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The influence of thermodynamic self-consistency on the phase behaviour
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Abstract

We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa
potentials. To calculate the thermodynamic properties we have used the mean spherical approximation(MSA), a conventional
liquid state theory, and the closely related self-consistent Ornstein–Zernike approximation which is defined via an MSA-type
closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We
investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour
and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order
liquidyvapour transition and the second order demixing transition.
� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, the phase behaviour of simple one-com-
ponent fluids can be determined with high accuracy by
means of accurate and efficient liquid state methodsw1–
3x. Methodological and numerical sophistication has
reached a level where classical liquid state methods
(such as integral-equation approaches or perturbation
theories) provide results that are indistinguishable from
computer simulation data; this holds not only for ‘stan-
dard’ state points but also for the critical region and
near phase boundaries. Thus, it is high time to extend
this expertise to more-component systems. Indeed, con-
siderable effort has been devoted in recent years to this
field: meanwhile it has become possible to determine
not only the phase diagram of selected binary mixtures
(w4–10x and references quoted therein), but also that of
ternary systemsw11x; one should also point out that
remarkable progress has been made in investigations of
the phase behaviour of polydisperse fluid mixturesw12x.
The concepts of liquid state theories for the multi-
component case are straightforward methodological
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extensions of well-tested and well-functioning approach-
es developed for one-component systems; of course the
step towards more-component systems is accompanied
by an increasing computational effort. Nevertheless,
optimized numerical algorithms(well-tested in the one-
component case) along with an increase in computation-
al power of present day workstations have made it
possible to study the phase behaviour of selected multi-
component systems not only on a qualitative but also
on a quantitative level.
Still, the now considerably larger number of system

parameters of two-component mixtures represents a
major obstacle to the investigation of the phase behav-
iour of such systems in asystematic way. It is, therefore,
not surprising that the only comprising study of the
phase behaviour of binary mixtures, which is based on
a van der Waals model, dates back to 1980w13x and is
nowadays still the only available systematic investiga-
tion in this field. Even though this study has—as a
consequence of the simplicity of the van der Waals
approach—rather a qualitative than a quantitative char-
acter, it offers a deeper insight into the phase behaviour
of binary mixtures: for instance, all phase diagrams that
can be encountered for such systems have been classified
by archetypes. This paper serves asthe reference article
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for investigations in this field. However, a systematic
reinvestigation of two-component systems as it was
done by van Konynenburg and Scott, but now on a
quantitative level with the help of reliable liquid state
methods would still today be out of reach of the
available computational power. Being forced to find a
compromise between feasibility and quantitative calcu-
lations, scientists have started their investigations by
choosing special binary systems with a reduced number
of system parameters.
In this sense, the most simple binary systems to be

considered are symmetric mixtures: here the two pure
components(labeled by ‘1’ and ‘2’) are identical while
the interaction between dissimilar species differs. Thus,
the interatomic potentials between the different species,
F (r), (i,js1,2) are fixed via the following relationsij

F (r)sF (r)s(1ya)F (r). For simplicity, we take11 22 12

hard-core Yukawa(HCY) interactions for theF (r).ij

Indeed, the system is now characterized—apart from the
parameters that describe theF (r) as such—by temper-ij

ature, density, concentration, anda; in particulara will
be identified asthe relevant system parameter that is
responsible for the classification of the phase diagrams
in terms of archetypes. Several investigations were
devoted in recent years to the study of the phase
behaviour of such systemsw4–10x. Despite the restricted
number of parameters, the phase behaviour of these
systems is nevertheless very interesting and rather com-
plex: it is characterized by the competition between the
(first order) liquidyvapour transition and the(second
order) demixing transition. Depending on where the
liquidyvapour coexistence curve intersects thel-line
(i.e. the line of critical points of the demixing transition),
three archetypes of phase diagrams can be identified,
which are characterized by critical phenomena such as
critical end points and tricritical points. Although the
occurrence of these three archetypes has meanwhile
been commonly accepted, doubts have been raised lately
regarding some issues: in a recent study the existence
of one of the types of phase diagramsw9x was questioned
and in another contribution a debate on the order of the
demixing transitionw7x was presented.

