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Implementation of the hierarchical reference theory for simple one-component fluids

Albert Reiner* and Gerhard Kahl
Institut für Theoretische Physik and CMS, Technische Universita¨t Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

~Received 27 September 2001; published 3 April 2002!

Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and
thermodynamics, the hierarchical reference theory is known to be successful even in the vicinity of the critical
point and for subcritical temperatures. We present here a software package independent of earlier programs for
the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair
potentials, restricting ourselves to hard-sphere reference systems. Using the hard-core Yukawa potential with
z51.8/s for illustration, we discuss our implementation and the results it yields, paying special attention to the
core condition and emphasizing the decoupling assumption’s role.
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I. INTRODUCTION

The hierarchical reference theory of fluids~HRT! pio-
neered by Parola and Reatto@1–6# has been found well ca
pable @7–11# of describing structural and thermodynam
properties of fluids even in the vicinity of the critical poin
and for subcritical temperatures, yielding rigorously flat is
therms in the coexistence region~thus eliminating the need
for Maxwell constructions! and nonclassical values for th
critical exponents@2#. Still, adoption by a significant part o
the liquid-physics community of this renormalization gro
~RG! theoretical approach to the integral equation desc
tion of fluids has largely been lacking so far. While this m
be partially attributed to HRT’s inherent difficulties an
rather high computational cost, lack of an easy to use
flexible well-documented implementation of HRT may al
have played a role. To fill this gap, we have written
program1 suited as a general framework for the explorati
and application of HRT to simple one-component fluids w
hard-sphere reference systems with various combination
physical systems, approximations, and solution algorith
Within the natural limitations of the method, it has prov
well applicable to a variety of model systems including t
hard-core Yukawa~present contribution! and hard-core mul-
tistep potentials while most attention has been devoted to
square-well fluid@12#.

Of course, ours is not the first implementation of HRT f
simple one-component fluids: indeed, there has been a s
of earlier programs@5–7# by the authors of the theory an
their collaborators, but it was the one used in Refs.@8,9#,
henceforth referred to as the ‘‘original’’ implementation, th
was a vital step in demonstrating the viability of HRT f
continuous systems below the critical temperature; tho
never published or formally released, it has been circula
among interested physicists for quite some time. Our n
software on the other hand, differs from its precursors
many respects: adoption of a metalanguage in our vers
programing style and documentation-to-code ratio may

*Email address: areiner@tph.tuwien.ac.at
1Available on the World Wide Web from http://purl.oclc.org/NET
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most obvious, number and nature of hard-coded limitatio
important details of the numerical procedure and a poss
speed gain through generation of customized code migh
less apparent. Most importantly, though, the original imp
mentation’s structure makes experimentation with differ
combinations of approximations, partial differential equati
~PDE! solving algorithms, parameter settings, and physi
potentials rather cumbersome; in contrast, the fully modu
approach adoption of a metalanguage allowed us to t
what seems far better suited to a more general survey
HRT’s numerous attractive features. In addition to the n
essary flexibility of our software, great care has been take
ensure the numerical soundness of every step in the calc
tion and hence of the results produced, so that the genera
of numerical errors necessarily arising from finite-precisi
arithmetic is uniformly spread over all of the problem’s d
main. To this end we introduce one central parameter,e# ,
characterizing the maximum relative error introduced at a
step; together with a number of criteria relying one# , this
parameter governs virtually all of the numerics. Any dev
tion from this strategy is made explicit, as are all the oth
approximations entering the calculation. Ultimately, our go
was to provide the liquid-physics community with a gene
and versatile yet numerically reliable tool for the systema
exploration and assessment of HRT and of the effects in
duced by different approximations.

This paper is meant to serve a twofold purpose: to pres
the software we have written and its capabilities, and to p
vide its prospective users with some rudimentary docum
tation. To this end, after a brief presentation of the stand
formulation of HRT for one-component fluids and some
the theory’s properties as far as they concern our implem
tation~Sec. II!, we first give a general outline of our progra
in Sec. III, only touching upon the metalanguage it has b
written in. Due to our implementation’s fully modular desig
it is only natural to then proceed by a discussion of the m
important of its building blocks and the various approxim
tions they implement~Secs. III B–III E!. Presentation and
critical assessment of the kind of results that can be atta
with these and concluding remarks~Sec. IV! are followed by
two appendixes dealing with some technical aspects of
formulation used.
©2002 The American Physical Society01-1
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II. THE THEORY

While a much more detailed account with additional r
erences can be found in Ref.@1#, in what follows we want to
limit ourselves to only a rough sketch of HRT; in doing
we are going to stress several aspects—some of them h
discussed in the literature—relevant to our implementat
of HRT, but only to the extent necessary for the discuss
thereof. No prior knowledge of HRT is assumed.

The basic ingredient of HRT, already present in its p
cursor@13#, is the gradual transition from a reference pote
tial v ref(r ) to the full potentialv(r )5v ref(r )1w(r ) describ-
ing the interaction between pairs of particles of a fluid, w
any one of the intermediate potentials serving as a refere
system with respect to which the properties of a succe
potential are calculated~superscripts always indicate the sy
tem a quantity refers to!. In our work we have restricted
ourselves to the case of a spherically symmetric pure t
body interaction, and we have taken advantage of the a
tional simplifications possible by identifying the referen
system with a pure hard-sphere system,v ref5vhs, as can al-
ways be achieved via the well-known Weeks-Chand
Andersen scheme@14–16#. Note however that this restrictio
to a hard-sphere reference system is not present in the o
nal implementation of HRT@1,10,11#; on the other hand, ou
program’s fully modular framework is flexible enough to a
commodate any of these extensions should the need ari

Other than Ref.@13#, HRT achieves the transition from
v ref to v in infinitesimally small steps. Inspired b
momentum-space renormalization group theory, a cu
wave numberQ varying from infinity to zero is introduced
and for everyQ the potentialv (Q)5v ref1w(Q) is defined
such that Fourier componentsk,Q of the perturbational par
w(Q) of theQ potentialv (Q) are strongly suppressed where
those fork.Q coincide with those of the original potentia
w. Consequently, the reference system and the fully inter
ing system are recovered in the limitsQ→` and Q→0,
respectively,

v ~`!5v ref,

v ~0!5v. ~1!

The role of theQ potential just introduced becomes cle
when we consider a functional expansion inw̃(Q) of thermo-
dynamic and structural properties of the system with p
interactionv (Q) ~a tilde always denotes the Fourier tran
form!: asw̃(Q)(k,Q) is small, the integrals in the expansio
are effectively truncated fork,Q, in keeping with the RG
picture.

In principle, the precise manner in which the potential
cut off should not matter, and one can easily conceive
many different ways of doing so. On the other hand, for su
a procedure to be usable it must not introduce instabili
when truncating the HRT hierarchy, which is usually done
the two-particle level. Apart from approaches valid only f
special types of potentials, we are aware of only two cu
procedures suitable at least for attractive potentials~the stan-
dard formulation of HRT can easily be shown to beco
unstable forw̃(0).0, as implicitly stated already in Re
04670
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@1#!; in our work we opted for the prescription presented
Ref. @1#, which seems to have been used almost exclusiv
so far @3,6,8,9,17# rather than the smooth cutoff formulatio
of Ref. @5#, the latter being numerically cumbersome a
predicting nonuniversal critical exponents. Thus we defi
the Q potentialv (Q)5v ref1w(Q) by

w̃~Q!~k!5H w̃~k!, k.Q,

0, k,Q;
~2!

in r space,w(Q) differs from w by the addition of a convo-
lution integral, viz.,

w~Q!~r !5w~r !2
1

pr E0

`S sinQ~r 82r !

r 82r

2
sinQ~r 81r !

r 81r D r 8w~r 8!dr8.

Obviously thisQ potential is a rather artificial function inr
space hardly resembling the full potential except in the lim
of Eq. ~1!; furthermore, the range inr space over whichv (Q)

has to be considered is bound to be much larger than tha
the original potential—a property immediately carrying ov
to related quantities, the direct correlation functions in p
ticular. As an immediate consequence, numerical Fou
transformations involving theQ potential or any of the cor-
relation functions for theQ system are computationally ex
pensive and must be treated with extreme care; in fact, t
should be avoided if possible at all, with obvious reperc
sions for the implementation of the core condition~r!.

