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Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and
thermodynamics, the hierarchical reference theory is known to be successful even in the vicinity of the critical
point and for subcritical temperatures. We present here a software package independent of earlier programs for
the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair
potentials, restricting ourselves to hard-sphere reference systems. Using the hard-core Yukawa potential with
z=1.8/o for illustration, we discuss our implementation and the results it yields, paying special attention to the
core condition and emphasizing the decoupling assumption’s role.
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[. INTRODUCTION most obvious, number and nature of hard-coded limitations,

important details of the numerical procedure and a possible

The hierarchical reference theory of fluidslRT) pio-  speed gain through generation of customized code might be
neered by Parola and Reaftb-6] has been found well ca- less apparent. Most importantly, though, the original imple-
pable [7—11] of describing structural and thermodynamic mentation’s structure makes experimentation with different
properties of fluids even in the vicinity of the critical point combinations of approximations, partial differential equation
and for subcritical temperatures, yielding rigorously flat iso-(PDE) solving algorithms, parameter settings, and physical
therms in the coexistence regigthus eliminating the need potentials rather cumbersome; in contrast, the fully modular
for Maxwell constructionsand nonclassical values for the approach adoption of a metalanguage allowed us to take
critical exponent$2]. Still, adoption by a significant part of what seems far better suited to a more general survey of
the liquid-physics community of this renormalization group HRT’s numerous attractive features. In addition to the nec-
(RG) theoretical approach to the integral equation descripgssary flexibility of our software, great care has been taken to

tion of fluids has largely been lacking so far. While this may gngyre the numerical soundness of every step in the calcula-

be partially attributed to HRT's inherent difficulties and o angd hence of the results produced, so that the generation
rather high computational cost, lack of an easy to use ye

flexibl e ted imol at ¢ HRT | f numerical errors necessarily arising from finite-precision
exible well-documented implementation o may alSo 4 ithmetic is uniformly spread over all of the problem’s do-
have played a role. To fill this gap, we have written a

w sui . _~main. To this end we introduce one central parametgy,
progrant suited as a general framework for the exploration h terizing th . lati introduced at
and application of HRT to simple one-component fluids with© ar.ac erizing theé maximum refative error introduced at any
hard-sphere reference systems with various combinations Sfep: together with a.number of criteria relyl_ng ep, this )
physical systems, approximations, and solution aIgorithms?arameter governs wrtpally all of thg numerics. Any devia-
Within the natural limitations of the method, it has proved tion from this strategy is made explicit, as are all the other
well applicable to a variety of model systems including the@PProximations entering the ca_llculatlon. Ul_t|maFer, our goal
hard-core Yukawdpresent contributionand hard-core mul- Was to provide the liquid-physics community with a general
tistep potentials while most attention has been devoted to th@nd versatile yet numerically reliable tool for the systematic
square-well fluid 12]. exploration and assessment of HRT and of the effects intro-
Of course, ours is not the first implementation of HRT for duced by different approximations.
simple one-component fluids: indeed, there has been a series This paper is meant to serve a twofold purpose: to present
of earlier program$5-7] by the authors of the theory and the software we have written and its capabilities, and to pro-
their collaborators, but it was the one used in R¢&9|, vide its prospective users with some rudimentary documen-
henceforth referred to as the “original” implementation, that tation. To this end, after a brief presentation of the standard
was a vital step in demonstrating the viability of HRT for formulation of HRT for one-component fluids and some of
continuous systems below the critical temperature; thouglhe theory’s properties as far as they concern our implemen-
never published or formally released, it has been circulatingation(Sec. I), we first give a general outline of our program
among interested physicists for quite some time. Our nevin Sec. lIl, only touching upon the metalanguage it has been
software on the other hand, differs from its precursors inwritten in. Due to our implementation’s fully modular design
many respects: adoption of a metalanguage in our versiorit, is only natural to then proceed by a discussion of the more
programing style and documentation-to-code ratio may bémportant of its building blocks and the various approxima-
tions they implementSecs. Il B-IlIl E). Presentation and
critical assessment of the kind of results that can be attained

*Email address: areiner@tph.tuwien.ac.at with these and concluding remart&ec. IV) are followed by
available on the World Wide Web from http://purl.oclc.org/NET/ two appendixes dealing with some technical aspects of the
ar-hrt-1/ formulation used.
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Il. THE THEORY [1]); in our work we opted for the prescription presented in
Ref.[1], which seems to have been used almost exclusively
so far[3,6,8,9,17 rather than the smooth cutoff formulation

limit ourselves to only a rough sketch of HRT; in doing so of Ref. [5], the latter being numerically cumbersome and

. redicting nonuniversal critical exponents. Thus we define
we are going to stress several aspects—some of them har

H _ . ref

discussed in the literature—relevant to our implementationl){eQ potentialo (=o' +w? by
of HRT, but oply to the extent necessary for the discussion W(k), k>0,
thereof. No prior knowledge of HRT is assumed. W<Q)(k):[ 2)

The basic ingredient of HRT, already present in its pre- 0, k<Q;
cursor[13], is the gradual transition from a reference poten-
tial v"™(r) to the full potentialy (r)=uv"®(r) +w(r) describ-
ing the interaction between pairs of particles of a fluid, with
any one of the intermediate potentials serving as a reference 1
system with respect to which the properties of a successor w(r)=w(r)— —
potential are calculate@uperscripts always indicate the sys- mr
tem a quantity refers jo In our work we have restricted
ourselves to the case of a spherically symmetric pure two-
body interaction, and we have taken advantage of the addi-

tional simplifications possible by identifying the referemeObviously thisQ potential is a rather artificial function in

H _ f_  hs _
\?vy:;:mb\évngc?]ig\lj; h\:;\ir; fﬁge\rﬁ eﬁyf;zﬁ’n l\)/vée?(Ss Cc"ﬁazl(jlerspace hardly resembling the full potential except in the limits
) R r - i ich(Q
Andersen schemd4—16. Note however that this restriction of E?' (é)' furthedrmozjez trg)e ralzjgte |Espacer:)\|/er Wh{ﬁh that of
to a hard-sphere reference system is not present in the ori jas 1o be considered 1s bound to be much farger than that o

nal implementation of HRT1,10,11; on the other hand, our he original potential—a property immediately carrying over

program’s fully modular framework is flexible enough to ac- E?)CJE?ITS q;'r?nitr'gﬁ]sé dtir;"edggﬁtsgoggitéonnzunqcetr'i%gf :I:qoﬁﬁgr
commodate any of these extensions should the need arise, ) q ’

Other than Ref[13], HRT achieves the transition from trans_formatio_ns involving the potential or any O.f the cor-
v to v in infinitesimally small steps. Inspired by relation functions for th&) system are computationally ex-
momentum-space renormalization group .theory a cutofPenSive and must be treated with extreme care; in fact, they
wave numbelQ varying from infinity to zero is intr(;duced s_hould be avplded i pos§|ble at all, with ObVI.O.US repercus-
and for everyQ the potentialy@ =y +w(@ is defined sions for the implementation of the core conditi@s).

[ ref H
such that Fourier componerks: Q of the perturbational part _oLntthe irgnil'tlg)_ll_w tfrontw th v otr, equwaltfantly, frometh
w(Q of the Q potentialv(?) are strongly suppressed whereas _ro ec;tgs_of, the s rs?:n? wi?r? R{;ﬁgiﬁfaﬁe (Iec:\?vr;(;ecu?éjf €
those fork>Q coincide with those of the original potential prop Y y

. —dQ; resummation of terms in the resulting expansions in
w. Consequently, the reference system and the fully interact; . e o . ) e
. . . dQ and identification of quantities with a well-defined limit
ing system are recovered in the limi@—oo~ and Q—0,

respectively, for Q—0 finally yields the HRT equationfl,3]: for every
' densityp there is a formally exact hierarchy of coupled in-
p (@) =pref tegrodifferential equations involving a suitably modified free
' energyA(Q defined as

While a much more detailed account with additional ref-
erences can be found in R¢L], in what follows we want to

in r spacew(®Q) differs fromw by the addition of a convo-
lution integral, viz.,
foc sinQ(r’'—r)

r'—r

0

_sinQ(r’+r)

T )r w(r’)dr’.

