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Taking advantage of the availability of the analytic solution of the mean spherical approximation for

a mixture of charged hard spheres with an arbitrary number of components we show that the
polydisperseluid mixture of charged hard spheres belongs to the class of truncatable free energy
models, i.e., to those systems where the thermodynamic properties can be represented by a finite
number of(generalizedlmoments of the distribution function that characterizes the mixture. Thus,
the formally infinitely many equations that determine the parameters of the two coexisting phases
can be mapped onto a system of coupled nonlinear equations in these moments. We present the
formalism and demonstrate the power of this approach for two systems; we calculate the full phase
diagram in terms of cloud and shadow curves as well as binodals and discuss the distribution
functions of the coexisting daughter phases and their charge distribution200® American
Institute of Physics.[DOI: 10.1063/1.1737291

I. INTRODUCTION recent theoretical and computer simulation studies were
dedicated to a binary CHS mixture with charge- and/or
The existence of the liquid-gas phase transition in a bigize-asymmetr%z?’_?’lWhi|e for such systems both theoret-
nary mixture of charged hard spher@HS) with same di-  jcal and computer simulation studies were performed, the
ametero and opposite chargesz(=-z_), i.e, the s0- next step towards a ternary mixture was limited—as a con-
called symmetric restricted primitive modgRPM) of  sequence of the high complexity of the problem—to theoret-
electrolytes, has been predicted more than three decades agg) stydies, most of them realized within the mean spherical
both theoretically® as well as in computer simulation approximation(MSA) (see the review of Caccari®,and
methods! However, results stemming from the different references therejn
methods for the location of the critical point were rather In this work we proceed to the polydisperse case, i.e., to

controve_r5|al and only d_urmg _the last deca(_JIe—dL_Je to th% mixture of CHS with formally an infinite number of com-
substantial advance achieved in computer simulation meth- o . .
onents. Similar as in a previous study on a hard sphere

odology and in computational power—an accurate Iocatlorgukawa(HSY) mixture® our investigations are based on the
of the coexistence curve and of the critical point has been

gradually achieved:*? The corresponding theoretical pre- mean spherical approximatidMSA), taking benefit of the

dictions are still by far less satisfactory: only in recent yearsavailability of the analytic solution of this liquid state theory

several theoretical methods'®have been developed, which for a mixture of CHS with an arbitrary number of

4,35 H
are able to predict a qualitative or sometimes even a quantp_omponenté. As done in most approaches used at present

tative description of the RPM phase diagram. Probably ond? Study polydisperse systems we characterize each of the
of the most accurate one among tHdse based on the as- Nfinitely many components of the system bycantinuou$
sociative mean spherical approximafidAt (AMSA) (or the variable & which is distributed according to a distribution
so-called binding MSA it combines the AMSA and the function F(¢); it should be noted thag can also be a set of
simple interpolation schemés|S) introduced by Stell and variables. This parameter thus takes over the role of the set
Zhou?? While this approach gives a reasonably accurate esof discrete concentratiors;} in a mixture with afinite num-
timate for the location of the critical point, its prediction for ber of components. This functidf(¢) is positive and nor-
the overall shape of the phase diagréas it is also the case malized, i.e.[ déF(&)=1.F(&,)dé represents thus the frac-
for the other theoretical approaches mentioned abdawe tion of particles in a polydisperse mixture with the parameter
rather poor. & located in an interval of widtllé aroundég.

Despite these problems for the symmetric RPM, more  In this contribution we want to investigate the phase be-
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havior of a polydisperse fluid mixture of CHS. LEt?)(¢) charge neutrality, and the distribution functions of each
and p(® be the distribution function and the density of the phase contain contributions due to the positive and negative
parent phase, then we are looking for the distribution funccharge. We finally arrive at fifteen coupled nonlinear equa-
tions of the coexisting daughter phas€$® (&), a=1, 2  tions for the unknown generalized moments of the daughter
(here we restrict ourselves to two-phase equilibrihese  distribution functionsF(®)(¢), a=1, 2. Dealing with a hard
functions, along with the coexistence densiti¢s andp®>  core system the obvious choice for the variablis the HS

are sufficient to determine all properties of the daughtediametero and we have two quantities that can be distrib-
phases. The main problem when dealing with the phase bered independently according to respective distribution func-
havior in polydisperse mixtures is the fact that we are nowtions: the sizes and the charge of the particles; thus,
faced with a formally infinite number of coexistence equa-F(&)=F(o,z). Although expressions can be presented for
tions for the two daughter phases: e.g., the Helmholtz fre¢he two independently distributed system parameters, the for-
energy is now defined in a space of infinite dimensionality,malism turns out to be considerably complex. Thus we have
which makes the task of building the common tangent plan@ised the simplifying assumption, that the charge of the par-
construction intractable. On the level of the coexistencdicles is proportional to their surface, i.e., an ansatz which
equations of equal pressure and chemical potentials of theeems physically sound. We point out that this reduction to
coexisting phases at fixed temperattirthis means that one only one independent system parameter was only done with

has to solve the infinitely many equations respect to a more compact presentation of the formalism and
D p@ W @ to a justifiable numerical effort.
p=pP pH(§)=p'2(§) forall & @ To demonstrate the power and applicability of the con-

cept we present results for two polydisperse fluids mixtures:
the first one is a straightforward polydisperse generalization

and thew(¢ have to be calculated numericallwith some t the RPM. th h : i . f
suitable liquid state theoyyemain up to date yet unsolvéd, © te , the other one Is a polydisperse extension of a
1:1 electrolyte primitive model with an asymmetry in the HS

However, for a few models it is possible to circumvent this ™ Wi ¢ its for the full bh di q
problem successfully: this applies for those systems wherg'2€s. Ve present resufts for the full pnase lagrértu

the thermodynamic properties can be expressed—within gn_d shadow curves as well as b_lno_d air_scussmg_character-
certain liquid state approximation—by a finite number of Istic features of the daughter distribution functions and the
);%7 charge distributions between the coexisting phases. For rea-

