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The self-consistent Ornstein—Zernike approximatiS€OZA) is an advanced microscopic liquid

state method that is known to give accurate results in the critical region and for the localization of
coexistence curves; this has been confirmed in several applications to continuous and discrete one
component systems. In this contribution we present the extension of the SCOZA formalism to the
case of a binary symmetric fluid mixture characterized by hard-core potentials with adjacent
attractive interactions, given by linear combinations of Yukawa tails. We discuss the stability criteria
for such a system and present results for the phase behavior: we recover the well-known three
archetypes of phase diagrams, characterized by the different manners the second order demixing line
(\-line) intersects the first order liquid—vapor coexistence curve.2@3 American Institute of
Physics. [DOI: 10.1063/1.1557053

I. INTRODUCTION In fact, already this simplified system shows a rich phase
behavior: a mean-field study for this mixture has revealed the
As we proceed from a one component system to a binaryollowing.® While for >1 only a simple liquid—vapor de-
mixture of simple fluids we encounter a considerably enmixing transition is encountered, the situation is more com-
riched variety of phase behavior which is induced by theplex and interesting fow<1: here the phase behavior is
complex interplay of two phase separation processes: th§etermined by the interplay of a gas-mixed fluid phase tran-
liquid—vapor transition and the demixing transition. Thesition and a fluid—fluid demixing transition into a 1-rich and
complex manner of how the now up to four phases can coz _rich phase, the latter being symmetric with respect to
_eX|st is also reflect_ed ina (_:on3|_derably rlch_e_r critical behav-: 1/2, x being the concentration of species 1. The critical
ior: four phase points, critical lines and critical end points ;onomena encountered are critical lines, tricritical points,
(CEPS now replace the triple point and the simple critical and CEPs. In the above mentioned stuthe authors iden-
point encountered in a one component fluid. The first attempghcy three types of phase diagrantgenoted by I, II, and IIl

tbq bring _o:der Into tr:je ”CE vzrlety of bphase g'ngf'”f‘s c)fand discussed in detail in Sec. Il) Bvhich are characterized
inary mixtures was done by ronynenburg an ks . by the different manners the line of the second order demix-

qualitative study is based on a van der Waals model and Sng transition ( line) intersects the first order liquid—vapor
still—to the best of our knowledge—the only systematic 9 q b

work in this field. More quantitative investigations which coexistence line. A fourth type that was observed up to now

also aim at an accurate determination of the phase diagraOnly in computer simulatiofshas not yet been confirmed in

(and eventually at a comparison with computer simulationmeoretical investigations; its existence is questionable.
In an effort to determine the phase behavior of such a

datg are, however, at present out of reach: applications of

reliable liquid state methodsuch as perturbation theories or system_ ona quant_|tat|ve Ieyel one has to use a_t least therm.o—
integral equation approaciego determine the phase dia- dynamic perturbation theories or integral equation metods;

gram of ageneral binary mixture are in particular in the NOWever, they are known to fail and/or to give unreliable
binary case considerably more involved than the simple vafesults near phase boundaries and near criticality. To provide

