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Theoretical description of phase coexistence in model C60
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We have investigated the phase diagram of a pair interaction model of C60 fullerene@L. A. Girifalco, J. Phys.
Chem.96, 858~1992!#, in the framework provided by two integral equation theories of the liquid state, namely,
the modified hypernetted chain~MHNC! implemented under a global thermodynamic consistency constraint,
and the self-consistent Ornstein-Zernike approximation~SCOZA!, and by a perturbation theory~PT! with
various degrees of refinement, for the free energy of the solid phase. We present an extended assessment of
such theories as set against a recent Monte Carlo study of the same model@D. Costa, G. Pellicane, C. Caccamo,
and M. C. Abramo, J. Chem. Phys.118, 304 ~2003!#. We have compared the theoretical predictions with the
corresponding simulation results for several thermodynamic properties such as the free energy, the pressure,
and the internal energy. Then we have determined the phase diagram of the model, by using either the SCOZA,
the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase,
in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase
portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the
solid-vapor equilibrium. All theories show a more or less pronounced discrepancy with the simulated fluid-
solid coexistence pressure, above the triple point. The MHNC and SCOZA results for the liquid-vapor coex-
istence, as well as for the corresponding critical points, are quite accurate; the SCOZA tends to underestimate
the density corresponding to the freezing line. All results are discussed in terms of the basic assumptions
underlying each theory. We have then selected the MHNC for the fluid and the first-order PT for the solid
phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical
approaches. It emerges that the use of different procedures to characterize the fluid and the solid phases
provides a semiquantitative reproduction of the thermodynamic properties of the C60 model at issue. The
overall results appear as a robust benchmark for further theoretical investigations on higher order Cn.60

fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization
similar to that adopted in this work.

DOI: 10.1103/PhysRevE.68.021104 PACS number~s!: 64.10.1h, 61.20.Gy, 61.48.1c, 64.70.2p
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I. INTRODUCTION

A current model for C60 is based on a ‘‘smeared out
spherical representation of the fullerene molecules, ea
proposed by Girifalco@1#, where the carbon atoms give ris
to a uniform interaction distributed over the molecular ca
surface. A straightforward integration leads to an analyti
central pair potential, characterized by a harsh repulsive c
followed by a deep attractive well, which rapidly deca
with the interparticle distance.

A detailed characterization of the thermodynamic prop
ties of the Girifalco model is of relevant interest in seve
respects: for instance, first-principle studies of the C60 inter-
action give results very similar to those predicted through
Girifalco model @2,3#; the latter has been widely used
model Cn.60 fullerenes withn570, 76, and 84~see Refs.
@4–7# and references cited therein!, as well as other hollow
nanoparticles such as carbon onions and metal dicha
genides like GaAs and CdSe~also termed inorganic
fullerenes! @8#. Umiguchi and co-workers@9# proposed a
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semiempirical modification of the Girifalco interaction to a
count for the behavior of solid C60 at low temperatures; suc
a generalization might prove useful for the analysis of
lattice properties under impurity doping.

As far as a more speculative analysis of the Girifal
model is concerned, several intriguing aspects are relate
the overall appearance of its phase portrait, characterize
a narrow liquid pocket that extends only a few tens degr
over the triple-point temperature@10,11#. This borderline be-
havior, as for the existence of a stable liquid phase, basic
depends on the interplay between entropic demands,
posed by excluded-volume effects at short distances, and
ergetic contributions, due to the attractive part of the int
action potential. We may recall, as an indication of t
implied subtleties, the early controversy on the location
the liquid-vapor critical point@12,13#, clarified in successive
studies@14,15#, and the discrepancies on the position of t
freezing line and of the triple point, related to the procedu
adopted for the calculation of the liquid-solid equilibriu
@10,13,16#. Recently ~and unexpectedly, on the basis of
previous study on the Lennard-Jones fluid@17#!, Fartaria and
co-workers@3# have found that even the same simulati
approach leads to distinct predictions on the freezing line
©2003 The American Physical Society04-1



o

th
ee
d
is
l i
os
ct

i
d
ith
tin

cc

fo
-
ry
u

on
n

te
m
er
on
ica

f

dic
ow

dy
rg

eo
d

el
o
t

e

th
e
lu

ap
a

th

-

pec-

e
ites

f the

the
efi-
the
free

e of
ere

on

cted
n’’

COSTAet al. PHYSICAL REVIEW E 68, 021104 ~2003!
the Girifalco model, provided that different starting therm
dynamic conditions are employed.