%ons outlined in the paper we have restricted ourselves to

Solution of this problem for a general system, where

generalized moments of the distribution functiér{¢
models that belong to this class are called “truncatable fre

energy models.” In those cases it is then possible to map th ) : .
g9y P P The paper is organized as follows: in the subsequent

phase equilibrium conditions for a polydisperse mixt(te . he th ing f h f
onto a system of coupled nonlinear equations for the correS€ction we present the t eofytarting from the case of a

sponding generalized moments of the distribution functiongmxture W'th. a finite number of components and generalizing
F(@)(£) of the coexisting phases. to the polydisperse cagdn Sec. Il we present the results of

Historically, the simplest, nontrivial truncatable free en- the two systems investigated and close the paper with con-

ergy model is the generalization of the van der Waals mode?IUdIng remarks.

to the case of a polydisperse mixture; the model was already

proposed by Gualtieret al*® and was exploited later in de-

tail by Bellier-Castellaet al3**° In particular these authors |I. THE THEORY

studied thefull phase behavior of polydisperse fluid mix- —_— -
tures, i.e., theyr:jetermined the C|0Ll13d Zmdpshadow curves aAsJ Phase equilibrium conditions
well as the binodals. Further investigations for this system  We start with the simple case of arcomponent mixture
can be found in Ref. 36. Searching for other truncatable freef charged particles which we consider at a temperature
energy models that go beyond the mean field level, two off [ 8=(kgT) '] placed in a continuum with a dielectric con-
the authors encountered the polydisperse HSY mixturétante. Each species has the chargez and the number
within the MSA which has been studied in detail in Ref. 33.density p{®=N{®/V(©®, where N(*) is the number of the
Again the coexistence Eq$l) could be mapped onto a particles of typd, eis the elementary charge, and is the
coupled system of nonlinear equations for the unknowrvolume of the system. Henceforward, the upper ind@x
(generalizeimoments of the daughter distribution functions. will denote properties of the parent phase whose phase be-
The higher level of sophistication of this model with respecthavior we intend to study. The system is neutral, so that the
to the van der Waals model has brought along a considerabfellowing relation is satisfied:

increase in the complexity of the formalism and of the nu-
merical treatment: under the assumption of factorizable
Yukawa interactions, twenty-two equations for the unknown =
moments had to be solved.

In the present paper we extend this formalism to studyWe assume that at a certain temperatlithe system sepa-
the phase behavior of the polydisperse CHS fluid. Althoughrates intom daughter phases where each phase charac-
the development of the formalism draws on parallels fromterized by a volum&/(®) and a number of particles of species
the HSY casé’ the situation is more complex, since we now i, N{*). Hereafter we will denote a set of quantitig§”
have to take into account additional constraints, such as thg™ ,... y{® by {y{*}.

eta-distributions for the parent distribution functions.

n

ZN9=0. ®)
1
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At equilibrium these parameters take values which mini-where v(@=1/p(® and v(®=1/p(®, Relations(10), (11),
mize the total Helmholtz free energy of the systemand (12) express the conservation of the total number of
=™ AT V@ IN) and satisfy the following set of particles of each speciés conservation of the total system

constraints: volume, and the charge neutrality condition for each phase
(i) charge neutrality a(# ag), respectively.
n Now, extension of the phase equilibrium conditidBs—
> ZN(¥=0: &) (13) to the polydisperse case is rather straightforward and
i=1 can be achieved by switching from the discrete index vari-

ablei to a continuous index variabkby using the following

ii) total volume conservation o
(i) substitution rulé?

VO = Zl V(@) (4) xi—F(£€)d¢, (14

F(&) being a positive distribution function normalized to 1.
It should be pointed out that now stands for the variables
{o,z}. Due to this substitution, summations ovein Egs.
©) m (@) (8)—(13) become integrations ovér further, thermodynamic
N :;1 N; ™. S properties becoméunctionals of the distribution function

F (&) which we will indicate by square brackets:
Application of the Lagrange multiplier method gives the

(i) conservation of the total number of the particles of
eachi species

following phase equilibrium conditions for the pressite P (T,p'®;[F(®])=P#(T, p B [FA)T), (19
and for the chemical potentialg; of componenti in the (@) (@)er (@) @)
coexisting phases and g, w ET,p SR ) + (1= Gpag) N '2(E)
P(“)(T,V(“),{Ni(a)})z P(ﬁ)(T,V('B),{Nf'B)}), (6) =,u,(ﬁ)(§,T,p(B);[F(ﬁ)]) +(1- 55%))\(,6’)2(5)’ (16)
i (TVEOANITH + (1= 8,0)N m
F© — F(@) (a), 1
= wPI(T VP (NP +(1— Spe NPz, (é) azl (é)x 17
a,B=1,..m andi=1,..n. (7) m
(0)— (@) (a)

Here\(?) is the Lagrange multiplier introduced to satisfy the ¥ azl vEEXT (18

charge neutrality conditiof8). Due to the overall neutrality
of the system, Eq(2), this constraint is imposed on each
phasen, except one arbitrarily chosen phasg. Solution of f 2(EF(HAE=0, a(#ag)=1,..m, (19
the set of Eqs(3) (for a# «g), (4)—(7) yields phase coex-
isting values fol\(®) (a# ag), V(®), and{N{®}. @)
For the sake of further extension of the phase equilib-J F9de=1, a=1..m. (20)
rium conditions(3)—(7) to the polydisperse case it is more
convenient to use the set of variables represented by the dehormally the set of relationgl5)—(20) form a closed set of
sity of phasea, p@=N@/V(®, and by the fraction(®  equations for the unknowns(®, x(®, A, and F{*)(¢)
:Ni(a)/Ni(o) and x(@ =N@/NO with N(a):Ein:].Ni(a). In  Which can be solved as soon as expressions for the thermo-

terms of these variables we have dynamical properties of_the corresponding polydisperse sys-
tem at hand will be available.
PE(T, o {x{“})=PB(T,p# {x"}), (8 At present this problem seems to be solvable only for the

so-called truncatable free energy models, i.e., these models,

(a) (a) fyla) _ (a).
mi (T i +(1 5%0))‘ Zi for which thermodynamic properties can be represented by a