der Waals analysis, and, in addition, we are now faced with & Particular in these regions of the phase diagram accurate
large number of system parameters. Hence, systematic stukgsults, advanced liquid state methods are more appropriate:
ies in this field are still out of reach. the self-consistent  Ornstein—Zernike  approximation
Therefore a reasonable starting point to investigate théSCOZA® or the hierarchical reference theofiRT)® are
phase behavior of binary mixtures omaantitativelevel is ~ two of these methods that have been especially designed to
to simply reduce the number of system parameters. This ca#Ppe with such problems. For a more detailed presentation of
be done by considering a so-called binaymmetricmix- the two approaches and an overview we refer to Refs. 7 and
ture; here the interactions between like particles are assuméd(SCOZA) and to Refs. 6 and €HRT).
to be equal ®,(r)=®,,(r)] while the potential between In this contribution we focus on the SCOZA which is
unlike particles,®,5(r), is fixed by ®,,(r)=a®,,(r). « based on a mean spheri¢®SA) type closure relation to the
and the parameters that characterizedhgr) are the only ~ Ornstein—Zernike(OZ) equationt® replacing the prefactor
system parameters; this reduction brings a systematic inveg@=(kgT) "1 in the closure for the direct correlation function
tigation of the phase behavior of the system within reach. by a state dependent, yet undetermined functdp,T).
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This function is fixed by enforcing thermodynamic consis-now able to approach critical points very closely while still
tency between the compressibility and the energy route to thguaranteeing high numerical accuracy. SCOZA thus offers to
thermodynamic properties; in the one component case thistudy critical phenomena of a binary mixture ogualitative
requirement leads to a partial differential equati®DE) of  level; this will be done in the near future.
u, the excessgover ideal gasinternal energy per volume, in For completeness, it should be noted that the HiiR&n-
T andp. Applications of the SCOZA presented up to now to tioned abovehas been applied to binary systems in Refs. 13
continuum and discrete one component systems have shovamd 14. In particular the latter publication is dedicated to a
that this advanced liquid state approach is indeed able tgery thorough investigation of the phase diagram of a sym-
predict the localization of the critical point and of the coex- metric binary mixture, discussing—among others—the CEP
istence branches within high accura@gr an overview over topology which(in contrast to mean field theories and the
these results we refer to Ref). &o far, the generalization of SCOZA) is not encountered in the HRT.
the SCOZA to the binary case has been restricted to a lattice The paper is organized as follows: In Sec. Il we present
gas modet? the theory, we introduce the system, present the basic ideas
The success of the SCOZA for continuum one compo-of the SCOZA and its formalism for a binary symmetric
nent systems has motivated us to proceed to the binary cag@ixture; the section is closed with numerical remarks and a
this has been realized in the present contribution for the caderief discussion of how to determine limits of stability of a
of a binary symmetric fluid mixture. Although the SCOZA binary mixture within the SCOZA framework. Section IlI is
formalism presented here has been developed for this Speci@ﬂ}dicated to the results: we discuss the limits of stability of
binary system, it can be extendéay following similar lineg ~ the system and present results for the phase diagrams. We
in a straightforward, but rather tedious way to theneral  close the paper with concluding remarks.
binary case. As in all SCOZA applications to continuous sys-
tems presented up to now we restrict ourselves to interatomiﬁ THEORY
potentials that consist of a hard-cqt¢C) part plus an adja-
cent interaction given by Yukawa tail$1CY interactions.  A. The system
This restriction can be traced back to the fact that the rather
heavy formalism of the SCOZfand its complex numerical
implementation benefits to a considerable amount from the
availability of the(semijanalytic solution of the MSA for a
multi-Yukawa, multicomponent HC mixturg; a fully nu-
merical solution of the SCOZA, as it would be required for a
general potential is at present out of reach.
In the binary case the consistency requirement between O (r)= ©, rIso, o
the compressibility and the energy route leads to a set of Y wij(r), r>o.
three coupled PDEs afi in T, p, andx, from which we
determine the now three unknown state-dependent functio
Kij(p,T,x). Although in principle a solution algorithm for
this formidable problem might be coded, one quickly reaches
computational limits. It is now where—in an effort to reduce ~ W1i(r)=— -exd—z(r=1)]. )
the complexity of the problem—we have introduced a fur-
ther simplification in our work: based on symmetry argu-
ments we reduce th&;;(p,T,x) to one single function _ . X _
K(p,T,x). In addition, by chosing an appropriate linear been set to unity. Further the mixture is c_haractenzed by the
combination of the three partial consistency relations we ar&°t@l humber-density and the concentratior=x, of spe-
left with only one consistency relation which is now a PDE ¢i€S 1; partial number densities are defined pja-xp and
of uin T andp; as a consequence of the above assumptioﬁf(;._x)p; We 3further*|ntroduce reduced dimensionless
the PDE can be solved for fixed concentratiorThis as- duantities,p”=po andT"=KgTo/e1, whereT is the tem-
sumption is the only approximation in the present work peferature.
yond the basic SCOZA assumption that the direct correlation
funqti:)ns outside the cores are proportional to their pair pog  gcoza—basic ideas
tentials.
Using this extended SCOZA algorithm we have calcu- N the case of generalbinary mixture the SCOZA is
lated the phase diagram of binary symmetric mixtures, asased on the OZ relation, which now redtls
suming HCY potentials with one single tail: we are thus left
with two parameters, the screening lengdnda (as defined hij()=cij(n)+ Pkf dr’ ci(r)hy([r=r']), (3
above. Varying for a givenz the parametet&r we obtain, of “
course, qualitatively the same sequence of phase diagrams sigpplemented by a MSA-type closure relation, e,
already encountered and labeled in the mean-field Study gi(r)=0
mentioned before. However, both in contrast to a mean-field .
approach and to conventional liquid state theories we are  cj;(r)=Cyc;j(r)+Kj(p, T,¥)w;(r) for r>1. (4

In our symmetric binary system with HCY pair poten-
tials @;;(r) the interaction between the like particles is the
same[ @ 4(r)=d,,(r)], while in the interatomic potentials
of unlike particles is given byb5(r)=a®;;(r). Thus the
repulsive hard-cor¢HC) is characterized for all three inter-
actions by a diametar

nFsor thew;;(r), the attractive tails, we focus on Yukawa po-
tentials, e.g.,

z is the screening length of the potential; the HC diameter
and the interaction strength of the attractive tail;, have

for r<1,
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The h;;(r) and thec;j(r) are the total and the direct correla- Instead of the three partial consistency relatiohswe now

tion functions and the;;(r)=h;;(r)+1 are the pair distri- require only one relation, which we obtain from a suitable

bution functions. Thecc;;(r) are the direct correlation linear combination of these relations, like, e.g.,

functions of the HC reference system. ’
Different thermodynamic routes establish relations be- ‘?_“:i

tween the thermodynamic and the structural properties of a ap? B

system. In the binary case, the energy route reads

B\ Xred

with the reduced dimensionless isothermal compressibility

1 - J 1
1- P ; PinCij(qzo)) :—(—> (11)