We have recently reconciled such disparate results in
context of extensive Monte Carlo calculations of the fr
energies of both the fluid and the solid phases of the mo
@11,18#. We have concluded that the solid-fluid equilibrium
strongly affected by the deep, short-range attractive wel
the interaction potential, at variance with systems wh
freezing behavior is essentially dominated by steric effe
As a consequence, the freezing transition of the fluid
driven to lower densities~and the liquid pocket is reduce
accordingly!, mainly by energetic effects, in agreement w
a common scenario recently proposed for fluids interac
through short-range forces@19#.

The unusual aspects of the phase behavior have o
sioned several studies on the C60 model by means of refined
theoretical tools, for instance, integral equation theories
the fluid phase@13,16#, various density functional approxi
mations @14,20,21#, and the hierarchical reference theo
@22#. Preliminary studies have been recently carried o
based on the modified hypernetted chain approach~MHNC
@23#!, solved under a global thermodynamic consistency c
straint @24#, and on a generalization of the self-consiste
Ornstein-Zernike approximation~SCOZA @25–27#!, appro-
priate to investigate systems with continuous, soft-core in
actions@28#. However, such investigations were often co
pared to simulation results later revised; for example, sev
authors@13,16,28# have estimated the freezing conditions
the basis of some well-known one-phase structural ind
tors, as the Hansen-Verlet@29#, or the Giaquinta and Giunta
@30# criteria, whose limited applicability in the context o
‘‘energetic’’ fluids has been discussed in Ref.@11#.

Hinging on the simulation study of Ref.@11#, it is now
worth reconsidering a detailed analysis of theoretical pre
tions for the phase diagram of the envisaged model. Foll
ing our preliminary investigations@24,28# we shall adopt the
MHNC and SCOZA theories to characterize the thermo
namic properties of the fluid phase. As far as the free ene
of the solid phase is concerned, we use a perturbation th
~PT!, discussing several degrees of refinement, as fully
scribed in the text. Recent studies~see Refs.@31,32# and
references therein! have demonstrated that the PT accurat
describes the solid phase and the solid-fluid transition
models characterized by short-range interactions, as
depletion potentials resulting from the effective on
component representation of hard-sphere mixtures.
second-order expansion for the PT, also analyzed in
work, has been used in Ref.@33# to investigate the phas
behavior of several simple models for globular protein so
tions.

This paper is organized as follows: the theoretical
proaches are described in Sec. II. Results are reported
discussed in Sec. III. A short overview of our results and
conclusions are drawn in Sec. IV.

II. MODEL AND THEORETICAL APPROACHES

A. The Girifalco model potential

The Girifalco potential is well known in the fullerene lit
erature, so we recall only its analytical expression@1#,
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s~s21!3
1

1

s~s11!3
2

2

s4G
1a2F 1

s~s21!9
1

1

s~s11!9
2

2

s10G , ~1!

wheres5r /d, a15N2A/12d6, anda25N2B/90d12; N andd
are the number of carbon atoms and the diameter, res
tively, of the fullerene particles,A532310260 erg cm6 and
B555.773102105 erg cm12 are constants entering th
Lennard-Jones 12-6 potential through which two carbon s
on different spherical molecules are assumed to interact@1#.
For C60, d50.71 nm, while the node of the potential~1!, the
minimum, and its position, arer 0.0.959 nm, «.0.444
310212 erg, andr min51.005 nm, respectively.

B. Perturbation theory of the solid phase

The perturbation approach is based on a separation o
potential~1! into a reference~purely repulsive! part,v ref(r ),
and a residual, attractive part,vpert(r ). The reference system
is then approximated by a solid of hard spheres with
same crystallographic structure, by means of a suitable d
nition of the hard-core diameter. Given these positions,
free energy of the system can be expanded around the
energy of the hard-sphere crystal,Fhs, to obtain at first order
@34#:

bF

N
5

bFhs

N
1

br

2 E vpert~r !ḡhs~r !dr , ~2!

where N is the number of particles,b the inverse of the
temperatureT in units of the Boltzmann constant, andr the
number density; the second term is the thermal averag
the perturbation energy over the reference system, wh
ḡhs(r ) is the angular average of the pair distribution functi
of the hard-sphere solid,r (2)(r1 ,r2) @35,36#.

We have followed the WCA prescription~after Weeks,
Chandler, and Andersen@37#! to split the potential~1!,
namely,

v ref~r !5H v~r !1« if r<r min

0 if r .r min ,

vpert~r !5H 2« if r<r min

v~r ! if r .r min .
~3!

