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Taking advantage of the availability of the analytic solution of the mean spherical approximation for
a mixture of charged hard spheres with an arbitrary number of components we show that the
polydispersefluid mixture of charged hard spheres belongs to the class of truncatable free energy
models, i.e., to those systems where the thermodynamic properties can be represented by a finite
number of~generalized! moments of the distribution function that characterizes the mixture. Thus,
the formally infinitely many equations that determine the parameters of the two coexisting phases
can be mapped onto a system of coupled nonlinear equations in these moments. We present the
formalism and demonstrate the power of this approach for two systems; we calculate the full phase
diagram in terms of cloud and shadow curves as well as binodals and discuss the distribution
functions of the coexisting daughter phases and their charge distributions. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1737291#

I. INTRODUCTION

The existence of the liquid-gas phase transition in a bi-
nary mixture of charged hard spheres~CHS! with same di-
ameter s and opposite charges (z152z2), i.e., the so-
called symmetric restricted primitive model~RPM! of
electrolytes, has been predicted more than three decades ago
both theoretically1–3 as well as in computer simulation
methods.4 However, results stemming from the different
methods for the location of the critical point were rather
controversial and only during the last decade—due to the
substantial advance achieved in computer simulation meth-
odology and in computational power—an accurate location
of the coexistence curve and of the critical point has been
gradually achieved.5–12 The corresponding theoretical pre-
dictions are still by far less satisfactory: only in recent years
several theoretical methods13–19have been developed, which
are able to predict a qualitative or sometimes even a quanti-
tative description of the RPM phase diagram. Probably one
of the most accurate one among these19 is based on the as-
sociative mean spherical approximation20,21 ~AMSA! ~or the
so-called binding MSA!: it combines the AMSA and the
simple interpolation scheme~SIS! introduced by Stell and
Zhou.22 While this approach gives a reasonably accurate es-
timate for the location of the critical point, its prediction for
the overall shape of the phase diagram~as it is also the case
for the other theoretical approaches mentioned above! is
rather poor.

Despite these problems for the symmetric RPM, more

recent theoretical and computer simulation studies were
dedicated to a binary CHS mixture with charge- and/or
size-asymmetry.11,23–31While for such systems both theoret-
ical and computer simulation studies were performed, the
next step towards a ternary mixture was limited—as a con-
sequence of the high complexity of the problem—to theoret-
ical studies, most of them realized within the mean spherical
approximation~MSA! ~see the review of Caccamo,32 and
references therein!.

In this work we proceed to the polydisperse case, i.e., to
a mixture of CHS with formally an infinite number of com-
ponents. Similar as in a previous study on a hard sphere
Yukawa~HSY! mixture33 our investigations are based on the
mean spherical approximation~MSA!, taking benefit of the
availability of the analytic solution of this liquid state theory
for a mixture of CHS with an arbitrary number of
components.34,35As done in most approaches used at present
to study polydisperse systems we characterize each of the
infinitely many components of the system by a~continuous!
variable j, which is distributed according to a distribution
function F(j); it should be noted thatj can also be a set of
variables. This parameter thus takes over the role of the set
of discrete concentrations$ci% in a mixture with afinite num-
ber of components. This functionF(j) is positive and nor-
malized, i.e.,* djF(j)51. F(j0)dj represents thus the frac-
tion of particles in a polydisperse mixture with the parameter
j located in an interval of widthdj aroundj0 .

In this contribution we want to investigate the phase be-
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havior of a polydisperse fluid mixture of CHS. LetF (0)(j)
and r (0) be the distribution function and the density of the
parent phase, then we are looking for the distribution func-
tions of the coexisting daughter phases,F (a)(j), a51, 2
~here we restrict ourselves to two-phase equilibria!: these
functions, along with the coexistence densitiesr (1) andr (2)

are sufficient to determine all properties of the daughter
phases. The main problem when dealing with the phase be-
havior in polydisperse mixtures is the fact that we are now
faced with a formally infinite number of coexistence equa-
tions for the two daughter phases: e.g., the Helmholtz free
energy is now defined in a space of infinite dimensionality,
which makes the task of building the common tangent plane
construction intractable. On the level of the coexistence
equations of equal pressure and chemical potentials of the
coexisting phases at fixed temperatureT this means that one
has to solve the infinitely many equations

P~1!5P~2! m~1!~j !5m~2!~j ! for all j. ~1!

Solution of this problem for a general system, whereP
and them~j! have to be calculated numerically~with some
suitable liquid state theory! remain up to date yet unsolved.36

However, for a few models it is possible to circumvent this
problem successfully: this applies for those systems where
the thermodynamic properties can be expressed—within a
certain liquid state approximation—by a finite number of
generalized moments of the distribution functionF(j);37

models that belong to this class are called ‘‘truncatable free
energy models.’’ In those cases it is then possible to map the
phase equilibrium conditions for a polydisperse mixture~1!
onto a system of coupled nonlinear equations for the corre-
sponding generalized moments of the distribution functions
F (a)(j) of the coexisting phases.

Historically, the simplest, nontrivial truncatable free en-
ergy model is the generalization of the van der Waals model
to the case of a polydisperse mixture; the model was already
proposed by Gualtieriet al.38 and was exploited later in de-
tail by Bellier-Castellaet al.39,40 In particular these authors
studied thefull phase behavior of polydisperse fluid mix-
tures, i.e., they determined the cloud and shadow curves as
well as the binodals. Further investigations for this system
can be found in Ref. 36. Searching for other truncatable free
energy models that go beyond the mean field level, two of
the authors encountered the polydisperse HSY mixture
within the MSA which has been studied in detail in Ref. 33.
Again the coexistence Eqs.~1! could be mapped onto a
coupled system of nonlinear equations for the unknown
~generalized! moments of the daughter distribution functions.
The higher level of sophistication of this model with respect
to the van der Waals model has brought along a considerable
increase in the complexity of the formalism and of the nu-
merical treatment: under the assumption of factorizable
Yukawa interactions, twenty-two equations for the unknown
moments had to be solved.

