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We have investigated the phase diagram of a pair interaction mode} @fl@rene[L. A. Girifalco, J. Phys.
Chem.96, 858(1992], in the framework provided by two integral equation theories of the liquid state, namely,
the modified hypernetted chaiiMHNC) implemented under a global thermodynamic consistency constraint,
and the self-consistent Ornstein-Zernike approximati®@0OZA), and by a perturbation theorPT) with
various degrees of refinement, for the free energy of the solid phase. We present an extended assessment of
such theories as set against a recent Monte Carlo study of the same[@o@ekta, G. Pellicane, C. Caccamo,
and M. C. Abramo, J. Chem. Phykl8 304 (2003]. We have compared the theoretical predictions with the
corresponding simulation results for several thermodynamic properties such as the free energy, the pressure,
and the internal energy. Then we have determined the phase diagram of the model, by using either the SCOZA,
the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase,
in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase
portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the
solid-vapor equilibrium. All theories show a more or less pronounced discrepancy with the simulated fluid-
solid coexistence pressure, above the triple point. The MHNC and SCOZA results for the liquid-vapor coex-
istence, as well as for the corresponding critical points, are quite accurate; the SCOZA tends to underestimate
the density corresponding to the freezing line. All results are discussed in terms of the basic assumptions
underlying each theory. We have then selected the MHNC for the fluid and the first-order PT for the solid
phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical
approaches. It emerges that the use of different procedures to characterize the fluid and the solid phases
provides a semiquantitative reproduction of the thermodynamic properties ofgthmdtlel at issue. The
overall results appear as a robust benchmark for further theoretical investigations on higher grger C
fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization
similar to that adopted in this work.
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[. INTRODUCTION semiempirical modification of the Girifalco interaction to ac-
count for the behavior of solid & at low temperatures; such
A current model for G, is based on a “smeared out” a generalization might prove useful for the analysis of the
spherical representation of the fullerene molecules, earlidattice properties under impurity doping.
proposed by Girifalcd1], where the carbon atoms give rise  As far as a more speculative analysis of the Girifalco
to a uniform interaction distributed over the molecular cagemodel is concerned, several intriguing aspects are related to
surface. A straightforward integration leads to an analyticathe overall appearance of its phase portrait, characterized by
central pair potential, characterized by a harsh repulsive corg narrow liquid pocket that extends only a few tens degrees
followed by a deep attractive well, which rapidly decaysover the triple-point temperatufé¢0,11]. This borderline be-
with the interparticle distance. havior, as for the existence of a stable liquid phase, basically
A detailed characterization of the thermodynamic properdepends on the interplay between entropic demands, im-
ties of the Girifalco model is of relevant interest in severalposed by excluded-volume effects at short distances, and en-
respects: for instance, first-principle studies of thg i@ter-  ergetic contributions, due to the attractive part of the inter-
action give results very similar to those predicted through theaction potential. We may recall, as an indication of the
Girifalco model [2,3]; the latter has been widely used to implied subtleties, the early controversy on the location of
model G,-¢o fullerenes withn=70, 76, and 84see Refs. the liquid-vapor critical poinf12,13, clarified in successive
[4-7] and references cited thergiras well as other hollow studies[14,15, and the discrepancies on the position of the
nanoparticles such as carbon onions and metal dichalcdreezing line and of the triple point, related to the procedure
genides like GaAs and CdSe¢also termed inorganic adopted for the calculation of the liquid-solid equilibrium
fullereneg [8]. Umiguchi and co-workerg9] proposed a [10,13,16. Recently(and unexpectedly, on the basis of a
previous study on the Lennard-Jones fllid]), Fartaria and
co-workers[3] have found that even the same simulation
*Corresponding author. Email address: costa@tritone.unime.it approach leads to distinct predictions on the freezing line of
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the Girifalco model, provided that different starting thermo-
dynamic conditions are employed. v(n=—a;

We have recently reconciled such disparate results in the
context of extensive Monte Carlo calculations of the free
energies of both the fluid and the solid phases of the model
[11,18. We have concluded that the solid-fluid equilibrium is
strongly affected by the deep, short-range attractive well in
the interaction potential, at variance with systems Whos%vheres=r/d, a,=N2A/12d°, anda,=N2B/90d'2 N andd
freezing behavior is essentially dominated by steric effects, o yno nymber of carbon atoms and the diameter, respec-
As a consequence, the freezing transition of the fluid i
driven to lower densitiesand the liquid pocket is reduced
accordingly, mainly by energetic effects, in agreement with
a common scenario recently proposed for fluids interactin
through short-range forcg49].