0= (1)
v =v.
BAQ  BAQ  p?

The role of theQ potential just introduced becomes clear v v §[¢(0)—¢(Q)(0)]
when we consider a functional expansiorfif?) of thermo-
dynamic and structural properties of the system with pair
interactionv(? (a tilde always denotes the Fourier trans-
form): asW(Q (k< Q) is small, the integrals in the expansion
are effectively truncated fok<Q, in keeping with the RG  (¢=—pw, B=1/kgT; analogously, ¥ =—pw(?), a

+516(0) =4 (0)], @)

picture. modified two-particle direct correlation function
In principle, the precise manner in which the potential is ©) @ -
cut off should not matter, and one can easily conceive of —CH(r)=cy7/(r)+ ¢(r)— (1), 4

many different ways of doing so. On the other hand, for such _ i i

a procedure to be usable it must not introduce instabilitie@nd all higher-order correlation function§?(r), n>2. The
when truncating the HRT hierarchy, which is usually done a@dditional terms introduced i(? and () explicitly take

the two-particle level. Apart from approaches valid only for into account a discontinuity &=0 present in the unmodi-
special types of potentials, we are aware of only two cutofffied free energyA‘? and direct pair correlation function
procedures suitable at least for attractive potentthls stan- C(ZQ); as is apparent from Eq$2)—(4), modified and un-
dard formulation of HRT can easily be shown to becomemodified quantities coincide fdp= 0. Furthermore it should
unstable forw(0)>0, as implicitly stated already in Ref. be noted that it is customary to include the ideal gas terms in
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the definition of thec!?): for the two-particle case this is an Tk, p) =7 Q)T T
o . . p)=d(K,p)+ vo~ (p)Uo(K,p) + K< (K, p),
additional term of— §(F)/p so that the Ornstein-Zernik& 8| 0 0
equation takes the form ,’"é(Q)(k,p):’G(Q)(k’p)_{_ncrzef(k’p)’ ®)
Ey= — (Lp) — T, (5) Gp)= 2 7 (p)Tn(k,p),

whereh(r) is the usual two-particle total correlation func- thereby mtroducmg.a set c[p—mdepender_ﬂ_ ba5|? functions
tion; for the higher-order correlation functions cf. REE]. u, and .correspondlng eXPa”S'O” coeffICIer’y_t%? . Here,
The full hierarchy the derivation of which we just touched Yo(T-p) 1S chosen proportional tov(r,p) [which has the
upon yields expressions for the total derivatives with respec&'nde_s”a?'Qe) effect that, from Eq&®) and(4), the correlation
to Q for ¢9) and all thech), n>2: for the evolution of functionc;<’ of the Q system depends upon the full po_tentlal
AQ we have the particularly simple relation w ratheithanN(Q), as would be appropriat@nd normalized
so thatly(0,0)=1; uy(r,p), n=1, on the other hand, are
taken to form a basis for a suitable function space over

) - [0,0(p)]. With these provisions, the problem of implementing
d BAYY Q_I 1- #(Q) g  both core condition and thermodynamic consistency reduces
dQl\ v A2 n 79(Q) ' 6) to that of an appropriate ch_oicg of the expansion cpefficients
¥ Q(p), n=0, for every point in the ©,p) plane. With the
shorthand notations
Asdc{Q/dQ, n=2, involves A, ¢ and all higher-order B BAQ
correlation functions up tacY, [so that, in particular, aQ(p)= W(T)
dc(@/dQ depends ore{? andc{? via Eq. (4)], the equa- Qdp
tions never de_couple .ar.1d we have to introduce some kind Q;(nd, for an arbitrary functior(k, p),
closure. In doing so, it is usually desirable to retain thermo-
dynamic consistency as embodied in the sum rule dk  y(k,p)

IO y(k,p),pl= fR 9

3(2m)° [E(k,p)]?’

=Q) 7 [BAQ the condition(7) for thermodynamic consistency is easily
CH(0)==~-— : (7 -
ap \% rewritten as
3762 (p) o IYp)_
rigorously true for the exact solution of the full hierarchy; —Q —a(Q)(P)—ngl Tun(O,p), (10)

the derivatives with respect opresent in Eq(7) then man-
date the transition from equations at fixedo a PDE in the  and following Ref|[6] the core condition can be shown to be
(Q.p) plane with boundary conditions supplied at two den-equivalent to

sities, pmin @nd piax- IN @ddition, we need to retain the core

condition, viz.g(r) =0 forr <o whereg(r)=h(r)+1 is the o 97 Q(p)
pair distribution function; indeed it is one of HRT's main 2 I‘Q)[Uj(k,p)ﬁn(k,p),p]—
advantages to conserve information on all length scales, "=° 9Q
ranging from the hard-sphere diametdp) of the reference 5 ~ _

system at densitp and the associated core condition up to Q $(Q.p)U;(Q,p)

the cutoff wavelength 4, in the limit Q— 0 allowing criti- - ﬁn@ Q) 7 '
cality to arise from fluctuations of arbitrarily large wave- CTQPICT(Q.p) = ¢(Qup)]

length. The latter can be combined with E€LO) to yield the more
As noted above, the long-ranged naturewd® and the  expiicit

correlation functions due to the cutting off of E@®) is a

strong argument in favor of any closure allowing an approxi- = 9y (p)

mate implementation of the core condition without the need X, Z‘Q[T;(k,p)(Tn(k,p) —To(k,p)Tn(0,0)),p] ———

for costly Fourier transforms. This is a likely reason for the "=* Q

up to now seemingly exclusive use of a closure in the spirit .

of the lowest-ordery-ordered approximatioflLOGA, Refs. =a'9(p) [T (k,p)Tg(k,p),p]

[19,2Q) or the equivalenbptimized random-phase approxi- -

mation (ORPA, Ref.[21]) despite this closure’s known defi- N Q_2 #(Q,p)0;(Q,p)

ciencies[7,9]: with the argumenp silently to be added in 2~ ~ ~ '

earlier equations when used within the context of the PDE, 2m CAQpICY(Qp) = $(Qup)]

we make the ansatz (11)

j=1.
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As both the sum rule and the core condition must hold forto reflect the transition from Eq7) to said constraint deter-
the reference system, the above evolution equations for th@ining the ng) appearing on the above equation’s right-
¥Q are readily supplemented with the initial conditions hand side; furthermore, elimination of thermodynamic con-
Y¥=0, n=0. sistency obviously means decoupling the PDE to a set of
As Eq.(11) stands, it is no more amenable to direct imple-ODEs at fixed density. This is exactly what is needed at the
mentation than the previous formulation; not only must thishoundariesp,,;, and ppax Of the density interval considered
infinite-dimensional matrix equation be truncated to a finiteyyhere thep derivatives definingz(?)(p) cannot be evalu-
number N of basis functions, but even then the result- 504, While specialization te,,,=0 uniquely determines the

ing integrals need to be evaluated at ev@nandp—a te-  go|ytion there by virtue of the divergence of the ideal gas
dious process no less demanding than the Fourier transt{érm ~1p in (~:r2ef (cf. Appendix A, some prescription for
mations this approach is meant to replace. What makes th_ nding (9, accompanied by the necessary modification of
closure manageable, however, is the observation that the d|t - 0