The properties of the reference system have been conne
to those of the hard-sphere solid through the ‘‘blip functio
formalism@38#, i.e., the effective hard-sphere diametersWCA
is determined by the implicit relation

E yhs~r !$exp@2bv ref~r !#2exp@2bvhs~r !#%dr50, ~4!

wherevhs(r ) is the hard-sphere potential~which depends on
sWCA) andyhs(r )5ghs(r )exp@bvhs(r )# is the corresponding
4-2
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THEORETICAL DESCRIPTION OF PHASE . . . PHYSICAL REVIEW E 68, 021104 ~2003!
cavity function. Another definition of the hard-core diame
sBH ~after Barker and Henderson@39#!, namely,

sBH5E
0

`

$12exp@2bv ref~r !#%dr, ~5!

has been tested in this work. Expression~5!, which corre-
sponds to a first-order approximation to Eq.~4! @34#, is ap-
propriate to describe the rapidly rising repulsive interact
v ref(r ). Other prescriptions for the separation of potential~1!
~see Refs.@39# and @40#! have been analyzed in this stud
their predictions for the thermodynamic properties of t
model at issue are, however, less accurate on the whole
those obtained through the WCA approach and will not
discussed further.

In Sec. III, we also investigate a second-order correct
to the free energy, earlier proposed by Barker and Hende
in Ref. @41#, and recently applied to systems with short-ran
interactions by Foffi and co-workers@33#, namely,

bF

N
5

bFhs

N
1

br

2 E vpert~r !ḡhs~r !dr

2
br

4 S ]r

]Phs
D E vpert~r !2ḡhs~r !dr , ~6!

wherePhs is the pressure of the hard-sphere solid. The c
rection in Eq.~6! was obtained by dividing the space in
concentric spherical shells, and assuming that the volum
each shell has the compressibility properties of a mac
scopic portion of the space~see Ref.@41# for full details on
the procedure and the approximations involved!.

We have resorted to several well-established simula
results in order to obtain the properties of the hard-sph
crystal. Specifically, we have used the Hall analytical eq
tion of state for the pressure@42#, which accurately fits the
molecular dynamics data of Alder and co-workers@43#:

bPhs

r
5

3h

hcp2h
1 (

h50

6

angn, ~7!

whereh is the packing fraction andhcp5pA2/6 is the close
packing fraction;g54(12h/hcp) and a052.557 696, a1
50.125 307 7, a250.176 239 3, a3521.053 308, a4
52.818 621,a5522.921 934, anda651.118 413. The free
energy is obtained by thermodynamic integration

bFhs~r!

N
5

bFhs~ r̄ !

N
1E

r̄

r bPhs~r8!

r8

dr8

r8
, ~8!

where for the reference free energyFhs( r̄), we have used the
Frenkel and Ladd@44# Monte Carlo result for the fcc crysta
of hard spheres, namely,bFhs

ex/N56.537 9(09) ath/hcp

50.7778 in the thermodymamic limit. Their determinatio
followed the Einstein crystal method, based on the const
tion of a reversible path from the solid under consideration
an Einstein crystal with the same crystallographic structu
As for the radial distribution functionḡhs(r ), we have used
02110
r

n

an
e

n
on
e

r-

of
-

n
re
-

c-
o
e.

the analytical form, proposed by Weis@35# and Kincaid and
Weis @45#, which expresses the distribution as a sum
Gaussian peaks centered around the nearest-neighbor fc
tice sites, with parameters calculated by Choi and co-work
@40# to fit their simulation results. In Ref.@40# an analytical
form for the cavity functionyhs(r ) inside the hard core en
tering Eq.~4! is also proposed, by directly extending to th
solid the Henderson and Grundke scheme for the fluid ph
@46#.

C. Liquid state theories

We have determined the thermodynamic and structu
properties of the fluid region through the MHNC@23# and
SCOZA @25# theories. We recall that in the MHNC frame
work, a closure to the Ornstein-Zernike equation,

h~r !5c~r !1rE c~ ur2r 8u!h~r 8!dr 8 ~9!

@whereh(r ) andc(r ) are the pair and direct correlation func
tions, respectively# is provided by the cluster expansion fo
the radial distribution functiong(r )[h(r )11,

g~r !5exp@2bv~r !1h~r !2c~r !1B~r !#, ~10!

in terms of an appropriate ‘‘ansatz’’ for the bridge functio
B(r ) @34#. In particular, in the simple hypernetted chain a
proximation, one setsB(r )50, while in the MHNC ap-
proach,B(r ) is approximated by the bridge function of
suitable hard-sphere system, following a prescription ba
on theuniversalityin the short-range structure observed in
wide class of model fluids@23#. In this work we have used
the analytic Percus-Yevick hard-sphere bridge funct
BPY(r ,shs* ), with the hard-core diametershs* fixed so to en-
force the ‘‘global’’ thermodynamic consistency of the theo
~see, e.g., Ref.@47#!. In the supercritical fluid region of the
phase diagram, such a consistency is enforced by requ
the equality between the virial pressurePv @which is ob-
tained at a given state point directly from the knowledge
g(r )] and the fluctuation pressurePc , to be calculated as

Pc5b21E
0

r x0

xT
r8dr8. ~11!