In the present paper we extend this formalism to study
the phase behavior of the polydisperse CHS fluid. Although
the development of the formalism draws on parallels from
the HSY case,33 the situation is more complex, since we now
have to take into account additional constraints, such as the

charge neutrality, and the distribution functions of each
phase contain contributions due to the positive and negative
charge. We finally arrive at fifteen coupled nonlinear equa-
tions for the unknown generalized moments of the daughter
distribution functionsF (a)(j), a51, 2. Dealing with a hard
core system the obvious choice for the variablej is the HS
diameters and we have two quantities that can be distrib-
uted independently according to respective distribution func-
tions: the sizes and the chargez of the particles; thus,
F(j)5F(s,z). Although expressions can be presented for
the two independently distributed system parameters, the for-
malism turns out to be considerably complex. Thus we have
used the simplifying assumption, that the charge of the par-
ticles is proportional to their surface, i.e., an ansatz which
seems physically sound. We point out that this reduction to
only one independent system parameter was only done with
respect to a more compact presentation of the formalism and
to a justifiable numerical effort.

To demonstrate the power and applicability of the con-
cept we present results for two polydisperse fluids mixtures:
the first one is a straightforward polydisperse generalization
of the RPM, the other one is a polydisperse extension of a
1:1 electrolyte primitive model with an asymmetry in the HS
sizes. We present results for the full phase diagrams~cloud
and shadow curves as well as binodals! discussing character-
istic features of the daughter distribution functions and the
charge distributions between the coexisting phases. For rea-
sons outlined in the paper we have restricted ourselves to
beta-distributions for the parent distribution functions.

The paper is organized as follows: in the subsequent
section we present the theory~starting from the case of a
mixture with a finite number of components and generalizing
to the polydisperse case!. In Sec. III we present the results of
the two systems investigated and close the paper with con-
cluding remarks.

II. THE THEORY

A. Phase equilibrium conditions

We start with the simple case of ann-component mixture
of charged particles which we consider at a temperature
T @b5(kBT)21# placed in a continuum with a dielectric con-
stant e. Each speciesi has the chargeezi and the number
density r i

(0)5Ni
(0)/V(0), where Ni

(0) is the number of the
particles of typei, e is the elementary charge, andV(0) is the
volume of the system. Henceforward, the upper index~0!
will denote properties of the parent phase whose phase be-
havior we intend to study. The system is neutral, so that the
following relation is satisfied:

(
i 51

n

ziNi
~0!50. ~2!

We assume that at a certain temperatureT the system sepa-
rates intom daughter phases where each phasea is charac-
terized by a volumeV(a) and a number of particles of species
i, Ni

(a) . Hereafter we will denote a set of quantitiesy1
(a) ,

y2
(a) , ...,yn

(a) by $yi
(a)%.
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At equilibrium these parameters take values which mini-
mize the total Helmholtz free energy of the system
(a51

m A(a)(T,V(a),$Ni
(a)%) and satisfy the following set of

constraints:
~i! charge neutrality

(
i 51

n

ziNi
~a!50; ~3!

~ii ! total volume conservation

V~0!5 (
a51

m

V~a!; ~4!

~iii ! conservation of the total number of the particles of
eachi species

Ni
~0!5 (

a51

m

Ni
~a! . ~5!

Application of the Lagrange multiplier method gives the
following phase equilibrium conditions for the pressureP
and for the chemical potentialsm i of componenti in the
coexisting phasesa andb,

P~a!~T,V~a!,$Ni
~a!%!5P~b!~T,V~b!,$Ni

~b!%!, ~6!

m i
~a!~T,V~a!,$Ni

~a!%!1~12daa0
!l~a!zi

5m i
~b!~T,V~b!,$Ni

~b!%!1~12dba0
!l~b!zi

a,b51,...,m and i 51,...,n. ~7!

Herel (a) is the Lagrange multiplier introduced to satisfy the
charge neutrality condition~3!. Due to the overall neutrality
of the system, Eq.~2!, this constraint is imposed on each
phasea, except one arbitrarily chosen phasea0 . Solution of
the set of Eqs.~3! ~for aÞa0), ~4!–~7! yields phase coex-
isting values forl (a) (aÞa0), V(a), and$Ni

(a)%.
For the sake of further extension of the phase equilib-

rium conditions~3!–~7! to the polydisperse case it is more
convenient to use the set of variables represented by the den-
sity of phasea, r (a)5N(a)/V(a), and by the fractionsxi

(a)

5Ni
(a)/Ni

(0) and x(a)5N(a)/N(0) with N(a)5( i 51
n Ni

(a) . In
terms of these variables we have

P~a!~T,r~a!,$xi
~a!%!5P~b!~T,r~b!,$xi

~b!%!, ~8!

m i
~a!~T,r~a!,$xi

~a!%!1~12daa0
!l~a!zi

5m i
~b!~T,r~b!,$xi

~b!%!1~12dba0
!l~b!zi , ~9!

xi
~0!5 (

a51

m

xi
~a!x~a!, ~10!

v ~0!5 (
a51

m

v ~a!x~a!, ~11!

(
i 51

n

zixi
~a!50, a~Þa0!51,...,m, ~12!

(
i 51

n

xi
~a!51, a51,...,m, ~13!

where v (0)51/r (0) and v (a)51/r (a). Relations~10!, ~11!,
and ~12! express the conservation of the total number of
particles of each speciesi, conservation of the total system
volume, and the charge neutrality condition for each phase
a(Þa0), respectively.

Now, extension of the phase equilibrium conditions~8!–
~13! to the polydisperse case is rather straightforward and
can be achieved by switching from the discrete index vari-
ablei to a continuous index variablej by using the following
substitution rule42

xi→F~j!dj, ~14!

F(j) being a positive distribution function normalized to 1.
It should be pointed out thatj now stands for the variables
$s,z%. Due to this substitution, summations overi in Eqs.
~8!–~13! become integrations overj; further, thermodynamic
properties becomefunctionals of the distribution function
F(j) which we will indicate by square brackets:

P~a!~T,r~a!;@F ~a!# !5P~b!~T,r~b!;@F ~b!# !, ~15!

m~a!~j,T,r~a!;@F ~a!# !1~12daa0
!l~a!z~j!

5m~b!~j,T,r~b!;@F ~b!# !1~12dba0
!l~b!z~j!, ~16!