In the present contribution, we have used two liquid
state methods to calculate the phase diagram of a
symmetric binary mixture: the mean spherical approxi-
mation (MSA) w14x and the self-consistent Ornstein–
Zernike approximation(SCOZA) (w2x and references
therein). Both methods start from very similar closure
relations: while the MSA is a conventional liquid state
method that provides reasonably accurate data for struc-
tural and thermodynamic data, the SCOZA requires, in
addition, a thermodynamic self-consistency between two
thermodynamic routes. In contrast to the MSA, SCOZA
can be solved even in critical regions and is capable of
providing quantitatively correct results in these parts of
the phase diagram(for an overview see Refs.w2,15x).

As noted above, we have used HCY interactions, a
choice of which is justified by the fact that the MSA
can be solved semi-analytically for a HCY mixture with
an arbitrary number of componentsw16,17x; the SCOZA
formalism, in turn, benefits of the availability of the
MSA-solution for this systemw8,15x. The aim of the
paper is two-fold: first, we want to study on a quanti-
tative level the effect of the self-consistency requirement
on the phase behaviour; second, we want to contribute
to the controversial question about the number of arche-
types of phase diagrams to be expected for such a
system.
The paper is organized as follows: in the subsequent

section we present the system, briefly introduce the
concepts of the two liquid state methods involved, and
outline how the phase diagram was determined. In
Section 3, we present and discuss our results. The paper
is closed with concluding remarks.

2. Theory

2.1. The system

In our symmetric binary mixture, the particles interact
via HCY potentialsF (r). The interaction between theij

like particles is the samewF (r)sF (r)x, while the11 22

interatomic potentials of unlike particles is given by
F (r)saF (r). Thus, the repulsive hard-core(HC) is12 ii

characterized for all three interactions, by a diameters

S` rFsT
UF r s . (1)Ž .ij T
Vw r r)sŽ .ij

For the w (r), the attractive tails, we use Yukawaij

potentials, i.e.

1 w z
x |w r sy expyz ry1 . (2)Ž . Ž .11 y ~r

z is the screening length of the potential; the HC
diameters and the interaction strength of the attractive
tail, ´ , have been set to unity. Further, the mixture is11

characterized by the temperatureT wbs(k T) )x, they1
B

total number-densityr, and the concentrationxsx of1

species 1; partial number densities are defined viar s1
xr and r s(1yx)r. We further introduce the reduced2

dimensionless quantities,r srs andT sk Tsy´ .w 3 w
B 11

2.2. Liquid state theories

Both MSA and SCOZA are based on the Ornstein–
Zernike relation(OZ) w14x which reads

) )h r sc r q r dr9c r9 h ryr9 , i,js1,2Ž . Ž . Ž . Ž .ij ij k ik kj|8
k

(3)
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The h (r) and thec (r), i,js1,2 are the total and theij ij

direct correlation functions, theg (r)sh (r)q1 are theij ij

pair distribution functions.

2.2.1. Mean spherical approximation
In the MSA, the OZ-equations are supplemented by

the closure relation

g r s0 for rF1Ž .ij
(4)

c r sybw r for r)1.Ž . Ž .ij ij

Based on earlier work by Blum and Høyew16x, Arrieta
et al. w17x have presented a formalism which permits to
solve the MSA for a HCY mixture with an arbitrary
number of components and an arbitrary number of
Yukawa tails (characterized by different screening
lengths z ). It leads to sets of coupled non-linearn

equations. From their solution, the structure functions
and—via different thermodynamic routes—thermody-
namic properties can be calculated. However, as a
consequence of simplifying approximations that lead to
the MSA closure relation Eq.(4), different thermody-
namic routes(such as the virial-, the energy- or the
compressibility-route) lead to different results for the
thermodynamic properties; MSA is a thermodynamically
inconsistent liquid state theory.