In the transition fromv ref to v or, equivalently, fromQ
5` to Q50, HRT treats theQ system as reference for th
properties of the system with infinitesimally lower cutoffQ
2dQ; resummation of terms in the resulting expansions
dQ and identification of quantities with a well-defined lim
for Q→0 finally yields the HRT equations@1,3#: for every
densityr there is a formally exact hierarchy of coupled i
tegrodifferential equations involving a suitably modified fr
energyA(Q) defined as

bA~Q!

V
5

bA~Q!

V
2

r2

2
@f̃~0!2f̃~Q!~0!#

1
r

2
@f~0!2f~Q!~0!#, ~3!

~f52bw, b51/kBT; analogously, f (Q)52bw(Q)!, a
modified two-particle direct correlation function

2C~Q!~r !5c2
~Q!~r !1f~r !2f~Q!~r !, ~4!

and all higher-order correlation functionscn
(Q)(r ), n.2. The

additional terms introduced inA(Q) andC(Q) explicitly take
into account a discontinuity atQ50 present in the unmodi
fied free energyA(Q) and direct pair correlation function
c2

(Q) ; as is apparent from Eqs.~2!–~4!, modified and un-
modified quantities coincide forQ50. Furthermore it should
be noted that it is customary to include the ideal gas term
1-2
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IMPLEMENTATION OF THE HIERARCHICAL . . . PHYSICAL REVIEW E 65 046701
the definition of thecn
(Q) : for the two-particle case this is a

additional term of2d(rW)/r so that the Ornstein-Zernike@18#
equation takes the form

c̃252~1/r!2rh̃c̃2 , ~5!

whereh(r ) is the usual two-particle total correlation fun
tion; for the higher-order correlation functions cf. Ref.@1#.

The full hierarchy the derivation of which we just touche
upon yields expressions for the total derivatives with resp
to Q for C(Q) and all thecn

(Q) , n.2; for the evolution of
A(Q) we have the particularly simple relation

d

dQ
S bA~Q!

V
D 5

Q2

4p2
lnS 12

f̃~Q!

C̃~Q!~Q!
D . ~6!

As dcn
(Q)/dQ, n>2, involvesA(Q), C(Q) and all higher-order

correlation functions up tocn12
(Q) @so that, in particular,

dC(Q)/dQ depends onc3
(Q) and c4

(Q) via Eq. ~4!#, the equa-
tions never decouple and we have to introduce some kin
closure. In doing so, it is usually desirable to retain therm
dynamic consistency as embodied in the sum rule

C̃~Q!~0!52
]2

]r2 S bA~Q!

V D , ~7!

rigorously true for the exact solution of the full hierarch
the derivatives with respect tor present in Eq.~7! then man-
date the transition from equations at fixedr to a PDE in the
(Q,r) plane with boundary conditions supplied at two de
sities,rmin andrmax. In addition, we need to retain the co
condition, viz.g(r )50 for r ,s whereg(r )5h(r )11 is the
pair distribution function; indeed it is one of HRT’s ma
advantages to conserve information on all length sca
ranging from the hard-sphere diameters~r! of the reference
system at densityr and the associated core condition up
the cutoff wavelength 1/Q, in the limit Q→0 allowing criti-
cality to arise from fluctuations of arbitrarily large wav
length.

As noted above, the long-ranged nature ofw(Q) and the
correlation functions due to the cutting off of Eq.~2! is a
strong argument in favor of any closure allowing an appro
mate implementation of the core condition without the ne
for costly Fourier transforms. This is a likely reason for t
up to now seemingly exclusive use of a closure in the sp
of the lowest-orderg-ordered approximation~LOGA, Refs.
@19,20#! or the equivalentoptimized random-phase approx
mation~ORPA, Ref.@21#! despite this closure’s known defi
ciencies@7,9#: with the argumentr silently to be added in
earlier equations when used within the context of the PD
we make the ansatz
04670
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C̃~Q!~k,r!5f̃~k,r!1g0
~Q!~r!ũ0~k,r!1K̃~Q!~k,r!,

K̃~Q!~k,r!5G̃~Q!~k,r!1 c̃2
ref~k,r!, ~8!

G̃~Q!~k,r!5 (
n51

`

gn
~Q!~r!ũn~k,r!,

thereby introducing a set ofQ-independent basis function
un and corresponding expansion coefficientsgn

(Q) . Here,
u0(r ,r) is chosen proportional tow(r ,r) @which has the
undesirable effect that, from Eqs.~8! and~4!, the correlation
functionc2

(Q) of theQ system depends upon the full potenti
w rather thanw(Q), as would be appropriate# and normalized
so thatũ0(0,r)51; un(r ,r), n>1, on the other hand, ar
taken to form a basis for a suitable function space o
@0,s~r!#. With these provisions, the problem of implementin
both core condition and thermodynamic consistency redu
to that of an appropriate choice of the expansion coefficie
gn

(Q)(r), n>0, for every point in the (Q,r) plane. With the
shorthand notations

a~Q!~r!5
]3

]Q]r2 S bA~Q!

V D
and, for an arbitrary functionc(k,r),

Î~Q!@c~k,r!,r#5E
R3

d3k

~2p!3

c~k,r!

@ c̃2
~Q!~k,r!#2 , ~9!

the condition~7! for thermodynamic consistency is easi
rewritten as

]g0
~Q!~r!

]Q
52a~Q!~r!2 (

n51

` ]gn
~Q!~r!

]Q
ũn~0,r!, ~10!

and following Ref.@6# the core condition can be shown to b
equivalent to

(
n50

`

Î~Q!@ ũ j~k,r!ũn~k,r!,r#
]gn

~Q!~r!

]Q

5
Q2

2p2

f̃~Q,r!ũ j~Q,r!

C̃~Q!~Q,r!@ C̃~Q!~Q,r!2f̃~Q,r!#
, j >1.

The latter can be combined with Eq.~10! to yield the more
explicit

(
n51

`

Î~Q!@ ũ j~k,r!~ ũn~k,r!2ũ0~k,r!ũn~0,r!!,r#
]gn

~Q!~r!

]Q

5a~Q!~r!Î~Q!@ ũ j~k,r!ũ0~k,r!,r#

1
Q2

2p2

f̃~Q,r!ũ j~Q,r!

C̃~Q!~Q,r!@ C̃~Q!~Q,r!2f̃~Q,r!#
, j >1,

~11!
1-3
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ALBERT REINER AND GERHARD KAHL PHYSICAL REVIEW E65 046701
As both the sum rule and the core condition must hold
the reference system, the above evolution equations for
gn

(Q) are readily supplemented with the initial conditio
gn

ref50, n>0.
As Eq.~11! stands, it is no more amenable to direct imp

mentation than the previous formulation; not only must t
infinite-dimensional matrix equation be truncated to a fin
number 11Ncc of basis functions, but even then the resu
ing integrals need to be evaluated at everyQ and r—a te-
dious process no less demanding than the Fourier tran
mations this approach is meant to replace. What makes
closure manageable, however, is the observation that the
continuity in Î(Q)’s integrand due to the appearance ofc̃2

(Q)

instead of the continuousC̃(Q) leads to a term in
]Î(Q)@c(k,r),r#/]Q made up of functions evaluated
k5Q alone; following Ref.@6#, only this single term is re-
tained, leading to the approximation

]

]Q
Î~Q!@c~k,r!,r#

5c~Q,r!
Q2

2p2

2C̃~Q!~Q,r!f̃~Q,r!2@f̃~Q,r!#2

@ C̃~Q!~Q,r!#2@ C̃~Q!~Q,r!2f̃~Q,r!#2
,

~12!

leaving out the nonlocal contribution22(n50
` Î(Q)@c(k,r)

ũn(k,r)/ c̃2
(Q)(k,r),r#@]gn

(Q)(r)/]Q#; with the above ap-
proximation, the task of evaluating one of the integrals
Eq. ~11! reduces to only an initial integration for the refe
ence system followed by the solution of an ordinary diffe
ential equation~ODE! coupled to the HRT-PDE as well a

analogous ODEs for all the other integrals of theÎ type.
Of course, to fully specify the mathematical problem, t

PDE must be amended by both initial and boundary con
tions; while the former take the simple form of vanishin
expansion coefficients~see above!, the latter also impose
some constraint on thegn

(Q) . However, as long as we retai
the core condition, such an additional constraint is alre
sufficient to determine the expansion coefficientg0

(Q) ; unless
the g0

(Q) so found exactly reproduces Eq.~10!, thermody-
namic consistency can no longer be imposed without in
ducing mathematical inconsistencies. By the same token,
~11!, derived by incorporating the sum rule~7! into the core
condition, is no longer valid but must be changed to

(
n51

`

Î~Q!@ ũ j~k,r!ũn~k,r!,r#
]gn

~Q!~r!