In Eq. ~11! the density integral is performed at fixed tempe
ture; x0 and xT are the ideal gas and the isothermal co
pressibilities, respectively; the latter is obtained as theq50
limit of the Fourier transform of the direct correlation fun
tion, x0 /xT5@12r c̃(q50)#, according to the fluctuation
theory.

As far as state points located in the high-density, but s
critical region of the phase diagram are concerned, these
reached through a combination of isothermal and isoch
paths, so to avoid crossing the liquid-vapor coexistence
gion. The consistency condition along isochoric paths
enforced by the requirement thatPv is equal to the pressur
estimated via the energy route,Pe,
4-3
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Pe5r2
]F

]r U
T

. ~12!

In Eq. ~12! the free energy is obtained by integrating t
internal energyU with respect to the~inverse! temperature at
constant density, according to the relation

bF~r,T!

N
5

bF~r,T̄!

N
2E

T̄

T U~T8!

NkBT8

dT8

T8
, ~13!

where (r,T̄) is a thermodynamic state whose absolute f
energybF(r,T̄)/N is known.

As shown in Ref.@24#, the global consistency is in gener
more accurate than the so-called ‘‘local’’ one. This lat
amounts to enforce the equality between the isothermal c
pressibility calculated via the fluctuation theory and via t
virial route ~i.e., by differentiatingPv with respect to the
density! @47#. The improvement of the global over the loc
consistency approach becomes crucial when the range o
particle interaction is very short, and/or at high densities a
low temperatures; the free energy and the chemical pote
in particular turn out to be almost quantitatively predict
@24#.

As far as the SCOZA theory is concerned, this represe
an advanced liquid state theory that is based on a m
spherical~MSA! type closure relation, replacing the prefa
tor b in the closure for the direct correlation function by
yet undetermined, state dependent functionK(r,T). This
function is fixed by the consistency requirement between
energy and the compressibility route to thermodynamics~see
below! @26,27#. For a hard-core potential of diametershs and
with an attractive tailw(r ), the SCOZA closure relations t
the OZ equation~9! read

g~r !50, r ,shs; ~14!

c~r !5chs~r !1K~r,T!w~r !, r>shs. ~15!

In relation~15!, chs(r ) represents the direct correlation fun
tion for the hard-core system; we have used the Waism
parametrization @48#, i.e., chs(r )5K0exp@2z0(r2shs)#/r
~with well-described density-dependent coefficientsK0 and
z0), which gives accurate results for the hard-sphere sys
The consistency requirement between the two thermo
namic routes mentioned above leads to the partial differen
equation~PDE!:

]

]b S 1

x red
D5r

]2u

]r2
, ~16!

wherex red5xT /x0 is the reduced~with respect to the idea
gas! dimensionless isothermal compressibility given by t
compressibility route andu is the excess~over ideal gas!
internal energy per unit volume provided by the ener
route.

Applications of the SCOZA in the continuum case we
limited initially to systems with interactions, which could b
represented by a linear combination of up to two Yuka
02110
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tails @26,49#. In recent works, one of us@27,50# has general-
ized the SCOZA formalism to an arbitrary number
Yukawa tails. The applications of the theory concern gen
ally Yukawa interactions since in this case the formalis
benefits greatly from the Wertheim-Baxter factorization rou
to solve the MSA@51#. In particular, expressions for the in
ternal energy and the compressibility are provided, with
efficients determined from the solution of a system
coupled nonlinear equations~see Refs.@27,52# for more de-
tails!. PDE ~16! can then be transformed into a PDE foru,
i.e.,

B~r,u!
]u

]b
5C~r!

]2u

]r2
, ~17!

whereC(r)5r andB(r,u) is a semianalytical expression i
the parameters of the MSA solution for the Yukawa potent
This PDE is a quasilinear diffusion equation which we ha
solved numerically with suitable initial~for b50) and
boundary conditions; for the latter, we have chosen the hi
temperature approximation for the upper density lim
rshs

3 51. The critical point, together with the full spinoda
line, is localized by the vanishing of the inverse compre
ibility, 1/x red; the coexistence curve is determined by equ
ing the chemical potential and the pressure, to be obtai
from u via standard thermodynamic relations.