F ~0!~j !5 (
a51

m

F ~a!~j!x~a!, ~17!

v ~0!5 (
a51

m

v ~a!x~a!, ~18!

E z~j!F ~a!~j!dj50, a~Þa0!51,...,m, ~19!

E F ~a!~j!dj51, a51,...,m. ~20!

Formally the set of relations~15!–~20! form a closed set of
equations for the unknownsr (a), x(a), l (a), and F (a)(j)
which can be solved as soon as expressions for the thermo-
dynamical properties of the corresponding polydisperse sys-
tem at hand will be available.

At present this problem seems to be solvable only for the
so-called truncatable free energy models, i.e., these models,
for which thermodynamic properties can be represented by a
finite number of~generalized! moments of the distribution
function F(j). Formally, polydisperse mixtures of CHS
where the thermodynamical properties are calculated within
the MSA belong to the family of truncatable free energy
models. In the subsequent section we will present the exten-
sion of the MSA expressions for the Helmholtz free energy,
for the pressure, and for the chemical potentials from a mix-
ture of a finite number of components of CHS to the poly-
disperse case.

B. Thermodynamic properties

We consider again then-component mixture of CHS dis-
cussed in the previous section. The pair potential of the
model is of the form
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F i j ~r !5H ` r<s i j

e2zizj /er s i j ,r ,`
, ~21!

where thes i are the HS diameters of the particles of typei
ands i j 5(s i1s j )/2.

The MSA solution for a mixture of CHS and the corre-
sponding expressions for the Helmholtz free energy,A, and
the pressure,P, for the model at hand had been obtained
earlier:34,35

b
~A2A~HS!!

V
5

G3

3p
1b

E~ex!

V
, ~22!

b~P2P~HS!!52
G3

3p
2

1

2
pb* S D

D D 2

; ~23!

E(ex) is the excess internal energy and in the following sum-
mations overi range from 1 ton:

b
E~ex!

V
52b* S pVD2

2D
1G(

i

r izi
2

11s iG
D , ~24!

V511
p

2D (
i

r is i
3

11s iG
, ~25!

D5
1

V (
i

r izis i

11s iG
. ~26!

b* 5e2b/e, D512(p/6)z3 , z35( ir is i
3, andG is the so-

lution of the nonlinear algebraic equation

G25pb* (
i

r i S zi2ps i
2D/2D

11s iG
D 2

. ~27!

Expressions for the chemical potentialsm i can be obtained
using the standard relationm i5(]A/]r i)b,r j Þ i

and taking
into account the stationary property of the MSA Helmholtz
free energy,]A/]G50. A simple calculation leads to the
following expression:

b~m i2m i
~HS!!52

b*

11s iG
H Gzi

21
p

2D
s iD

3F2zi1
p

6D
s i

2D~s iG22!G J . ~28!

All thermodynamical properties of thepolydispersemix-
ture of the charged HS model can be simply obtained from
the expressions~22!–~28! by using prescription~14!. Since
for the model at hand each species is defined by its size~s!
and its charge~z!, we can replace the variablej in Eq. ~14!
by the pair of continuous random variabless andz, distrib-
uted according to the probability distribution function
F(s,z)>0 with

E
0

`

dsE
2`

`

dzF~s,z!51. ~29!

Upon this substitution the expressions for the Helmholtz free
energy~22! and for the pressure~23! will be unchanged. For
the excess internal energyE(ex) and for the chemical poten-
tials m(s,z), which are now functions ofs andz, we have

b
E~ex!

V
52b* FpVD2

2D

1GrE
0

`

dsE
2`

`

dz
z2

11sG
F~s,z!G , ~30!

b@m~s,z!2m~HS!~s!#52
b*

11sG H Gz21
p

2D
sD

3F2z1
p

6D
s2D~sG22!G J ,

~31!

whereV, D, and the generalized momentszn are defined as
follows:

zn5rE
0

`

dsE
2`

`

dzsnF~s,z!, ~32!

V511
p

2D
rE

0

`

dsE
2`

`

dz
s3

11sG
F~s,z!, ~33!

D5
1

V
rE

0

`

dsE
2`

`

dz
zs

11sG
F~s,z!, ~34!

andG is obtained from the solution of the equation

G25pb* rE
0

`

dsE
2`

`

dzS z2ps2D/2D

11sG D 2

F~s,z!. ~35!

Thermodynamic properties of the corresponding poly-
disperse HS system can be calculated using the semiempir-
ical expressions due to Mansooriet al.,41 generalized to the
polydisperse case.33,42

C. Two-phase coexistence

In this study we will restrict ourselves to the case where
the polydisperse mixture of CHS@parent phase, denoted by
‘‘ ~0!’’ # separates in two phases only@daughter phases, de-
noted by ‘‘~1!’’ and ‘‘ ~2!’’ #; under these conditions the set of
multiphase equilibrium conditions, Eqs.~15!–~20!,
becomes33,39

P~1!~T,r~1!;@F ~1!# !5P~2!~T,r~2!;@F ~2!# !, ~36!

F ~1!~s,z!5F ~2!~s,z!
r~2!

r~1!
exp$bDm̃1lz%, ~37!

r~2!F ~2!~s,z!5
r~1!2r~2!

r~1!2r~0!
r~0!F ~0!~s,z!

1
r~0!2r~2!

r~0!2r~1!
r~1!F ~1!~s,z!, ~38!

E
0

`

dsE
2`

`

dz zF~2!~s,z!50, ~39!

E
0

`

dsE
2`

`

dz F~a!~s,z!51, a51 or a52, ~40!

where
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Dm̃5m̃~2!~s,z,T,r~2!;@F ~2!# !

2m̃~1!~s,z,T,r~1!;@F ~1!# !; ~41!

them̃ (a), a51, 2 are the excess~over the ideal gas! chemical
potentials anda051 ~i.e., l5l (2)). r (0) andF (0)(s,z) de-
note the density and the distribution function of the parent
phase, respectively. The relation betweenF (0)(s,z) and
two daughter phase distribution functions,F (1)(s,z) and
F (2)(s,z), i.e., Eq.~38!, follows from the condition of the
conservation of the total number of particles of each species
characterized bys and z, Eq. ~17!, and the conservation of
the total volume, Eq.~18!.