The unusual aspects of the phase behavior have
sioned several studies on thg;@odel by means of refine
theoretical tools, for instance, integral equation theories fo
the fluid phasg13,16], various density functional approxi-
mations [14,20,27, and the hierarchical reference theory B. Perturbation theory of the solid phase

[22]. Preliminary studies have been recently carried out, The perturbation approach is based on a separation of the
based on the modified hypernetted chain apprd®HNC  tential(1) into a referencépurely repulsivé part, v edr),

[23]), solved under a global thgrquynamm conS|stenc_y CONzNd a residual, attractive Pattye(r). The reference system
straint _[24], ar_ld on a ggnerghzatmn of the self-consistentg nen approximated by a solid of hard spheres with the
Ornstein-Zernike approximatiofSCOZA [25-27), appro-  game crystallographic structure, by means of a suitable defi-
priate to investigate systems with continuous, soft-core intefyiion of the hard-core diameter. Given these positions, the
actions[28]. However, such investigations were often COM-free energy of the system can be expanded around the free

pared to simulation results_ later revised,; for examplle., severegnergy of the hard-sphere crystl,, to obtain at first order
authorg13,16,2§ have estimated the freezing conditions on 34]:

the basis of some well-known one-phase structural indica-

tors, as the Hansen-Verlg29], or the Giaquinta and Giunta BF BFhs Bp _

[30] criteria, whose limited applicability in the context of NN +7J Uperd 1) ndr)dr, (2
“energetic” fluids has been discussed in REFL].

Hinging on the simulation study of Refll], it is now \here N is the number of particles3 the inverse of the
worth reconsidering a detailed analysis of theoretical pred'cfemperaturér in units of the Boltzmann constant, apcthe

tions for the phase diagram of the envisaged model. F°”°Whumber density; the second term is the thermal average of

ing our preliminary investigation24,28 we shall adopt the 4 ;
; . perturbation energy over the reference system, where
MHNC and SCOZA th to ch t the th dy— . o .
an eories 10 cnaraclerize the tnermocly {r) is the angular average of the pair distribution function

namic properties of the fluid phase. As far as the free energy" .

of the solid phase is concerned, we use a perturbation theo the hard-sphere soligy(ry ) [35'3.6]'.

(PT), discussing several degrees of refinement, as fully de- We have followed the WCA pre;cnonfafter Weeks,
scribed in the text. Recent studi¢see Refs[31,32 and Chandler, and Andersef87]) to split the potential(1),
references therejrhave demonstrated that the PT accuratelynamely'

describes the solid phase and the solid-fluid transition of

models characterized by short-range interactions, as the Uref(r):[

1 . 1 2
s(s—1)% s(s+1)% §*

1 1 2

+ o + - —|,
Zls(s—1)° s(s+1)? si°

@

Sively, of the fullerene particlesA=232x 10~ erg cnf and

B=55.77<10 ®ergcnt? are constants entering the

iennard—\]ones 12-6 potential through which two carbon sites
n different spherical molecules are assumed to int¢fdct

occhor Geo, d=0.71 nm, while the node of the potentid), the

d minimum, and its position, are&;=0.959 nm, £=0.444

<107 *? erg, andr ,;,=1.005 nm, respectively.

v(r)+e if r<rpyp

depletion potentials resulting from the effective one- 0 it r>rmin,
component representation of hard-sphere mixtures. A

second-order expansion for the PT, also analyzed in this —e if r<rpn

work, has been used in R€f33] to investigate the phase vpen(r)={ s (3)
behavior of several simple models for globular protein solu- v(r) it r>Tmin.

tions. The properties of the reference system have been connected

This paper is organized as follows: the theoretical ap- . e .
proaches are described in Sec. Il. Results are reported aj(a those of the hard-sphere solid through the “blip function

discussed in Sec. Ill. A short overview of our results and th or(;n?l|sm[3%,t|).e¥hth(_a efflgq':wel h?rd-sphere diamedgyca
conclusions are drawn in Sec. V. IS determined by the implicit refation

IIl. MODEL AND THEORETICAL APPROACHES f Vid N{eXH — Bue 1) ]—exf — Bundr)]}dr=0, (4)