A OQ) ~(Q) e truncated matrix equation according to E), must be
continuity in Z{9’s integrand due to the appearancecé‘? imposed ap,.: as long as we retain E411) in the PDE’s

instead of the continuousC'? Ieads. to a term N gomain's interior and numerically evaluaié®(p) there, it
ﬂ(Q)[l//(kaP)aP]/ﬁQ_ made up of functions evaluated at is natural to use the LOGA/ORPA conditioff® (pma) =0
k=Q alone; following Ref.[6], only this single term is re-  [g] at the boundary, which is sufficient to also determine

tained, leading to the approximation IAQ(p..)Q [or, equivalently, Appendid's F(Q,p )]
from the {9 (pman, N=1, alone.
i“I(Q) Unfortunately, it turns out that a scheme retaining
[¢(k.p).p] Qo -
dQ a'%(p) in Eqg. (11) for pmin<p<pmax Presents significant
numerical problems for all but extremely high temperatures,
Q% 2CQ,p)d(Q,p)—[d(Q,p)]1? precluding reachin@ = Q, at least for the potentials that we
=¥(Q.p 22 (HQ) 205(Q) ~ 5’ have looked at. This is where the so-called “decoupling as-
T EFQp) TCT(Qp) = d(Qup) ] sumption” comes into play: based upon the different ranges

(12)  of up(r) anduy(r), n=1, the authors of Ref6] argue that
a9 (p) =0 might be a good approximation, thus eliminating

leaving out the nonlocal contributior 22§:0i(Q)[¢(k,p) the Z integral on the right-hand side of E(L1); it turns out
I]n(k,p)/“c‘(zQ)(k,p),p][a—ng)(p)/C;Q]; with the above ap- that this change, invariably adopted in all later publications,
proximation, the task of evaluating one of the integrals ofis often sufficient to allow generating a solution all the way
Eq. (12) reduces to only an initial integration for the refer- t0 Q=Qq. From our previous discussion of conditions im-
ence system followed by the solution of an ordinary differ-posed on they'?) it should be obvious that this decoupling
ential equation(ODE) coupled to the HRT-PDE as well as assumption is incompatible not only with the LOGA/ORPA
analogous ODEs for all the other integrals of theype. conditiony{?(p)=0 ret.ained in the original implgmentation
Of course, to fully specify the mathematical problem, thefOr p=pmax but also with thermodynamic consisteniq.
PDE must be amended by both initial and boundary condi{?)] altogether; thus we are left with only a few possibilities:
tions; while the former take the simple form of vanishing W& may either retain logical consistency by using the decou-
expansion coefficientésee above the latter also impose Pling assumptionr(?(p) =0 as a closure for the HRT equa-

some constraint on the? . However, as long as we retain 10nS, reducing the PDE to a set of ODEs@nonly; or we

the core condition, such an additional constraint is alread§"@Y Prefer to retain the structure of a PDE so as to make use

sufficient to determine the expansion coefficighft) ; unless of thermodynamic consistency at least to a certain degree;
the 742 so found exactly reproduces E6L0) thérmod ~yet another possibility is to maintain both mathematical and

Yo . Yy Tep . T y thermodynamic consistency by not implementing the core
namic consistency can no longer be imposed without intro

) S = ) . condition at all. The original implementation’s approach re-
ducing mathematical inconsistencies. By the same token, E g P P

: . . . ying on three mutually incompatible concepts, viz. the
(12), derived by incorporating the sum rul@) into the core - . )
condition, is no longer valid but must be changed to LOGA/ORPA condition alpmay, decoupling, and the com

pressibility sum rule, seems particularly unattractive; at least
one should use the decoupling assumption as a boundary

S o) - 37,2 (p) condition at high density instead.
nzl I(Q)[uj(k'p)u”(k'p)'p] aQ Retaining thermodynamic consistency in the form of Eg.
(10) as well as, in an approximate way, the core condition via
_ 5oy ~ ME)Q)(P) the truncated Eqg11) or (13) together with the approxima-
- [T;j(k,p)To(k,p),p] T Q tion (12), we thus arrive at a set of equations implementing
HRT with the LOGA/ORPA-like closurg8) on the two-
Q? E(Q,p)ﬁj(Q,p) particle level well suited for numerical processing. While

i=1 these expressions lend themselves to discretization in a
straightforward way, it is computationally much more conve-
(13 nient to cast the PDE in a form superficially resembling a

+ —— = — ~ ’
2 TQ(Q,p)[CQ(Q.p) — $(Q.p)]
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quasilinear one[8] so that an implicit finite-difference for Q>0 as a result of the RG mechanism implemented via
scheme requires only the inversion of a tridiagonal matrixthe truncated potential?. The essential additional ingredi-
The rewriting we adopted—detailed in Appendix A, very ent, viz., the behavior of the ratio of th@ derivatives and
similar to the one of Refl8]—results in the introduction of the , derivatives as the divergence in the compressibility
an auxiliary functionf(Q,p) so that the PDE implied by puilds up, while obvious in the formulation viais not easily

Egs.(6) and(7) can be written in the form seen in terms ofA(Q(p); this, however, comes as no sur-
prise sincef is essentially the free energy’s derivative with
J J .
—f(Q,p)=do f,Q.,p]+do[ f.Q.,p] —F(Q.p) respect tdQ so that we would have to reason about third- and
7Q ap second-order derivatives rather than first- and second-order
52 ones if we were to repeat the arguments without resorting to
+d02[f,Q,p]Wf(Q,p). (14)  the rewriting of Appendix A.

Now it is easy to demonstrate the PDE'’s stiffness for sub-
critical temperatures: recalling the definitions of Appendix A, IIl. OVERVIEW OF THE PROGRAM

we find that the in_verse isc_)thermal comp_ressibility 1 \With the theory and approximations outlined in the pre-
«y of the system with potentiab can be written as 1/ ceding section, we are now in a position to undertake the
kr=—p"W(0,p)/e(0p), where &(Q,p)+1=e(Q.p)  task of implementing HRT for one-component fluids in fully
<exf f(Q.p)U5(Q.p)]. For subcritical temperatures there is a standards conformingorRTRAN-eg the only nonstandard fea-
density interval p, ,p|] where 1k;r=0 (implying diverging  ture we make use of is the availability of the special values
& and hencef); here,p, and p; are the densities of the NaN and=Inf for numerically undefined values and signed
coexisting vapor and liquid, respectivelyecall that HRT  overflows, respectively, as defined in the floating-point stan-
yields rigorously flat isotherms within the coexistence re-dard IEEE 754. These requirements should not pose a serious
gion, with binodal and spinodal coinciding in three dimen-restriction for our program’s possible users: after all,
sions[4]). By construction, however, the lim@—0 is a  ForTRAN-90compilers have been available for a wide range
continuous ongcf. Eqgs.(3) and(4)] so thatf, e and related  of platforms for several years, and the desired floating-point
quantities must be large already well bef@e- 0 is reached; behavior can usually be requested—albeit at a small perfor-
at the same time, the RG mechanism introduced by the defimance penalty—via compiler switches. While our imple-
nition of w(? via Eq. (2) precludes any divergence at non- mentation is more appropriately described as a collection of
vanishing Q. Considering the region of theQ(p) plane  mutually compatible building blocks rather than as a mono-
wheref and ¢ are large, we easily find from the explicit lithic program so that the details of the numerical procedure
expressions of Appendix A that thel,;, and hence are best left to these parts, for the combination of different
af(Q,p)/9Q, are of orders!; restricting ourselves to a spe- selections to work all versions of all the modular constituents
cific density p and sufficiently smallQ [so thatuy(Q,p) must adhere to a common model of the computation.
=1; extension of the argument to a larg@range is cum- Most obviously, we have to make the transition from the
bersome but straightforwafdve can write PDE’s domain, viz., the infinite strif0,20) X[ pmin »Pmax, tO @
discrete mesh defined by a finite number of points in the
df(Q,p) _e'@d,(Q) (Q,p) plane. Evidently, the placement of these “nodes,” as
dQ OA /o we shall call them, is of utmost importance for the quality of
the discretization so that it is only natural to defiag the
whered, is now of order unity. Inspection of the solution of central parameter governing all of the numerics, in terms of
this ODE immediately shows that the averagelgfQ) over  the properties of this mesh: the coarser a mesh we chose, the
the interval[Q;,Q,], 0<Q;<Q,, is rigorously bounded largere, will be. In principle, the locations of the nodes, the
from above by exp-f(Q,,p)1/(Q,—Q,) or else there were a data structures of which are organized in linked lists, can be
singularity in thatQ interval; translating back té we see chosen freely; in particular, the cutof3 of all the systems
that, while |9f(Q,p)/dQ| is still of order e, f must be a in such a list of nodes are not taken to necessarily coincide,
rapidly oscillating function ofQ (with a period of order even though this is usually the case except for a low-density
¢~ 1), the average slope of which is much smaller, viz., ofboundary atp=0. As for the densities of the nodes, imple-
order 10Q. mentation of the core condition via the truncated Eff)