]Q

52Î~Q!@ ũ j~k,r!ũ0~k,r!,r#
]g0

~Q!~r!

]Q

1
Q2

2p2

f̃~Q,r!ũ j~Q,r!

C̃~Q!~Q,r!@ C̃~Q!~Q,r!2f̃~Q,r!#
, j >1

~13!
04670
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to reflect the transition from Eq.~7! to said constraint deter
mining the g0

(Q) appearing on the above equation’s righ
hand side; furthermore, elimination of thermodynamic co
sistency obviously means decoupling the PDE to a se
ODEs at fixed density. This is exactly what is needed at
boundariesrmin and rmax of the density interval considere
where ther derivatives defininga (Q)(r) cannot be evalu-
ated. While specialization tormin50 uniquely determines the
solution there by virtue of the divergence of the ideal g
term 21/r in c̃2

ref ~cf. Appendix A!, some prescription for
finding g0

(Q) , accompanied by the necessary modification
the truncated matrix equation according to Eq.~13!, must be
imposed atrmax; as long as we retain Eq.~11! in the PDE’s
domain’s interior and numerically evaluatea (Q)(r) there, it
is natural to use the LOGA/ORPA conditiong0

(Q)(rmax)50
@8# at the boundary, which is sufficient to also determi
]A(Q)(rmax)/]Q @or, equivalently, AppendixA’s f (Q,rmax)#
from thegn

(Q)(rmax), n>1, alone.
Unfortunately, it turns out that a scheme retaini

a (Q)(r) in Eq. ~11! for rmin,r,rmax presents significan
numerical problems for all but extremely high temperatur
precluding reachingQ5Q0 at least for the potentials that w
have looked at. This is where the so-called ‘‘decoupling
sumption’’ comes into play: based upon the different rang
of u0(r ) andun(r ), n>1, the authors of Ref.@6# argue that
a (Q)(r)50 might be a good approximation, thus eliminatin

the Î integral on the right-hand side of Eq.~11!; it turns out
that this change, invariably adopted in all later publicatio
is often sufficient to allow generating a solution all the w
to Q5Q0 . From our previous discussion of conditions im
posed on thegn

(Q) it should be obvious that this decouplin
assumption is incompatible not only with the LOGA/ORP
conditiong0

(Q)(r)50 retained in the original implementatio
for r5rmax but also with thermodynamic consistency@Eq.
~7!# altogether; thus we are left with only a few possibilitie
we may either retain logical consistency by using the dec
pling assumptiona (Q)(r)50 as a closure for the HRT equa
tions, reducing the PDE to a set of ODEs inQ only; or we
may prefer to retain the structure of a PDE so as to make
of thermodynamic consistency at least to a certain deg
yet another possibility is to maintain both mathematical a
thermodynamic consistency by not implementing the c
condition at all. The original implementation’s approach r
lying on three mutually incompatible concepts, viz. t
LOGA/ORPA condition atrmax, decoupling, and the com
pressibility sum rule, seems particularly unattractive; at le
one should use the decoupling assumption as a boun
condition at high density instead.

Retaining thermodynamic consistency in the form of E
~10! as well as, in an approximate way, the core condition
the truncated Eqs.~11! or ~13! together with the approxima
tion ~12!, we thus arrive at a set of equations implementi
HRT with the LOGA/ORPA-like closure~8! on the two-
particle level well suited for numerical processing. Wh
these expressions lend themselves to discretization i
straightforward way, it is computationally much more conv
nient to cast the PDE in a form superficially resembling
1-4
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IMPLEMENTATION OF THE HIERARCHICAL . . . PHYSICAL REVIEW E 65 046701
quasilinear one@8# so that an implicit finite-difference
scheme requires only the inversion of a tridiagonal mat
The rewriting we adopted—detailed in Appendix A, ve
similar to the one of Ref.@8#—results in the introduction o
an auxiliary functionf (Q,r) so that the PDE implied by
Eqs.~6! and ~7! can be written in the form

]

]Q
f ~Q,r!5d00@ f ,Q,r#1d01@ f ,Q,r#

]

]r
f ~Q,r!

1d02@ f ,Q,r#
]2

]r2 f ~Q,r!. ~14!

Now it is easy to demonstrate the PDE’s stiffness for s
critical temperatures: recalling the definitions of Appendix
we find that the inverse isothermal compressibility
kT of the system with potentialv can be written as 1
kT52r2w̃(0,r)/ «̄(0,r), where «̄(Q,r)115«(Q,r)
}exp@f(Q,r)ũ0

2(Q,r)#. For subcritical temperatures there is
density interval@rv ,r l # where 1/kT50 ~implying diverging
«̄ and hencef !; here, rv and r l are the densities of the
coexisting vapor and liquid, respectively~recall that HRT
yields rigorously flat isotherms within the coexistence
gion, with binodal and spinodal coinciding in three dime
sions @4#!. By construction, however, the limitQ→0 is a
continuous one@cf. Eqs.~3! and ~4!# so thatf, « and related
quantities must be large already well beforeQ50 is reached;
at the same time, the RG mechanism introduced by the d
nition of w(Q) via Eq. ~2! precludes any divergence at no
vanishing Q. Considering the region of the (Q,r) plane
where f and « are large, we easily find from the explic
expressions of Appendix A that thed0i , and hence
] f (Q,r)/]Q, are of order«1; restricting ourselves to a spe
cific density r and sufficiently smallQ @so that ū0(Q,r)
51; extension of the argument to a largerQ range is cum-
bersome but straightforward# we can write

d f~Q,r!

dQ
5ef ~Q,r!d0~Q!,

whered0 is now of order unity. Inspection of the solution o
this ODE immediately shows that the average ofd0(Q) over
the interval @Q1 ,Q2#, 0,Q1,Q2 , is rigorously bounded
from above by exp@2f(Q2,r)#/(Q22Q1) or else there were a
singularity in thatQ interval; translating back tof we see
that, while u] f (Q,r)/]Qu is still of order «, f must be a
rapidly oscillating function ofQ ~with a period of order
«21!, the average slope of which is much smaller, viz.,
order 1/Q.

It should be noted that this stiffness is not an artifact
the reformulation of the PDE as summarized in Appendix
but is manifest just the same when directly solving the P
for the modified free energyA(Q)(r) rather than that for the
auxiliary f (Q,r) @22#. The above argument relies only o
some general properties of HRT in the current formulation
applied to one-component fluids: the divergence of the
thermal compressibility in the coexistence region~the repro-
duction of which is one of HRT’s main achievements!, con-
tinuity of the limit Q→0, and the suppression of divergenc
04670
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for Q.0 as a result of the RG mechanism implemented
the truncated potentialv (Q). The essential additional ingred
ent, viz., the behavior of the ratio of theQ derivatives and
the r derivatives as the divergence in the compressibi
builds up, while obvious in the formulation viaf, is not easily
seen in terms ofA(Q)(r); this, however, comes as no su
prise sincef is essentially the free energy’s derivative wi
respect toQ so that we would have to reason about third- a
second-order derivatives rather than first- and second-o
ones if we were to repeat the arguments without resorting
the rewriting of Appendix A.