The SCOZA has proven to give confident results for t
location of the coexistence curve and stays—in contras
most liquid state theories—reliable also in the critical regi
~see Ref.@27# for an overview!. The validity of the SCOZA
approach has been demonstrated for many continuum
tems as well as for spin systems~in few cases including
binary mixtures@52#!. As already mentioned, the SCOZ
applications to continuum systems are limited to Yukaw
type interactions; moreover, the repulsive part of the int
atomic potentialhas to be treated as a purely hard-core i
teraction. In the present work this has been done
distances smaller than the noder 0 of the Girifalco potential,
since the SCOZA PDE becomes unstable for repulsive in
actions, i.e.,

v(r )5H `, r ,r 0

c1e[e2z1(r 2r 0)2c2e2z2(r 2r 0)

2(12c2)e2z3(r 2r 0)]/ r , r .r 0 ,

~18!

where c1 /r 051.7458, c250.9209, z1r 0545.1889,
z2r 057.4129, andz3r 052.1648.

While the approximation of the attractive part of the tr
potential as a superposition of Yukawa tails does not rep
sent a serious restriction, no remedy has been found to
in order to include in the SCOZA formalism the softness
the repulsive part of the interaction.

III. RESULTS AND DISCUSSION

In the first part of this section~Figs. 1–3!, we compare the
perturbation theory for the solid phase with the correspo
ing Monte Carlo results@11#. Then, the PT free energies a
4-4
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combined with the simulation data for the fluid phase
order to determine the solid-fluid boundaries. In the sec
part ~Figs. 4–7! we present a complementary approa
where the MHNC and SCOZA theories are used to pre
the liquid-vapor equilibrium, and—in combination with th
simulation inputs for the solid phase@11#—the full phase
diagram. Hinging on both comparisons, we have calcula
in the last part~Fig. 8! the phase diagram on the basis
purely theoretical approaches.

As far as the PT is concerned, expression~5! gives a
hard-core equivalent diameter smoothly varying fromsBH
50.970 nm at T52200 K to sBH50.972 nm at T
51800 K. Such a weak variation reflects clearly the st
rapidly varying nature of the repulsive part of the Girifalc
potential. The more refined expression~4! for the hard-core

FIG. 1. PT free energy~top! and chemical potential~bottom!
along three isotherms in the solid phase: first-order PT@Eq. ~2!#
with sWCA @Eq. ~4!, dotted line# or sBH @Eq. ~5!, full line#, as
equivalent hard-core diameters; second-order PT@Eq. ~6!# with
sWCA ~dot-dashed line! or sBH ~dashed line!. Symbols represent the
corresponding Monte Carlo results@11#.
02110
d

t

d

,

diametersWCA , which adds a further dependence on t
density, involves just a minor correction tosBH evaluated
through Eq.~5!.

We report in Figs. 1 and 2 the PT free energy, chemi
potential, and equation of state along several isotherms in
solid phase, as obtained by using eithersWCA or sBH as
hard-sphere diameter, together with approximation~2! or ~6!
for the free energy. In the figures, the theoretical predictio
are compared to the corresponding simulation results@11#.
As can be expected, the use of eithersWCA or sBH produces
similar results. The PT predictions generally agree w
simulation data all over the solid phase, especially in
chemical potential vs the pressure. The equation of s
compares less favorably to Monte Carlo results~see Fig. 2!,
although wider discrepancies occur forr>1.27 nm23, i.e.,
almost outside the coexistence region, since the melting
is located betweenr.1.25 andr.1.27 nm23. Remarkably,
the accuracy of the numerical estimates in expression~2!
results from the balance between two almost comparab
and relatively large with respect to their difference
contributions of opposite signs. The PT predictions sligh
get worse if the second-order correction to the free ene
~however small, since it hardly exceeds 2% of the main c
tributions! is taken into account. As observed in the origin
paper@39#, this can depend on the semimacroscopic deri
tion of the last term in Eq.~6!, which is more appropriate fo
longer interaction ranges, in such a way that a reasona
large number of particles fits into the region of the attract
potential. The derivative of the pressure involved in Eq.~6!
can as well represent a source of numerical uncertanties

We may anticipate that the fine reproduction of the che
cal potential, as obtained through the first-order PT, even
ally leads to the most accurate predictions for the phase
havior of the model. For such reason, we concentrate
expansion~2! and show, in Fig. 3, the corresponding pha

FIG. 2. PT equation of state in the solid phase~lines!, displayed
in order of decreasing temperature from top to bottom, accordin
the caption of Fig. 1. Symbols represent Monte Carlo results@11#.
4-5
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COSTAet al. PHYSICAL REVIEW E 68, 021104 ~2003!
diagram; predictions corresponding both tosWCA and tosBH
are reported. The coexistence lines are determined by u
the simulation results of Ref.@11# for the fluid phase. It ap-
pears that the PT gives accurate predictions for the coe
ing temperatures and densities, with marginal effects rela
to distinct prescriptions for the hard-core diameter. By co
verse, a systematic overestimate characterizes the coe
ence pressure above the triple point~see bottom panel of Fig
3!, especially ifsWCA is employed. We argue in this case th
the definition of the cavity function inside the hard core@40#,
directly borrowed from the theory of simple fluids@46#, is