It should be noted that this stiffness is not an artifact ofand Eq.(12) makes anything but constatthough not nec-
the reformulation of the PDE as summarized in Appendix Aessarily equispacediensity values impractical; if the grid is
but is manifest just the same when directly solving the PDBo be refined for lowQ, additional nodes must be inserted at
for the modified free energy(?(p) rather than that for the the same densities in all the node lists in the calculation.
auxiliary f(Q,p) [22]. The above argument relies only on After initialization of the nodes’ data structures, solution of
some general properties of HRT in the current formulation ashe PDE proceeds by applyingjgossibly iterategpredictor-
applied to one-component fluids: the divergence of the isoeorrector scheme to generate an approximate solution for the
thermal compressibility in the coexistence regitme repro- nodes most advanced towar@s=0 from the information
duction of which is one of HRT’s main achievementson-  available through the node lists at higli@rin the interest of
tinuity of the limit Q— 0, and the suppression of divergencesthe code’s simplicity, the number of such node lists has been
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fixed to exactly three, thus facilitating determination of ap-vided by this main part fall into two distinct categories, per-

propriate step sizeAQ. taining to eitherv™ or w; in addition, as the temperature
As mentioned before, the goals set for our implementatiorenters the calculation only as a prefactorvipviz., via ¢

of HRT necessitate a fully modular architecture of our pro-=— Bw, the inverse temperatuye is also defined here.

gram; and while we did not want to forgo the well-known  As far as the reference system is concerned, restriction to

advantages oFORTRAN-90 for the numerical work, experi- hard spheregfor the rationale cf. Sec. Jlimeans that only a

ence with prior versions of our code taught us that the kindunction returning the hard-sphere diamet€p) and a flag

of flexibility we need cannot be accommodated within theindicating any deviation oé(p) from the unit of length need

rather rigid frameworkrORTRAN-90s modules with their one- to be made available. A similar parameter pertaining to the

way flow of information provide. Instead we opted for a perturbational partv of the potential, viz., a flag indicating

simple metalanguadefor self-configuring construction of any density dependence wf also plays an important role in

code customized to the chosen combination of approximamany parts of the program as substantial simplifications and,

tions and the physical system at hand, at the same time ein many cases, significant speedups by caching previous re-

hancing readability and maintainability of the source and engy|ts are possible whenevei(Q,p) only depends o). In
couraging modularization; for a more detailed discussion ofqdition, at every cutoff) the program must have access to

this approach and the numerous technical advantages it attﬁe Fourier transform@/(Q,p) and a(Q,p) as well as the
fords we refer the reader to R¢R22]. o ~ ~

derivatives d¢(Q,p)/dQ and ¢"(4(Q,p))™ dp", whereas
powers of the volume integrad(0,0)", and their derivatives

3"($(0,0))™ dp" obviously do not depend of® (here,m

Our software can best be understood as a collection ofqn are ‘appropriate integers known during code construc-
mutually compatible and freely exchangeable b”'ld'ngtion).

blocks corresponding to the underlying physical and math-
ematical notions; the resulting natural organization of th
code cleanly separating conceptually unrelated approxim
tions is a direct consequence of our adoption of a metala
guage and the use of automatic code generation techniqu
The implementation’s modular constituents, hencefort
dubbed “main parts,” must, however, be clearly distin- A
guished fromFORTRAN-9ds modules: in general, there is no Potential given by
simple mapping from main parts to modules, and every main
part may give rise to any number of modules, incorporating ws—ehalp) =
all the information available within the code base. 0, r>\o,

In the following subsections we take a closer look at some .
of the main parts, their physical meaning, the algorithms andvhere the hard-sphere diameterof the reference part and
approximations implemented, and at some of the informatiohe strengthe of the potential are usually chosen as units of
they make available to the other parts; we will, however,length and energy, respectively. Another type of potential we
exclude from this discussion the program’s infrastructureave implemented is a generalized step potential, i.e., a suc-
e.g., the implementation of logging, of reading and parsingession of stretches of constamfr); more specifically, the
of options files, handling of node lists and the definition of aPerturbational panv(r) of ann-step potential of this type is
versatile, lossless, and storage-efficient albeit platform defust a sum of square-well potentials=S{_ w1t -],
pendent file format for the results &=Q,. In a similar ~ \j<\j;+1, 1<i<n; again, we have only considered the
vein, we only mention the assortment of accompanying toolg-independent case, while all the potential's parameters
for reading these files and dumping their content in humanshould be assumed functions @fvhen modeling a specific
readable oMATHEMATICA -usable form, for locating the criti- physical system. We have also implementegindependent
cal point or calculating phase diagrams. Thus only main partsard-core Yukawa potential"®,
“potential,” “reference,” “ansatz,” and “solver” remain to
be discussed. —€p, r<o,

thy{feo,fe,z,a'](r): o

B. Properties of the potential - fre_z“_”), r>o

A. Main parts

For the benefit of the PDE-solving algorithm, this main
Zpart also has to set a paramelgy; related to the maximum

r{_elative curvature of the secon@ derivative of $(Q,p),

ecgefined in such a way as to coincide withfor the square-
well potentialoS™ <Ml Indeed, most of our efforts so far
12] have concentrated on this particularly simple type of

—€, I<\o,

First and foremost, we obviously have to provide infor-
mation on the fluid’s potential =v"®'+w and its properties: where the parameter,, the value of—w inside the core,
this is the purpose of the main part labeled “potential.” Justdefaults toe= —w"%(o+), which again is usually chosen to
as the full potential is a sum of a reference paff and a  coincide with the unit of energy; any mismatch betwegn
perturbational pan, the functions and parameters to be pro-and e dominatesk"®(k) for largek and is found to render
unstable at least the numerics.
Regarding the stability of the PDE, recall from Sec. Il that

2Available on the World Wide Web from http:/purl.oclc.org/NET/ an attractive potentialso thatW(0,0)<0] is a necessary

arfg/ though not sufficient condition for the stability of the PDE.
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C. Hard-sphere reference system

Due to the specialization af**' to hard spheres, the ref-
erence system enters the expressions of Sec. Il only through
the direct correlation function', implementation of which 91
is the task set for main part “reference:” drawing upon the Q
information from main part “potential,” only some initializa-
tion code and functions for the evaluationﬁgff(Q,p) and -
FER(Q,p)/dQ have to be exported. 3l 32

In our program we have so far included two different &
versions implementing the Percus-Yevif&3] approxima- P
tion and the Henderson-Grundk24] description; note that
all results reported here have been obtained using the FIG. 1. Schematic of the grid used in the discretization or the
Henderson-GrundkeEEf: in a theory relying on internal con- PDE (cf. Sec. llI D). Ass_umin_g use of the_three-poir_lt app_roxi_mat_ion
sistency conditions like Eq7) as heavily as HRT, the ther- for the second derivatives !n the direction, Fhe dlscr_etlzatlon is '
modynamic inconsistency present in the Percus-Yevick solygenerated from an expansion around the intersection of the thin
tion seems particularly undesirable. horizontal line with t.he line of constant density joining the noc_ies

labeled (2). According to the general model of the computation
) o N discussed in Sec. Ill, a node list@ values may be dependent,
D. Discretization, boundary conditions, and other whereas the values must coincide in all three node lists, though
approximations they need not be equispaced.

