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We assess the accuracy of the self-consistent Ornstein-Zernike approximation for a binary
symmetric hard-core Yukawa mixture by comparison with Monte Carlo simulations of the phase
diagrams obtained for different choices of the ratioa of the unlike-to-like interactions. In particular,
from the results obtained ata50.75 we find evidence for a critical endpoint in contrast to recent
studies based on integral equation and hierarchical reference theories. The variation of the phase
diagrams with range of the Yukawa potential is investigated. ©2005 American Institute of
Physics. @DOI: 10.1063/1.1829632#

I. INTRODUCTION

Symmetric binary fluid mixtures with appropriate attrac-
tive interactions can show both a liquid-vapor~LV ! and a
demixing transition when the relative strengthsK115K22 and
K12 of the ~attractive! interactions between particles of simi-
lar and dissimilar species are different. According to the
value ofa5K12/K11 several distinct phase diagrams are ob-
tained depending on where the demixing transition line~l
line! meets the LV coexistence curve.1 If a is close to 1, the
tendency for the demixing transition is small unless the tem-
perature is low and the density high. Thel line is expected
to intersect the coexistence curve at a critical end point
~CEP! at a temperature well below the critical LV tempera-
ture ~type I phase diagram!. At lower values ofa the CEP
moves to higher temperatures eventually merging with the
LV critical point giving rise to a tricritical point~type III!. An
intermediate situation can exist where the demixing transi-
tion becomes first order for a density higher than that of the
LV critical density. In that case one will have a triple point, a
LV critical point, and a tricritical point~type II!.

These three types of phase diagrams have been found in
mean field~MF! calculations and Monte Carlo~MC! simu-
lations of a square well system with range 1.5s ~s denotes
the hard-core diameter!.1 In the simulations the type II dia-
gram is found to occur in a rather narrow range
0.65&a&0.68 while MF theory predicts a wider range, i.e.,
0.605,a,0.708.1 Qualitatively MF and simulation results
agree though there is quite a quantitative discrepancy be-
tween the values ofa where one topology of the phase dia-
gram changes to the other. This may not be so surprising as
MF theory neglects fluctuations in the order parameters of
the LV and demixing transitions.1 In later work, using the
hierarchical reference theory~HRT!,2 which is based on
renormalization group techniques, Piniet al.3 have addressed

the question whether the MF picture still holds when fluc-
tuations in the order parameters of the LV and of the demix-
ing transitions are taken into account. They applied the HRT
to a hard-core Yukawa fluid mixture~HCYFM! and found
that the intermediate type II persists up to the highest value
of a50.8 at which a reliable solution of the HRT theory
could be obtained. Thus they did not find evidence for a CEP
in contrast to the MF and simulation results for the square
well mixture. Reference hypernetted chain~RHNC! integral
equation results by Antonevychet al.4 for a symmetric
Lennard-Jones~LJ! mixture also arrived at the conclusion
that there is no CEP.

Up to this point the different predictions for the phase
behavior suggest that either the scenario of phase behavior is
not generic and depends on the potential model or that the
applied theories lack accuracy. In support of the latter hy-
pothesis is a MC finite size scaling study of the demixing
transition of the symmetric LJ mixture5 which convincingly
attests the existence of a CEP fora50.7. Similarly, integral
equation results based on the self-consistent Ornstein-
Zernike approximation~SCOZA!,6,18 which previously has
been shown to give accurate results for the coexistence
curves ~including the critical region! of one component
systems,7,8 predicted all three types of phase diagram for the
HCYFM model atzs51.8, in particular, a CEP ata50.75
in contrast with the HRT results of Ref. 3.

One aim of the present paper is to present MC simula-
tion results for the HCYFM model in order to establish the
accuracy of the theoretical approaches, SCOZA and HRT,
restricting ourselves to the equimolar case. In addition, we
investigate the change of phase diagram when the range of
the Yukawa potentials increases. Interestingly, exact results
are available when this range gets infinitely large9 providing
a stringent test of the SCOZA approach in this limit.
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II. THEORY

A. The model

We have studied a symmetric binary HCYFM. For the
parametrization of the interatomic potentials we have chosen
the following form (i , j 51,2):

bF i j ~r !5H `, r<s

2
Ki j

r
exp@2z~r 2s!#, r .s,

~1!

whereb5(kBT)21 (kB being the Boltzmann constant andT
is the temperature! and s is the hard-core~HC! diameter
which will be used as the unit of length.z is the inverse
screening length of the system. Due to the symmetry,K11

5K22 and the parametera is introduced viaK125aK11. The
total number density isr5r11r2 , where ther1 andr2 are
the partial number densities andx5r1 /r is the concentra-
tion of species 1. Reduced valuesz* 5zs, r* 5rs3, and
T* 5s/K11 will be used throughout the paper. For commod-
ity we will drop the stars.