2.2.2. Self-consistent Ornstein–Zernike approximation
The SCOZA starts from a similar closure relation as

Eq. (4), i.e.

g r s0 for rF1Ž .ij
(5)

c r sc r qK r,T,x w r for r)1.Ž . Ž . Ž . Ž .ij HC;ij ij ij

The c (r) are the direct correlation functions ofHC;ij

the HC reference system: here we have used the Wais-
man parametrization for this functionw18x, i.e. c (r)sHC

(K yr) expwyz (rys)x, with K (r) and z (r) being0 0 0 0

well-known functions ofr (see Appendix ofw2x). The
functionsK (r,T,x) are still undetermined and are fixedij

by the requirement that the theory is thermodynamically
self-consistent. For the three unknown functions we
require three consistency relations. As outlined in detail
in Ref. w15x, a fully thermodynamically self-consistent
solution of the SCOZA is far too complex from the
numerical point of view. We have there resorted to an
approximate assumption, which is motivated by sym-
metry arguments: due to the symmetry of the system

K r,T,x sK r,T,1yx (6)Ž . Ž .11 22

K r,T,x sK r,T,1yx . (7)Ž . Ž .12 12

We reduce the number of unknown functions to one
single functionK(r,T,x) that is symmetric with respect

to x and that is related to theK (r,T,x) viaij

K r,T,x sK r,T,x . (8)Ž . Ž .ij

For this unknown function, we now enforce thermo-
dynamic consistency between the energy- and the com-
pressibility-route; this is done as follows. In the binary
case, the energy-route reads

2us2p r r F r g r r dr, (9)Ž . Ž .i j ij ij|8
ij

whereu is the excess(over ideal gas) internal energy
per volume; note thatusu(r,T,x).

The partial compressibility-routes establish a link
between the chemical potentialsm and the Fourieri

transforms of the direct correlation functions(character-
ized by a tilde) via

≠bm1 ˜r s1yr c qs0Ž .1 1 11
≠r1

≠bm2 ˜r s1yr c qs0Ž .2 2 22
≠r2

≠bm1 ˜r syr c qs0Ž .1 1 12
≠r2

≠bm2 ˜r syr c qs0 . (10)Ž .2 2 12
≠r1

If the m and u stem from a unique Helmholtz freei

energy, then the partial consistency relations

2 B E≠ u ≠ ≠bmjC Fs i,js1,2 (11)
D G≠r ≠r ≠b ≠ri j i

hold. Since we now have only one unknown function
K(r,T,x) we can use instead of the three partial consis-
tency relations Eq.(11) only one relation which we
obtain from a suitable linear combination of these
relations, like, e.g.

2 B E B E≠ u ≠ 1 ≠ 1
˜ C Fr s 1y r r c qs0 s (12)C FŽ .i j ij82

D G≠r ≠b r ≠b xD G redij

with the reduced dimensionless isothermal compressi-
bility given byx srk Tred B xT

y1B E≠bP
C Fx s . (13)red
D G≠r

x is the isothermal compressibility.T
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We point out that the left hand side of the partial
differential equation(PDE) Eq. (12) is calculated via
the energy-route while the right hand side is determined
via the compressibility-route, thus enforcing the consis-
tency between these two thermodynamic routes. As a
consequence of the above assumption, the concentration
x has become a simple parameter: thus, the consistency
PDE Eq. (12) can be solved for differentx-values
independently.
Taking benefit of the availability of the semi-analyti-

cal MSA solution for a HCY mixture, the SCOZA
formalism transforms the consistency PDE Eq.(12) into
a PDE for the internal energyusu(r,T,x)su(r,T)

2≠u ≠ u
B r,u sC r , (14)Ž . Ž . 2≠b ≠r

whereB(r,u) andC(r) are functions for which explicit
expressions can be provided; for details of the SCOZA
formalism for this system we refer the reader to Refs.
w8,15x.
The SCOZA-PDE Eq.(14) is solved with an implicit

finite difference algorithm with suitable boundary con-
ditions atrs0 andr s1 and a suitable initial condition0

at bs0. Details of the numerical solution are summa-
rized in Refs.w8,15x. Onceu(r,T,x) has been determined
numerically, the relevant thermodynamic quantities
required for the determination of phase coexistence(i.e.
pressureP and chemical potentialsm ) are obtained viai

standard thermodynamic routes(cf. equations(44)–
(46) in Ref. w8x).