Main part “ansatz,” where all the approximations on the S _
physical and mathematical level are combined to jointly de-2bout the midpoint of the nodes labele?) and(32) in the
fine a reasonable numerical model of HRT, is at the very coréchematic 1, evaluating the secopdderivative along the
of the PDE-solving machinery: for the potential the pertur-line of constaniQ through this pointthin horizontal line in
bational and reference parts of which have been described fid- 1) by estimating the data at the intersection with the
the two previous subsections, the HRT-PDE is discretizedin€s of constant density by interpolants defined from node
and solved according to a given set of approximations and ofiPles (1) and {3), respectively; the resulting finite differ-
the mesh defined by the node-lists served by main pance approximation is applied to every set of three adjacent
“solver” (Sec. Ill B. More precisely, “ansatz” provides a set Node triples, substituting suitable boundary conditionsaf
of facilities in the form of subroutines with standardized in- @nd pmax-
terfaces implementing the various stages of the computation, As indicated in Fig. 1Q is not necessarily constant along
viz., initialization of the node lists &= Q.. and solution of & given node list, whereas the stability of the numerical
the PDE according to a predictor-corrector full approxima-Scheme may impose certain geometrical constraints regard-
tion scheme. Note, however, that the code must accommd?d the possible locations of the nodes, e.qg., for ensuring that
date the possibilities of both iterating the corrector stephe Courant-Friedrichs-Lewy criteriof25] is met or for
(which may allow reaching the numerical quality indicated Maintaining convexity of the remaining integration region; a
by €, with somewhat larger step sizes, thus speeding up thguitable representation of these constraints is exported and
calculation and of discarding part of the solution should Must be taken into account by main part “solver.” If the
ex-based criteria not be met; to aid “solver” in these deci- latter decides to insert nodes at intermediate densities, the
sions, care has to be taken to detect and signal numericgPde for initializing the inserted data structures and for inter-
anomalies. Once a step’s results have been accepted, “aRolating appropriate quantities is negotiated between the
satz” may perform additional manipulations of the dataMain parts, depending upon the order of the interpolation
structures; most importantly, the rescaling of all quantitiesformulas available. A further consequence of having noncon-
affected by exponentiation dnecessary wheneveéis large ~ StantQ is that some parts of the density range may reach
(cf. our discussion of the PDE’s stiffness in Seq.iff ad- Q=~Qo earlier than others; in this case, the corresponding
justed Only when the last corrector’s result has beernodes are IOCked, preventing further modiﬁcation, and all of
accepted. the converged nodes except those necessary for providing a

Due to the eminent role of the consistency condition EqPoundary condition for the remaining density interval are
(7) in constructing a closure to the underlying O, the ~ removed from the node I|st§ a\_/a|lable to main part “ansatz.”
PDE (14) for f(Q,p) is of first order inQ and of second In addition to the discretization of the HRT-POIEA) dis-
order inp; assuming the lowest possible number of nodes irfussed so far, the implementation of the core condition along
the discretizationextension to higher order is straightfor- the lines of Sec. Il and Appendix A is also of interest. Rel-
ward), we need at least @23 set of nodes. According to the €gating discussion of the choice of appropriate basis function
general model of the computation presented in Sec. Ill, howtn, 1=N=<N, to Appendix B, we only point out the ex-
ever, we instead keep a third node list in order to allowtremely slow convergence of thé?) integrals(9) that have
monitoring of second derivatives, so that we use a discreti- to be evaluated a@=Q..; furthermore, as the integrand is
zation on the X3 grid schematically presented in Fig. 1, temperature dependent for-Q.., these integrals have to be
including information available via that additional node list. evaluated for every isotherm—a problem that might be side-
Locally, the discretization is derived from an expansionstepped by adopting the original implementation’s strategy of

22

23~
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consistently using the results f@—o rather than those there is a node witlQ<Q, for every density in the calcula-
valid at Q.. for initialization even though such an approachtion, or when “ansatz” requests an end either because an
introduces a discontinuity @=Q... Also, with the usual error condition has occurre@ee aboveor because the cur-
choice ofQ..~10%/ o, integration merely up tk=Q., can  rent node list is sufficiently close Q= Q, already. As noted
hardly be deemed sufficient; an appropriate upper integratio? Sec. Il the intimate link between this main part's task and
limit can instead be found by comparing the integrand'sthe numerical quality of the solution generated makes it natu-
asymptotic behavior witle, . Main part “ansatz” also has to fal to define heree;, the central parameter governing the
identify quantities suitable both for monitoring convergenceUMerics, and it is this part of the program that relies upon
of the full approximation scheme and for choosing appropri-€# and the associated criteria the most; other main parts use
ate step sizedQ andAp, and to make available code frag- €# for little more than for switching between full analytic
ments for the inspection of nodes in various stages of th&xPressions and asymptotic expansidfios a slightly atypi-
computation as well as a description of the boundary condi¢al €xample of which cf. Appendix)B. _

tions atp i, and ppaxincluding mandatory settings for either  Of the two implementations of this main part, one has
of these parameters if necessary; in particular, most imple2€€n written in the hopes of being able to avoid the problem-
mentations require,;,=0 in order to be able to use the atic region of largef(Q,p) altogether, as is indeed possible

divergence of the ideal-gas term @' as aQ-independent for some §imilar PDEs. This ?mplementation makes fuII.use
boundary condition fof (cf. Appendix A. pf €4, rerlng' on numerous criteria to 90”&10' the calculation;

It is this main part that defines the formulation of HRT N the following discussion the notati refers 1o cus-
and the set of approximations used in the calculations; of thiPmization parameters that should usually be taken as real
numerous versions of this main part we produced only a feW?umbers of order unity. A case in point is the choice of the
are to be mentioned here: both the reimplementation of th€nsity grid: even though this is not necessary, we decided to
original program’s approximations for the core and boundary®Ways start with an equispaced sefpofalues ranging from
conditions and the approach combining the PDE wifR?  Pmin O pmax; the numberN,+1 of such density values is
=0 at all densities including ., while mathematically in- 'elatéd toe; by
consistent, retain thermodynamic consistency at least in
some approximate wafef. our discussion of the decoupling
assumption in Sec.)ilin addition to these, the two possible
approaches at least mathematically meaningful, viz., the
ODEs directly following from decoupling and the PDE re- reflecting the importance of secopdderivatives in the so-
signing on the core condition for the benefit of the compressiytion of the PDE as well as the static nature of this set of
|b(|(|g|§y sum rule (7) [with the LOGA/ORPA prescription  yonities due to th& approach to the core condition. Once
Yo (Pmay =0 @s high density boundary conditpwill also . "has heen determined, the system is ready to start deter-
bg used in Sec. IV's presentation of the results our softwar%ining appropriate step sizésQ; in particular, the assump-
yields. tion that the potentiak(r,p) introduces length scales only in

o o the range fromo(p) to Aj,1(p) o(p), wherei,; is related to
E. Criteria for positioning of nodes the fourth derivative of (k,p) with respect tok (cf. Sec.