= uP(T,pB IxXBVY 4 (1= 6, NPz 9 finite number of(generalizegl moments of the distribution
mE TG+ B“O) ! © function F(¢). Formally, polydisperse mixtures of CHS
m where the thermodynamical properties are calculated within
x 0= x{@x@ (100  the MSA belong to the family of truncatable free energy
a=1

models. In the subsequent section we will present the exten-
m sion of the MSA expressions for the Helmholtz free energy,
(0= 2 pl@xl@), (11) for the pressure, and for the chemical potentials from a mix-
a=1 ture of a finite number of components of CHS to the poly-
disperse case.

zx=0, a(#ag)=1,..m, (12 B. Thermodynamic properties

-

1
We consider again the-component mixture of CHS dis-
xi(‘”:l, a=1..m (13) cussed_ in the previous section. The pair potential of the
i=1 model is of the form

=
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® ” r=oi 21 B .| 72D?
(0= e?zzjler oy <r<oo’ @) B~N="F|=2a
where theo; are the HS diameters of the particles of tyipe
and o= (o + o)) /2. +l_'pJ daf dZ (0,2)], (30
The MSA solution for a mixture of CHS and the corre-
sponding expressions for the Helmholtz free enefgyand (HS) _ B* )
the pressureP, for the model at hand had been obtained Blu(o,z2)=p (o) )=~ 1+ol I'z%+ ﬁ"D

earlier®+3°

(A_A(HS)) 1‘*3 E(ex)

22+—02D(0'F—2)H,

=32t (22 o4
\Y 3 \Y
" (31)
rs 1 D)2 i i
Hsy_ P where(}, D, and the generalized momerits are defined as
A(P=PT) 37 2 A (A ' @3 follows:
E(® is the excess internal energy and in the following sum- * * n
mations ovelii range from 1 tan: é’n—pfo dof,mdm Flo.2), (32
E(EX) 7TQD2 p|Z|2 T © o0 3
— =B ——+T >, ———|, 24 =1+ —
B~ ( o T2 et (24 Q=1+ ZApfo daf_ocdzl+ =F(0.2), (33)
0=1+ -3 ot 25 p-+ fmd rd 27 ¢ 34
B ZA i 1+(TiF' ( ) _Qp 0 o Cw Zl+a'F (O',Z), ( )
1 piZi0i andT’ is obtained from the solution of the equation
D=— >, . (26) 5
Q5 1+l ) 72— mo?D/2A\2
I'=ap*p J' daf dzl ———— “1tor F(o,z). (35
B*=e’Ble, A=1—(ml6){3, {3=3pio?, andT is the so-
lution of the nonlinear algebraic equation Thermodynamic properties of the corresponding poly-
7 — m62D/2A | 2 disperse HS system can be calculated using the semiempir-
I2=mg*>, pi(L) (27)  ical expressions due to Mansoet al,** generalized to the
i 1+ol polydisperse cas&:*?

Expressions for the chemical potentials can be obtained
using the standard relatiop,i=((9A/(9pi)ﬁ,pj¢i and taking  C. Two-phase coexistence
into account the stationary property of the MSA Helmholtz
free energy,dA/oI'=0. A simple calculation leads to the
following expression:

In this study we will restrict ourselves to the case where
the polydisperse mixture of CH$arent phase, denoted by
“(0)" ] separates in two phases orlgaughter phases, de-

Hs B* noted by “(1)” and “ (2)” ]; under these conditions the set of
Blui—m"¥)=— 15 0T Iz + o 2A multiphase equilibrium  conditions, Egs.(15—(20),
' become®*®°
x| 22+ g5 7 52D(a,T - 2)” (28) PI(T,pM[FI)=PE(T, p@;[FP]), (36)
(2)
All thermodynamical properties of th@olydispersamix- FO(o,2)=F?(q,2) p_lexp{lgAﬁJr)\z}, (37)
ture of the charged HS model can be simply obtained from pt

the expression§22)—(28) by using prescriptior{14). Since

for the model at hand each species is defined by its (size p(g)F@)(U 7)= D —p2 p(O)F<O)(O' 2)
and its chargéz), we can replace the variablgin Eq. (14) ' pM—p® ’
by the pair of continuous random variablesand z, distrib-
uted according to the probability distribution function N p9—p? WED(g.2) (39)
F(0,2)=0 with RONEN )
JO dcfﬁxsz(U,ZFl- (29) fo dof dz zF?(s,2)=0, (39)

Upon this substitution the expressions for the Helmholtz free o

energy(22) and for the pressur@3) will be unchanged. For f dUJ dzF*(0,2)=1, =1 or a=2, (40
the excess internal enerdsf® and for the chemical poten- 0 o

tials w(o,2), which are now functions ofr andz, we have  where
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(o7
()

An=12(0,2,T,p?;[F?]) » »
z(f‘)=J’ daJ dzzFY(o,2)=29 (47)
0 —

— 2 Y(0,2,T,pV;[F]); (41) B

the(®, a=1, 2 are the excegsver the ideal ggschemical

potentials andvo=1 (i.e., A=A?). p(® andF(®(s,z) de- The charge neutrality condition takes the following simple
note the density and the distribution function of the parenform:

phase, respectively. The relation betweEff)(o,z) and

two daughter phase distribution functiorESl)(_q,z) and 200 @ 4 7@ g @=0, 4=0,1,2 (48)
F®)(o,2), i.e., Eq.(38), follows from the condition of the

conservation of the total number of particles of each species

characterized by andz Eq. (17), and the conservation of Now the set of equations that determine phase equilib-
the total volume, Eq(18). rium, Eqgs.(36)—(40), can be recast in terms of the distribu-