Xred= pKeTxT given by
u=2m> pipjf @;j(r)gi;(rredr, ® .
i &BP
. . . Xred:( ) . (12
whereu is the excesgover ideal gasinternal energy per ap

volume; note thati=u(p,T,x). _ _ xt is the isothermal compressibility.
The partial compressibility routes establish a link be-" e point out that the left-hand side 6F1) is calculated
tween the chemical potentiajs; and the direct correlation yja the energy route while the right-hand side is determined

functions via via the compressibility route, enforcing thus consistency be-
9By B tween these two thermodynamic routes. As a consequence of
P == 1-p1€11(q=0), the above assumption the concentratiorhas become a
P1 simple parameter: consequently, the consistency PTIE
9By 5 can be solved for different-values independently. With the
P2 —= 1-p,yCy(q=0), assumptior(10) we have added an additional approximation
p that goes beyond the definition of SCOZA, and we must
By _ ©) expect the numerical results to be less highly accurate than
p1 EPS =—p1€1q=0), those obtained in applications that use nothing but the ansatz
that defines SCOZA. To check the accuracy of this additional
By - approximation a detailed comparison with Monte Carlo
P2 == p2C12(q=0). simulations is plannetf. Nevertheless, our binary-mixture

results capture the full range of critical and tricritical behav-
If the u; andu stem from a unique Helmholtz free energy, ior that one would expect in an exact analysis.
then the partial consistency relations

92U d [P C. SCOZA—formalism
=—|—], 7 . .
Ip;dp; ﬁ,B( ap; ) ™ Since the extension of the SCOZA presented here ben-
hold efits from the availability of thésemijanalytic solution of

. - the MSA for a HCY system(with an arbitrary number of
In conventional liquid state methods, such as the MSA’components and of Yukawa taijsve briefly go back to this

different thermodynamic routes lead to different thermOdyfsolution. Two different approaches to solve the MSA for a

namic results. In the SCOZA, however, we have the possi; L D
bility to choose the three yet undetermined functionsHCY system have been proposed in literature: (reginal

K. (p.T.x) in Stch a way as {o guarantee consistenc peLaplace transform routé*®and the Wiener—Hopf factoriza-
NG y 9 Y P%%ion technique introduced by Wertheifnand Baxte?° The

Tirst leads to a rather heavy formalism which forms the basis
of the first formulations of the SCOZA. The latter approach
is more elegant and more flexible and provides—even for an
arbitrary number of components and of Yukawa tails—
compact expressions; they are summarized in Ref. 12 in a

far too complex. The restriction to a binasymmetricmix- . . .
. . ) 2 form suitable for numerical evaluation. Although there has
ture brings along the following considerable simplifications: ;
been a great deal of important further development of the

first, since all the diameters are equal we can use oL oion of the Wertheim—Baxter approach to the case of
Chc;ij(r) =Cuc(r) the Waisman parametrization for the di- bp PP

rect correlation function of the HC reference systéisee o arbitrary number of Yukawa tailsee Refs. 21-24 and

i ) : references thereinwe know of no formulation in the con-
be'.O\M’ second, t_he yet undetermm_ed f.unct|dﬁ§(p,T,x) text of SCOZA or quantitative studies that are directly rel-
satisfy the following symmetry relations:

evant to use in SCOZA.

requirement leads to a coupled set of three PDESI0fT, p,
andx which fix the unknown functions.

It has turned out, that from the numerical point of view
the solution of the PDE§7) for a general binary mixture is

Ki(p, T.X)=Kos(p,T,1—X), 8 Treating the direct correlation function of the HC refer-
ence system within the Waisman parametrization with a
Kiap, T,X) =K1 p, T, 1=X). (9 Yukawa form (details see beloyy we add another Yukawa

tail to the MSA/SCOZA closure relation for the direct corre-
lation function outside the core. Generalization of the
SCOZA to the case of am component mixture with an
arbitrary number of Yukawa tails quickly becomes tedious
K(p,T,x)=K;j(p,T,x). (100 but should in principle be straightforward.

Under the additional simplifying assumptionK;(p,T,X)
=Kqo(p,T,Xx) we end up with one single functidf(p, T,x),
that is symmetric with respect tq it is related to theK;; via
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Under certain condition®, the solution of the OZ equa-
tions (3) is equivalent to the solution of the following two + 2 BY) mijD zmjG V||+2 BY) mijD 7mj
integral equations:
+> B®.G,; +B& =0,

- ;

vilj v;lj

216, (1) =—Qh(N+ mf:Qj.(t)Q(l(rH)dt,

(13 v=12(=n), i,j=21,2(=m). (21
, o The explicit expressions for the coefficierAsand B in the
2arhyy(r)= _Qij(r)+2772| Plfo (r—=1 above equations for a generalcomponent mixture can be
found in the Appendix A of Ref. 12.
X hi|(|r—t|)Q|j(t)dt, (149 In particular in the context of the self-consistency prob-

lem it should be pointed out that among these quantities the

introducing the so-called factor functio;(r). only energy-dependent coefficients are Afé)j , given as