A distribution F (a)(s,z) as introduced above allows an
independent variation of the charge and of the size of the
particles. However, to reduce the amount of numerical cal-
culations we assume a distribution, which strongly correlates
these two model parameters, i.e.,

F ~a!~s,z!5F1
~a!~s,z!1F2

~a!~s,z!

5F1
~a!~s!dS z2z1

~0!
s2

^s2&1
~0!D

1F2
~a!~s!dS z2z2

~0!
s2

^s2&~0!D a51,2,

~42!

where we have introduced the first and the second moments

^s&6
~a!5E

0

`

dss f 6
~a!~s!

and

^s2&6
~a!5E

0

`

dss2f 6
~a!~s!. ~43!

Our assumption is physically sound, since it states that the
charge is proportional to the surface of the particles; from a
more practical point of view assumption~42! reduces double
integrals overs and z in previous expressions to integrals
over s only.

Further we put

F6
~a!~s!5a6

~a! f 6
~a!~s!, ~44!

wherea1
(a) denotes the fraction of positive anda2

(a) the frac-
tion of negative particles in the phasea

a6
~a!5E

0

`

dsF6
~a!~s!; ~45!

obviously,a1
(a)1a2

(a)51; in the following, the index6 will
be a short-hand notation for quantities that characterize posi-
tive ~1! or negative~2! particles. The partial probability
distribution functions,f 6

(a)(s), introduced in Eq.~44! are
normalized

E
0

`

ds f 6
~a!~s!51. ~46!

For the average charge of positive~1! or negative~2!
particles in the phasea, z6

(a) , we obtain

z6
~a!5E

0

`

dsE
2`

`

dzzF6
~a!~s,z!5z6

~0!
^s2&6

~a!

^s2&6
~0!

. ~47!

The charge neutrality condition takes the following simple
form:

z1
~a!a1

~a!1z2
~a!a2

~a!50, a50,1,2. ~48!

Now the set of equations that determine phase equilib-
rium, Eqs.~36!–~40!, can be recast in terms of the distribu-
tion functionsF6

(a)(s)

P~1!~T,r~1!;@F1
~1! ,F2

~1!# !5P~2!~T,r~2!;@F1
~2! ,F2

~2!# !,
~49!

F6
~1!~s!5F6

~2!~s!
r~2!

r~1!
exp$bDm̃61lz6~s!%, ~50!

r~2!F6
~2!~s!5

r~1!2r~2!

r~1!2r~0!
r~0!F6

~0!~s!

1
r~0!2r~2!

r~0!2r~1!
r~1!F6

~1!~s!, ~51!

z1
~2!a1

~2!1z2
~2!a2

~2!50, ~52!

E
0

`

ds$F1
~a!~s!1F2

~a!~s!%51, a51 or a52,

~53!

where

Dm̃65m̃6
~2!~s,T,r~2!;@F1

~2! ,F2
~2!# !

2m̃6
~1!~s,T,r~1!;@F1

~1! ,F2
~1!# ! ~54!

and

z6~s!5z6
~0!s2/^s2&6

~0! . ~55!

Equation ~51! can be used to eliminateF6
(2)(s) @or

F6
(1)(s)] from Eq. ~50! to give

F6
~a!~s!

5F6
~0!~s!Q6

~a!~s,T;r~0!,r~1!,r~2!;@F1
~a! ,F2

~a!# !,

a51,2, ~56!

where
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r~a!Q6
~a!~s,T;r~0!,r~1!,r~2!;@F1

~1! ,F2
~1!# !5

r~0!~r~2!2r~1!!$12d1a1d1a exp@bDm̃61lz6~s!#%

~r~0!2r~1!!2~r~0!2r~2!!exp@bDm̃61lz6~s!#
,

a51,2. ~57!

Relations~49!, ~52!, ~53!, and~56!, along with Eq.~57!,
with a51 or a52, represent a closed set of equations to be
solved for the unknownsr (1), r (2), l, andF1

(a)(s), a51, 2.
Since thermodynamic properties of the model at hand are
defined by the finite number of generalized moments we can
follow previous studies33,39 and map this set of equations
onto a closed set of fifteen algebraic equations forl, r (a),
andG (a), and for ten generalized momentszn

(a) , n51, 2, 3,
V (a), D (a), wherea denotes the value of the corresponding
quantity in phasea ~a51,2!. We have

zn
~a!5r~a!E

0

`

dssn@F1
~0!~s!Q1

~a!~s,T,r~0!;X!

1F2
~0!~s!Q2

~a!~s,T,r~0!;X!#,

n51,2,3, ~58!

V~a!511
pr~a!

2D~a! E0

`

ds
s3

11sG~a!

3@F1
~0!~s!Q1

~a!~s,T,r~0!;X!

1F2
~0!~s!Q2

~a!~s,T,r~0!;X!#, ~59!

D ~a!5
r~a!

V~a! E0

`

ds
s

11sG~a!

3@z1~s!F1
~0!~s!Q1

~a!~s,T,r~0!;X!

1z2~s!F2
~0!~s!Q2

~a!~s,T,r~0!;X!#, ~60!

where the unknowns of the problem are collected in setX,
i.e.,

X5$r~1!,r~2!,l;@G~1!$zn
~1!%V~1!D ~1!#,

@G~2!$zn
~2!%V~2!D ~2!#%. ~61!

The remaining five equations are found from the equality
of the pressure in both phases~36!,

P~1!~T,r~1!;@G~1!$zn
~1!%V~1!D ~1!# !

5P~2!~T,r~2!;@G~2!$zn
~2!%V~2!D ~2!# !, ~62!

from the charge neutrality condition~52!,

E
0

`

dss2F1
~0!~s!•E

0

`

dss2F1
~0!~s!Q1

~2!~s,T,r~0!;X!

5E
0

`

dss2F2
~0!~s!•E

0

`

dss2F2
~0!~s!Q2

~2!~s,T,r~0!;X!,

~63!

from the normalization condition~53! for either phasea51
or phasea52,

15E
0

`

ds@F1
~0!~s!Q1

~a!~s,T,r~0!;X!