A. The Girifalco model potential

The Girifalco potential is well known in the fullerene lit- wherev(r) is the hard-sphere potentigrhich depends on
erature, so we recall only its analytical expresdibh owea) andyndr)=gndr)exd Bunr)] is the corresponding
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cavity function. Another definition of the hard-core diameterthe analytical form, proposed by WHi35] and Kincaid and
oy (after Barker and HendersdB9]), namely, Weis [45], which expresses the distribution as a sum of
Gaussian peaks centered around the nearest-neighbor fcc lat-
[~ tice sites, with parameters calculated by Choi and co-workers
TBHT J; {1-ex — furedr) J}dr, ®) [40] to fit their simulation results. In Ref40] an analytical
form for the cavity functiony,(r) inside the hard core en-
has been tested in this work. Expressi@), which corre- tering Eq.(4) is also proposed, by directly extending to the
sponds to a first-order approximation to Ed) [34], is ap-  solid the Henderson and Grundke scheme for the fluid phase
propriate to describe the rapidly rising repulsive interaction[46].
v.ef(r). Other prescriptions for the separation of poten(tial
(see Refs[39] and[40]) have been analyzed in this study;
their predictions for the thermodynamic properties of the i i
model at issue are, however, less accurate on the whole than We have determined the thermodynamic and structural
those obtained through the WCA approach and will not beProperties of the fluid region through the MHN@3] and
discussed further. SCOZA[25] theories. We recall that in the MHNC frame-
In Sec. Ill, we also investigate a second-order correctioVork, a closure to the Ornstein-Zernike equation,
to the free energy, earlier proposed by Barker and Henderson

C. Liquid state theories

in Ref.[41], and recently applied to systems with short-range h(r)=c(r) +pf c(Jr=r’)h(r")dr’ 9
interactions by Foffi and co-workef83], namely,
BF  BFns Bp [whereh(r) andc(r) are the pair and direct correlation func-

N N T 7f U per 1) Ond 1) dr tions, respectivelyis provided by the cluster expansion for
the radial distribution functiog(r)=h(r)+1,

Bp | dp —
_T<Fhs)fvpe"(r)zg"5(r)dr’ © g(H)=exd — Bu(r)+h(r) —c(r)+B(r)], (10

where P\, is the pressure of the hard-sphere solid. The corin terms of an appropriate “ansatz” for the bridge function
rection in Eq.(6) was obtained by dividing the space into B(r) [34]. In particular, in the simple hypernetted chain ap-
concentric spherical shells, and assuming that the volume @froximation, one set®(r)=0, while in the MHNC ap-
each_ shell_has the compressibility properties of a macroproach, B(r) is approximated by the bridge function of a
scopic portion of the spadsee Ref[41] for full details on  gyjtable hard-sphere system, following a prescription based
the procedure and the approximations involved ~on theuniversalityin the short-range structure observed in a
We have resorted to several well-established simulatioyige class of model fluidg23]. In this work we have used
results in order to obtain the properties of the hard-spherg,e analytic Percus-Yevick hard-sphere bridge function
crystal. Specifically, we have used the Hall analytical eqUaBPY(y o), with the hard-core diameter?, fixed so to en-
tion of state for the pressuf@2], which accurately fits the o ce the “global” thermodynamic consistency of the theory
molecular dynamics data of Alder and co-workp48: (see, e.g., Ref47)). In the supercritical fluid region of the
6 phase diagram, such a consistency is enforced by requiring
BPhS: 37 +> a 1 @) the equality between the virial pressulg [which is ob-
p Nep— M 7=0 ' tained at a given state point directly from the knowledge of
g(r)] and the fluctuation pressuf;, to be calculated as

where is the packing fraction ang,= w216 is the close

packing fraction; y=4(1—»n/7) and a;=2.557696, a, p
=0.1253077, a,=0.1762393, az=-—1.053308, a, Pc:ﬁ_lf

=2.818621,a5=—2.921934, andz=1.118413. The free 0
energy is obtained by thermodynamic integration

Xo
= p'dp’. 11
Pl (12)

In Eq. (1) the density integral is performed at fixed tempera-

e , / ture; and are the ideal gas and the isothermal com-
E = P d » X0 XT g
AFndp) = BFndp) + j_p ’Bh—S(p) L, (8) pressibilities, respectively; the latter is obtained asgked
N N P p' p’ limit of the Fourier transform of the direct correlation func-

— tion, xo/x1=[1—pc(q=0)], according to the fluctuation
where for the reference free enefigyyp), we have used the theor))/(.o xr=[1=pc(q=0)] g

Frenkel and Laddl44] Monte Carlo result for the fcc crystal As far as state points located in the high-density, but sub-
of hard spheres, namely3FpJN=6.5379(09) atn/7,  critical region of the phase diagram are concerned, these are
=0.7778 in the thermodymamic limit. Their determination reached through a combination of isothermal and isochoric
followed the Einstein crystal method, based on the construgaths, so to avoid crossing the liquid-vapor coexistence re-
tion of a reversible path from the solid under consideration tqyion. The consistency condition along isochoric paths is
an Einstein crystal with the same cgstallographic structureenforced by the requirement tha, is equal to the pressure
As for the radial distribution functiog,(r), we have used estimated via the energy route,,
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tails[26,49. In recent works, one of U27,50 has general-