If main part “ansatz” is to provide a discretization on !llB), places an upper bound on the admissible step sizes,
whatever mesh is handed to it, it is the task set for “solver,”VI1Z.,
the last of the main parts to be discussed here, to define this

N = (Pmax— pmin)2

p p '
f#pr

very mesh and to keep track of the numerical solution’s qual- /126#p[AAQQ]
ity. Based primarily upon the value ef; and respecting any AQs ———— ™
restrictions exported by “ansatz,” step siz&€Q and Ap A1 (p)

have to be chosen and checked for compatibility with the

solution generated, iterating or discarding steps if certain criOn the other hand, for a finite difference scheme to be mean-
teria are not met; whenever “ansatz” signals an exceptioringful at least a certain number of bits must remain signifi-
the last step is discarded, accepting the data in the node liant in evaluating the differences, which implies a lower
corresponding to labels {2in Fig. 1 as the best approxima- bound onAQ proportional toQ, and the solution has to be
tion to the solution forQ— 0. At the same time, care has to Smooth on the scales defined by the mesh, which also rules
be taken to locate and identify any problems in the solutionout abrupt changes in the step sizes; consequently, the ratio
i.e., parts of the @,p) plane where the solution found does of two consecutivel Q steps at the same density is restricted
not appear smooth on the scales set by the step sizes, thelie betweerpl;2! and 1pl42!. In a similar vein, consid-
most basic assumption underlying any finite-difference calering smoothness in thedirection we have to postulate that
culation; whenever this assumption no longer holds, the alQ 2+ Q(s2)/2 is greater than either d ;) and Q(sz),
gorithm will react by locally reducingaQ andAp, inserting  where the labels coincide with those of the nodes of Fig. 1;
node triples(cf. Sec. IlID) in order to achieve the latter. this condition, unlike the other rules mentioned so far, does
Once we find any nodes already holding the final results fonot limit the step sizeAQ at any density but rather deter-
their respective densities they must be taken care of as disnines whetherAp should be reduced by the insertion of
cussed in Sec. Il D; integration of the PDE is ended whemodes at an additional density. But the most important crite-
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ria for choosingA Q come from monitoring the solution gen- ~ TABLE 1. Dependence of inverse critical temperatug

erated: for every monitored quantikywe make sure that =1/kgT., coexisting densitiep, and p; at 5=0.9/, and critical
density p. for a hard-core Yukawa potential with=1.8/0 on the

2 | number of basis functions. The results reported have been obtained
1| VeupliQl from PDE ini 1 basis functi irst i impl
W 07_Q2 AQ=+eup; <, rom | S retalnlng}\lccf asis un_ctlons offirst line) not imple-
Q menting the core condition at all with,=10", ppma=1.0/0°. We
have checked that the differences summarized here cannot be ex-
X[l g=maxx(k,p)|; plained by theN.. dependence of the upper integration limits in
k>Q

evaluating theZ(?-) integrals(cf. Sec. Il D).

the quantities taken forare, of course, defined by “ansatz,” __ Bee p,(B*=0.90)0® p/(B*=09k)c° peod
and a usual choice i%(Q,p) e{f(Q,p), LK Q(Q,p)}. A

different set of quantitiey, also chosen by “ansatz” and 0.8316439) 0.1155) 0.5615) 0.32530)
usually comprising jusy(Q,p) =f(Q,p), is used to monitor 0.8207039) 0.1055) 0.5755) 0.31530)
the convergence of the predictor-corrector scheme and to dé-  0-8214839) 0.1085) 0.5635  0.31310
termine whether or not the corrector should be iterated; de3 ~ 0.8222139) 0.1085) 0.5635) 0.31530)
noting the absolute difference of consecutive approximation§ ~ 0.8222739) 0.1085) 0.5655) 0.31530)
of y divided by|lyllq by Ay, iterations are performed until 5  0.7767620) 0.0795) 0.6455) 0.32q15)
Ay<epl®™, and the ratio of two consecutive step sizes is® ~ 0.7552120) 0.0555) 0.6855) 0.32530)
bounded from above byerE,AQ])l/(ZWkAnQ])/\/K(T)_ , where 0.7595120) 0.06%5) 0.6755) 0‘32(125)
AWy is Ay evaluated after the first corrector step. According 8:;;2223 8:8?33 8:21;3 8:3 1322

to simple heuristic arguments regarding the convergence @
corrector iterations and ignoring the effect of other criteria,

[AQ] . .. .
an average OpNn calls of the corrector can be expected to sonable initial condition for the core condition assumes that

solve the difference equations to withig, and a setting of the structure af., is basically the same as that 1= (so

p.?'>1 may significantly speed up the calculation by al- that i) =)= or, equivalently, '%)=»{)=0

lowing larger steps to be taken without loss of accuracyn=0) and the same set of parameters must also be used for
After finding and tentatively using a candidai®, we still  the initialization of nodes @ = Q..+|AQ| [the nodes labled
have to check that the assumptions leading to that particulgri) in Fig. 1 in the first step it is preferable to have
choice forAQ actually hold; to this end we reevaluate all the 5,(?()/9Q=0 atQ=Q.,; from Eq.(11) one immediately
criteria with the obvious exception of the one involving concludes that this is equivalent#(Q..) =0 whenever us-
AWy after the predictor and discard the step unless a slightlyhg the decoupling assumption. It is left to main part “an-
smaller step size, vizAQplid 4 (Phisca<1), passes the satz” to decide whethef.. should be determined in this
tests. If no step size can be found satisfying all the conway, thereby necessarily introducipgdependent.. when
straints, the calculation is terminated. dealing with ap-dependent potential.

While the above set of prescriptions for finding suitable
node locations has proved indispensable in understanding the
behavior of the PDE’s solution, the oscillatory nature of

f(Q.p) invariably linked to the buildup of the isothermal | the preceding sections we had to introduce a number of
comp_ressibility’s divergence.for §ubcritical temperatures prezpproximations, some of which may seem rather less justi-
vent its use for3>B;: considering even the modest value fieq; their respective importance for and bearing on our pro-
f~10°, ¢AQ would have to be smaller thame ! gram’s predictions of structure and thermodynamics of
~10"* which is obviously completely useless for any simple liquids now remains to be assessed. As an exact so-
practical implementation. Thus, even though it means losindution with which to compare numerical results is lacking,
control over the level of accuracy in the solution, we havefor HRT as implemented by our software package to be con-
also implemented a version of this main part with predetersidered a reliable tool well applicable to realistic physical
mined step sizes that just happen to often be sufficient fopotentials along the lines outlined so far it is necessary to
reachingQ=Q, even well below the critical temperature demonstrate the limited effects variations in the numerical
while reproducing the overflow necessary fef's diver-  recipe have and to compare the results obtained with those
gence in a density interval the edges of which may then bavailable by other means for certain potentials. For this con-
identified with the coexisting phases’ densitigs and p, . tribution we turn to the hard-core Yukawa fluid with
Recalling the behavior dfwherever it is large we obviously = 1.8/ for illustration, a system that has also been consid-
have to drastically reducAQ as we approack)y; for this  ered in a recent study@] comparing various thermodynami-
we use the very prescription introduced by the authors otally consistent approaches including HRT to short-ranged
Ref. [8] and evidently underlying all later published HRT potentials.
calculations. Among the approximations just mentioned, an important
One last aspect of this main part to be mentioned regardsne is the necessary truncation of Etfl) to a finite number
the choice ofQ., in both implementations: As the only rea- N.+1 of basis functionsu,, and expansion coefficients