1F2
~0!~s!Q2

~a!~s,T,r~0!;X!# ~64!

and from Eq.~35!, written for the scaling parametersG (a) for
each of the two phases,

~G~a!!2

pb*
5r~a!E

0

`

dsF S z1~s!2ps2D ~a!/2D~a!

11sG~a! D 2

3F1
~0!~s!Q1

~a!~s,T,r~0!;X!

1S z2~s!2ps2D ~a!/2D~a!

11sG~a! D 2

3F2
~0!~s!Q2

~a!~s,T,r~0!;X!G . ~65!

Solution of the set of Eqs.~58!–~65! for a given tem-
peratureT, density of the parent phaser (0), and parent dis-
tribution functionF6

(0)(s) gives the coexisting densitiesr (a)

of the two daughter phases and corresponding distribution
functions F6

(a)(s), a51, 2. The coexistence densities for
different temperatures fix binodals, which are terminated at a
temperature for which the density of one of the phases is
equal to the densityr (0) of the parent phase; these termina-
tion points form the so-called cloud and shadow curves
which thus represent an envelope for the binodals. Cloud and
shadow curves intersect at the critical point, which is char-
acterized by the critical temperatureTcr and critical density
rcr5r (1)5r (2)5r (0). Thus only for r (0)5rcr the two
branches of the binodal meet at the critical point.

By definition, states located on the cloud curve are char-
acterized that they coexist with a state~localized on the
shadow curve! where an infinitely small amount of the other
phase emerges. Thus the cloud and shadow curves can be
obtained as special solutions of the general phase coexist-
ence problem, when the properties of one phase are equal to
the properties of the parent phase: assuming, e.g., the second
phase to be the cloud phase, i.e.,r (2)5r (0), and following
the scheme presented above we will end up with the same set
of equations,~58!–~65!, but with r (2) and F6

(2)(s) substi-
tuted by r (0) and F6

(0)(s), respectively. Note thatF6
(2)(s)

5F6
(0)(s) is now known, but the remaining properties, i.e.,

r (0), G (0), and the generalized moments$zn
(0)%, V (0), and

D (0) are unknown; they are obtained from the solution of the
appropriately modified set of Eqs.~58!–~65!.

Solution of the set of Eqs.~58!–~65! was obtained by
using the Newton–Raphson method: we start at a relatively
high temperature and a small degree of polydispersity. As the
initial input we have used the values ofG (a) andr (a), a51,
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2, which are obtained from the solution of the phase equilib-
rium problem for the corresponding monodisperse system;
furthermore we assume as starting values for the two daugh-
ter distribution functions the parent distribution function, i.e.,
F6

(1)(s)5F6
(2)(s)5F6

(0)(s). Solution of the set of equations
is then obtained by gradually lowering the temperature and
increasing the polydispersity.

D. The distributions

So far in our discussion we have not specified the par-
ticular functional form of the distribution function of the
parent phase. In this study we have chosen beta-distributions
for the f 6

(0)(s), given by

f 6
~0!~s!5B21~g6 ,n6!S s

s6
~max!D g621

3S 12
s

s6
~max!D n621

Q~s6
~max!2s!Q~s!, ~66!

where

Q~x!5H 1, x>0

0, x,0

is the Heaviside step function. Thef 6
(0)(s) are thus different

from zero only for sP@0,s6
(max)#. B(g6 ,n6) is the

beta-function43 and theg6 and n6 are related to the first
(s6

(0)5^s&6
(0)) and second (̂s2&6

(0)) moments—see also Eq.
~43!—by

g65
s6

~max!2s6
~0!~11D6

~0!!

s6
~max!D6

~0!
, ~67!

n65S s6
~max!2s6

~0!

s6
~0! D g6 ~68!

with

D6
~0!5^s2&6

~0!/~^s&6
~0!!221; ~69!

the D6
(0) have the same meaning asDs in Ref. 44 and cor-

respond to~1/a! in Ref. 39. The choice of a beta-distribution
~instead of, for instance, a Schulz-distributions! was moti-
vated and justified in Sec. II C of Ref. 33.

III. RESULTS

A. Numerical procedure and analysis

Solution of the set of Eqs.~49!, ~52!, ~53!, and ~56!,
along with Eq.~57! leads to the binodal curves and to the
distribution functions of the coexisting two daughter phases
for the given value of the parent phase densityr (0) and a
given parent distribution functionF (0)(s,z). For this solu-
tion we have used the same numerical procedure as for the
polydisperse HSY system, outlined in Ref. 33. This also
holds for the determination of the cloud and the shadow
curves and for the critical points. Further we have analyzed
the shapes of the daughter distribution functionsf 6

(a)(s) by
finding the ‘‘closest’’ beta-distributionsf 6

(a);beta(s) in the fol-

lowing way: taking thef 6
(a)(s) that we obtain from the so-

lution of the above set of equations we calculate directly the
first moments,̂ s&6

(a) , and theD6
(a) via Eq. ~69!; these pa-

rameters fix via Eqs.~67! and ~68! the parameters of
f 6

(a);beta(s).

B. The systems

The above formalism has been applied to two polydis-
perse CHS mixtures. In both models the parent distribution
functionsF (0)(s,z)5F (0)(s) have the form~42!; the partial
distribution functionsf 6

(0)(s) are beta-distributions~66!. The
input parameters forF (0)(s) and for thef 6

(0)(s) were chosen
to be uz6

(0)u51, s6
(max)52s1

(0) , andD6
(0)50.01:

~i! The first system~I!, is a polydisperse symmetric CHS
mixture which can be considered as a generalization
of the RPM to the polydisperse case; obviouslys2

(0)

5s1
(0) ;

~ii ! The second system~II !, is a polydisperse mixture of
CHS which is asymmetric in size; it can be considered
as a polydisperse extension of the 1:1 electrolyte
primitive model with an asymmetry in the size of the
HS particles; here we choses2

(0)51.3s1
(0) .