In the following italic indices are used for the two fluid

components while greek indices denote thedifferent AB) o
. . . . viij T v; |j ’ (22)
Yukawa tails. Henceforward, summation over an italic or a
greek index corresponds to a summation over the two comphile all the other coefficients are calculated from thethe
ponents of the Yukawa tails, i.e., z,, and fromo.
n The second system of equatiof®l), is linear in D
> = andE - E ) (159  ={D,.} for givenG={G,;} and can be written as
T 1512
If the above two integral equations are supplemented by the 2 OrvimijD mj= Quiij (23)
multi-HCY closure relation
with
hij(r):_l, r<i,
ezl (16) Ow;mij(P,G)lek B mkiiG rikmCoii
Cij(r)zz Ky;ijf, r>1,
3
the factor functions must have the following form: +2 B r;km+2| B G
(4)
Qii(1N=Q%(r) +2 e alr=1) 17) + B yimij (24)
and
aij 2
7(r—1) +bj(r—1)
Qv;ij(P-G):_EI BS/S;I)ijll BS/6|)] (25

Qj(n= 1
] +>, —C,[e»"Y-1], o<r<1,
v Zy Equation(23) has thus the form of a matrix equation

1,
0. r= 19 0.D=0Q. (26)

These functions are characterized by 24 yet undeterminelth addition, by suitably arranging tf,,;; in a vectorD and
coefficientsa;; , b2 , C,.ij» andD ,j; ; in the general case we theQ,;; in a vectorQ, one arrives at a block diagonal form
have (2n?n+2m?) of these quantities. for O, consisting of 2 €m) blocks of dimension 4

IntroducingG,.j; via (=mn). For the binary symmetric Yukawa fluid with two
. tails on which we shall focus in this contribution, the vectors
Gij :ZVJ rexp —z,(r—1)]g;;(r)dr (19 D and Q have the following structure(written as
1 transposed-F—vectors:

one can shov that the coefficients;;, b;;, C,.j; can be
expressed in terms of the,;; and theG,,;; , which, in turn, D'=(D1.11,D02:11,D1.21,D2:21,01:12,D2.12,D1:22,D2:29),
satisfy a coupled set of 16<2m?n) nonlinear equations, (

Zk AL i G kD i it + E AL DD i QT:(Ql;llaQ1;21-Q2:111Q2;211Q1;12’Q1;221Qz;lZsz;z?z-S)
. 2 . . .
+z Agj?j)IDv;i|+AS/4l)J -0, (20) [S)?:)V|g§1 the system of 8¢ m-n) linear equation$26) yields
In the formulation of the SCOZA we will also need the
BY G D. Gt B G.pD. . derivatives ¢D/dG)(p,G) which are obtained via differen-
r;lzmk Tv;mklj 2 mkm™ 7 mj 2 vl r;Emk Tv;mkij 2 7;km™~ 7;mj tiating Eq.(23),
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19D7;mj

OTV mu(Pi JG (2 B/.LVSHJGV|I+B/,LV Srl]) M;Sj(p'G)

m HES

{2 (E vamksj Tkm+BTV mSJ> r;mj(P1G) BS,SgJ 5 5ri' (29)

With all this in mind we now proceed to the SCOZA. The first terms on the right-hand side of the expression for
Thermodynamic quantities required in the PDE of thethe c;;(r) in (34) represent the Waisman parametrization of
SCOZA are the inverse reduced isothermal compressibilitghe direct correlation function for the reference system:
and the internal energy, related via the consistency relatioi;(p) andz,(p) are well-defined functions qf (see Appen-
(121). The inverse reduced isothermal compressibility calcudix of Ref. 7).

lated via the Compressibility route is given bsee Ref. 12 The link between the MSA parameter@y;ij and the
1 A \2 SCOZA functionK,(p, T,x) is established via the following
=D x| =~ relations:
X (30
Xred J 271-
where R1;ij:K1(P), i,j=1,2,
Ai=A%1+M;)—4B°N, 31 = =
! ( 2 ! 3D K2;1:= K2;20= Ka(p, T,X), (35
with

R2;12:R2;21: aKy(p,T,X).

1
=Y 5 pelMOD, i (1-MPe 2N o _
Tozom We now go back to the SCOZA-PD#1) and insert the
L Ai(p,G) of Eq. (30); this leads to
Ni=2 52 pufLPD i+ (1-LPe D 0ty (32 A G 2,
T 22 23 x s IA; 3G s AU pa_ @9
2 i J(277) mirs (?Gp.;rs Ju ‘9:8 5p
frmj _22 PkG 7mikD 7k -
zZ % or
Expressions foM® L A° andB° in terms ofp;,z,, ; 7
ando=1 are again compiled in the Appendix A of Ref. 12. B(p,u) — u _C(p)_u (37)
Note that indices that have become redundant in these ex- B ap?

pressions as a consequence of the symmetry of our system

have been droppetk.g., A—A°, etc). Inserting the solu-  With

tion of the linear systenD(p,G) in expressiong32) yields

A (p,G). dA, 9G ‘rs
: In our reduced units the internal energy via the energy B(p,u)=2§j: X (2m)? gs aGM{rs 5ﬁ ’

route (5) is given by '

277/3 C(p)=p.
[X Gz 11+ aX(l X)GZ 12+ C!X(l X)Gz 21

(38

u=—
We now have to determin®;, dA;/dG,.;s, anddG,,.s/du
+(1-x)%Gy.2. (33)  as functions ofp andu. This is outlined in the following.