FIG. 3. First-order PT fluid-solid coexistence densities~top! and
pressures~bottom! of the C60 model, withsWCA ~triangles! or sBH

~circles! as hard-core diameters; data are obtained by using the
predictions for the solid phase and the simulation results of R
@11# for the fluid phase. Squares represent full Monte Carlo res
@11#. For completeness, the GEMC liquid-vapor coexistence de
ties ~top! and pressures~bottom! are also shown as full lines@15#.
The cross and the plus indicate the simulation critical and tr
points, respectively. In the bottom panel, dashed lines are guide
the eye for the Monte Carlo results.
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rather unappropriate for the C60 model; moreover, numerica
uncertainties can occur, due to the more cumbersome pr
dure needed to evaluatesWCA through Eq.~4!, which in-

volves in particular the calculation of the slope ofḡhs(r ) at
close contact.

In summary, it turns out that a PT first-order expansion
the model’s free energy around a properly defined refere
solid gives reliable predictions for the coexistence propert
and, more generally, for the solid phase behavior of the s
tem at issue. This finding is noteworthy in that it implies th
the hard-sphere behavior dominates, to a large extent,
structure of the solid phase; conversely, as discussed in
@11#, the properties of the fluid phase are markedly affec
by energetic aspects related to the attractive part of the
tential. Our results further support the use of the PT to ch
acterize the solid phase of systems interacting through sh
range forces, already documented in Refs.@31–33#.

As far as the theoretical description of the fluid phase
concerned, we report in Fig. 4 the SCOZA and MHNC p
dictions for the free energy, the chemical potential, the pr
sure, and the internal energy, along with the correspond
Monte Carlo results of Ref.@11#. It appears that the MHNC
predicts to a high accuracy the chemical potential as a fu
tion of the pressure, a quantity directly related to the co
istence properties of the model. A satisfactory agreem
with the simulation data also emerges for both the free
the internal energies, while a marked discrepancy affects
estimate of the pressure, especially in the high-density
gime. On the other hand, as is visible in Fig. 4, the therm
dynamic properties of the model are generally overestima
in the SCOZA framework. In Fig. 5 we report the cons
tency function shs* entering the definition of the Percus
Yevick bridge functions in the MHNC, as well as the corr
spondingK(r,T) for the SCOZA@see Eq.~15!#. The ratio
2K(r,T)/b in Fig. 5 is a direct measure of the deviation
SCOZA closure from a simple MSA approximation, whic
amounts to assumeK(r,T)52b in Eq. ~15!.

The tendency of the MHNC to overestimate the press
under the global consistency procedure, already observe
Ref. @24#, appears somehow unexpected, especially con
ering the overall good performances of this theory. We c
jecture that it might depend on an overestimate of the eff
tive hard-sphere diametershs* entering the bridge function a
the adjustable parameter to enforce the thermodynamic
sistency in Eq.~11! or ~12!. Indeed, the value of the viria
pressurePv depends on a delicate balance between contr
tions of opposite signs. The use of the Verlet-Weis brid
functions~which fit available simulation data!, instead of the
analytical Percus-Yevick ones, might as well improve t
predictions for the pressure. As for the SCOZA, we arg
that the discrepancies with simulation data are related to
approximate treatment of the repulsive part of the potent
In particular, the substitution of the soft-core interaction w
a purely hard-sphere potential forr ,r 0 causes an enhance
repulsion~which reflects in the overestimate of the free e
ergy and of the pressure!, especially at high temperature
where shorter distances can be sampled by the system
have indeed verified by few simulation runs along t
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FIG. 4. MHNC ~full lines! and SCOZA~dashed lines! thermodynamic properties along three isotherms in the fluid phase. All curve
displayed from top to bottom in order of decreasing temperature. Symbols represent Monte Carlo results@11#.
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isothermT52100 K ~not reported here! that the agreemen
between SCOZA and Monte Carlo pressures consider
improves, provided that both approaches are compared
the same model, i.e., hard spheres plus a Girifalco tail.