: (120 ized the SCOZA formalism to an arbitrary number of
T Yukawa tails. The applications of the theory concern gener-
ally Yukawa interactions since in this case the formalism
benefits greatly from the Wertheim-Baxter factorization route
to solve the MSA51]. In particular, expressions for the in-
ternal energy and the compressibility are provided, with co-
BF(p,T) BF(p,T) fT U(T’) dT’ efficients determined from the solution of a system of

Pe= 925

In Eq. (12) the free energy is obtained by integrating the
internal energyJ with respect to thé¢inverse temperature at
constant density, according to the relation

B ) (13 coupled nonlinear equatiorisee Refs[27,52 for more de-
N N T NkgT" T’ tails). PDE (16) can then be transformed into a PDE fgr
_ ie.,
where ,T) is a thermodynamic state whose absolute free
energyF(p,T)/N is known. au é%u
As shown in Ref[24], the global consistency is in general B(p,u) B = C(P)ﬁ’ (17)
more accurate than the so-called “local” one. This latter P

amounts to enforce the equality between the isothermal ComWhereC(p) — p andB(p,u) is a semianalytical expression in

p_rgssm lity c_alculated.wa th? flluctuano.n theory and via thethe parameters of the MSA solution for the Yukawa potential.
virial route (i.e., by differentiatingP, with respect to the

. : This PDE is a quasilinear diffusion equation which we have
dens]ty [47]. The improvement of thg global over the local solved numerically with suitable initialfor 8=0) and
consistency approach becomes crucial when the range of t%

foundary conditions; for the latter, we have chosen the high-
particle interaction is very short, and/or at high densities an y ! ' 9

) mperature approximation for the upper density limit
low temperatures; the free energy and the chemical potential 3p_ P . ubp Y
; . e : ponhs—1. The critical point, together with the full spinodal
in particular turn out to be almost quantitatively predicted;; . ) e .
[24] line, is localized by the vanishing of the inverse compress-

gaility, 1/ xeq; the coexistence curve is determined by equat-
ng the chemical potential and the pressure, to be obtained
rom u via standard thermodynamic relations.

The SCOZA has proven to give confident results for the
location of the coexistence curve and stays—in contrast to
most liquid state theories—reliable also in the critical region
?see Ref[27] for an overview. The validity of the SCOZA
approach has been demonstrated for many continuum sys-
tems as well as for spin systentm few cases including
binary mixtures[52]). As already mentioned, the SCOZA
applications to continuum systems are limited to Yukawa-

As far as the SCOZA theory is concerned, this represent
an advanced liquid state theory that is based on a mea
spherical(MSA) type closure relation, replacing the prefac-
tor B in the closure for the direct correlation function by a
yet undetermined, state dependent functkd¢p,T). This
function is fixed by the consistency requirement between th
energy and the compressibility route to thermodynar(seg
below) [26,27]. For a hard-core potential of diametey; and
with an attractive taiw(r), the SCOZA closure relations to
the OZ equation(9) read

9(N =0, r<opg; (14) type .interactiqns; moreover, the repulsive part of the in_ter-
atomic potentiahasto be treated as a purely hard-core in-
c(r)=cpdr)+K(p, DIW(r), r=ope. (15) teraction. In the present work this has been done for

distances smaller than the nodgof the Girifalco potential,
In relation(15), c,{r) represents the direct correlation func- Since the SCOZA PDE becomes unstable for repulsive inter-

tion for the hard-core system; we have used the Waisma#@ctions, I.e.,
parametrization [48], i.e., ch{r)=Kpexd —z(r—ondl/r

(with well-described density-dependent coefficieks and % r<ro

z,), which gives accurate results for the hard-sphere system.  ;(r)=14 c;e[e a0 —c e 20 "T0) (18)
The consistency requirement between the two thermody-

. : e ; —(1—c,)e B —r/r, r>rg,
namic routes mentioned above leads to the partial differential ( 2) ] 0

equation(PDE: where ¢ /rg=1.7458, c,=0.9209, z,r,=45.1889,
9 1 azu eroz?.4129, an¢3r0:21648 ]
_ _) =p—0, (16) While the approximation of the attractive part of the true
9B\ Xred ap? potential as a superposition of Yukawa tails does not repre-

sent a serious restriction, no remedy has been found to date

where xeq= X7/ X0 is the reducedwith respect to the ideal in order to include in the SCOZA formalism the softness of
gas dimensionless isothermal compressibility given by thethe repulsive part of the interaction.
compressibility route andi is the excesgover ideal gas
internal energy per unit volume provided by the energy
route.