In what follows the temperatureT and the densitiesr of
the system will be represented by the dimensionless quanti-
ties T* 5kBTe/e2 andr* 5r@s1

(0)#3, respectively. The indi-

FIG. 1. Phase diagram (T* vs r* ! of the symmetric polydisperse CHS
mixture ~system I! specified in the text. Cloud and shadow curves are rep-
resented by the solid lines~as labeled!, binodals by the broken lines: the
values of the densities of the respective parent phase,r* (0), can be identi-
fied from the intersection of the binodal with the cloud curve:r* (0)

50.008, 0.045, and 0.0252~critical binodal!. Two pairs of points (Aa and
Da , a51, 2! are chosen on the@r* (0)50.008#-binodal and on the shadow
curve which are specified in Table I. The dashed–dotted line denotes the
binodal curve for a RPM@with diameters (0)] treated within the MSA.

TABLE I. Specification of two selected pairs of points~index 1, low-density
gas phase; index 2, high-density fluid phase! chosen in the phase diagram of
our symmetric polydisperse CHS mixture~system I! shown in Fig. 1.

Point Localized on T* r* (1) r* (2)

A1 , A2 binodal curve@r* (0)50.008# 0.055 0.512•1023 0.182
D1 , D2 cloud and shadow curve 0.055 0.100•10211 0.145
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cesa51, 2, specifying the daughter phases, are fixed as fol-
lows: index 1 will refer to the low-density~gas! phase, while
index 2 will refer to the high-density~fluid! phase.

C. Results for system I

The phase diagram of system I is shown in Fig. 1. We
show the cloud and the shadow curves, along with three
binodals for three selected densities, one of them being the
critical density,rcr* 50.0252. On the shadow curve and the
binodal for r* (0)50.008 pairs of points have been chosen
~labeled byAa , and Da , a51, 2! which are specified in
Table I; for these pairs of points the daughter distribution
functions are displayed in the subsequent Figs. 2 and 3 and
are discussed in the text. We also display in the phase dia-
gram the binodal for the RPM calculated in the MSA as a
reference curve.

We observe that polydispersity obviously shifts the criti-
cal point both to higher densities as well as to higher tem-
peratures:rcr* 50.0252 andTcr* 50.0853 in the polydisperse

case vsrcr;RPM* 50.0144 andTcr;RPM* 50.0786 in the case of
the RPM. It is also evident that the maximum of the cloud
curve is shifted to very small densities: it is located at
r*;0.0011. The way how the cloud curve varies with the
width of the parent distribution function becomes evident, if
we bear in mind that the one component system is the lim-
iting case of the polydisperse mixture with an infinitely sharp
distribution; thus, broadening the parent distribution function
will shift the cloud curve to even smaller densities. The
daughter distribution functions of the state pointsAa and
Da , a51, 2, are shown in Figs. 2 and 3, which give us a first
impression of fractionation effects: as expected, the small
particles prefer the gas phase, while the larger particles are
predominantly encountered in the fluid phase. We also ob-
serve the remarkable fact that both daughter distribution
functions f 6

(a)(s) can be represented reasonably well by

FIG. 2. Parent@ f 6
(0)(s)# ~thick full line! and daughter@ f 6

(a)(s), a51, 2#
distribution functions~full lines! for the symmetric polydisperse CHS mix-
ture ~system I! calculated for pointsA1 and A2 , located on the@r* (0)

50.008#-binodal in the phase diagram~see Table I and Fig. 1!. Broken
lines: f 6

(a);beta(s) as defined in the text.a51, gas phase;a52, fluid phase.

FIG. 3. Parent@ f 6
(0)(s)# ~thick full line! and daughter@ f 6

(a)(s), a51, 2#
distribution functions~full lines! for the symmetric polydisperse CHS mix-
ture ~system I! calculated for pointsD1 and D2 , located on the shadow
curve ~see Table I and Fig. 1!. Broken lines:f 6

(a);beta(s) as defined in the
text. a51, gas phase;a52, fluid phase.

FIG. 4. ^s&6
(a) , a51, 2, as defined in Eq.~43! for the symmetric polydis-

perse CHS mixture~system I! along three binodals for the parent phase
densitiesr* (0)50.008 ~broken line!, r* (0)5rcr* 50.0252 ~full line!, r* (0)

50.045 ~dashed–dotted line!, and along the shadow curve~thick full and
thick broken line!. The dotted vertical line througĥs&6

(a)/s1
(0)51 separates

the gas~left! from the fluid~right! region. Note that this vertical line repre-
sents thê s&6

(a)/s1
(0)-values for states on the cloud curve.

FIG. 5. D6
(a) , a51, 2, as defined in the text~69! for the symmetric poly-

disperse CHS mixture~system I! along three binodals for the parent phase
densitiesr* (0)50.008 ~broken line!, r* (0)5rcr* 50.0252 ~full line!, and
r* (0)50.045 ~dashed–dotted line! and along the shadow curve~thick full
and thick broken line!. Binodals:a51, gas phase;a52, fluid phase; shadow
curve: broken line, gas phase; full line, fluid phase.
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beta-distributionsf 6
(a);beta(s), a51, 2; this holds not only

for the examples shown here but also for further state points
not displayed here.

A more quantitative and systematic analysis of the
daughter distribution functions is possible in terms of^s&6

(a)

andD6
(a) , as defined in Eqs.~43! and ~69!, i.e., the param-

eters that characterize the position of the maximum and the
width of the f 6

(a)(s); they are displayed in Figs. 4 and 5 for
three chosen densities of the parent phase@i.e., r* (0)

50.008, r* (0)50.045, and the critical density,rcr*
(0)

50.0252] and along the shadow curve. Along the shadow
curve, fractionation has its strongest effects: the smaller par-
ticles are preferentially in the gas phase while the larger ones
are predominantly encountered in the fluid phase; the width
of the daughter distributions in the fluid phase,D6

(2) , is con-
siderably smaller than the width of the parent distribution,
while in the gas phaseD6

(1) is only slightly smaller than
D6

(0) . Looking on the temperature dependence of the mean-
size of the particles in the daughter phases along the three
binodals we observe the following: in the gas phase we re-
mark a strong decrease of the mean particle size,^s&6

(1) ,
with temperature~where this effect is smaller for smaller
densities!; in the fluid phase, we observe different tempera-
ture dependencies of̂s&6