III. OVERVIEW OF THE PROGRAM

With the theory and approximations outlined in the pr
ceding section, we are now in a position to undertake
task of implementing HRT for one-component fluids in ful
standards conformingFORTRAN-90; the only nonstandard fea
ture we make use of is the availability of the special valu
NaN and6Inf for numerically undefined values and signe
overflows, respectively, as defined in the floating-point st
dard IEEE 754. These requirements should not pose a se
restriction for our program’s possible users: after a
FORTRAN-90compilers have been available for a wide ran
of platforms for several years, and the desired floating-po
behavior can usually be requested—albeit at a small per
mance penalty—via compiler switches. While our impl
mentation is more appropriately described as a collection
mutually compatible building blocks rather than as a mon
lithic program so that the details of the numerical proced
are best left to these parts, for the combination of differ
selections to work all versions of all the modular constitue
must adhere to a common model of the computation.

Most obviously, we have to make the transition from t
PDE’s domain, viz., the infinite strip@0,̀ )3@rmin ,rmax#, to a
discrete mesh defined by a finite number of points in
(Q,r) plane. Evidently, the placement of these ‘‘nodes,’’
we shall call them, is of utmost importance for the quality
the discretization so that it is only natural to definee# , the
central parameter governing all of the numerics, in terms
the properties of this mesh: the coarser a mesh we chose
largere# will be. In principle, the locations of the nodes, th
data structures of which are organized in linked lists, can
chosen freely; in particular, the cutoffsQ of all the systems
in such a list of nodes are not taken to necessarily coinc
even though this is usually the case except for a low-den
boundary atr50. As for the densities of the nodes, impl
mentation of the core condition via the truncated Eq.~11!
and Eq.~12! makes anything but constant~though not nec-
essarily equispaced! density values impractical; if the grid i
to be refined for lowQ, additional nodes must be inserted
the same densities in all the node lists in the calculati
After initialization of the nodes’ data structures, solution
the PDE proceeds by applying a~possibly iterated! predictor-
corrector scheme to generate an approximate solution for
nodes most advanced towardsQ50 from the information
available through the node lists at higherQ; in the interest of
the code’s simplicity, the number of such node lists has b
1-5
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ALBERT REINER AND GERHARD KAHL PHYSICAL REVIEW E65 046701
fixed to exactly three, thus facilitating determination of a
propriate step sizesDQ.

As mentioned before, the goals set for our implementat
of HRT necessitate a fully modular architecture of our p
gram; and while we did not want to forgo the well-know
advantages ofFORTRAN-90 for the numerical work, experi-
ence with prior versions of our code taught us that the k
of flexibility we need cannot be accommodated within t
rather rigid frameworkFORTRAN-90’s modules with their one-
way flow of information provide. Instead we opted for
simple metalanguage2 for self-configuring construction o
code customized to the chosen combination of approxi
tions and the physical system at hand, at the same time
hancing readability and maintainability of the source and
couraging modularization; for a more detailed discussion
this approach and the numerous technical advantages
fords we refer the reader to Ref.@22#.

A. Main parts

Our software can best be understood as a collection
mutually compatible and freely exchangeable buildi
blocks corresponding to the underlying physical and ma
ematical notions; the resulting natural organization of
code cleanly separating conceptually unrelated approxi
tions is a direct consequence of our adoption of a meta
guage and the use of automatic code generation techniq
The implementation’s modular constituents, hencefo
dubbed ‘‘main parts,’’ must, however, be clearly disti
guished fromFORTRAN-90’s modules: in general, there is n
simple mapping from main parts to modules, and every m
part may give rise to any number of modules, incorporat
all the information available within the code base.

In the following subsections we take a closer look at so
of the main parts, their physical meaning, the algorithms
approximations implemented, and at some of the informa
they make available to the other parts; we will, howev
exclude from this discussion the program’s infrastructu
e.g., the implementation of logging, of reading and pars
of options files, handling of node lists and the definition o
versatile, lossless, and storage-efficient albeit platform
pendent file format for the results atQ5Q0 . In a similar
vein, we only mention the assortment of accompanying to
for reading these files and dumping their content in hum
readable orMATHEMATICA -usable form, for locating the criti-
cal point or calculating phase diagrams. Thus only main p
‘‘potential,’’ ‘‘reference,’’ ‘‘ansatz,’’ and ‘‘solver’’ remain to
be discussed.

B. Properties of the potential

First and foremost, we obviously have to provide info
mation on the fluid’s potentialv5v ref1w and its properties:
this is the purpose of the main part labeled ‘‘potential.’’ Ju
as the full potential is a sum of a reference partv ref and a
perturbational partw, the functions and parameters to be pr

2Available on the World Wide Web from http://purl.oclc.org/NET
arfg/
04670
-

n
-

d

a-
n-
-
f

af-

of

-
e
a-
n-
es.
h

in
g

e
d
n
,
,
g

e-

ls
-

ts

t

-

vided by this main part fall into two distinct categories, pe
taining to eitherv ref or w; in addition, as the temperatur
enters the calculation only as a prefactor tow, viz., via f
52bw, the inverse temperatureb is also defined here.

As far as the reference system is concerned, restrictio
hard spheres~for the rationale cf. Sec. II! means that only a
function returning the hard-sphere diameters~r! and a flag
indicating any deviation ofs~r! from the unit of length need
to be made available. A similar parameter pertaining to
perturbational partw of the potential, viz., a flag indicating
any density dependence ofw, also plays an important role in
many parts of the program as substantial simplifications a
in many cases, significant speedups by caching previous
sults are possible wheneverf̃(Q,r) only depends onQ. In
addition, at every cutoffQ the program must have access
the Fourier transformsw̃(Q,r) and f̃(Q,r) as well as the
derivatives ]f̃(Q,r)/]Q and ]n(f̃(Q,r))m/]rn, whereas
powers of the volume integral,f̃(0,r)n, and their derivatives
]n(f̃(0,r))m/]rn obviously do not depend onQ ~here, m
andn are appropriate integers known during code constr
tion!.

For the benefit of the PDE-solving algorithm, this ma
part also has to set a parameterl@v# related to the maximum
relative curvature of the secondQ derivative of f̃(Q,r),
defined in such a way as to coincide withl for the square-
well potentialvsw@2e,l,s#. Indeed, most of our efforts so fa
@12# have concentrated on this particularly simple type
potential given by

wsw@2e,l,s#~r !5H 2e, r ,ls,

0, r .ls,

where the hard-sphere diameters of the reference part and
the strengthe of the potential are usually chosen as units
length and energy, respectively. Another type of potential
have implemented is a generalized step potential, i.e., a
cession of stretches of constantw(r ); more specifically, the
perturbational partw(r ) of ann-step potential of this type is
just a sum of square-well potentials,w5( i 51

n wsw@2e1 ,l i ,s#,
l i,l i 11 , 1< i ,n; again, we have only considered th
r-independent case, while all the potential’s paramet
should be assumed functions ofr when modeling a specific
physical system. We have also implemented ar-independent
hard-core Yukawa potentialvhcy,

whcy@2e0 ,2e,z,s#~r !5H 2e0 , r ,s,

2e
s

r
e2z~r 2s!, r .s

where the parametere0 , the value of2w inside the core,
defaults toe52whcy(s1), which again is usually chosen t
coincide with the unit of energy; any mismatch betweene0
and e dominatesw̃hcy(k) for large k and is found to render
unstable at least the numerics.

Regarding the stability of the PDE, recall from Sec. II th
an attractive potential@so that w̃(0,r),0# is a necessary
though not sufficient condition for the stability of the PDE
1-6
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C. Hard-sphere reference system

Due to the specialization ofv ref to hard spheres, the ref
erence system enters the expressions of Sec. II only thro
the direct correlation functionc2

ref , implementation of which
is the task set for main part ‘‘reference:’’ drawing upon t
information from main part ‘‘potential,’’ only some initializa
tion code and functions for the evaluation ofc̃2

ref(Q,r) and
] c̃2

ref(Q,r)/]Q have to be exported.
In our program we have so far included two differe

versions implementing the Percus-Yevick@23# approxima-
tion and the Henderson-Grundke@24# description; note tha
all results reported here have been obtained using
Henderson-Grundkec2

ref : in a theory relying on internal con
sistency conditions like Eq.~7! as heavily as HRT, the ther
modynamic inconsistency present in the Percus-Yevick s
tion seems particularly undesirable.