IV. DISCUSSION AND CONCLUSION
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YQ, n=0,... Ng; in fact, not only musN be finite, it
should also be rather small if evaluation of the slowly con-

vergentZ(Q) integrals atQ = Q.. is not to dominate program
execution time. An obvious test for the minimum number of
basis functions to keep is to look at thg. dependence of
the phase behavior predicted as summarized in Table I,
where the inverse critical temperatysg, the critical density

pc, and the coexisting densities @t 0.9/e are recorded; the
latter temperature is sufficiently far away from the critical
point so that the differences j), andp, are not merely to be

B =09/

attributed to the differences iB. while maintaining suffi- J&;
cient separation of the binodal from the boundariep af, —_
=0 andp . (Se€e below. From this we find inclusion of the PRT

core condition to be of vital importance in determining the
fluid's phase behavior, while non-negligible variation of the
results remains even for the highdét-values considered;
however, the amount of variation especially@p drops sig-
nificantly as soon abl.. exceeds 5. The real test for the use
of the truncated Eq.11) and thead hocapproximation(12)
(easily demonstrated to be inadequate at least for certain po-
tentials [22]), is the pair distribution functiorg{?9(r) as
obtained from the final values of the expansion coefficients
751%) by performing the inverse Fourier transformation im- ,
plied by the Ornstein-Zernike equati@b). Employing the ¢ 01 02 03 04 05 06 07 08

ODEs following from the consistent application of the de- p0'3

coupling assumption in order to isolate the approximations

pertaining to the implementation of the core condition from  FIG. 2. Comparison of inverse compressibility of the hard-core
other effectgsee below, the g{?9)(r) so obtained generally Yukawa system wittz=1.8/s as obtained from the ODEs follow-
takes on rather large values for smallwhile remaining ing from the decoupling assumptio#@(p)=0 (thin lines and
within a few percent of the contact vallg§Q0)(a+) for from a PQE Nee=7) |ncon5|st§ptly applyln.g this ap.p.roxmatlon to
larger r up to o—; while increasingN,. usually does not the_ evqlutlon of the core condition expansion coefficiefff8 only
considerably reduce the magnitudeg.‘)‘PO)(r) for r close to (th'c.k line). In bo.th cases .the eq“a“g’”s have been So'Yed on an
0, it instead extends therange of rather smaly(Qo)(r) to equispaced density grid with,=0.1/", and the decoupling as-

. ] . o sumption also served as a boundary condition for the PDf,at
ever smallqrr. ('ét)h'gh density there is no substantial im- =1.0/0®. The critical temperature obtained from the PDE and used
provement ing™'(r, p), r <o(p), for Nec>5, nor forNe i the middle plot isg.=0.759 497(24)é.
>7 at low density, a finding corroborated by direct inspec-
tion of the final values of the expansion coefficien{g") culation due to its bearing on the phase behavior predicted;
[22]. Accordingly, N.. should probably be chosen no less this is somewhat at variance with earlier findirig$indicat-
than 7[corresponding to a sixth-order polynomial infor ~ ing only a modest influence of the core condition upon the
C(r) inside the corg whereasN =5 may still be suffi-  results, a finding expressly referred to in R6].
ciently accurate for some applications; fbi,<5, on the On the other hand, as pointed out already in Sec. I, re-
other hand, we cannot expect significantly better results thatfining the core condition is possible only when adopting the
those from consistently solving the PDE without implement-decoupling assumption, vizz(?(p) =0, an assumption that
ing the core conditioricf. Sec. 111 D), which, of course, runs itself suffices to decouple the PDE to a set of OID&hich is
much faster and at least does not rely on inconsistent apvhy we can use Y (p.)=0 as a boundary conditi¢nBut
proximations. But note that the core condition is always butf such a procedure is to be considered harmless, the results
poorly met, irrespective ofl.., wheneverf(Q,p) is large  of the consistent application of this approximation to the
(corresponding to the coexistence region or the criticaclosure(8) should not differ much from those of the PDE
point’s vicinity in implementations relying on a PDEOn  applying the decoupling assumption only in order to get rid
the other hand, when SOlVing the PDE without implementin%f the Second’i integra| in Eq(ll) However, the calcula-
the core condition at allg‘®)(r), r<o, can, of course, tions summarized in Fig. 2 clearly show that the two ap-
become arbitrarily large; e.g., fg8=0.7/c and p=0.9/0°>,  proaches yield very different resuits so that we cannot rule
9(?)(r)=—3.26 inside the core while the contact value isout a non-negligible effect on the structural and thermody-
9@ (g+)=+1.91. All in all, while systematic shortcom- namic properties predicted: Most importantly, the ODEs can-
ings in the pair distribution functiog(?0)(r) itself cannot be  not reproduce well-defined phase boundaries, and they even
avoided in an implementation relying on Eql) and(12)  vyield slightly negative inverse compressibility«%/in what
with finite N, we must keep the core condition in the cal- would otherwise be the coexistence region. Preserving the

O—=NWR VMOV OONWRh T JO0OOORRINDWEAE OO 00O
N [ T 7
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TABLE II. Inverse critical temperaturg.=1/kgT., coexisting densitiep, and p, at 3=0.9/¢, and
critical densityp. for a hard-core Yukawa potential with=1.8/0- as predicted by various combinations of
approximations and boundary conditionspat,=1/0°. Again, the results reported have been obtained from
PDEs retainingN..,; basis functions offirst line) not implementing the core condition at all with,
=102 and pya=1.0/c°.

Method N, Boundary condition Bee p,(B=0.9k)0® p(B=0.9/k)c® p.o°
No core condition Y (pmay=0  0.83157891) 0.1155) 0.5685  0.33020)
Decoupling 7 Y Qpma=0  0.75942991) 0.0555) 0.6755) 0.32515)
Decoupling 7 aQpna=0  0.75942991) 0.0555) 0.6755) 0.32515)

structure of the PDE, so that thermodynamic consistency ipears less pressing a concern than for other sysft#&js

at least partly implemented by the PDE'’s coefficietjs as In addition to the internal consistency of the results, we

defined in Eq.(Al), seems sufficient to remedy these defi-also have to make contact with data available by other

ciencies; at any rate, we have to accept the decoupling ageéans; as this paper’s purpose is presentation of our soft-

sumption as indispensable for the implementation of the cor#are and discussion of some general aspects of HRT rather

condition. than a comprehensive study of the hard-core Yukawa system,
Let us now turn to a brief discussion of several otherWe here restrict ourselves to the data of Table | of RRef.

aspects of HRT in its present formulation and the potentiafontaining the predictions of various thermodynamically

problems they may present: as most of these effects are muSff-consistent liquid state theories including HRT in the

more prominent for the square-well and multistep potential¥r9inal implementation, which are found to yi€ld ranging

defined in Sec. Il B, we relegate more thorough treatment t rom 1.19%/kg to 1.21%/kg (Bc=1keT, b_etween 0.826/

Refs.[12,22. Clearly, the importance of retaining the struc- and_%%s’ZSé)z, z/is Wi” as the MC trisul’fc— 1'2_|:_L2b(|2)5|/k3

ture of a PDE mandates closer examination of the propertielgg E)I_erﬁengatiz)ne’l. prZ dli?:tiiﬁga;ce)rn ﬁl\rlor; f ufra” apreecis’el(;/ ur

pf the set of.dgnsm_es, especially since t.he terms correspon ito this range and, fol e {34, are \7\(/:ell compatible with

ing to the finite difference approximation to the operator

S . 2 ) - simulation results; that very sam.. range, on the other
(9°/9p7) have been found the primary limiting factor for the hand, we have seen is characterized by gross violation of the

quality of the numerical solutiotcf. the definition ofe, in ¢5ra condition due to an insufficient number of basis func-
Sec. Il1B); while obvious for subcritical temperatures at low {ions retained in the truncated E€L1). As we further in-