(2) : for densities larger than the

critical density the mean size is monotonically increasing as
the temperature decreases, while we find the opposite ten-
dency forr,rcr* . As we further decrease the temperature,
the liquid branches of these curves become nearly vertical,
which means that for lower temperatures the mean particle
size in the fluid daughter phase does not change anymore.
The D6

(a)-curves along the three binodals as functions of the
temperature indicate a strong influence both of density and
temperature on the width of the daughter distributions: while
for densities abovercr* the width of the distribution function
of the gas phase is always smaller than the one of the fluid
phase, this is not the case for densities below the critical
density: hereD6

(2) ~fluid phase! may even be smaller than
D6

(1) ~gas phase!, leading to a looplike shape of the
D6

(a)-curves. For all binodals investigated,D6
(a) , a51, 2, is

smaller than the corresponding value of the parent phase,
D6

(0)50.01. Finally, we have analyzed the average~positive
or negative! charge of the daughter phases as functions of the
temperature. They show a similar behavior as the^s&6

(a) and
are therefore not displayed here; this fact is undoubtedly re-

FIG. 6. Phase diagram (T* vs r* ! of the asymmetric polydisperse CHS
mixture ~system II! specified in the text. Cloud and shadow curves are
represented by the solid lines~as labeled!, binodals by the broken lines: the
values of the densities of the respective parent phase can be identified from
the intersection of the binodal with the cloud curve:r* (0)50.003, 0.03, and
0.0165~critical binodal!. Four pairs of points (Aa , Ba , Ca , andDa , a51,
2! are chosen on the three differentr* (0)-binodals and on the shadow curve
which are specified in Table II. The dashed–dotted line denotes the binodal
curve for an asymmetric binary mixture of CHS@with diameterss1

(0) and
s2

(0)] treated within the MSA.

FIG. 7. Parent@ f i
(0)(s),i 51,2# ~thick full lines! and daughter@ f i

(a)(s),
i 51,2 anda51, 2# distribution functions~full lines! for the asymmetric
polydisperse CHS mixture~system II! calculated for pointsA1 and A2 ,
located on the@r* (0)50.003#-binodal in the phase diagram~see Table II
and Fig. 6!. Broken lines:f 6

(a);beta(s) as defined in the text.a51, gas phase;
a52, fluid phase.

FIG. 8. As Fig. 7 for pointsB1 andB2 located on the@r* (0)50.03#-binodal
in the phase diagram of system II~see Table II and Fig. 6!.

TABLE II. Specification of four selected pairs of points~index 1, low-
density gas phase; index 2, high-density fluid phase! chosen in the phase
diagram of our asymmetric polydisperse CHS mixture~system II! shown in
Fig. 6.

Point Localized on T* r* (1) r* (2)

A1 , A2 binodal curve@r* (0)50.003# 0.055 0.552•1023 0.094
B1 , B2 binodal curve@r* (0)50.03# 0.055 0.132•1022 0.087
C1 , C2 critical binodal (rcr* 50.0165) 0.055 0.113•1022 0.089
D1 , D2 cloud and shadow curve 0.055 0.300•1028 0.109
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lated to the size-charge dependence assumed in our model
~42!.

D. Results for system II

In system II the situation is of course—as a consequence
of the asymmetry—more complex. Again, we start with the
phase diagram which is depicted in Fig. 6: we show the
cloud and shadow curves, the critical binodal (rcr*
50.0165), and two further binodals with their respective
densities of the parent phase below and abovercr* @i.e.,
r* (0)50.003,r* (0)50.03]. Four pairs of points (Aa , Ba ,
Ca , and Da , a51, 2! have now been chosen on these
curves; they are indicated in Fig. 6 and are characterized in
Table II.

Similar as in the symmetric case, the cloud curve has a
maximum for a very smallr* -value; again, we have comple-
mented the results by the binodal of an asymmetric 1:1
primitive model @with diameters s1

(0) and s2
(0)] treated

within the MSA and we observe that the critical point of the
polydisperse mixture is shifted to higher densities and tem-
peratures:rcr* 50.0165 andTcr* 50.0075 in the polydisperse
case vsrcr;bin* 50.0096 andTcr;bin* 50.069.

The analysis of the daughter distribution functions
f 6

(a)(s) displayed in Figs. 7–10 is of course now more di-

versified since due to the asymmetry of the modelf 1
(a)(s)

Þ f 2
(a)(s). Similar to the symmetric case and to the study on

the polydisperse HSY mixture33 we observe thatall four
daughter distribution functions can be represented reason-
ably well by beta-distributions with suitably chosen param-
eters^s&6

(a) andD6
(a) ; again this has been investigated and

substantiated for more state points than presented here.
We continue with a more quantitative and a more de-

tailed analysis of the distribution functions of the daughter
phases in terms of thê s&6

(a) and D6
(a) . For the

^s&6
(a)-curves in the daughter phases~Figs. 11 and 12! we

find similar shapes as in the symmetric case, the1 and 2
curves being now located ‘‘around’’ their respective values of
the parent phasess1

(0)51.0 ands2
(0)51.3. The situation is

different for the width of the distributions,D1
(a) and D2

(a)

~Figs. 13 and 14!: along the shadow curve,D1
(a) remains—

except for r* (0)-values close to the critical densities—
smaller than 0.01, i.e., theD6

(0)-value of the parent phase.
For the negative particles, the width of the daughter distribu-

FIG. 9. As Fig. 7 for pointsC1 andC2 located on the critical binodal (rcr*
50.0165) in the phase diagram of system II~see Table II and Fig. 6!.

FIG. 10. As Fig. 7 for pointsD1 and D2 located on the shadow curve of
system II~see Table II and Fig. 6!.

FIG. 11. ^s& i
(a) , i 51,2 ~as labeled! anda51, 2, as defined in Eq.~43! for

the asymmetric polydisperse CHS mixture~system II! along the shadow
curve. Broken line~a51!, gas phase; full line~a52!, fluid phase.