D. Discretization, boundary conditions, and other
approximations

Main part ‘‘ansatz,’’ where all the approximations on th
physical and mathematical level are combined to jointly
fine a reasonable numerical model of HRT, is at the very c
of the PDE-solving machinery: for the potential the pert
bational and reference parts of which have been describe
the two previous subsections, the HRT-PDE is discreti
and solved according to a given set of approximations and
the mesh defined by the node-lists served by main
‘‘solver’’ ~Sec. III E!. More precisely, ‘‘ansatz’’ provides a se
of facilities in the form of subroutines with standardized i
terfaces implementing the various stages of the computa
viz., initialization of the node lists atQ5Q` and solution of
the PDE according to a predictor-corrector full approxim
tion scheme. Note, however, that the code must accom
date the possibilities of both iterating the corrector s
~which may allow reaching the numerical quality indicat
by e# with somewhat larger step sizes, thus speeding up
calculation! and of discarding part of the solution shou
e#-based criteria not be met; to aid ‘‘solver’’ in these de
sions, care has to be taken to detect and signal nume
anomalies. Once a step’s results have been accepted,
satz’’ may perform additional manipulations of the da
structures; most importantly, the rescaling of all quantit
affected by exponentiation off necessary wheneverf is large
~cf. our discussion of the PDE’s stiffness in Sec. II! is ad-
justed only when the last corrector’s result has be
accepted.

Due to the eminent role of the consistency condition E
~7! in constructing a closure to the underlying ODE~6!, the
PDE ~14! for f (Q,r) is of first order inQ and of second
order inr; assuming the lowest possible number of nodes
the discretization~extension to higher order is straightfo
ward!, we need at least a 233 set of nodes. According to th
general model of the computation presented in Sec. III, h
ever, we instead keep a third node list in order to all
monitoring of secondQ derivatives, so that we use a discre
zation on the 333 grid schematically presented in Fig.
including information available via that additional node lis
Locally, the discretization is derived from an expansi
04670
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about the midpoint of the nodes labeled~22! and~32! in the
schematic 1, evaluating the secondr derivative along the
line of constantQ through this point~thin horizontal line in
Fig. 1! by estimating the data at the intersection with t
lines of constant density by interpolants defined from no
triples (i1) and (i3), respectively; the resulting finite differ
ence approximation is applied to every set of three adjac
node triples, substituting suitable boundary conditions atrmin
andrmax.

As indicated in Fig. 1,Q is not necessarily constant alon
a given node list, whereas the stability of the numeri
scheme may impose certain geometrical constraints reg
ing the possible locations of the nodes, e.g., for ensuring
the Courant-Friedrichs-Lewy criterion@25# is met or for
maintaining convexity of the remaining integration region
suitable representation of these constraints is exported
must be taken into account by main part ‘‘solver.’’ If th
latter decides to insert nodes at intermediate densities,
code for initializing the inserted data structures and for int
polating appropriate quantities is negotiated between
main parts, depending upon the order of the interpolat
formulas available. A further consequence of having nonc
stant Q is that some parts of the density range may rea
Q'Q0 earlier than others; in this case, the correspond
nodes are locked, preventing further modification, and al
the converged nodes except those necessary for providi
boundary condition for the remaining density interval a
removed from the node lists available to main part ‘‘ansat

In addition to the discretization of the HRT-PDE~14! dis-
cussed so far, the implementation of the core condition al
the lines of Sec. II and Appendix A is also of interest. R
egating discussion of the choice of appropriate basis func
un , 1<n<Ncc, to Appendix B, we only point out the ex
tremely slow convergence of theÎ(Q) integrals~9! that have
to be evaluated atQ5Q` ; furthermore, as the integrand i
temperature dependent fork.Q` , these integrals have to b
evaluated for every isotherm—a problem that might be si
stepped by adopting the original implementation’s strategy

FIG. 1. Schematic of the grid used in the discretization or
PDE~cf. Sec. III D!. Assuming use of the three-point approximatio
for the second derivatives in ther direction, the discretization is
generated from an expansion around the intersection of the
horizontal line with the line of constant density joining the nod
labeled (i2). According to the general model of the computati
discussed in Sec. III, a node list’sQ values may ber dependent,
whereas ther values must coincide in all three node lists, thou
they need not be equispaced.
1-7
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consistently using the results forQ→` rather than those
valid at Q` for initialization even though such an approa
introduces a discontinuity atQ5Q` . Also, with the usual
choice ofQ`;102/s, integration merely up tok5Q` can
hardly be deemed sufficient; an appropriate upper integra
limit can instead be found by comparing the integran
asymptotic behavior withe# . Main part ‘‘ansatz’’ also has to
identify quantities suitable both for monitoring convergen
of the full approximation scheme and for choosing approp
ate step sizesDQ andDr, and to make available code frag
ments for the inspection of nodes in various stages of
computation as well as a description of the boundary con
tions atrmin andrmax including mandatory settings for eithe
of these parameters if necessary; in particular, most im
mentations requirermin50 in order to be able to use th
divergence of the ideal-gas term inc̃2

ref as aQ-independent
boundary condition forf ~cf. Appendix A!.

It is this main part that defines the formulation of HR
and the set of approximations used in the calculations; of
numerous versions of this main part we produced only a
are to be mentioned here: both the reimplementation of
original program’s approximations for the core and bound
conditions and the approach combining the PDE witha (Q)

50 at all densities includingrmax, while mathematically in-
consistent, retain thermodynamic consistency at leas
some approximate way~cf. our discussion of the decouplin
assumption in Sec. II!; in addition to these, the two possib
approaches at least mathematically meaningful, viz.,
ODEs directly following from decoupling and the PDE r
signing on the core condition for the benefit of the compre
ibility sum rule ~7! @with the LOGA/ORPA prescription
g0

(Q)(rmax)50 as high density boundary condition# will also
be used in Sec. IV’s presentation of the results our softw
yields.

E. Criteria for positioning of nodes

If main part ‘‘ansatz’’ is to provide a discretization o
whatever mesh is handed to it, it is the task set for ‘‘solve
the last of the main parts to be discussed here, to define
very mesh and to keep track of the numerical solution’s qu
ity. Based primarily upon the value ofe# and respecting any
restrictions exported by ‘‘ansatz,’’ step sizesDQ and Dr
have to be chosen and checked for compatibility with
solution generated, iterating or discarding steps if certain
teria are not met; whenever ‘‘ansatz’’ signals an except
the last step is discarded, accepting the data in the node
corresponding to labels (2i ) in Fig. 1 as the best approxima
tion to the solution forQ→0. At the same time, care has
be taken to locate and identify any problems in the soluti
i.e., parts of the (Q,r) plane where the solution found doe
not appear smooth on the scales set by the step sizes
most basic assumption underlying any finite-difference c
culation; whenever this assumption no longer holds, the
gorithm will react by locally reducingDQ andDr, inserting
node triples~cf. Sec. III D! in order to achieve the latter
Once we find any nodes already holding the final results
their respective densities they must be taken care of as
cussed in Sec. III D; integration of the PDE is ended wh
04670
n
s

i-

e
i-

e-

e
w
e
y

in

e

-

re

’’
is

l-

e
i-
n
list

,

the
l-
l-

r
is-
n

there is a node withQ<Q0 for every density in the calcula
tion, or when ‘‘ansatz’’ requests an end either because
error condition has occurred~see above! or because the cur
rent node list is sufficiently close toQ5Q0 already. As noted
in Sec. III, the intimate link between this main part’s task a
the numerical quality of the solution generated makes it na
ral to define heree# , the central parameter governing th
numerics, and it is this part of the program that relies up
e# and the associated criteria the most; other main parts
e# for little more than for switching between full analyti
expressions and asymptotic expansions~for a slightly atypi-
cal example of which cf. Appendix B!.