. . In a first step we determin@ for a given value op and
The SCOZA closure relationl) now read (,j=1,2) u: to this end we establish a set of eight nonlinear equations

gij(r)=0, r<1, the solution of which give&(p,u). The first of these rela-
1 tions is the energy equatidB83) which is formally written as
Cii(r): Kl(P) Fe_Zl(P)(r_l) F1(P,62;11162;12162;21162;22aU) =0. Further we consider

Eqg.(20) for v=1 andi,j=1,2: we have inserted the solution
1 D(p,G) of (21) and use(22) which has becomeA{?)
+Ky(p,Tx)—e 2071 r>1, =27mK,(p), i,j=1,2. We formally write these equations as
r Fi(p,G)=0 (i=2,...,5). Theremaining three equations,
1 written asF;(p,G)=0 (i=6,...,8), areobtained from Eq.
ClZ(r):Kl(P)Feizl(p)(ril) (20) for »v=2 and eliminating the unknown function
K5(p,T,Xx) via the relations

1
+ —e 20-1) >1. 4) _ A4 4) _ A4 4 _ A4
aKZ(p’T,X) r € ’ r=1 (34) A(2;)11_A( )22! A(Z;)IZ_A(Z;)211 A(2;)12_ aA(Z;)ll' (39)
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For givenp andu, theG are determined by solving the coupled set of eight nonlinear equations via a Newton—Raphson
algorithm. Explicit expressions for the Jacobigh,,..sy=JdF;/JdG ,.;s can be provided: for=1, these quantities are obtained
from (33), while the remaining7 (,.s) are recovered from a differentiation 20) with respect to thé&s ., e.g.,

JF D . dD;.
aG:rs(PvG):Z A,(ull);srllD,u;lel;ll_*'T;lEn;k Ag-ll);mkllef;km ﬁDl;ll"FDr;mlﬁizi
(2) (9Dr;ml [7D1;1I 3) (?Dl;ll
+ET Al mu —3GM;rsD1’1|+D7'm|—¢9Gﬂ;rs A 3G s (40)
|
insertingD=D(p,G) and (@D/dG)(p,G) from solutions of 9G1.11
the linear equation®3) and(29). Similar expressions can be U
derived for the other derivatives. -1
The G(p,u(p,B—ApB)) from the previous temperature 9Gy1;12 0
step in the solution algorithm of the PDB7) are taken as Ju =7 . (43
initial values of the Newton—Raphson technique. In each : ;
step of the iteration, for giveis the linear systen{23) is 0
solved yielding D(p,G). Then the derivatives &2?22
(D :mi/ G ,.1s)(p,G) are obtained by solving the linear au

equationg29). These solutions are inserted in the expressionngerting the values of G(p,u), D(p,G(p,u)), and
for J. anvergence_z in _the Newton—Raphson r_nethod I§9D/9G)(p,u) in Egs. (41) and (42) in J of (43) finally
achieved if the relative difference of two successive valuegjives A /9G ..o (p,u) and @G/Ju)(p,u). Now, the

of G is less than 10%. Furthermore it is checked whether SCOZA—|=J>DE(§7) is ready for being solved. Numerical de-
the solution is physical, i.e., B5;15= G;21- With this solu- 4|5 for its solution are presented in Sec. 11 D.

tion G(p,u) one calculate®(p,u) =D(p,G(p,u)) via (23, Onceu(p,T,x) has been determined the quantities rel-
Aj(p,u) via (31) and(32), and (ID/9G)(p,u) via (29). evant for the calculation of the phase diagram, the pregaure

We now proceed to calculate the coefficient functions ofynd the chemical potentia}s; (i =1,2), are obtained by in-

the SCOZA-PDHE37). The derivatives {A;/dG ,.1s)(p,U)  tegratinggBP/d8 and dBu; /9B with respect to8 via

required in(38) are obtained fron{31) and are given by
Buy U 1-xdu

— —, 44
=A —4B0———, (41)
ICuirs IG s IG pirs dBu, du X du
B ap pox “9
where B p
JBP N Ju (46)
—_——— u _,
T3 S gy 2 N
m T
9Girs T Z»Zr m 9Girs with the Carnahan—Starling valif8gor P and Bu; as in-
tegration constants @8=0
+(1- M(a)e—zf)m
T aG,u.;I’S ’ 1+ 9+ 772— 773
BP(p,f=0X)=p————, (47)
\ L 5 (1-m)
| - (a) 7.mj
JG . _E 3 E pm(l-q- G . 87]_97]2_37]3
wrs T ozm pirs Builp B=0X0=In pit == (48
-n
of i
+(1— L(Ta)ezf)—'m'] , (42 5=(w/6)p is the packing fraction. The symmetry of the sys-
dG .rs . : . ‘ -
tem induces symmetry relations in the correlation functions
. and hence in the thermodynamic properties. For instance, for
N omj 2w the chemical potentials and for the pressure we find
9G r'nJ :? Ek Pk 5;u-5mr5ksDr;kj P P
wrs 22 p1(p,T.X) = ua(p, T,1-X), (49
vo D P(p,T,X)=P(p,T,1—X). (50)
7;mk
IG s