A distribution F®)(¢r,2) as introduced above allows an tion functionsF (o)
independent variation of the charge and of the size of the
particles. However, to reduce the amount of numerical cal-  pM(T pM:[F FO=p2(T p@:[F2 F2)7),

culations we assume a distribution, which strongly correlates (49)
these two model parameters, i.e.,
F9a,2)=F ¥ (0,2)+F'*(0,2) P ~
F(0)=F&(0) —pexpBAL.+rz-(0)}, (50
p

0_2
=F¥ (o) 5( z—7)

()
p D —p?
o O° pPFE ()= =50 F(0)
+F(,a)(0')5 Z—Z(,)W a=1,2, p—p
g
(42) PY=p”
where we have introduced the first and the second moments p P
<0‘>(__,_a)=f doot'@(o) 72a'?+224? =0, (52
0
and %
. f do{F' (o) +F e)}=1, a=1 or a=2,
(23 o O
<02>£: )= fo dUszEL (o). (43) (53)
Our assumption is physically sound, since it states that the
. . . . where
charge is proportional to the surface of the particles; from a
more practical point of view assumpti@¢42) reduces double o
integrals overs and z in previous expressions to integrals ~ An.=u'? (o, T,p?;[F? F?)))
over g only.
_7 1.7 @)
Further we put p (o, T p SR FE]) (54)
(a) — J(a)e(a)
F(o)=a (o), (44) and
wherea(®) denotes the fraction of positive and® the frac-
tion of negative particles in the phase Z:(U)IZQ)UZ/(UZ)(S)- (55)
@ | doF @ (o): 45
= Jo oF(o); “49 Equation (51) can be used to eliminat€® (o) [or

(1) ;
obviously,a{® + o{“=1: in the following, the index+ will F3"(e)] from Eq. (50) to give

be a short-hand notation for quantities that characterize posi-
tive (+) or negative(—) particles. The partial probability F(o)
distribution functions,f(®)(¢), introduced in Eq.(44) are

normalized @ . rpla) Ela
=F(0)Q (o, T;p@,p p@;[FL) FL]),
f dof®(o)=1. (46)
0 a=12, (56)
For the average charge of positive¢) or negative(—)
particles in the phase, z(*, we obtain where
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p V(p®@—pIN {1~ 681,+ 51, exd BALL +NZ.(0) ]}
(P V= p)—(p®—p@)exd BAL: +\Z.(0)]
a=1,2. (57)

p QW (0, T;p @, p ™, p P [FY FI]) =

Relations(49), (52), (53), and(56), along with Eq.(57), £
with a=1 or =2, represent a closed set of equations to be 1= fo dolFP(0)Q (0, T,p ;)
solved for the unknowng™, p®@, \, andFY (o), a=1, 2.
Since thermodynamic properties of the model at hand are +FO9>0) QW (o, T,p?; 1)] (64)
defined by the finite number of generalized moments we can
follow previous studie€3? and map this set of equations and from Eq(35), written for the scaling parameter§® for
onto a closed set of fifteen algebraic equationsNpp(®,  €ach of the two phases,
andI'(®, and for ten generalized momerifs”, n=1, 2, 3, (o2 2 (@ n (@) 2
Q@ D@, wherea denotes the value of the corresponding (1) :p(a)deo_|: ( z,(0)—mo"D */2A )

quantity in phaser («=1,2). We have mB* 1+ol@
o (0) (a) (0).
4= | “doa P10 0, T %0 R
0
z_(0)— mo?D @2\ ?
+F9>0)Q“ (0, T,p ;2] " 1+oT(@
n=1,2,3, (58)
" , X F<_°>(a)Q<_“>(a,T,p<°>;2c)]. (65)
TP * (o
Q=1+ (a)f do @
24 0 1+ol Solution of the set of Eq958)—(65) for a given tem-
X[FO>) QW (o, T,p@: ) peratureT, density of the parent phagé®, and parent dis-
+ + (L] ) . . . (0) . - o (@)
tribution functionF3’(o) gives the coexisting densitigd
+F92>0)Q(0,T,p @ 2)], (590  of the two daughter phases and corresponding distribution
" functions F{*)(¢), a=1, 2. The coexistence densities for
(a)_P f‘”do g different temperatures fix binodals, which are terminated at a
Q@ Jo 1+ gl (@ temperature for which the density of one of the phases is
© " . equal to the densitp(®) of the parent phase; these termina-
X[z, ()FP(0)Q (0, T,p'?; X) tion points form the so-called cloud and shadow curves
o which thus represent an envelope for the binodals. Cloud and
+2_()F () QW (0, T,p @ 1)1, (60) g g

shadow curves intersect at the critical point, which is char-
where the unknowns of the problem are collected inet acterized by the critical temperatufg, and critical density
ie. por=pP=p@=p®  Thus only for p@=p, the two
branches of the binodal meet at the critical point.
— (D) 2\ -7V A DL L
A={p",p"" ;[T DHT, By definition, states located on the cloud curve are char-
[[@{2h0@ D@7, 61) acterized that they coe_xis_t_with a statecalized on the
n shadow curvewhere an infinitely small amount of the other
The remaining five equations are found from the equalityphase emerges. Thus the cloud and shadow curves can be
of the pressure in both phasg5), obtained as special solutions of the general phase coexist-
ence problem, when the properties of one phase are equal to
(1) W1y M Dp) ; :
PET, p [T G 1D the properties of the parent phase: assuming, e.g., the second