Of the two implementations of this main part, one h
been written in the hopes of being able to avoid the proble
atic region of largef (Q,r) altogether, as is indeed possib
for some similar PDEs. This implementation makes full u
of e# , relying on numerous criteria to control the calculatio
in the following discussion the notationpy

uxu refers to cus-
tomization parameters that should usually be taken as
numbers of order unity. A case in point is the choice of t
density grid: even though this is not necessary, we decide
always start with an equispaced set ofr values ranging from
rmin to rmax; the numberNr11 of such density values is
related toe# by

Nr5
~rmax2rmin!

2

e#pNr

uru ,

reflecting the importance of secondr derivatives in the so-
lution of the PDE as well as the static nature of this set
densities due to theÎ approach to the core condition. Onc
e# has been determined, the system is ready to start d
mining appropriate step sizesDQ; in particular, the assump
tion that the potentialv(r ,r) introduces length scales only i
the range froms~r! to l@v#(r)s(r), wherel@v# is related to
the fourth derivative ofṽ(k,r) with respect tok ~cf. Sec.
III B !, places an upper bound on the admissible step si
viz.,

DQ<
A12e#pDQmax

@DQ#

l@v#s~r!
.

On the other hand, for a finite difference scheme to be me
ingful at least a certain number of bits must remain sign
cant in evaluating the differences, which implies a low
bound onDQ proportional toQ, and the solution has to b
smooth on the scales defined by the mesh, which also r
out abrupt changes in the step sizes; consequently, the
of two consecutiveDQ steps at the same density is restrict
to lie betweenpratio

@DQ# and 1/pratio
@DQ# . In a similar vein, consid-

ering smoothness in ther direction we have to postulate tha
(Q(22)1Q(32))/2 is greater than either ofQ(31) and Q(33) ,
where the labels coincide with those of the nodes of Fig
this condition, unlike the other rules mentioned so far, do
not limit the step sizesDQ at any densityr but rather deter-
mines whetherDr should be reduced by the insertion
nodes at an additional density. But the most important cr
1-8
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IMPLEMENTATION OF THE HIERARCHICAL . . . PHYSICAL REVIEW E 65 046701
ria for choosingDQ come from monitoring the solution gen
erated: for every monitored quantityx we make sure that

A 1

ixiQ
U ]2x

]Q2UDQ<Ae#px
@DQ#,

ixiQ5max
k.Q

ux~k,r!u;

the quantities taken forx are, of course, defined by ‘‘ansatz
and a usual choice isx(Q,r)P$ f (Q,r),1/K̃(Q)(Q,r)%. A
different set of quantitiesy, also chosen by ‘‘ansatz’’ and
usually comprising justy(Q,r)5 f (Q,r), is used to monitor
the convergence of the predictor-corrector scheme and to
termine whether or not the corrector should be iterated:
noting the absolute difference of consecutive approximati
of y divided by iyiQ by Dy, iterations are performed unt
Dy,e#py

@conv# , and the ratio of two consecutive step sizes

bounded from above by (e#py
@DQ#)1/(21pNit

@DQ#)/AD (1)y, where
D (1)y is Dy evaluated after the first corrector step. Accordi
to simple heuristic arguments regarding the convergenc
corrector iterations and ignoring the effect of other criter
an average ofpNit

@DQ# calls of the corrector can be expected

solve the difference equations to withine# , and a setting of
pNit

@DQ#.1 may significantly speed up the calculation by

lowing larger steps to be taken without loss of accura
After finding and tentatively using a candidateDQ, we still
have to check that the assumptions leading to that partic
choice forDQ actually hold; to this end we reevaluate all th
criteria with the obvious exception of the one involvin
D (1)y after the predictor and discard the step unless a slig
smaller step size, viz.,DQpdiscard

@DQ# (pdiscard
@DQ# ,1), passes the

tests. If no step size can be found satisfying all the c
straints, the calculation is terminated.

While the above set of prescriptions for finding suitab
node locations has proved indispensable in understanding
behavior of the PDE’s solution, the oscillatory nature
f (Q,r) invariably linked to the buildup of the isotherma
compressibility’s divergence for subcritical temperatures p
vent its use forb.bc : considering even the modest valu
f ;103, sDQ would have to be smaller thane2103

;102430, which is obviously completely useless for an
practical implementation. Thus, even though it means los
control over the level of accuracy in the solution, we ha
also implemented a version of this main part with prede
mined step sizes that just happen to often be sufficient
reachingQ5Q0 even well below the critical temperatur
while reproducing the overflow necessary forkT’s diver-
gence in a density interval the edges of which may then
identified with the coexisting phases’ densitiesrv and r l .
Recalling the behavior off wherever it is large we obviously
have to drastically reduceDQ as we approachQ0 ; for this
we use the very prescription introduced by the authors
Ref. @8# and evidently underlying all later published HR
calculations.

One last aspect of this main part to be mentioned rega
the choice ofQ` in both implementations: As the only rea
04670
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sonable initial condition for the core condition assumes t
the structure atQ` is basically the same as that forQ5` ~so
that c2

(Q`)
5c2

(`)5c2
ref or, equivalently, gn

(Q`)
5gn

(`)50,
n>0! and the same set of parameters must also be use
the initialization of nodes atQ5Q`1uDQu @the nodes labled
(1i ) in Fig. 1 in the first step#, it is preferable to have
]gn

(Q)(r)/]Q50 atQ5Q` ; from Eq.~11! one immediately
concludes that this is equivalent tow̃(Q`)50 whenever us-
ing the decoupling assumption. It is left to main part ‘‘a
satz’’ to decide whetherQ` should be determined in thi
way, thereby necessarily introducingr-dependentQ` when
dealing with ar-dependent potential.

IV. DISCUSSION AND CONCLUSION

In the preceding sections we had to introduce a numbe
approximations, some of which may seem rather less ju
fied; their respective importance for and bearing on our p
gram’s predictions of structure and thermodynamics
simple liquids now remains to be assessed. As an exac
lution with which to compare numerical results is lackin
for HRT as implemented by our software package to be c
sidered a reliable tool well applicable to realistic physic
potentials along the lines outlined so far it is necessary
demonstrate the limited effects variations in the numeri
recipe have and to compare the results obtained with th
available by other means for certain potentials. For this c
tribution we turn to the hard-core Yukawa fluid withz
51.8/s for illustration, a system that has also been cons
ered in a recent study@9# comparing various thermodynam
cally consistent approaches including HRT to short-rang
potentials.

Among the approximations just mentioned, an importa
one is the necessary truncation of Eq.~11! to a finite number
Ncc11 of basis functionsun and expansion coefficient

TABLE I. Dependence of inverse critical temperaturebc

51/kBTc , coexisting densitiesrv and r l at b50.9/e, and critical
densityrc for a hard-core Yukawa potential withz51.8/s on the
number of basis functions. The results reported have been obta
from PDEs retainingNcc11 basis functions or~first line! not imple-
menting the core condition at all with«#5102,rmax51.0/s3. We
have checked that the differences summarized here cannot b
plained by theNcc dependence of the upper integration limits

evaluating theÎ(Q`) integrals~cf. Sec. III D!.

Ncc bce rv(b* 50.9/e)s3 r l(b* 50.9/e)s3 rcs
3

0.83164~39! 0.115~5! 0.565~5! 0.325~30!

1 0.82070~39! 0.105~5! 0.575~5! 0.315~30!

2 0.82148~39! 0.105~5! 0.565~5! 0.315~10!

3 0.82227~39! 0.105~5! 0.565~5! 0.315~30!

4 0.82227~39! 0.105~5! 0.565~5! 0.315~30!

5 0.77676~20! 0.075~5! 0.645~5! 0.320~15!

6 0.75527~20! 0.055~5! 0.685~5! 0.325~30!

7 0.75957~20! 0.065~5! 0.675~5! 0.330~25!

8 0.77305~39! 0.065~5! 0.645~5! 0.320~35!