Applications of the SCOZA in the continuum case were In the first part of this sectiofFigs. 1-3, we compare the
limited initially to systems with interactions, which could be perturbation theory for the solid phase with the correspond-
represented by a linear combination of up to two Yukawaing Monte Carlo result§11]. Then, the PT free energies are

III. RESULTS AND DISCUSSION
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FIG. 2. PT equation of state in the solid phdkees), displayed
in order of decreasing temperature from top to bottom, according to
the caption of Fig. 1. Symbols represent Monte Carlo regafts

diameterowca, Which adds a further dependence on the
density, involves just a minor correction tgs evaluated
through Eq.(5).

We report in Figs. 1 and 2 the PT free energy, chemical
potential, and equation of state along several isotherms in the
solid phase, as obtained by using eithgfca Or oy as
hard-sphere diameter, together with approximat@ror (6)
for the free energy. In the figures, the theoretical predictions
are compared to the corresponding simulation requis.

As can be expected, the use of eitlwgyc, Or ogy produces
L . . ‘ ‘ similar results. The PT predictions generally agree with
02 0 02 04 06 08 ! simulation data all over the solid phase, especially in the
Pressure [100MPa] chemical potential vs the pressure. The equation of state

compares less favorably to Monte Carlo resitse Fig. 2,

FIG. 1. PT free energytop) and chemical potentialbottom although W'_der dlscrepa_nmes oceur pr_l.Z? nm ?, 1.€.,
along three isotherms in the solid phase: first-order[Eq. (2]  @lmost outside the coexistence region, since the melting line
with owca [EQ. (4), dotted lind or ogy [Eq. (5), full line], as IS located betweep=1.25 andp=1.27 nm °. Remarkably,
equivalent hard-core diameters; second-order [Bd. (6)] with  the accuracy of the numerical estimates in expres$®n
owca (dot-dashed lineor oy (dashed ling Symbols represent the results from the balance between two almost comparable—
corresponding Monte Carlo resufts1]. and relatively large with respect to their difference—
contributions of opposite signs. The PT predictions slightly

et worse if the second-order correction to the free energy
however small, since it hardly exceeds 2% of the main con-
Eributions) is taken into account. As observed in the original

combined with the simulation data for the fluid phase in
order to determine the solid-fluid boundaries. In the secon
part (Figs. 4—7 we present a complementary approach

where the MHNC and SCOZA theories are used to predic : ) . .
the liquid-vapor equilibrium, and—in combination with the paper(39), this can depend on the semimacroscopic deriva-

simulation inputs for the solid phagall—the full phase tion of t.he last _term in Eq(.6)., which is more appropriate for
diagram. Hinging on both comparisons, we have calculatefPN9€r interaction ranges, in such a way that a reasonably
in the last part(Fig. 8 the phase diagram on the basis of large qumber of pgrtlgles fits into the region of the.attractlve
purely theoretical approaches. potential. The derivative of the pressure involved in E).

As far as the PT is concerned, expressi®h gives a ¢an as well represent a source of numerical uncertanties.
hard-core equivalent diameter smoothly varying frem, We may anticipate that the fine reproduction of the chemi-
=0.970 nm at T=2200K to opy=0.972nm at T cal potential, as obtained through the first-order PT, eventu-
=1800 K. Such a weak variation reflects clearly the stiff,ally leads to the most accurate predictions for the phase be-
rapidly varying nature of the repulsive part of the Girifalco havior of the model. For such reason, we concentrate on
potential. The more refined expressi@h for the hard-core  expansion(2) and show, in Fig. 3, the corresponding phase
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2200 T

rather unappropriate for theggmodel; moreover, numerical

" uncertainties can occur, due to the more cumbersome proce-
dure needed to evaluaigyc, through Eq.(4), which in-
volves in particular the calculation of the slopegf(r) at
close contact.

In summary, it turns out that a PT first-order expansion of
the model’s free energy around a properly defined reference
solid gives reliable predictions for the coexistence properties,
and, more generally, for the solid phase behavior of the sys-
tem at issue. This finding is noteworthy in that it implies that
the hard-sphere behavior dominates, to a large extent, the
structure of the solid phase; conversely, as discussed in Ref.
[11], the properties of the fluid phase are markedly affected
by energetic aspects related to the attractive part of the po-
. v - - tential. Our results further support the use of the PT to char-

' ’ ' acterize the solid phase of systems interacting through short-

range forces, already documented in REBL—33.