= PO(T,p@;[ T @210 D @), (62)  Phase to be the cloud phase, ig/7=p®, and following
the scheme presented above we will end up with the same set
from the charge neutrality conditiof®2), of equations,(58)—(65), but with p® and F®)(s) substi-
. . tuted by p(® and F{9(o), respectively. Note thak'? (o)
fo doa?FO(a)- jo doa?FO(0)Q? (0, T,p ;) =F9(¢) is now known, but the remaining properties, i.e.,

p®, T© and the generalized momer{s”}, O, and
. . D are unknown; they are obtained from the solution of the
=f daazF(_O)(a)-J dod?F9(0)QP (o, T,p@;X),  appropriately modified set of Eq&8)—(65).
0 0 Solution of the set of Eq¥58)—(65) was obtained by
(63 using the Newton—Raphson method: we start at a relatively
from the normalization conditiof63) for either phaser=1  high temperature and a small degree of polydispersity. As the
or phasex=2, initial input we have used the values Bf*) andp(®, a=1,
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0.1

2, which are obtained from the solution of the phase equilib-
rium problem for the corresponding monodisperse system;
furthermore we assume as starting values for the two daugh-
ter distribution functions the parent distribution function, i.e.,

FO(0)=F@(0)=F9(s). Solution of the set of equations

is then obtained by gradually lowering the temperature and

increasing the polydispersity.

D. The distributions

So far in our discussion we have not specified the par-

ticular functional form of the distribution function of the

parent phase. In this study we have chosen beta-distributions

for the f (o), given by

y+«—1
f(+0) o)=B 1('y+ V)| ——
= ( == (max)

ve—1
X 1_W) 0™~ )0 (0), (66)
where
1, x=0
®(X):{o, x<0

is the Heaviside step function. Tﬁéf)(a) are thus different
from zero only for oe[0,0). B(y.,v.) is the
beta-functioff® and they. and v. are related to the first
(c9=(5) ) and second(@?)'”)) moments—see also Eq.
(43—by

0'(4_,max)— O'(E)(l-i- Dg_i)))

’)/i = 0-(+ma><)D(+0) ] (67)
O_(i_max) _ 0_(_*_E))
o T R (68)
with
DY =(c?P1((0)?)?~1; (69)

the D(f) have the same meaning Bs, in Ref. 44 and cor-
respond tq1/@) in Ref. 39. The choice of a beta-distribution
(instead of, for instance, a Schulz-distributipngas moti-
vated and justified in Sec. Il C of Ref. 33.

Ill. RESULTS
A. Numerical procedure and analysis

Solution of the set of Eqsi49), (52), (53), and (56),

0.08
t

i
0.07 pf

0 0.04 0.08 0.12 0.2

FIG. 1. Phase diagramT{ vs p*) of the symmetric polydisperse CHS
mixture (system ) specified in the text. Cloud and shadow curves are rep-
resented by the solid line@s labeleyl binodals by the broken lines: the
values of the densities of the respective parent phats@), can be identi-

fied from the intersection of the binodal with the cloud curye:(®
=0.008, 0.045, and 0.0252ritical binoda). Two pairs of points A, and

D, ., a=1, 2) are chosen on thgp* (9=0.008-binodal and on the shadow
curve which are specified in Table I. The dashed—dotted line denotes the
binodal curve for a RPMwith diametera(®)] treated within the MSA.

lowing way: taking thef(*)(¢) that we obtain from the so-
lution of the above set of equations we calculate directly the
first moments{a)(®, and theD'*® via Eq. (69); these pa-
rz(an)wgters fix via Eqgs.(67) and (68) the parameters of
flabe o,

B. The systems

The above formalism has been applied to two polydis-
perse CHS mixtures. In both models the parent distribution
functionsF(©(o,z) =F () have the form42); the partial
distribution functions(?)(&) are beta-distribution&6). The
input parameters fde(9)(o) and for thef °)(o) were chosen
to be|z¥|=1, o"™=260 andD®=0.01:

(i) The first systendl), is a polydisperse symmetric CHS

mixture which can be considered as a generalization

of ﬂ(]f) RPM to the polydisperse case; obviousfy’

:0-+ ,

(i)  The second systertil), is a polydisperse mixture of
CHS which is asymmetric in size; it can be considered
as a polydisperse extension of the 1:1 electrolyte
primitive model with an asymmetry in the size of the

HS particles; here we chosd? =135

In what follows the temperaturg and the densitiep of
the system will be represented by the dimensionless quanti-

along with Eq.(57) leads to the binodal curves and to the ties T* =k Te/e? andp* = p[ ¢?’]3, respectively. The indi-
distribution functions of the coexisting two daughter phases

for the given value of the parent phase dengit{ and a
given parent distribution functiof(®)(¢,z). For this solu-

TABLE I. Specification of two selected pairs of poirfisdex 1, low-density

tion we have used the same numerical procedure as for tH&s phase; index 2, high-density fluid phasigosen in the phase diagram of

polydisperse HSY system, outlined in Ref. 33. This also
holds for the determination of the cloud and the shadowpoint
curves and for the critical points. Further we have analyzed

the shapes of the daughter distribution functicﬁﬁf@(a) by
finding the “closest” beta-distribution!®):**{ &) in the fol-

our symmetric polydisperse CHS mixtufgystem } shown in Fig. 1.