We report in Fig. 6 the SCOZA and MHNC prediction
for the liquid-vapor coexistence properties of the model. T
Gibbs ensemble Monte Carlo~GEMC! binodal line obtained
in Ref. @15# with a sample of 1500 particles is also shown f
comparison in Fig. 6; the corresponding critical paramet
are reported in Table I. The GEMC data reproduce the fr
energy estimates of Ref.@11# and extend on a closer regio
below the critical point. An analysis of the dependence
the system size of GEMC results, carried out in Ref.@15#,
showed that the critical parameters are practically unaffec
in passing from 600 to 1500 particles sample. It comes
from Fig. 6 that both MHNC and SCOZA reproduce th
binodal curve quite faithfully, especially as far as the vap
branch is concerned. The coexisting liquid densities
slightly underestimated, the SCOZA reverting this trend j
02110
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below the critical point. The binodal curve obtained throu
the MHNC under the global consistency constraint definit
improves on the local one, also displayed in Fig. 6, th
confirming the preliminary evidence reported in Ref.@24#.
As for the SCOZA, an internal compensation between
overestimate of the chemical potential on one hand, and
the pressure on the other hand, could be at the origin of
fairly good agreement with the GEMC binodal curve.

The MHNC solution algorithm converges to a thermod
namic consistent solution up toT51900 K ~see Fig. 6!. In
view of early studies on HNC-type theories~see, e.g., Ref.
@47#!, the difficulties to explore the critical region may b
intrinsic to such approaches, rather than an artifact of
merical procedures. Consequently, the available MHNC b
odal points must be fitted to some expected behavior in o
to determine the critical parameters; in particular, in order
calculate the critical temperatureTcr , we have assumed tha
a universal nonclassical scaling law for the coexisting den
ties applies to the Girifalco model envisaged here, nam
4-7



e
the

COSTAet al. PHYSICAL REVIEW E 68, 021104 ~2003!
FIG. 5. Consistency parametersshs* for the MHNC ~left! and K(r,T) for the SCOZA~right! as a function of the density along th
isothermsT52100 K ~circles! andT51900 K ~squares!. At 1900 K data are reported in the liquid range for the MHNC, and outside
spinodal region for the SCOZA. Lines are smooth interpolations of theoretical points.
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@53#,

r liquid2rvapor}uT2Tcrub, ~19!

where the critical exponent takes the Ising-like valueb
50.32. Once the critical temperature is known, we have c
culated the critical densityrcr by means of the law of recti
linear diameter:r liquid2rvapor5rcr1AuT2Tcru, with A to be
determined from the fit. Numerical values forTcr andrcr are
reported in Table I. At variance with the MHNC, within th
SCOZA the critical region can be approached in princi
with arbitrary precision, and therefore neither a fitting proc

FIG. 6. MHNC ~dotted line with open circles! and SCOZA
~dashed line! liquid-vapor coexistence; the GEMC results~full line
with dots @15#! are also shown. The crosses are the critical poi
Pluses represent MHNC under a local consistency constraint@16#.
The calculated coexistence points are shown as open ci
~MHNC! and dots~GEMC!, while the lines represent correspondin
theoretical interpolations.
02110
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dure nor a scaling behavior hypothesis must be invoked
calculate the critical point parameters; the SCOZA pred
tions are also collected in Table I. It emerges from Fig. 6 t
the theoretical predictions closely bracket the GEMC criti
point.

In Fig. 7 we report on the fluid-solid phase boundaries,
obtained by the combination of the MHNC and SCOZA pr
dictions for the fluid phase and the simulation results of R
@11# for the solid phase; for a comprehensive overview,
also show the binodal curves just discussed, as well as
full simulated fluid-solid coexistence points. As it is appa
ent, the overall good quality of the MHNC thermodynam
predictions provides a faithful reproduction of the pha
boundaries of the model. A small overestimate of the flu
solid coexistence pressure only occurs above the triple-p
temperature. As for the SCOZA, the solid-vapor equilibriu
and the melting line are satisfactorily predicted, while t
observed shift of the chemical potential~see Fig. 4! gives
rise to a marked discrepancy in the coexistence pres
above the triple point; on the other hand, the overestimat
the pressure of the fluid phase is reflected in the shift of
theoretical freezing line toward lower densities.

We have determined the MHNC and SCOZA triple poin
also reported in Table I, from the intersection between
corresponding binodal and freezing lines. It comes out t
the MHNC predicts the existence of a stable liquid pha
with a small shift of the triple and critical densities to low
values, with respect to the simulation results. The SCO
also predicts a liquid pocket for the model, although
stricted to a narrower temperature and density range.

It emerges that the MHNC theory for the fluid phase a
the first-order PT for the solid phase represent, among th
envisaged here, the most accurate theoretical tools to enq
into the full phase portrait of the C60 model. The ensuing
phase diagram is reported in Fig. 8. The MHNC binodal li
is directly drawn from Fig. 6. As is visible, the agreeme
with simulation data is semiquantitative; the comparison

.
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THEORETICAL DESCRIPTION OF PHASE . . . PHYSICAL REVIEW E 68, 021104 ~2003!
Figs. 3, 7, and 8 demonstrates that the errors in the loca
of phase boundaries are essentially brought about by
MHNC, while the use of the PT for the solid phase does
introduce any appreciable discrepancy with simulation
sults. For such reason we do not expect a significant
provement of the overall appearance of the phase diagra
the SCOZA predictions for the fluid phase substitute
MHNC ones. In the bottom panel of Fig. 8, the overestim
of the fluid-solid coexistence pressure magnifies slightly
common trend already observed for the PT and MHNC
proaches separately.