FIG. 12. ^s& i
(a) , i 51,2 ~as labeled! anda51, 2, as defined in Eq.~43! for

the asymmetric polydisperse CHS mixture~system II! along three binodals
for the parent phase densitiesr* (0)50.003 ~broken line!, r* (0)5rcr*
50.0165~full line!, andr* (0)50.03 ~dashed–dotted line!. The two dotted
vertical lines througĥ s&1

(a)/s1
(0)51 and^s&2

(a)/s1
(0)51.3 separate the re-

spective gas~left! from the fluid~right! regions. Note that these vertical lines
represent thês& i

(a)-values,i 51,2, for states on the cloud curve.
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tion function in the gas phase is larger than 0.01, while in the
liquid phaseD2

(2) is always smaller thanD6
(0)50.01. Along

the three binodals the situation is also more complex than in
the symmetric case: theD1

(a)-curves show a similar behavior
as observed in the symmetric case, i.e.,D1

(a) is always
smaller thanD6

(0) and for densities smaller thanrcr* a loop-
like shape may occur. This also holds forr,rcr* for the
D2

(a)-curves. However, forr>rcr* , D2
(1) ~gas phase branch!

may become larger than the width of the parent distribution
function,D6

(0)50.01.
We finally turn towards the influence of the phase sepa-

ration process on the average charges and on the fraction of
the positive and negative charges of the coexisting phases: in
Figs. 15 and 16 we show the average positive and negative
charges,z6

(a) , a51, 2, for state points on the shadow curve
and on the three binodals considered in this study. The
curves are rather narrow and are centered around the
z6

(0)-values of61; this means that the charges do not vary
too much as we change the temperature and the density of
the parent phase. The respectivez1

(a)- and z2
(a)-curves seem

rather ‘‘symmetric’’ with respect to 0; thus we can conclude

that the size difference affects the charge distribution only
marginally. As we lower the temperature, the charges of the
fluid phase tend towards61. Along the shadow curves the
average charges very somewhat stronger than along the bin-
odals. Finally, in Figs. 17 and 18 we display the fraction of
positive particles in the two phases, expressed bya1

(a) : from
the results along the shadow curve~Fig. 17! we observe that
in the gas daughter phase a slight majority of positive par-
ticles can be observed while in the fluid phase,a1

(2) is less
than 0.5. This effect is more pronounced and diversified for
the three binodals for the three different densities considered
~Fig. 18!: in the fluid phase~where the larger particles are
predominantly encountered! the fraction of positive particles
is always smaller than 0.5~although the maximum deviation
from this value for the systems investigated here is only
0.01!. On the other hand, in the gas phase the positive par-
ticles have a slight majority~up to;0.0502!. As we decrease
the temperature, the density dependence of thea1

(a)-curves
vanishes and the curves tend towards 0.5. Note that the
curves of Figs. 16 and 18 reflect—along witha1

(a)1a2
(a)

51, a51, 2—the charge neutrality condition~48!.

FIG. 13. Di
(a) , i 51,2 ~as labeled! anda51, 2, as defined in Eq.~69! for

the asymmetric polydisperse CHS mixture~system II! along the shadow
curve. Broken line~a51!, gas phase; full line~a52!, fluid phase.

FIG. 14. Di
(a) , i 51,2 anda51, 2, as defined in Eq.~69! for the asym-

metric polydisperse CHS mixture~system II! along three binodals for the
parent phase densitiesr* (0)50.003~broken lines!, r* (0)5rcr* 50.0165~full
lines!, andr* (0)50.03 ~dashed–dotted lines!. Thick lines,D1

(a) ; thin lines,
D2

(a) ; a51 gas phase;a52, fluid phase.

FIG. 15. Average positivez1
(a) and negativez2

(a) charges,a51, 2, for the
asymmetric polydisperse CHS mixture~system II! along the shadow curve.
Broken line~a51!, gas phase; full line~a52!, fluid phase.

FIG. 16. Average positivez1
(a) and negativez2

(a) charges,a51, 2, for the
asymmetric polydisperse CHS mixture~system II! along three binodals with
the parent phase densitiesr* (0)50.003 ~broken line!, r* (0)5rcr* 50.0165
~full line!, and r* (0)50.03 ~dashed–dotted line!. a51, gas phase;a52,
fluid phase.
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IV. CONCLUSIONS

In this contribution we have shown that a polydisperse
mixture of CHS treated within the MSA also belongs to the
class of truncatable free energy models, i.e., to those systems
where the thermodynamic properties can be expressed with a
finite set of generalized moments of the distribution function
characterizing the system. We have presented explicit ex-
pressions for the thermodynamic properties in terms of these
moments, taking into account the constraints of charge neu-
trality, total volume conservation, and conservation of the
total number of particles of each species. Restricting our-
selves to two-phase coexistence, the equations that determine
the parameters of the two coexisting phases were derived
which turn out to be a set of fifteen coupled, nonlinear equa-
tions in the unknown moments of the daughter phases. At its
present level, the formalism is still simplified in the sense
that we assume a simple relation between the two indepen-
dent variables that characterize the system, i.e., size and
charge, via a physically sound choice: for each particle the
charge is proportional to its surface.

Via this route, the problem of calculating the phase dia-
gram of a polydisperse mixture of CHS has become trac-

table. Having implemented this formalism we were able to
solve the coexistence equations by means of an efficient and
reliable numerical algorithm, based on a Newton–Raphson
method. We demonstrate the power of this approach by con-
sidering two polydisperse mixtures of CHS, one being sym-
metric ~being thus a polydisperse generalization of the
RPM!, the other being asymmetric in size. The size of the
particles of the parent phases is assumed to be distributed
according to beta-distributions. We are able to calculate the
full phase diagram in terms of cloud and shadow curves as
well as binodals, each of these being characterized by density
values of the parent phase. We observe that with respect to
the corresponding one- or two-component system, the criti-
cal point is shifted towards higher temperatures and higher
densities. A closer analysis of the daughter distribution func-
tions in terms of their width and the mean size of the par-
ticles in each phase gives a quantitative insight into fraction-
ation effects. The formalism allows furthermore to determine
the average charge and the fraction of positive and negative
particles in each of the coexisting phases~charge fraction-
ation!. From these analyses we observe—despite the simple
parent distribution function used and the simple relation be-
tween size and charge of the particles—a rather rich variety
of phenomena.
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