Localized on T* p*® p*@
A., A, binodal curvg p*(®=0.004 0.055 0.51210°° 0.182
D,, D, cloud and shadow curve 0.055 0.100°'! 0.145
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£(0)
0.09

= 2() .
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0.08

7] 0.07

0 @/ (0 ]
0/05. ) (o)y /oy

1 1 1 1 1 1 | 1 |

0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

FIG. 2. Paren{f®(¢)] (thick full line) and daughteff'?(s), a=1, 2] FIG. 4. (0)\@, a=1, 2, as defined in Eq43) for the symmetric polydis-
distribution functiong(full lines) for the symmetric polydisperse CHS mix- perse CHS mixturgsystem ) along three binodals for the parent phase
ture (system ) calculated for pointsA; and A,, located on the[ p*(© densitiesp* (®=0.008 (broken ling, p* (= p¥=0.0252 (full line), p*
=0.008-binodal in the phase diagraifsee Table | and Fig.)1 Broken =0.045 (dashed—dotted lineand along the shadow cunéhick full and

lines: f{"**q &) as defined in the texz=1, gas phasex=2, fluid phase. thick broken ling. The dotted vertical line througtr)(®)/¢{®)=1 separates
the gas(left) from the fluid (right) region. Note that this vertical line repre-

sents the o)(V/ o O-values for states on the cloud curve.
cesa=1, 2, specifying the daughter phases, are fixed as fol-
lows: index 1 will refer to the low-densitigas phase, while

index 2 will refer to the high-densitifluid) phase. case Vsph.gpy=0.0144 andT}.qp=0.0786 in the case of
the RPM. It is also evident that the maximum of the cloud
C. Results for system | curve is shifted to very small densities: it is located at

The phase diagram of system I is shown in Fig. 1. Wep* ~0.0011. The way how the cloud curve varies with the

show the cloud and the shadow curves, along with threéf"idth of the parent distribution function becomes evident, if

binodals for three selected densities, one of them being th4€ Pear in mind that the one component system is the lim-
critical density,p%=0.0252. On the shadow curve and the iting case of the polydisperse mixture with an infinitely sharp

binodal for p*(©=0.008 pairs of points have been Chosendistribution; thus, broadening the parent distribution function

(labeled byA,, andD,, a=1, 2) which are specified in will shift the cloud curve to even smaller densities. The
Table I; for these pairs of points the daughter distributiond‘?’lughter distribution functions of the state poirts and

functions are displayed in the subsequent Figs. 2 and 3 arlde @1, 2, aré shown in Figs. 2 and 3, which give us afirst

are discussed in the text. We also display in the phase diér_npression of fractionation effects; as expected, th.e small
gram the binodal for the RPM calculated in the MSA as apartlcles prefer the gas phase, while the larger particles are
reference curve predominantly encountered in the fluid phase. We also ob-

We observe that polydispersity obviously shifts the criti- serve the (re):markable fact that both daughter distribution
cal point both to higher densities as well as to higher temfunctions f:%(c) can be represented reasonably well by

peraturesypg,=0.0252 andT%=0.0853 in the polydisperse

01 T T T T T
7 T T T T T T T *
(o) T
6L fi (o) i
0.09 -
ST 1 0 7
20) = 12() T
4+ .
0.08 .
3r - / ’
; .
1] -
( o
2F — ,3 i ;
0.07 |- PaY P (o]
’ ; (23
1 (0)7] PR :,’I Di
+ ! ) L1 [T
0 1 1 1 L 1 0.005 0.006 0.007 0.008 0.009 0.01
0.6 0.8 1 1.2 14 1.6 1.8 2

FIG. 5. DY, a=1, 2, as defined in the tex69) for the symmetric poly-
FIG. 3. Paren{f®(¢)] (thick full line) and daughteff'?(s), a=1, 2] disperse CHS mixturésystem } along three binodals for the parent phase
distribution functiong(full lines) for the symmetric polydisperse CHS mix- densities p* (¥'=0.008 (broken ling, p*(®=p*=0.0252 (full line), and
ture (system ) calculated for pointD; and D,, located on the shadow p*(®=0.045 (dashed—dotted lineand along the shadow cungehick full
curve (see Table | and Fig.)1Broken lines:f(*)*®*q¢) as defined in the  and thick broken ling Binodals:a=1, gas phasey=2, fluid phase; shadow
text. =1, gas phasex=2, fluid phase. curve: broken line, gas phase; full line, fluid phase.
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FIQ. 6. Phase diagramT( VS.p*) of the asymmetric polydisperse CHS Fgg 7. Paren(fi(o)(o),i=+,—] (thick full lines) and daughte[fi(a)(g)’
mixture (system 1) specified in the text. Cloud and shadow curves arej— 4 — anda=1, 2] distribution functions(full lines) for the asymmetric

represented by the solid lin¢as labeleyl binodals by the broken lines: the olydisperse CHS mixturgsystem ) calculated for pointsA; and A,
values of the densities of the respective parent phase can be identified fro%cated on thd p*©=0.003-binodal in the phase diagratsee Table '”

. . X . (0)— :

the intersection of the binodal with the cloud curg#.™=0.003, 0.03,and ., Fig. 6. Broken linesf{®):**q &) as defined in the textr=1, gas phase;

0.0165(critical binoda). Four pairs of points4,, B, , C,, andD,, a=1, =2, fluid phase =

2) are chosen on the three differgit(®-binodals and on the shadow curve ' '

which are specified in Table Il. The dashed—dotted line denotes the binodal

curve for an asymmetric binary mixture of CH®&ith diameter&r(f) and

(0) ithi - . L . . _

-] treated within the MSA. critical density the mean size is monotonically increasing as

the temperature decreases, while we find the opposite ten-

o . . dency forp<p? . As we further decrease the temperature,

beta-distributionsf (*"**q &), a=1, 2; this holds not only Y TOTP=Per peratu

for the examples shown here but also for further state pointtshe liquid branches of these curves become nearly vertical,
. Which means that for lower temperatures the mean particle

not displayed here.