As far as the theoretical description of the fluid phase is
' / concerned, we report in Fig. 4 the SCOZA and MHNC pre-
dictions for the free energy, the chemical potential, the pres-
sure, and the internal energy, along with the corresponding
Monte Carlo results of Refll]. It appears that the MHNC
predicts to a high accuracy the chemical potential as a func-
tion of the pressure, a quantity directly related to the coex-
istence properties of the model. A satisfactory agreement
with the simulation data also emerges for both the free and
the internal energies, while a marked discrepancy affects the
estimate of the pressure, especially in the high-density re-
A gime. On the other hand, as is visible in Fig. 4, the thermo-
n dynamic properties of the model are generally overestimated
in the SCOZA framework. In Fig. 5 we report the consis-
tency function o}, entering the definition of the Percus-
Yevick bridge functions in the MHNC, as well as the corre-
Y800 1900 2000 spondingK (p,T) for the SCOZA[see Eq.(15)]. The ratio

Temperature [K] —K(p,T)/B in Fig. 5 is a direct measure of the deviation of

SCOZA closure from a simple MSA approximation, which
FIG. 3. First-order PT fluid-solid coexistence densifiep) and ~ amounts to assumi€(p,T)=— B in Eq. (15).

pressuregbottom of the G, model, withoy,ca (triangles or ogy The tendency of the MHNC to overestimate the pressure

(circles as hard-core diameters; data are obtained by using the Plinder the global consistency procedure, already observed in
predictions for the solid phase and the simulation results of RefRef. [24], appears somehow unexpected, especially consid-
[11] for the fluid phase. Squares represent full Monte Carlo result@ring the overall good performances of this theory. We con-

[11]. For completeness, the GEMC liquid-vapor coexistence densijecture that it might depend on an overestimate of the effec-

ties (top) and pressuregbottom are also shown as full lin€45].  tive hard-sphere diametet, entering the bridge function as

The cross and the plus indicate the simulation critical and tripley,o adjustable parameter to enforce the thermodynamic con-
points, respectively. In the bottom panel, dashed lines are guides Qstency in Eq(11)

th for the Monte Carl it or (12). Indeed, the value of the virial
€ eye for the Monte L.arlo results. pressureP, depends on a delicate balance between contribu-

tions of opposite signs. The use of the Verlet-Weis bridge
diagram; predictions corresponding bothutgca and toogy  functions(which fit available simulation datainstead of the

are reported. The coexistence lines are determined by usiranalytical Percus-Yevick ones, might as well improve the
the simulation results of Ref11] for the fluid phase. It ap- predictions for the pressure. As for the SCOZA, we argue
pears that the PT gives accurate predictions for the coexisthat the discrepancies with simulation data are related to the
ing temperatures and densities, with marginal effects relatedpproximate treatment of the repulsive part of the potential.
to distinct prescriptions for the hard-core diameter. By condn particular, the substitution of the soft-core interaction with
verse, a systematic overestimate characterizes the coexist-purely hard-sphere potential for<r, causes an enhanced
ence pressure above the triple pdisee bottom panel of Fig. repulsion(which reflects in the overestimate of the free en-
3), especially ifoyca is employed. We argue in this case that ergy and of the pressyreespecially at high temperature,
the definition of the cavity function inside the hard cp4€],  where shorter distances can be sampled by the system. We
directly borrowed from the theory of simple fluidd6], is  have indeed verified by few simulation runs along the
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e T=2100K
B T=2000 K
h * T-1900K

BF/N

.05 1.15 1.25 1.35 1.45 0.1 0.2 0.3 0.4

1/p [nm3] Pressure [100MPa]

0.4

Pressure [100 MPa]
BU%/N

0.65 0.75 0.85 0.95 07 0.8 0.9

Density [nm~] Density [nm]

FIG. 4. MHNC (full lines) and SCOZA(dashed linesthermodynamic properties along three isotherms in the fluid phase. All curves are
displayed from top to bottom in order of decreasing temperature. Symbols represent Monte Carld X&sults

isothermT=2100 K (not reported hepethat the agreement below the critical point. The binodal curve obtained through
between SCOZA and Monte Carlo pressures considerablthe MHNC under the global consistency constraint definitely
improves, provided that both approaches are compared dmproves on the local one, also displayed in Fig. 6, thus
the same model, i.e., hard spheres plus a Girifalco tail. confirming the preliminary evidence reported in RE#4].