The derivativesiG ,.;s/du are obtained by implicitly differ- D. Numerical solution

entiating the equations;=0 (i=1,...,8)with respect ta; As a consequence of the simplifying assumptid@) the
inversion by use of the Jacobighleads to SCOZA-PDE is now only a PDE i andp, which can be
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solved for differentx values independently. The SCOZA- S =1+ pIx%h +(1-x)%h
PDE (37) is a nonlinear diffusion equation, that has been (@) piXhui(a)+( )hz2 )
solved by an implicit finite-difference algorittthdescribed +2x(1—x)?112(q)},
in detail in Ref. 28 on a@,p)-grid [0,8:]X[0,p0]; the grid- _ _
size inp, Ap, is 0.001,A is in general 10°, but becomes Sec(@) =X(1=x){1+ px(1—x)[h12(q) +hyAq)
even smaller in the liquid—vapor critical region, amd ~
=0.01 with xe[0,1/2]. In contrast to conventional liquid —2h(q)]], (53
state theories the SCOZA can be solved even in the critical ~ ~
regions. Sne(@) = pX(1=x){X[h11(q) —h12(q)]
Integration with respect tg@ starts at3=0 and then —(1—x)[522(q)—?112(q)]}.

proceeds to lower temperatures. At each temperature the o
nonlinear equations;=0 (introduced in the preceding sec- Their long-wavelength limits are related to the thermody-
tion) are solved, leading to th®(p,u): to ensure rapid con- hamic properties vid

vergence the values of th@(p,u) obtained at the previous _ 2
temperature stepd—Ap) in the solution algorithm of the SUN0) = 675c(0),
PDE are taken as initial guess for the solution of the system NkgT
of nonlinear equations aB. In the next step,D(p,u), See(0)= 77—, (54)
Aj(p,u), dD/3G, dA;1dG, anddG/du are calculated, from (E)
which we calculate the coefficient functi®{p,u) via (38). Ix? T.P.p

For the boundary condition we have used for 0 o

Sne(0) = —8S:¢(0)
u(p=0,8,x)=0 forall g andall x (51)  with 6=p(v,—v,) where thev; are the partial molar vol-
umes.

and for the boundary condition at high densipp& 1) we From the above criteria for stability it follows that as we

make use of the high temperature approximatibiiA):2 rea_ch the limits of mechani_cal stap_ilitﬁNN(O)_ diverges,
this approximation is known to be very accurate for highWhile at the border of material stabilig.(0) diverges. In
densities such that for a sufficiently large value gf a  2ddition, one aiso considers titgub)case of the so-called
boundary condition based on the HTA should be reasonabl§Z€0tropic instability, where the mixture is mechanically in-
good. Stable(i.e., diverging compressibilitywhile remaining ma-

For the initial condition at3=0 we assume that the f[erially stablefi.e., finiteScc_(O)]. Thespi_nodal of a mixture
direct correlation functions coincide with those of a HC sys-S thus located at those points where €itBgx(0) or Seo(0)
tem. Explicit expressions for these functions are obtaine@’ Poth diverge.

~ 1 12 I i -
from the MSA formalism, by setting(,.; ;=0 for all i and]j stabﬁ{trifstaoit:ilré Phéclavr? tizovﬁr;rtrt]iz( g)ar(;)éfci);etgea:bove n
and forv=2. For details we refer to Ref. 8. ’ q !

A(0)={de{ 5;+ Vpip;hi;(0)]}

- o oe 12
E. Thermodynamic stability ={def 5~ Vpip;ci;(0) ]}

To find out the limits of thermodynamic stability be- =del 5~ Vpip;Qij) (55)
comes for a fluid mixture a considerably more complex pmbbecomes zero. As also outlined in Ref. 170) can readily

Iem.t.han n th? one component case: now, .for a given coMyg cajculated from parameters available from the MSA solu-
position, density, and temperature the requirements for bot on:

mechanicabnd material stability must be fulfilled. Mechani-
cal stability is expressetsimilar as in the one component — (- q
case via y1>>0, while material stability is expressed via the Qij= 0 Qij(r)dr

criterion
1 1 1
A _"p_— - (a) _
(02(3) “gAIT 2 ZE(Cr;ijMf Frij) (56)
— =0, (52
> .
X TP with

bj=bo(1+M;)+A°N;, (57)

whereG is the Gibbs free energy of the system. _
ay Yy Coij=frje =Dy, (58)

It is more convenient to trace back the above two stabil-
ity criteria to the long-wavelength limit of two structure fac- and Egs.(31) and (32). by is calculated fronp and o (see
tors, the number—numbeByn(q) and the concentration— Appendix A of Ref. 12.
concentrationS.(q) structure factors which are suitable Of course fromA(0)=0 we do not learn which limit of
linear combinations of the Fourier transforms of the directinstability is actually reached; this has to be decided in a
correlation functionsh;;(r): more detailed investigation. It should also be noted, that the
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FIG. 1. The three different cases of the instability region on the interval
[0,p0] for a given value ok andT for a HCY fluid. The full lines are the
stable regions wher&(0)>0, while the dashed lines represent the unstable
regions that are excluded from the integration of the SCOZA-PDE.

sign of A(0) plays an important role when deciding whether
an MSA solution is acceptable for a given system: Pastore
has shown rigorousfy that if A(0)=<0 then the solution has

to be rejected. On the other hand, the fact théd) is posi-

tive does not guarantee that the solution is physical: only the
fact thatA(s) has no zero in the complex right half-plane of
s is a criterion that the solution is physicé&nd hence
unique?®). However, it has turned odf,that the simpler cri-
terion, i.e.,A(0)>0, is very reliable to detect physical solu-
tions.