2.3. Coexistence conditions

Since the solution of the SCOZA for the present
system has turned out to be very time-consuming we
have restricted ourselves to the equimolar case(for the
full phase diagram of the binary symmetric mixture see
Ref. w9x). From the Gibbs’ phase rule we expect up to
four phases to be in equilibrium, i.e. the vapour(G),
the mixed fluid(MF), and the two(symmetric) phases
of the demixed fluid(DF). As a consequence of their
symmetry, theses phases are often referred to in literature
as one single phase.
The phase diagram is calculated by solving the coex-

istence equations, i.e. equal chemical potentials and
equal pressure of the coexisting phases at a given
temperature. We characterize the coexisting phases by
(r,x) and (r9,x9) and proceed as follows: the G-MF
coexistence curve is obtained by solving the set of
equations

m r,T,xs1y2 'm r,T,xs1y2Ž . Ž .i

sm r9,T,xs1y2 (15)Ž .

P r,T,xs1y2 sP r9,T,xs1y2 . (16)Ž . Ž .

For the G-MF and the MF-DF transitions we proceed
in two steps: first we determine the phase diagram of
the demixing transition, i.e. looking at a given temper-
ature T for two coexisting states with the same fluid
density but different composition by fixingrsr9 and
by determining concentrationsx and x9s1yx of the
coexisting phases. The equilibrium condition for the
pressure is automatically fulfilled, while the equilibrium
conditions for the chemical potentials become at given
T andr

m r,T,x sm r,T,x (17)Ž . Ž .1 2

which defines(if it exists) the line x(r) of the second
order demixing transition. Along this line, the chemical
potentials of the two species are equal by construction;
they are denoted bymwT,r,x(r)x. In second step, the
solution of the two equations

w x w xm r,T,xs1y2 sm r9,T,x(r9) (18)

w x w xP r,T,xs1y2 sP r9,T,x(r9) (19)

gives the densityr of the G or MF and the densityr9

of the DF with concentrationsx(r9) and 1yx(r9), in
equilibrium.

3. Results

In Figs. 1 and 2, we show the phase diagrams for a
symmetric binary HCY mixture for two values of
screening lengthz, zs1.8 (Fig. 1) and zs2.5 (Fig. 2)
and three differenta-values as indicated; MSA and
SCOZA have been used as liquid state methods. In the
latter case, the coexistence equations were solved with
a Newton–Raphson algorithm, implemented in a
FORTRAN90-program. For the MSA, the coexistence
conditions were solved withMATHEMATICA taking ben-
efit of the availability of analytic expressions for the
thermodynamic data; a particular advantage of this
symbolic language is the possibility of a pre-defined
numerical accuracy of the results, which, especially in
critical regions, was found to be very useful. The
SCOZA PDE Eq.(14) could be solved even in the
critical region of the G-MF transition and very close to
the tricritical point (see below). In the MSA, the
situation is much more delicate: despite high accuracy
requirements imposed, the solution algorithm breaks
down in the vicinity of critical points. Gaps in the
coexistence curves near critical points in Figs. 1 and 2
indicate the limits up to where the coexistence equations
could be solved.
In agreement with the previous studies(and in con-

tradiction to w9x) we could identify for bothz-values
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Fig. 1. Phase diagramwprojection onto the(T r )-planex for a binaryw w

symmetric HCY mixture with screening lengthzs1.8 for differenta-
values as indicated. Full line – SCOZA, broken line – MSA. For a
more detailed discussion of critical phenomena of the system see text
or w8x.

Fig. 2. Phase diagramwprojection onto the(T r )-planex for a binaryw w

symmetric HCY mixture with screening lengthzs2.5 for differenta-
values as indicated. Full line – SCOZA, broken line – MSA. For a
more detailed discussion of critical phenomena of the system see text
or w8x.

and in qualitative agreement between the liquid state
methods the three archetypes of phase diagrams(see
also Ref.w5x):

i. In the type I phase diagram(as0.75) the l-line
approaches the G-MF coexistence well below the
critical point; the intersection point is called a critical
end point (CEP) where a critical liquid coexists
with a non-critical gas. Below the CEP the gas, a
1-rich, and a 2-rich liquid coexist. Thus, the line
below the CEP is a triple line. Above the CEP, the
gas and the homogeneous liquid coexist up to the
G-MF critical point. For higher temperatures, they

become identical. As the density is increased, the
mixed fluid demixes at thel-line.

ii. In the type III phase diagram(as0.65) the l-line
intersects the G-MF coexistence curve in its critical
point, leading to a tricritical point(index ‘tr’), where
three phases(a gas, a 1-rich, and a 2-rich liquid)
become critical at the same time; two order para-
meters(i.e. the density difference between the G
and the MF and the concentration difference of the
two DF phases) vanish simultaneously.

iii. In the type II phase diagram(as0.70), the l-line
intersects the G-MF slightly below its critical point.
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As in the preceding case we observe a tricritical
point. Moreover, a triple point occurs where the G,
the MF, and the DF(counted as a single phase)
coexist.