9 0.78555~39! 0.075~5! 0.615~5! 0.315~20!
1-9



n

o
f
e

a

he
he
;

se

p

nt
-

e-
n
m

-

c

ss

ha
nt

a
bu

ca

in

is
-

l-

ted;

the

re-
the
t

sults
he
E
rid

p-
ule
dy-
an-
ven

the

re
-

o

an
-

ed

ALBERT REINER AND GERHARD KAHL PHYSICAL REVIEW E65 046701
gn
(Q) , n50, . . . ,Ncc; in fact, not only mustNcc be finite, it

should also be rather small if evaluation of the slowly co

vergentÎ(Q) integrals atQ5Q` is not to dominate program
execution time. An obvious test for the minimum number
basis functions to keep is to look at theNcc dependence o
the phase behavior predicted as summarized in Tabl
where the inverse critical temperaturebc , the critical density
rc , and the coexisting densities atb50.9/e are recorded; the
latter temperature is sufficiently far away from the critic
point so that the differences inrv andr l are not merely to be
attributed to the differences inbc while maintaining suffi-
cient separation of the binodal from the boundaries atrmin

50 andrmax ~see below!. From this we find inclusion of the
core condition to be of vital importance in determining t
fluid’s phase behavior, while non-negligible variation of t
results remains even for the highestNcc-values considered
however, the amount of variation especially inbc drops sig-
nificantly as soon asNcc exceeds 5. The real test for the u
of the truncated Eq.~11! and thead hocapproximation~12!
~easily demonstrated to be inadequate at least for certain
tentials @22#!, is the pair distribution functiong(Q0)(r ) as
obtained from the final values of the expansion coefficie
gn

(Q0) by performing the inverse Fourier transformation im
plied by the Ornstein-Zernike equation~5!. Employing the
ODEs following from the consistent application of the d
coupling assumption in order to isolate the approximatio
pertaining to the implementation of the core condition fro
other effects~see below!, theg(Q0)(r ) so obtained generally
takes on rather large values for smallr while remaining
within a few percent of the contact valueg(Q0)(s1) for
larger r up to s2; while increasingNcc usually does not
considerably reduce the magnitude ofg(Q0)(r ) for r close to
0, it instead extends ther range of rather smallg(Q0)(r ) to
ever smallerr. At high density there is no substantial im
provement ing(Q0)(r ,r), r ,s(r), for Ncc.5, nor for Ncc
.7 at low density, a finding corroborated by direct inspe
tion of the final values of the expansion coefficientsgn

(Q0)

@22#. Accordingly, Ncc should probably be chosen no le
than 7 @corresponding to a sixth-order polynomial inr for
C(Q)(r ) inside the core#, whereasNcc55 may still be suffi-
ciently accurate for some applications; forNcc,5, on the
other hand, we cannot expect significantly better results t
those from consistently solving the PDE without impleme
ing the core condition~cf. Sec. III D!, which, of course, runs
much faster and at least does not rely on inconsistent
proximations. But note that the core condition is always
poorly met, irrespective ofNcc, wheneverf (Q0 ,r) is large
~corresponding to the coexistence region or the criti
point’s vicinity in implementations relying on a PDE!. On
the other hand, when solving the PDE without implement
the core condition at all,g(Q0)(r ), r ,s, can, of course,
become arbitrarily large; e.g., forb50.7/e and r50.9/s3,
g(Q0)(r )523.26 inside the core while the contact value
g(Q0)(s1)511.91. All in all, while systematic shortcom
ings in the pair distribution functiong(Q0)(r ) itself cannot be
avoided in an implementation relying on Eqs.~11! and ~12!
with finite Ncc, we must keep the core condition in the ca
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culation due to its bearing on the phase behavior predic
this is somewhat at variance with earlier findings@8# indicat-
ing only a modest influence of the core condition upon
results, a finding expressly referred to in Ref.@26#.

On the other hand, as pointed out already in Sec. II,
taining the core condition is possible only when adopting
decoupling assumption, viz.,a (Q)(r)50, an assumption tha
itself suffices to decouple the PDE to a set of ODEs@which is
why we can usea (Q)(rmax)50 as a boundary condition#. But
if such a procedure is to be considered harmless, the re
of the consistent application of this approximation to t
closure~8! should not differ much from those of the PD
applying the decoupling assumption only in order to get

of the secondÎ integral in Eq.~11!. However, the calcula-
tions summarized in Fig. 2 clearly show that the two a
proaches yield very different results so that we cannot r
out a non-negligible effect on the structural and thermo
namic properties predicted: Most importantly, the ODEs c
not reproduce well-defined phase boundaries, and they e
yield slightly negative inverse compressibility 1/kT in what
would otherwise be the coexistence region. Preserving

FIG. 2. Comparison of inverse compressibility of the hard-co
Yukawa system withz51.8/s as obtained from the ODEs follow
ing from the decoupling assumptiona (Q)(r)50 ~thin lines! and
from a PDE (Ncc57) inconsistently applying this approximation t
the evolution of the core condition expansion coefficientsgn

(Q) only
~thick line!. In both cases the equations have been solved on
equispaced density grid withDr50.1/s3, and the decoupling as
sumption also served as a boundary condition for the PDE atrmax

51.0/s3. The critical temperature obtained from the PDE and us
in the middle plot isbc50.759 497(24)/e.
1-10
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TABLE II. Inverse critical temperaturebc51/kBTc , coexisting densitiesrv and r l at b50.9/e, and
critical densityrc for a hard-core Yukawa potential withz51.8/s as predicted by various combinations
approximations and boundary conditions atrmax51/s3. Again, the results reported have been obtained fr
PDEs retainingNcc11 basis functions or~first line! not implementing the core condition at all with«#

51022 andrmax51.0/s3.

Method Ncc Boundary condition bce rv(b50.9/e)s3 r l(b50.9/e)s3 rcs
3

No core condition g0
(Q)(rmax)50 0.831573~91! 0.115~5! 0.565~5! 0.330~20!

Decoupling 7 g0
(Q)(rmax)50 0.759429~91! 0.055~5! 0.675~5! 0.325~15!

Decoupling 7 a (Q)(rmax)50 0.759429~91! 0.055~5! 0.675~5! 0.325~15!
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structure of the PDE, so that thermodynamic consistenc
at least partly implemented by the PDE’s coefficientsd0i as
defined in Eq.~A1!, seems sufficient to remedy these de
ciencies; at any rate, we have to accept the decoupling
sumption as indispensable for the implementation of the c
condition.

Let us now turn to a brief discussion of several oth
aspects of HRT in its present formulation and the poten
problems they may present; as most of these effects are m
more prominent for the square-well and multistep potent
defined in Sec. III B, we relegate more thorough treatmen
Refs.@12,22#. Clearly, the importance of retaining the stru
ture of a PDE mandates closer examination of the prope
of the set of densities, especially since the terms corresp
ing to the finite difference approximation to the opera
(]2/]r2) have been found the primary limiting factor for th
quality of the numerical solution~cf. the definition ofe# in
Sec. III E!; while obvious for subcritical temperatures at lo
Q where the near discontinuity off at the phase boundar
betrays the smoothness assumptions underlying finite di
ence schemes, this is true even for rather smallf (Q,r). For
our hard-core Yukawa system, however, the results’ stab
with respect to a variation of the density grid or the locati
and nature of the high-density boundary~cf. Table II! is
rather satisfactory as long asrmax2rl exceeds severalDr:
just as expected from Fig. 2, the ODE used at the bound
forces the corresponding density to lie outside the coex
ence region, which carries over to nearby densities by vir
of the PDE’s discretization. Despite the identical phase
havior found for different boundary conditions as evidenc
by Table II, the question of which condition to impose
rmax is far from irrelevant; indeed, when imposing th
LOGA/ORPA conditiong0

(Q)50 atrmax without making use
of decoupling at all, inspection of the solution genera
close tormax clearly shows the need to replace the origin
implementation’s approach by an ansatz less inconsis
Similarly, the stiffness of the PDE for subcritical temper
tures shortly touched upon in Sec. II is easily detected
employing the criteria discussed in Sec. III E; still, forvhcy

with z51.8/s and Ncc57, using predetermined step siz
and resigning on any control of the predictor-correc
scheme’s convergence we obtain an approximate solutio
Q0 sufficiently stable outside the coexistence region; th
while the solution generated in the region of largef (Q,r)
necessarily differs from the true solution in a fundamen
way, the influence of which on the data produced outside
coexistence region is not assessed easily, stiffness here
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pears less pressing a concern than for other systems@12#.
In addition to the internal consistency of the results,

also have to make contact with data available by ot
means; as this paper’s purpose is presentation of our s
ware and discussion of some general aspects of HRT ra
than a comprehensive study of the hard-core Yukawa sys
we here restrict ourselves to the data of Table I of Ref.@9#
containing the predictions of various thermodynamica
self-consistent liquid state theories including HRT in t
original implementation, which are found to yieldTc ranging
from 1.193e/kB to 1.219e/kB ~bc51/kBTc between 0.820/e
and 0.838/e!, as well as the MC resultTc51.212(2)e/kB
@bc50.825(2)/e#. As is apparent from our Table I, ou
implementation’s predictions for 1<Ncc<4 fall precisely
into this range and, forNccP$3,4%, are well compatible with
simulation results; that very sameNcc range, on the other
hand, we have seen is characterized by gross violation of
core condition due to an insufficient number of basis fun
tions retained in the truncated Eq.~11!. As we further in-
creaseNcc so that the core condition is obeyed to a certa
extent, however,bc drops dramatically to values far outsid
the range quoted in Ref.@9#; while the trend of increasingbc
evident forNcc>7 indicates that HRT might match the MC
predictions forNcc;15, we have not performed these CP
intensive calculations.