We have used the XA(0)>0" criterion in our calcula-
tions to determine the spinodal and assume—according to
the simplified criterion outlined above—that it also separates
physical(and hence unigyesolutions from unphysical solu-
tions of the MSA/SCOZA. From the numerical point of view
we proceeded as follows: the boundary conditions on the
spinodal lines are

u(ps,B)=Us(ps), (59

where the densityg is the approximation for the spinodal
density on the discrete density grid at a given temperature. It
is located at that grid-point wher&(0) changes sign and
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T

p* = 0.25

1

FIG. 3. Phase stability lines in thel{,x) plane for a HCY mixture with

*

A(0)(p.G)=0,

Fi(p,G)=0, i=2,....8,

a=0.65 andzo=1.8. The point wherey,q diverges is marked by a dia-
mond. Everywhere els8,,(0) diverges(dashed ling

becomes negativeug(p) is the value of the excess internal
energy whereA(0)=0. This value is determined from the
set of eight nonlinear equations

(60)

with the functionsF; introduced above. These equations are
solved forG using a Newton—Raphson technique where the
0 01 02 03 04 05 06 07 08 09 1 Jacobian of the nonlinear system is provided. This Jacobian

can be calculated in a straightforward way analogous to the
P one in Sec. Il C. Inserting the solutid@(p) in the energy

equation(33) finally yieldsug(p). For the binary symmetric

FIG. 2. Spinodal line in the*, T*,x=1/2) plane for an equimolar binary
HCY mixture with«=0.9 andzo=0.8. Different line symbols are used for

HCY fluid that we have investigated, three cases of instabil-

the density regimes in which eithagg (full line) or S.(0) (dashed ling Ity regions in_th_e int'erveﬂo,po] for a given _Valu'e okandT
diverge. have to be distinguished that are shown in Fig. 1.
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I1l. RESULTS observation are, for instance, discussed in Ref. 31.

We present results for the stability and for the phase( . '_AI_‘* grze':ggﬁgsézrﬁm ri):]otFiof 4thfet3£slngdalr0;r;h ttr;ﬁs
diagram of a binary symmetric mixture determined via thesi)ak,)ili ' boupndar from above or?.diff.erent atthwe fix the
SCOZA. Now that the number of system parameters is re= ty Y P ’

. . concentratiorx to 1/2, choose some density and reduce the
duced substantially the phase behavior of such a system can . .

. o . . emperature until we reach the stability boundary. If we re-
be studied very easily in a systematic way; as noted abo

Vi . .
the unique parameter that triggers the phase behaviay is Suce, for a given density larger than the threshold value

the ratio between the unlike and the like interaction. A mean-(p >py), the temperature until we cross the stability bouna-

) - 3 ary whereS..(0) diverges, self-aggregation will take place
field st_udy by Wildinget al. h_as aIreany r_evealed the phase nd the fluid will demix into a 1-rich and a 2-rich phase
behavior of such a system in a qualitative way. We expec

four phases which we denote as follows: the vaf@®y, the aF)'. F(ﬁr p <£Dtb,| WheJe Xre"_):o thet fdeMlb:eco;nesGmeh—
mixed fluid (MF) and two phases of a demixed fllidF)—a chanically unstable and separates into a anda % phase.

lrich and a 2-rich fluid: the latter ones are often Finally, by further reducing the density the scenario will

counted—as a consequence of the symmetry with respect f'%gglnr?;l::%igr:\?v;hgélmg;\sntlelsdecompose into three phases:
x—as one single phase. For convenience we introduce tha = P P ’

reduced dimensionless densjty=po>=p and the reduced
dimensionless temperatufé =kgTo/K;=kgT. B. Phase diagrams

A. Thermodynamic stability The phase diagram is calculated by solving the coexist-
We start our discussion on the stability of our system&NCe equations, i.e. equal chemical potentials and equal pres-

with a projection of the three-dimensional spinodal onto theSuré of the coexisting phases at a givenl te{mperature. We
(p*,T*,x=1/2)-plane, shown in Fig. 2. The stable phases licharacterize coexisting phases fpyx) and (o', x") and pro-
(as also in the following ploisabove the spinodal line. The ceed as follows: the G—MF coexistence curve is obtained by

curve shown in Fig. 2 consists of two parts that intersect at £0/ving the set of equations
threshold density; ~0.76: forp*<p;, xeq diverges while wilp, Tx=12)=u(p,T.x=12)=u(p’ T x=1/2),
S.c(0) remains finite, while forp*>p{, S..(0) diverges (61
while the compressibility remains finitg; is « dependent; ,
this has been discussed in detail in Ref. 30, P(p.T.X=12)=P(p’, T.x=1/2). (62

