb(z).

ρ(r) =
(

α

π

) 3
2 ∑

{R}
e−α(r−R)2

, (44)

where the parameter α−1/2 is proportional to the mean width of a peak and the sum is taken
over lattice points {R} of an fcc lattice. Inputting the density profile, equation (44), into the
tensor version of the present functional (see equation (31)) and minimizing the grand potential
functional (with Vi ≡ 0) with respect to both the lattice size and the Gaussian parameter α, we
can determine the equilibrium densities of the hard-sphere fluid and solid at phase coexistence
as well as properties of the hard-sphere solid. We find that a hard-sphere fluid of density
ρ f σ 3 = 0.934 (which corresponds to a packing fraction of η f = 0.489) coexists with a
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Figure 5. The logarithm of the Gaussian parameter α(η) for the fcc solid as a function of the
packing fraction η. The solid curve obtained from the minimization of the present functional using
the parametrized density profile, equation (44), is compared to MD results [32] for N = 500
particles (squares) and extrapolated to N → ∞ (circles).

solid of density ρsσ 3 = 1.023 (corresponding to ηs = 0.536). These values are in perfect
agreement with those found by Tarazona in [8], who also introduced a modification that yields
the Carnahan–Starling equation of state for the fluid, and are very close to the coexisting
densities found in computer simulations: ρ

f
simσ 3 = 0.940 and ρs

simσ 3 = 1.040 [31]. The
results for the coexisting densities take on additional significance when one considers that the
corresponding results obtained from Tarazona’s tensor weight DFT [7], which does not have
any Carnahan–Starling modification, are ρ f σ 3 = 0.892 and ρsσ 3 = 0.985. These values
were reported in [8] and agree with the results of our own calculations for the same functional.
Incorporating the accurate Carnahan–Starling fluid equation of state does seem to improve the
description of fluid–solid coexistence.

The Gaussian parameter α(η) follows directly from the minimization of the functional and
results are shown in figure 5 (solid curve). We compare the DFT results with the molecular
dynamics (MD) simulation data of [32]. The squares in figure 5 denote results with N = 500
particles and the agreement between these and the DFT results is very good. In [32] Young
and Alder also extrapolated their results to the limit N → ∞ and we show these data as circles
in figure 5. Although the simulation data exhibit some statistical error and the extrapolation to
N → ∞ can be problematical, the good overall level of agreement between our DFT results
and those of simulation is very encouraging.

Similar excellent agreement between DFT and MD results is found for the equation of
state of the solid. In figure 6 we show a comparison between the present results (solid curve)
and the simulation data of [33].

The results in figures 5 and 6 should be compared with those in figures 1 and 2 of [7] where
Tarazona presents the corresponding quantities obtained from his tensor weight DFT, i.e. using
equation (24). We find that the two functionals yield almost identical solid state properties.
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Figure 6. The equation of state βp/ρ in the hard-sphere fcc solid as a function of the packing
fraction η. The solid curve denotes the present DFT results, and the symbols denote MD results
for 500 particles [33].

5. Concluding remarks

We have modified Rosenfeld’s original derivation of FMT to obtain a new Helmholtz free-
energy functional which has an underlying bulk equation of state equal to that of MCSL, known
to be accurate for hard-sphere mixtures. The resulting functional performs somewhat better
than the original in describing the density profiles of a pure hard-sphere fluid and of binary
mixtures adsorbed at a planar hard wall. In particular, the densities close to contact are given
more accurately when the bulk (reservoir) densities are high (figures 3 and 4). By incorporating
a tensor-like weight function of the type introduced by Tarazona [7], we find that the present
approach provides a good account of fluid–solid coexistence for pure hard spheres. It also
yields results for the equation of state and the Gaussian parameter α of the pure solid phase
that are of a similar quality to those of [7], although we have not made a detailed examination
of properties in the close-packing limit η → ηcp = π

√
2/6 = 0.7405, where the Tarazona

prescription is essentially exact. Nor have we investigated the metastable bcc lattice [7].
It is likely that our present approach will prove most useful for treating hard-sphere

mixtures adsorbed at walls or confined in pores. Indeed the functional has already been
applied to a pure hard-sphere fluid near a hard 90◦ wedge. The results for density profiles are
in significantly better agreement with MC simulations than those from the original Rosenfeld
FMT [34]. The present functional should also have advantages over the original FMT when
applied to the calculation of liquid radial distribution functions gi j(r) via the test particle route.

Of course the underlying MCSL equation of state will itself become inaccurate for extreme
size ratios q = σs/σb 
 1 but one could expect a theory based on MCSL to be generally more
reliable than one based on the PY equation of state.

We conclude by returning to issues of self-consistency. As emphasized in section 2.3,
whilst our present functional does not satisfy equation (34) exactly the degree of inconsistency
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is 2% or less at the highest fluid phase densities of pure hard spheres. It would be interesting
to perform a similar test for the case of mixtures. Although the pair direct correlation function
c(2)(r) obtained by functional differentiation is closer to simulation inside the hard core r < σ

than the PY result (figure 2), there is no reason to expect g(r) obtained from this c(2)(r) via
the Ornstein–Zernike equation to satisfy the core condition g(r) ≡ 0, r < σ . However, for
the range of state points we have investigated we find that the core condition is only weakly
violated. Since the present functional employs the same weight functions as the original
Rosenfeld version it cannot account for the decaying tail of c(2)(r) in the region r > σ .
Incorporating such a tail within FMT requires multi-centre convolutions [8].

We have not investigated the higher-body direct correlation functions c(m), m > 2,
resulting from our present functional but we do not expect those to be qualitatively different
from those generated by the original Rosenfeld functional [1].

By basing our functional on the (empirical) MCSL equation of state we have deliberately
adopted a more pragmatic approach to fundamental measure treatments of DFT than those
which begin with the zero-dimensional limit [5–7]. Since there is nothing sacrosanct about
the latter we believe that there is still scope for some diversity of approach!
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