With this we conclude our superficial sketch of the so
ware we have written and the appraisal of the results it ty
cally produces as illustrated for the hard-core Yukawa pot
tial vhcy with z51.8/s: it should be apparent that HRT in it
current formulation, while presenting substantial difficulti
discussed here as well as in Refs.@12,22#, is well capable of
predicting structural and thermodynamic properties of sim
one-component fluids; at the same time, the computatio
difficulties mentioned and the approximations introduced
render the numerics tractable cannot always be shown t
harmless so that great care has to be exercised in the i
pretation of isolated results. The fully modular design of o
program and the high degree of flexibility brought about
the adoption of a metalanguage and code construction t
niques are key factors in facilitating additional evaluation
providing a means of separating different approximatio
effects; at the same time, our implementation makes fo
versatile tool for the systematic exploration of HRT for on
component fluids in its present or alternative formulation
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APPENDIX A: REFORMULATION IN NOT-QUITE
QUASILINEAR FORM

As noted in Sec. II, it is advantageous to replace
highly nonlinear PDE in the modified free energyA(Q) im-
plied by Eqs.~6!, ~7!, and the core condition, with a formu
lation akin to a quasilinear one. In complete analogy to R
@8#, we define the auxiliary functionf (Q,r) via

lnS 12
f̃~Q,r!

C̃~Q!~Q,r!
D 5 f ~Q,r!ũ0

2~Q,r!2
f̃~Q,r!

K̃~Q!~Q,r!
;

in the ideal gas limit, i.e., forr→0, we immediately find
from the divergence of the terms21/r in c2

ref and C̃(Q) that
f (Q,0)5] f (Q,0)/]r50, which is a convenient boundar
condition most implementations rely on. In the above defi
tion we have taken advantage of some freedom regarding
f term to reduce the number of floating-point multiplication
asu0 is usually chosen to be strictly proportional tof, our f
differs only by a constant factor from the choice of Ref.@8#
which can be recovered by replacing the factorũ0

2(Q,r) by

f̃2(Q,r); note, however, that the expressions we give h
remain valid for a slightly more general choice ofu0 , allow-
ing the proportionality of the basis function and the pert
bational part of the potential to hold only up to orderf̃2—a
freedom that might be exploited to use more appropriate
sis functions, givingC(Q) a larger range inr space. Also we
should point out that the condition of nonsingular coe
cients in the PDE~14!, the very reason for the restriction o
the relation betweenu0 andf just mentioned as well as fo
the introduction of the term involvingf̃/K̃(Q), only fixes a
minimum exponent for theũ0 factor with which to multiply
f @22#.

Inserting the above definition forf into the relevant equa
tions of Sec. II and eliminating the expansion coefficie
g0

(Q) via the consistency condition~7!, we can easily recas
the original PDE in the form of Eq.~14!. Dropping the ob-
vious arguments and with the shorthand notations

«512
f̃

C̃~Q!
5ef ũ0

2
1xf, «̄5«21,

xf52f̃/K̃~Q!, f̃05f̃~0,r!, G̃05G̃~Q!~0,r!,

the coefficients of Eq.~14! can be written as@22#
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d0051
]f̃

]Q
S f̃0

2

K̃~Q!f̃2
2

K̃~Q!«̄2f̃0
2

«f̃4
2

2 f

f̃
D

1
]K̃~Q!

]Q
S «̄2f̃0

2

«f̃3
2

f̃0
2

~K̃~Q!!2f̃
D 2

]2ũ0
2

]r2

Q2«̄2f f̃0

4p2«f̃2

2
]2xf

]r2

Q2«̄2f̃0

4p2«f̃2
2

]G̃0
~Q!

]Q

«̄2f̃0

«f̃2
, ~A1!

d0152
]ũ0

]r

Q2«̄2

p2«f̃
,

d0252
Q2«̄2

4p2«f̃0

.

When evaluating these expressions care has to be t
wheneverf̃(Q,r) is close to zero as all terms of orde
1/f̃2(Q,r) and 1/f̃(Q,r) must cancel; noting tha
( «̄2f̃0

2/«f̃3)2@f0
2/(K̃(Q))2f̃#, the coefficient of]K̃(Q)/]Q

in d00, can be written in terms of the (]f/]Q)-coefficient,
in our numerical work the calculation of the terms affect
by the cancellation for smallf̃(Q,r) proceeds via applica
tion of a fifth-order Taylor expansion of (f̃0

2/K̃(Q)f̃2)

2(K̃(Q)«̄2f̃0
2/«f̃4)2(2 f /f̃); one should note that, eve

though the criterion for switching between the full analy
expressions and said expansion depends one# , the order of
this expansion~and a similar one for«̄/f̃! is not increased
for very small values ofe# , which is one of the few hard-
coded limitations of our program.

From the given expressions for thed0i two more aspects
are obvious:~i! there is substantial further simplification fo
a r-independent potential@as u0 depends upon the densit
only through the perturbational partf of the potential, and
the basis functions enteringG(Q) only through the reference
system’s hard-core radiuss~r!#, and ~ii ! the PDE does not
fall into the class of quasilinear PDEs due to the presenc
the secondr derivative ofxf in the coefficientd00.

APPENDIX B: BASIS FUNCTIONS FOR THE CORE
CONDITION

While the basis functionu0(r ,r)}w(r ,r) in the closure
~8! is fixed by the potential used, in principle there is amp
freedom in choosing theun(r ), n>1. Of course, when trun-
cating Eq.~11! after 11Ncc basis functions it is natural to
ask for the set$u1(r ),...,uNcc

(r )% to span the space of poly

nomials or order up toNcc21, so thatun(r ) will generally be
a polynomial or ordern21 in r; but whereas different poly-
nomials of this type do not alter the function space, th
choice has implications for the numerical properties of
matrix equations implementing the core condition as well

to a certain extent, for the convergence of theÎ integrals to
be evaluated atQ5Q` ~cf. Sec. III D!. Other than the origi-
1-12
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nal implementation that relied on an affine transformation
the Legendre polynomials, we found it convenient to cho
un(r ,r) simply proportional to a power ofr and normalized
to ũn(0,r)51. Thus, dropping the obvious argumentr, we
have

un~r !5H n12

4ps3 S r

s D n21

, r ,s,

0, r .s,

the Fourier transform of which is

ũn~k!5
n12

~sk!n12 Fn! cos
np

2

2(
j 50

n
n!

~n2 j !!
~sk!n2 jcosS sk1

j p

2 D G ,
el

A.
r

hy

04670
f
e
an expression used forsk.n only for numerical reasons
For smallerk we rely on the expansion

ũn~k!5~n12!(
j 50

`
~21! j

~n12 j 12!~2 j 11!!
~sk!2 j ,

truncating the series afterNn terms, whereNn is the smallest
number such that

n12

n12Nn14

n2Nn12

~2Nn13!!
<e#pNn

@un# ,

with a customization factorpN
@un# of order unity.
n
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