We then proceed to a projection of the spinodal onto thé-or the G-MF and the MF-DF transitions we proceed in
(T*,x) plane, shown in Fig. 3 for two differeni* values, two steps: first we determine the phase diagram of the de-
one of them being below, the other one being ahgwef this  mixing transition, i.e., looking at a given temperatdrdor
system. For the higher density, all points of the spinodal aréwo coexisting states with the same fluid density but different
characterized by a divergence &f.(0), while for the den-  composition by fixingo=p’ and by determining concentra-
sity smaller tharp;, S..(0) diverges everywhere except for tionsx andx’ =1—x of the coexisting phases. The equilib-
x=1/2 wherey,.q diverges. We also observe that the curva-rium condition for the pressure is automatically fulfilled,
ture of the projections of the spinodal on thE*(x) plane  while the equilibrium conditions for the chemical potentials
changes as the density is varied. Physical reasons for thisecome at givef andp
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pa(p, T, X)=ua(p, T,X) (63 o
which defined(if it exists) the linex(p) of the second order 13k MA-line |
demixing transition. Along this line the chemical potentials ’
of the two species are equal by construction; they are de- I MF / DF 1
noted byu[T,p,Xx(p)]. In a second step the solution of the 1.2+ 0=0.65 7
two equations - /_ wricritical i

/ point _

plp, T x=1121=ulp", T.x(p")], (64)

Plp, T.x=1/2]=P[p", T,x(p")] (65) i

gives the density of the G or MF and the density’ of the
DF with concentrationg(p') and 1-x(p"), in equilibrium.

We only consider the more interesting case whare
<1: here we observe a competition between the G—MF tran-
sition and the demixing transition. According to the loci L B B
where the line (i.e., the critical line of the demixing tran- 3 ) T
sitiong intersects the second order G—MF transition one can 1.3k !
distinguish three types of phase diagrams. In Figs. 5 and 6
we show the *,T*) phase diagrams of two binary symmet- 12 / ]

. . . oo 2+ a=0.70 /

ric mixtures for three different values af (as indicategt MF / DF
they are projections of the three-dimensional,T*,x) dia- )
grams onto the d*,T*) plane. Thea values are chosen so £ 11
that each of the types of phase diagrams is represefitéd. -
the type | case, the line approaches the G—MF coexistence =
curve well below the critical point; the intersection point is L
called a CEP: here, a critical liquid coexists with a noncriti- 0.9L
cal gas. AboveTgp @ gas and a homogeneous liquid of
intermediate density coexist, becoming identical at the
G—MF critical point. When increasing, the liquid demixes N

as one crosses the line. The (full) curve below the CEP | ) i
temperaturgcf. bottom panels in Figs. 5 and & a triple !

LV critical poﬁ'ﬁ.

line where a gas, a 1-rich and a 2-rich liquid coex(s). In 121 ;"‘)L-line 7
the type Il case tha line intersects the G—MF curve at the / 1
G—MF critical point. Now there is no first order transition 11k 0=0.75 N
between the gas and the mixed liquid and xhkne ends at ME / DF

a tricritical point where three phases become critical at the & ]
same time: a gas, a 1-rich and a 2-rich liquid. Two order 1 LV critical point / i

/
/
/. critical end

parameters, the difference in the coexisting liquid and vapor point

densities, and the concentration difference vanish at the same
time. (iii) Finally, type Il represents the intermediate case, 0.9
where the\-line intersects the G—MF coexistence curve
slightly below the critical point. One finds—as in type I—a

critical _po_i_nt of th_e G-MF t_rgnsition and, similar as in type 0 0.2 0.4 06 08

[Il, a tricritical point. In addition, we observe a triple point p*

where a gas, a mixed liquid at intermediate density, and a

1-rich and a 2-rich liquid at high density coexist. FIG. 5. SCOZA phase diagrams in the*(T*) plane for variousx values

; ; ; o =1.8. The full lines represent first-order phase coexistence, the
Concluding, it should be pointed out that similar arche-2"4 2= _ ©
9 P dashed lines th& line and the dotted curves metastable G—MF transitions.

types of phase diagrams are also encountered in other liqui
systems with completely different interatomic interactions,
such as the Heisenberg fidfcor the Stockmayer fluid? contribution we have generalized the formalism of the
SCOZA to the case of a binary symmetric mixture. Introduc-
ing an approximation on the now three yet undetermined,
state-dependent functionk;j(p,8,x) we can reduce the
The SCOZA is an advanced liquid state method that ighree coupled PDE&or uin p, T, andx) to one single PDE
known to give reliable results for continuous one componenfor u in T and p. In the first part of this paper we have
systems even in the critical region. This is achieved by enpresented the formalism, we have given details of the nu-
forcing thermodynamic self-consistency between the commerical solution of the PDE and have discussed stability cri-
pressibility and the energy route via a state dependent funceria of binary mixtures. Assuming a simple HCY interaction
tion K(p,T) which is determined by solving a PDE. In this for the interatomic potentials we have then calculated the

IV. CONCLUSION
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