Q where the near discontinuity dfat the phase boundary creaseN,. so that the core condition is obeyed to a certain
betrays the smoothness assumptions underlying finite diffefextent, howevers, drops dramatically to values far outside
ence schemes, this is true even for rather si@,p). For  the range quoted in Refl9]; while the trend of increasing,

our hard-core Yukawa system, however, the results’ stabilityevident forN..=7 indicates that HRT might match the MC
with respect to a variation of the density grid or the locationpredictions forN..~ 15, we have not performed these CPU
and nature of the high-density boundaigf. Table 1) is  intensive calculations.

rather satisfactory as long as,.,,—p exceeds severalp: With this we conclude our superficial sketch of the soft-
just as expected from Fig. 2, the ODE used at the boundaryware we have written and the appraisal of the results it typi-
forces the corresponding density to lie outside the coexisteally produces as illustrated for the hard-core Yukawa poten-
ence region, which carries over to nearby densities by virtuéial v"® with z=1.8/o" it should be apparent that HRT in its
of the PDE’s discretization. Despite the identical phase becurrent formulation, while presenting substantial difficulties
havior found for different boundary conditions as evidenceddiscussed here as well as in Rdfs2,22, is well capable of

by Table Il, the question of which condition to impose at predicting structura_l and thermodynamlc properties of sw_nple

LOGA/ORPA conditionng)zo at p ey Without making use difficulties mentioned and the approximations introduced to
of decoupling at all, inspection of the solution generate ender the numerics tractable cannot always be shown to be

close top,, clearly shows the need to replace the original armless so that great care has to be exercised in the inter-

implementation’s approach by an ansatz less inconsisterretation of isolate(_ll results. The fuIIy_ r_n_odular design of our
Similarly, the stifiness of the PDE for subcritical tempera-Program and the high degree of flexibility brought about by

tures shortly touched upon in Sec. Il is easily detected b);he adoption of a metalgngque gnd COd.e. construction tech-
employing the criteria discussed in Sec. Il E; still, fgiy ~ Niques are key factors in facilitating additional evaluations,
with z=1.8/ and N.=7, using predetermined step sizes providing a means of separating different approximations’

and resigning on any control of the predictor-correctoreﬁeCtS; at the same time, our implementation makes for a

scheme’s convergence we obtain an approximate solution glersatile tool for the systematic exploration of HRT for one-

Q, sufficiently stable outside the coexistence region; thus,component fluids in its present or alternative formulations.
while the solution generated in the region of lafy&,p)

necessarily differs from the true solution in a fundamental
way, the influence of which on the data produced outside the A.R. thanks G. Stel[Stony Brook, NYf and G. Pastore

coexistence region is not assessed easily, stiffness here g@rieste for stimulating discussions, as well as D. Pinow
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APPENDIX A: REFORMULATION IN NOT-QUITE IQ \ed® (K?%p) Ip° an?ed?
QUASILINEAR FORM -
x4 Q%% g 9G6° &2
As noted in Sec. I, it is advantageous to replace the - —— —, (A1)
highly nonlinear PDE in the modified free energf® im- op° AmPed?  IQ e?
plied by Egs.(6), (7), and the core condition, with a formu-
lation akin to a quasilinear one. In complete analogy to Ref. My Q%?
[8], we define the auxiliary functioh(Q,p) via dopg=—— oy
p e
~ ~ Q%e?
#(Q,p) ~ #(Q,p) doo=— :
In| 1= =] =f(Q.p)TUHQ.p) ~ — ———; T aned
cQ.p) K(Q.p) e

When evaluating these expressions care has to be taken
whenever$(Q,p) is close to zero as all terms of orders

in the ideal gas limit, i.e., fop—0, we immediately find ~2 ~ )
1/6°(Q,p) and 16(Q,p) must cancel; noting that

from the divergence of the terms1/p in c§' andC@ that 2_,<"L% AT o ~(0)
£(Q,0)=0f(Q,0)/dp=0, which is a convenient boundary (8°®0o/e#”)—[¢g/(K*)"¢], the coefficient ofdk*</dQ

condition most implementations rely on. In the above definiN doo, can be written in terms of thei(/ /Q)-coefficient,
tion we have taken advantage of some freedom regarding tH8 Our numerical work the calculation of the terms affected
f term to reduce the number of floating-point multiplications; by the cancellation for smath(Q,p) proceeds via applica-
asup is usually chosen to be strictly proportional¢gourf  tion of a fifth-order Taylor expansion of?ﬁ@/k(‘?)?ﬁz)
differs only by a constant factor from the choice of Ré] — (K 95292/ 9% —(2/9); one should note that, even

which can be recovered by replacing the fadi@Q.p) bY  though the criterion for switching between the full analytic
$2(Q,p); note, however, that the expressions we give her@xpressions and said expansion depends.grthe order of
remain valid for a slightly more general choicewqf, allow-  this expansior(and a similar one foE/¢) is not increased
ing the proportionality of the basis function and the pertur-for very small values ok, which is one of the few hard-
bational part of the potential to hold only up to or&ﬁ%—a coded limitations of our program.
freedom that might be exploited to use more appropriate ba- From the given expressions for tlig; two more aspects
sis functions, giving?(?) a larger range im space. Also we are obvious(i) there is substantial further simplification for
should point out that the condition of nonsingular coeffi-a p-independent potentidlas u, depends upon the density
cients in the PDE14), the very reason for the restriction on only through the perturbational pagt of the potential, and
the relation between, and ¢ just mentioned as well as for the basis functions enteringf® only through the reference
the introduction of the term involving//K(?, only fixes a  System’s hard-core radius(p)], and (i) the PDE does not
minimum exponent for th@, factor with which to multiply ~ fall into the class of quasilinear PDEs due to the presence of
f[22]. the secong derivative ofx,, in the coefficientdy,.

Inserting the above definition fdrinto the relevant equa-
tions of Sec. Il and eliminating the expansion coefficient ~APPENDIX B: BASIS FUNCTIONS FOR THE CORE
ng) via the consistency conditiof¥), we can easily recast CONDITION
the original PDE in the form of Eq14). Dropping the ob-

vious arguments and with the shorthand notations While the basis functiomo(r,p)=w(r,p) in the closure

(8) is fixed by the potential used, in principle there is ample
freedom in choosing the,(r), n=1. Of course, when trun-
~ cating Eq.(11) after 1+ N, basis functions it is natural to
e=1— _i:efig+x¢, T=s—1, ask for the se{ul(r),...,uNCC(r)} to span the space of poly-
cQ nomials or order up tt..— 1, so thatu,(r) will generally be
a polynomial or orden—1 in r; but whereas different poly-
nomials of this type do not alter the function space, their
X¢=—775//~C(Q). Po=0(0p), Go=G(0,), choice has implications for the numerical properties of the
matrix equations implementing the core condition as well as,

to a certain extent, for the convergence of fﬁmtegrals to
the coefficients of Eq(14) can be written a§22] be evaluated &= Q.. (cf. Sec. Il D). Other than the origi-
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nal implementation that relied on an affine transformation ofan expression used fark>n only for numerical reasons.
the Legendre polynomials, we found it convenient to choosd-or smallerk we rely on the expansion

u,(r,p) simply proportional to a power af and normalized
to T,(0,0)=1. Thus, dropping the obvious argumentwe
have

- (—1))

< (N+2j+2)(2j+1)! (ak)?,

TUp(k)=(n+2),
n+2 )

3

up(r)=4 4mo’\o

r\n-1
—) , <o,

0, r>o, truncating the series aftét, terms, where\,, is the smallest
number such that
the Fourier transform of which is

T (K) n+2 | nw n+2 n2Nnt2 (U]
u = ——75| N! COS—/— < n
T (ok)"2 2 n+2N+4 (2N, +3)1 - #Pn,
PO s( ket 7
- - a COoS§ o - | . . . .
=o (n—=j)! 2 with a customization factop[N”“] of order unity.
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