L . . size in the fluid daughter phase does not change anymore.
A more quantitative and systematic analysis of the (@) . :
S . . S (@) The DY*-curves along the three binodals as functions of the

daughter distribution functions is possible in termg @} -

: . . temperature indicate a strong influence both of density and
(@) -
ztnedrg ttha,t izzfrgz?eer?zlen trllzg%?)z)its)?ldé?%elfﬁé)t(ri]riupn?ﬁnm q th%}emperature on the width of the daughter distributions: while
) i - densiti bove?. the width of the distribution functi
width of thef(®)(¢); they are displayed in Figs. 4 and 5 for Of CENSINEs abovp tne WIdHh ol the CISTILLToN functon

th h densiti £ th t ohdi % (0) of the gas phase is always smaller than the one of the fluid
Begog Oie(g) g%iéesagd t ﬁe pgrri(EZal pdgiini,typ* 0y Phase, this is not the case for densities below the critical
=Y. v P =y ’ Per

density: hereD@® (fluid phase¢ may even be smaller than
=0.0252] and along the shadow curve. Along the shadovb(l) (gas pha_s)e leading to a looplike shape of the

c_urve, fractlonauon_ has_ its strongest eﬁect;. the smaller par (@_curves. For all binodals mvesUgatelEl,(f) =1, 2. is
ticles are preferentially in the gas phase while the larger ones ~ . =

: . . ) . .Smaller than the corresponding value of the parent phase,
are predominantly encountered in the fluid phase; the widt

(0): . ..
of the daughter distributions in the fluid phaﬁéf ) is con- orine (;-t(i)vle; clzrg?llg’o\:‘vfhg?j\;eu aﬁg ?Ziistzg ;g?ﬁgg;ﬁg’if the
siderably smaller than the width of the parent distribution 9 9 9 P

) L . a)
while in the gas phas®® is only slightly smaller than temperature. They show a similar behavior as(ig® and

. are therefore not displayed here; this fact is undoubtedly re-
D©. Looking on the temperature dependence of the mean- play y

size of the particles in the daughter phases along the three
binodals we observe the following: in the gas phase we re-
mark a strong decrease of the mean particle jze'®,

with temperature(where this effect is smaller for smaller
densitie$; in the fluid phase, we observe different tempera-
ture dependencies dfo)?: for densities larger than the

'S
T

TABLE II. Specification of four selected pairs of poinfxdex 1, low-
density gas phase; index 2, high-density fluid phas®sen in the phase

diagram of our asymmetric polydisperse CHS mixt(ggstem 1) shown in 2F 1

Fig. 6.

Point Localized on T* p*@ p*®@ tr 7

A;, A, binodal curvep*(®=0.003  0.055 0.55210°° 0.094 0

B:, B, binodal curve p* (®=0.03] 0.055 0.13210°2 0.087 0.6 08 1 1.2 14 16 18 9
C,, C, critical binodal p%*=0.0165) 0.055 0.11310% 0.089

D;, D, cloud and shadow curve 0.055 0.300° % 0.109 FIG. 8. As Fig. 7 for point8, andB, located on th¢p* (¥)=0.03]-binodal

in the phase diagram of system(Hee Table Il and Fig.)6
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FIG. 9. As Fig. 7 for pointC; andC, located on the critical binodap;
=0.0165) in the phase diagram of systenidée Table Il and Fig.)6
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0.085 T T T T T T T T T

0.08

0.075

0.07

0.065

0.06

0.055
0.8

1.8

FIG. 11.(0){?, i=+,— (as labeleflanda=1, 2, as defined in Eq43) for
the asymmetric polydisperse CHS mixtuigystem I) along the shadow
curve. Broken linga=1), gas phase; full linéa=2), fluid phase.

lated to the size-charge dependence assumed in our model

(42).

D. Results for system I

T d

In system Il the situation is of course—as a consequencg

of the asymmetry—more complex. Again, we start with the
e

phase diagram which is depicted in Fig. 6: we show th
cloud and shadow curves, the critical binodapZ(

=0.0165), and two further binodals with their respective

densities of the parent phase below and abpfeli.e.,
p*(©=0.003, p* (©=0.03]. Four pairs of pointsA,, B,,
C,, andD,, a=1, 2 have now been chosen on these

Table 1I.
Similar as in the symmetric case, the cloud curve has
maximum for a very smalp*-value; again, we have comple-

mented the results by the binodal of an asymmetric 1:1Figs. 13 an

primitive model [with diameters¢'® and o] treated
within the MSA and we observe that the critical point of the

polydisperse mixture is shifted to higher densities and tem-

peraturesipg,=0.0165 andTy=0.0075 in the polydisperse
case Vspg.pin=0.0096 andTg,.,;,=0.069.

The analysis of the daughter distribution functions
@ (o) displayed in Figs. 7—10 is of course now more di-

0 1
0.6

1.6

FIG. 10. As Fig. 7 for point9, andD, located on the shadow curve of
system ll(see Table Il and Fig.)6

curves; they are indicated in Fig. 6 and are characterized i

versified since due to the asymmetry of the mofigl(o)
#£(9)(¢). Similar to the symmetric case and to the study on
the polydisperse HSY mixtut® we observe thagall four
aughter distribution functions can be represented reason-
bly well by beta-distributions with suitably chosen param-
eters(o){®) andD'¥; again this has been investigated and
substantiated for more state points than presented here.

We continue with a more quantitative and a more de-
tailed analysis of the distribution functions of the daughter
phases in terms of the(o)” and D'®. For the
(o) @-curves in the daughter phaségigs. 11 and 1pwe
Hnd similar shapes as in the symmetric case, thand —
curves being now located “around” their respective values of
he parent phases'”’=1.0 ando'®=1.3. The situation is

ifferent for the width of the distributiond)(® and D(*)
d 1% along the shadow curvé®‘® remains—
except for p*(©-values close to the critical densities—
smaller than 0.01, i.e., th@(f)-value of the parent phase.
For the negative particles, the width of the daughter distribu-

0.09 y r r

0.085

0.08

0.075

0.07

0.065

0.06

0.055
0.8

FIG. 12.(¢)¥,i=+,— (as labeleflanda=1, 2, as defined in Eq43) for
the asymmetric polydisperse CHS mixtusystem 1) along three binodals
for the parent phase densitigs*(®=0.003 (broken ling, p*©=p*
=0.0165(full line), and p* (®=0.03 (dashed—dotted lineThe two dotted
vertical lines through o){®/o®=1 and(o)'*/{?=1.3 separate the re-
spective gasleft) from the fluid(right) regions. Note that these vertical lines
represent théo)(*)-values,i=+,—, for states on the cloud curve.
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FIG. 13.D¥, i=+,— (as labeleflanda=1, 2, as defined in Eq69) for N @