Our results confirm the conclusions of previous com-
puter simulationsw10x, mean field theoriesw5x, and
advanced liquid state methodsw8,15x on the existence
of three archetypes of phase diagrams of binary sym-
metrix liquid mixtures. The reasons why type I is not
observed in the HRT studyw9x is not clear. The authors
have announced additional investigations, which will
clarify this point. We can also state that a fourth type
of phase diagram, where thel-line ends at a CEP on
the low density branch of the liquidyvapour coexistence
line, could not be identified in our study; such a phase
diagram was observed in a study on the phase behaviour
of a Heisenberg fluid(see figure 12 in Ref.w19x),
which—as other one-component systems with an addi-
tional degree of freedom—shows a phase behaviour
similar to a symmetric binary mixture. We conclude that
the existence of a type IV phase diagram should rather
be questioned.
From Figs. 1 and 2, we learn that the agreement

between the SCOZA and the MSA results for the phase
diagrams isqualitatively very good. Of course, on the
quantitative level differences are observed. For instance,
thea-values where the phase diagrams change from one
type to another will be slightly different in the two
approaches. The most pronounced differences are
observed for the liquid–vapour transition, in particular
for the G-MF critical point: the MSA overestimates the
critical temperature throughout, while the estimated
value for the critical density fits nicely with the SCOZA-
results. Larger discrepancies are also found for the
tricritical point. The values obtained forT andr fromtr tr

the two liquid state approaches do not agree. Their
difference seems more pronounced for the type II phase
diagram. In contrast, for the CEP we find a much better
coincidence of the data. An excellent agreement can
also be observed for thel-line. In all six systems
investigated, the results obtained via SCOZA and MSA
nearly coincide. The reason for this might be that the
coexistence requirement Eq.(12) applies only to density
but not to concentration. Thus, our SCOZA-results are
not fully self-consistent, i.e. self-consistent both with
respect to densityand concentration. Complete self-
consistency would be taken into account in thefull
SCOZA, introducing three unknown functionsK (r,T,x)ij

and using the three partial consistency relations Eq.
(11). An additional requirement might lead to different
results. In particular, it may cause a shift in thel-line.
However, such calculations are at present out of reach
of computational power.
A final note is in order. One might argue that the HC

reference system is not treated on equal footing in the

MSA and the SCOZA. While the MSA reduces, for
high temperatures, to the Percus–Yevick(PY) approxi-
mation for hard spheres, the SCOZA describes, in the
same limit, the hard spheres in a self-consistent frame-
work (Waisman parametrization), which might have an
effect on the results. This question was discussed in a
one-component studyw2,20x. There it was shown that
the different treatment of the HC reference system within
the SCOZA leads only to minor changes in the critical
temperature and density(-2%). From these data, we
can conclude that a simple PY treatment of the reference
system in the SCOZA leads to a shift of the critical
parameters away from the MSA results.

4. Conclusion

Determining the phase behaviour of an equimolar
symmetric binary HCY mixture using the(conventional)
MSA and the(thermodynamically self-consistent) SCO-
ZA we were able to show how the self-consistency
requirement effects the phase diagram on aquantitative
level. Qualitative agreement is found to be very satis-
factory. This concerns, in particular, the types of phase
diagrams encountered. The largest differences are found
for the location of the G-MF critical point and for the
tricritical point. In both cases, MSA overestimates the
respective critical temperatures. The density of the crit-
ical point is rather unaffected, while the density of the
tricritical point is in the MSA larger than in the SCOZA.
The agreement of the location of the CEP is very
satisfactory and thel-line coincides practically for both
theories. This fact might be due to a restricted require-
ment in thermodynamic self-consistency in the present
SCOZA version. Both MSA and SCOZA confirm the
existence of three archetypes of phase diagrams, an issue
that was debated recently in literature.
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