We report in Fig. 6 the SCOZA and MHNC predictions As for the SCOZA, an internal compensation between the
for the liquid-vapor coexistence properties of the model. Theoverestimate of the chemical potential on one hand, and of
Gibbs ensemble Monte Carl[GEMC) binodal line obtained the pressure on the other hand, could be at the origin of the
in Ref.[15] with a sample of 1500 particles is also shown for fairly good agreement with the GEMC binodal curve.
comparison in Fig. 6; the corresponding critical parameters The MHNC solution algorithm converges to a thermody-
are reported in Table I. The GEMC data reproduce the freeramic consistent solution up f=1900 K (see Fig. 6. In
energy estimates of Refl1] and extend on a closer region view of early studies on HNC-type theori¢see, e.g., Ref.
below the critical point. An analysis of the dependence or{47]), the difficulties to explore the critical region may be
the system size of GEMC results, carried out in Réb], intrinsic to such approaches, rather than an artifact of nu-
showed that the critical parameters are practically unaffectetherical procedures. Consequently, the available MHNC bin-
in passing from 600 to 1500 particles sample. It comes outdal points must be fitted to some expected behavior in order
from Fig. 6 that both MHNC and SCOZA reproduce the to determine the critical parameters; in particular, in order to
binodal curve quite faithfully, especially as far as the vaporcalculate the critical temperatufie,, we have assumed that
branch is concerned. The coexisting liquid densities are universal nonclassical scaling law for the coexisting densi-
slightly underestimated, the SCOZA reverting this trend justies applies to the Girifalco model envisaged here, namely
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FIG. 5. Consistency parametes$, for the MHNC (left) and K(p,T) for the SCOZA(right) as a function of the density along the
isothermsT=2100 K (circles and T=1900 K (squares At 1900 K data are reported in the liquid range for the MHNC, and outside the
spinodal region for the SCOZA. Lines are smooth interpolations of theoretical points.

[53], dure nor a scaling behavior hypothesis must be invoked to
8 calculate the critical point parameters; the SCOZA predic-
Pliquid_Pvapor“|T_Tcr| ’ (19 tions are also collected in Table . It emerges from Fig. 6 that

where the critical exponent takes the Ising-like valde the theoretical predictions closely bracket the GEMC critical

=0.32. Once the critical temperature is known, we have calPOINt. ) , . .
culated the critical density,, by means of the law of recti- N Fig 7 we report on the fluid-solid phase boundaries, as
linear diameterpiquig— puapo= pert Al T— T, With A to be o_btglned by the cqmblnatlon of the I\/IIHNC.and SCOZA pre-
determined from the fit. Numerical values fo, andp, are dictions for the.flwd phase and the S|mulat|9n result; of Ref.
reported in Table I. At variance with the MHNC, within the [11] for the solid phase; for a comprehensive overview, we
SCOZA the critical region can be approached in principle@lso show the binodal curves just discussed, as well as the

with arbitrary precision, and therefore neither a fitting proce-full simulated fluid-solid coexistence points. As it is appar-
ent, the overall good quality of the MHNC thermodynamic

2000 - - - - predictions provides a faithful reproduction of the phase
boundaries of the model. A small overestimate of the fluid-
solid coexistence pressure only occurs above the triple-point
temperature. As for the SCOZA, the solid-vapor equilibrium
and the melting line are satisfactorily predicted, while the
observed shift of the chemical potenti@ee Fig. 4 gives

rise to a marked discrepancy in the coexistence pressure
above the triple point; on the other hand, the overestimate of
the pressure of the fluid phase is reflected in the shift of the
theoretical freezing line toward lower densities.

We have determined the MHNC and SCOZA triple points,
also reported in Table |, from the intersection between the
corresponding binodal and freezing lines. It comes out that
the MHNC predicts the existence of a stable liquid phase
Y with a small shift of the triple and critical densities to lower
0 02 02 06 08 y values, with respect to the simulation results. The SCOZA
also predicts a liquid pocket for the model, although re-
stricted to a narrower temperature and density range.

FIG. 6. MHNC (dotted line with open circlgsand SCozA It emerges that the MHNC theory for the fluid phase and
(dashed lingliquid-vapor coexistence; the GEMC resulfsll line  the first-order PT for the solid phase represent, among these
with dots[15]) are also shown. The crosses are the critical points€nvisaged here, the most accurate theoretical tools to enquire
Pluses represent MHNC under a local consistency consfibéiit ~ into the full phase portrait of the g model. The ensuing
The calculated coexistence points are shown as open circlgghase diagram is reported in Fig. 8. The MHNC binodal line
(MHNC) and dot§GEMOC), while the lines represent corresponding is directly drawn from Fig. 6. As is visible, the agreement
theoretical interpolations. with simulation data is semiquantitative; the comparison of
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1800 |