" o . e FIG. 15. Average positive}”’ and negative!® charges,a=1, 2, for the
the as)émT(etml:. pol)ﬁjisperse C;HS_TDI(I%%S?;T; If)l ?50”3 the shadow asymmetric polydisperse CHS mixtufgystem I) along the shadow curve.
curve. Broken ling=1), gas phase; full lin¢a=2), fluid phase. Broken line(a=1), gas phase; full linéa=2), fluid phase.

tion function in the gas phase is larger than 0.01, while in thenat the size difference affects the charge distribution only
liquid phaseD® is always smaller thaD®=0.01. Along  marginally. As we lower the temperature, the charges of the
the three binodals the situation is also more complex than ifjyid phase tend towards 1. Along the shadow curves the
the symmetric case: t'-curves show a similar behavior average charges very somewhat stronger than along the bin-
as observed in the symmetric case, iBY” is always odals. Finally, in Figs. 17 and 18 we display the fraction of
smaller thanD'® and for densities smaller thasf, a loop-  positive particles in the two phases, expressed{§y: from
like shape may occur. This also holds fprpg, for the  the results along the shadow curifég. 17) we observe that
D@-curves. However, fop=p}, DW (gas phase branth in the gas daughter phase a slight majority of positive par-
may become larger than the width of the parent distributionticles can be observed while in the fluid phaaéf,) is less
function, D©=0.01. than 0.5. This effect is more pronounced and diversified for
We finally turn towards the influence of the phase sepathe three binodals for the three different densities considered
ration process on the average charges and on the fraction (fig. 18: in the fluid phasewhere the larger particles are
the positive and negative charges of the coexisting phases: gredominantly encountergthe fraction of positive particles
Figs. 15 and 16 we show the average positive and negativie always smaller than 0.&lthough the maximum deviation
chargesz®, a=1, 2, for state points on the shadow curve from this value for the systems investigated here is only
and on the three binodals considered in this study. Th@.01). On the other hand, in the gas phase the positive par-
curves are rather narrow and are centered around thicles have a slight majoritgup to ~0.0502. As we decrease
z%-values of =1; this means that the charges do not varythe temperature, the density dependence ofdffé-curves
too much as we change the temperature and the density @hnishes and the curves tend towards 0.5. Note that the
the parent phase. The respecti&®’- and z(“)-curves seem curves of Figs. 16 and 18 reflect—along with® + a(®
rather “symmetric” with respect to 0; thus we can conclude =1, a=1, 2—the charge neutrality conditiqa8).

0.085 T T T 0.085 T T T T T T
T r7
0.08 | 0.08 - bl / -
1 '| 1
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A !
1 ]
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vl \ !
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" AN : i \ ]
/ \\ n: ‘1| lI. z(a)
I3
0.055 A 0.055 S ' ! i
0.007 0.008 0.009 0.01 0.011 -1.5 -1 -0.5 0 0.5 1 1.5

FIG. 14.D{", i=+,— anda=1, 2, as defined in Eq69) for the asym-  FIG. 16. Average positive®) and negativez’ charges.a=1, 2, for the
metric polydisperse CHS mixturesystem 1) along three binodals for the  asymmetric polydisperse CHS mixtuigystem I) along three binodals with
parent phase densitigg (’=0.003 (broken lines, p* = p}=0.0165(full the parent phase densitigg (’=0.003 (broken ling, p*(¥=p*=0.0165
lines), andp* (¥=0.03 (dashed—dotted lingsThick lines,D{® ; thin lines, (full line), and p*©=0.03 (dashed—dotted line «=1, gas phasex=2,
D a=1 gas phasex=2, fluid phase. fluid phase.
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FIG. 17. Fraction of positive chargea!®, a=1, 2, for the asymmetric
polydisperse CHS mixturésystem 1) along the shadow curve. Broken line
(@=1), gas phase, full linga=2), fluid phase.

IV. CONCLUSIONS

Kalyuzhnyi, Kahl, and Cummings

table. Having implemented this formalism we were able to
solve the coexistence equations by means of an efficient and
reliable numerical algorithm, based on a Newton—Raphson
method. We demonstrate the power of this approach by con-
sidering two polydisperse mixtures of CHS, one being sym-
metric (being thus a polydisperse generalization of the
RPM), the other being asymmetric in size. The size of the
particles of the parent phases is assumed to be distributed
according to beta-distributions. We are able to calculate the
full phase diagram in terms of cloud and shadow curves as
well as binodals, each of these being characterized by density
values of the parent phase. We observe that with respect to
the corresponding one- or two-component system, the criti-
cal point is shifted towards higher temperatures and higher
densities. A closer analysis of the daughter distribution func-
tions in terms of their width and the mean size of the par-
ticles in each phase gives a quantitative insight into fraction-
ation effects. The formalism allows furthermore to determine
the average charge and the fraction of positive and negative
particles in each of the coexisting phagebkarge fraction-

In this contribution we have shown that a polydisperse,sion) From these analyses we observe—despite the simple

mixture of CHS treated within the MSA also belongs to the

parent distribution function used and the simple relation be-

class of truncatable free energy models, i.e., to those systefgeen size and charge of the particles—a rather rich variety
where the thermodynamic properties can be expressed with & phenomena.

finite set of generalized moments of the distribution function
characterizing the system. We have presented explicit ex-
pressions for the thermodynamic properties in terms of thesBCKNOWLEDGMENTS

moments, taking into account the constraints of charge neu-  This work was supported by thes@rreichischer Fors-
trality, total volume conservation, and conservation of thechungsfonds under Project Nos. P14371-TPH and P15785-
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