FIG. 7. MHNC ~circles! and SCOZA~triangles! fluid-solid co-
existence densities~top! and pressures~bottom!; pluses represen
corresponding triple points; data are obtained by using the inte
equation predictions for the fluid phase and the simulation result
Ref. @11# for the solid phase. Squares represent full Monte Ca
results@11#. For completeness, the binodal curves drawn in Fig
are also reported in the top panel. In the bottom panel the full
is the GEMC liquid-vapor coexistence pressure@15# with the cor-
responding critical point~cross!; dashed lines are guides to the e
for the simulation results.
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TABLE I. MHNC and SCOZA critical and triple point densitie
~in nm23) and temperatures~in K!. Simulations: the critical point
corresponds to the GEMC estimate with 1500 particles of Ref.@15#;
the triple point has been calculated in Ref.@11#.

MHNC SCOZA Simulations

Tcr 1929 1957 1940
rcr 0.408 0.432 0.43
Ttr 1867 1916 1880
r tr 0.70 0.64 0.73

al
of
o
6
e

FIG. 8. Circles represent fully theoretical fluid-solid coexisten
densities~top! and pressures~bottom! of the C60 model; data are
obtained by using the MHNC and PT predictions for the fluid a
solid phases, respectively. Squares represent full simulation re
@11#. The MHNC and GEMC binodal curves with correspondin
critical points shown in Fig. 6 are also displayed. In the botto
panel the full line is the GEMC liquid-vapor coexistence press
@15# with the corresponding critical point~cross!; dashed lines are
guides to the eye for the simulation results.
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IV. SUMMARY AND CONCLUDING REMARKS

We have presented a theoretical investigation of the th
modynamic properties and the phase behavior of the G
falco C60 model, in the framework provided by three refine
theoretical tools, as the modified hypernetted chain~MHNC!
with a global thermodynamic consistency constraint and
self-consistent Ornstein-Zernike approximation~SCOZA!
for the fluid phase, and a perturbation theory~PT! with vari-
ous degrees of refinement for the free energy of the s
phase.

The theoretical predictions are assessed against our re
simulation study@11#. It turns out that the phase portrait o
the model is predicted fairly well, in particular as for th
solid-vapor coexistence and the melting line. By conver
the inaccuracies in the thermodynamic predictions se
tively affect the determination of the fluid-solid coexisten
pressure above the triple point. The MHNC and SCO
liquid-vapor binodals are sufficiently accurate; the critic
point estimates closely bracket the Gibbs ensemble Mo
Carlo data@15#. In comparison with the simulation and th
MHNC freezing lines~which turn to be practically superim
posed!, the SCOZA tends to underestimate the density of
liquid branch of the fluid-solid coexistence, with a corr
sponding shift of the triple point to lower densities a
higher temperatures.

We have interpreted our results in view of the basic
sumptions underlying each theory. It has emerged that
SCOZA mainly suffers from the substitution of the Girifalc
soft-core repulsion at short distance with a purely ha
sphere interaction, which leads to a corresponding overe
.
es

s,
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m
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p
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mate of the pressure and of the free energy in the fluid ph
We have also conjectured that the MHNC pressure mi
improve if the Verlet-Weis bridge functions were adopt
instead of the Percus-Yevick ones, employed in this work.
for the PT, it turns out that both a second-order expansion
the free energy and a refined definition of the equival
hard-core diameter, lead to a slight worsening of the theo
ical predictions on the whole, which could be related to mo
cumbersome numerical procedures involved.

We have eventually succeeded in predicting, to a satis
tory degree of accuracy, the phase diagram of the Girifa
model, on the basis of purely theoretical approaches.
have selected for this purpose a sophisticated MHNC tr
ment of the fluid phase, and the first-order PT for the so
phase. We expect that our conclusions about the most
able theoretical schemes to investigate the phase diagra
the Girifalco model can be reasonably extended to other
tems characterized by similar interparticle interaction law
In particular, we plan to analyze the phase diagram of ot
higher-order Cn.60 fullerenes, combining both simulation
and theoretical schemes. We have already produced se
Monte Carlo results for the Girifalco C84 fullerene, to be
used for such purpose. The related calculations are curre
in progress.
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