Density [nm's]
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FIG. 7. MHNC (circles and SCOZA(triangles fluid-solid co- FIG. 8. Circles represent fully theoretical fluid-solid coexistence

existence densitiegop) and pressuregbottom; pluses represent densities(top) and pressuregbottom of the G model; data are
corresponding triple points; data are obtained by using the integrdfPt@ined by using the MHNC and PT predictions for the fluid and
equation predictions for the fluid phase and the simulation results of0lid Phases, respectively. Squares represent full simulation results
Ref. [11] for the solid phase. Squares represent full Monte Carlo[l_ll The _MHNC and_GEI_VIC binodal curves with corresponding
results[11]. For completeness, the binodal curves drawn in Fig. 6¢tical points shown in Fig. 6 are also displayed. In the bottom
are also reported in the top panel. In the bottom panel the full lind®@n€l the full line is the GEMC liquid-vapor coexistence pressure
is the GEMC liquid-vapor coexistence press{is] with the cor- [15_] with the correspondlng crltlc_al poir{tross; dashed lines are
responding critical pointcross; dashed lines are guides to the eye 9uides to the eye for the simulation results.

for the simulation results.

Figs. 3, 7, and 8 demonsirates that the errors in the location I]?n'%'g)E ;nzﬂt'e':'nig:‘a‘:u?;jaz}g Crsi,tii;ﬂIZtri]gntsri-ptlre]ep(c)irmciTr;)sci?ris
of phase boundaries are essentially brought about by th = C )
MHNC, while the use of the PT for the solid phase does noforre_sponds_ to the GEMC estimate with 1500 particles of R&l;

. . . - : . he triple point has been calculated in Rigif1].

introduce any appreciable discrepancy with simulation re-

sults. For such reason we do not expect a significant im-

- . MHNC SCOZA Simulations
provement of the overall appearance of the phase diagram if
the SCOZA predictions for the fluid phase substitute the T 1929 1957 1940
MHNC ones. In the bottom panel of Fig. 8, the overestimate p, 0.408 0.432 0.43
of the fluid-solid coexistence pressure magnifies slightly the T, 1867 1916 1880

common trend already observed for the PT and MHNC ap-

Pur 0.70 0.64 0.73
proaches separately.
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IV. SUMMARY AND CONCLUDING REMARKS mate of the pressure and of the free energy in the fluid phase.
We have presented a theoretical investigation of the ther\-Ne have also conjectured that the MHNC pressure might

modynamic properties and the phase behavior of the Girimprove if the Verlet-Weis bridge functions were adopted

falco Gy, model, in the framework provided by three refined instead of the Percus-Yevick ones, employed in this work. As
(0] 3 . - .
theoretical tools, as the modified hypernetted claIRINC) for the PT, it turns out that both a second-order expansion of

with a global thermodynamic consistency constraint and th(%he free energy and a refined definition of the equivalent
self-consistent Ornstein-Zernike approximatigBCOZA) ard-core diameter, lead to a slight worsening of the theoret-

for the fluid phase, and a perturbation they with vari- ical predictions on the whole, which could be related to more

; .8umbersome numerical procedures involved.
Sﬁzstiegrees of refinement for the free energy of the soli We have eventually succeeded in predicting, to a satisfac-

. - . tory degree of accuracy, the phase diagram of the Girifalco

The theoretical predictions are assessed against our recellt iol on the basis of purely theoretical approaches. We

simulation study{11]. It turns out that the phase portrait of have éelected for this purpose a sophisticated MHNC t.reat—
the model is predicted fairly well, in particular as for the

: . S ment of the fluid phase, and the first-order PT for the solid
solid-vapor coexistence and the melting line. By converse

the inaccuracies in the thermodynamic predictions sensir-)hase' We expect that our conclusions about the most suit-
. N y C pre ; able theoretical schemes to investigate the phase diagram of
tively affect the determination of the fluid-solid coexistence

: . the Girifalco model can be reasonably extended to other sys-
pressure above the triple point. The MHNC and SCOZAtems characterized by similar interparticle interaction laws.

lI%lijrllij_Zzt?%;ggo(jglsseIarﬁrzglf(]l??nge?gg:r:;es;etmhglgrll\t/llgﬁltln particular, we plan to analyze the phase diagram of other
b y igher-order G- o fullerenes, combining both simulations

l(\:/l(’:ll\(lj Cdl?rteag% Iﬁngg(r\?vﬁ?&s?&gv&hgge fa'gfgzltl'oguargi;?_e and theoretical schemes. We have already produced several
9 P y sup Monte Carlo results for the Girifalco & fullerene, to be

posed, the SCOZA tends to underestimate the density of the .
liquid branch of the fluid-solid coexistence. with a corre- !Jsed for such purpose. The related calculations are currently
quid | . ) . ’ o in progress.
sponding shift of the triple point to lower densities and
higher temperatures.

We have interpreted our results in view of the basic as- ACKNOWLEDGMENTS
sumptions underlying each theory. It has emerged that the
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