B. MSA and SCOZA

SCOZA is an advanced liquid state theory, which is
based on a mean spherical approximation~MSA!-type clo-
sure relation to the, Ornstein-Zernike~OZ! equations; it re-
lates the direct correlation functionsci j (r ) and the pair dis-
tribution functionsgi j (r ), i, j 51, 2, to theF i j (r ) via

gi j ~r !50 for r<1 ,
~2!

ci j ~r !5cHC;i j ~r !1Ki j ~r,T,x!F i j ~r ! for r .1 ,

thereby introducing yet undetermined, state dependent func-
tionsKi j (r,T,x) which are fixed by the thermodynamic self-
consistency requirement for the isothermal compressibility,
calculated via the compressibility and the energy route. Tak-
ing advantage of the availability of the analytic solution of
the MSA for the HCYFM with an arbitrary number of
components,10 part of the formalism can be carried out
analytically.6 It should be pointed out that at present—due to
computational limitations—only a global consistency crite-
rium can be used: here the reducedtotal isothermal com-
pressibilityx red5rkBTxT is related to the excess~over ideal
gas! internal energy per volumeu by

r
]2u

]r2
5

]

]b S 12
1

r (
i j

r ir j c̃i j ~q50! D 5
]

]b S 1

x red
D , ~3!

where the tilde denotes the Fourier transforms of theci j (r ).
So we have to reduce the number of unknown functions
which was done by assuming thatKi j (r,T,x)5K(r,T,x) for
all i and j. The formalism of SCOZA~for a detailed presen-
tation see Refs. 6 and 11! leads finally to a quasilinear para-
bolic partial differential equation foru

B~r,u!
]u

]b
5r

]2u

]r2
, ~4!

which has to be solved numerically with suitable boundary
and initial conditions. Details about the solution algorithm
are summarized in the Appendix of Ref. 7.

Once Eq.~4! is solved, the thermodynamic properties of
the system can readily be calculated. In particular, we require
the pressureP and the chemical potentialsm1 andm2 for the
determination of the phase diagram. The coexistence equa-
tions are again solved with well-tested numerical algorithms,
taking benefit of some symmetry relations in them’s due to
the symmetry in the interactions.

It should be noted that there is evidence that SCOZA
results converge towards MSA results asz becomes smaller:
this is reflected by the fact that for thesez valuesK(r,T,x)
;2b ~as required in the MSA! and that the degree of ther-
modynamic inconsistency between the compressibility and
the energy route within MSA becomes smaller.

III. RESULTS

Grand canonical Monte Carlo~GCMC! simulations have
been carried out for five sets of values of the parametersz
and a: z51.8 anda50.65, 0.70 and 0.75,z50.1, a50.70
andz50.01,a50.70. For the two lowest valuesz50.1 and
z50.01 the range of the Yukawa potentials exceeds largely
the size of the cubic simulation cell of volumeV52500s3

with periodic boundary conditions. As in the SCOZA theory
the particles interact with the full Yukawa potential the long
range has been taken into account in the simulations in order
to make a meaningful comparison with theory. We have used
the Ewald form of the Yukawa potential~cf. Appendix!,12

which includes properly the sizeable contribution of the pe-
riodic replicas of the system to the internal energy when the

FIG. 1. From top to bottom are displayed the typical variations ofpf andpd

in the vicinity of the three different transitions occuring in the mixture. The
first row corresponds to a second-order demixing transition of the mixture
with z50.1 anda50.7 located atT5105 andbm523.14; pd and pf are
plotted for bm523.15 ~filled circle!, 23.14 ~filled square!, and 23.13
~filled diamond!. The second row corresponds to a first-order demixing tran-
sition of the mixture withz51.8 anda50.65 located atT51.03 andbm
523.272; pd and pf are plotted forbm523.275 ~filled circle!, 23.272
~filled square!, and23.270~filled diamond!. The third row corresponds to a
first-order transition between undemixed phases of the mixture withz
51.8 anda50.7 located atT51.02 andbm523.422,pd , pf are plotted for
bm523.425 ~filled circle!, 23.422 ~filled square!, and 23.420 ~filled
diamond!.
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Yukawa potential has a long range. The simulations have
been performed with the Ewald Yukawa potential for all val-
ues ofz although for our simulation box size truncation of
the Yukawa potential would entail negligible effects for
z51.8.

All the simulations have been realized for identical
chemical potentials of the two species,m5m15m2 , imply-
ing that, at low densities, the average numbers of the particle
specieŝ n1& and^n2& are equal. At a given value of tempera-
ture T and chemical potentialm, a typical simulation in-
volved 108 trial MC moves~displacement, insertion, or de-
letion of a particle!. In the bulk, equimolar, or demixed fluid
phases, the relative precision on the total densityr5^n1

1n2&/V is .1%. The location of the phase transitions is
based on the determination of the joint probability of the
internal energyu and numbers of particlesp(u,n1 ,n2 ,T,m).
The latter function can be estimated directly from the simu-
lations or computed by combining the results obtained for
different, but close, values ofT andm following a reweight-
ing procedure well documented in the literature.13–15 The
reweightedp(u,n1 ,n2 ,T,m) functions were calculated from
a set of simulations near the transition involving at least four
MC runs of;83108 trial MC moves.

After summation onu, the histogramspf(n11n2 ,T,m)
and pd(un12n2u,T,m) were used to locate the phase
transitions.16 The first-order transition between the equimolar
vapor and liquid is characterized by the existence of two
peaks inpf at the values ofn11n2 associated with the vapor
and liquid densitiesrV and rL. For a given value ofT, the
equilibrium between these two phases is located at the value
of mLV where the two peaks have equal height. The vapor
and liquid phases in equilibrium are equimolar if form val-
ues close tomLV ~below or above! a unique peak is observed
in pd at un12n2u50. On the other hand, equilibrium takes
place between an equimolar and demixed phase when form
below mLV , pd has a peak atun12n2u50 and abovemLV a
peak at a finite value ofun12n2u. In this case the demixing
transition is a first-order transition. Typical histograms forpf

andpd are shown in Fig. 1. For details we refer the reader to
the caption.

FIG. 2. Phase diagram of the HCYFM forz51.8 anda50.65. The solid
lines represent SCOZA results for first-order phase coexistence, the dashed
line the l line, and the dotted lines the metastable equimolar vapor-liquid
transitions. The circles are the MC results with error bars.

FIG. 3. Phase diagram of the HCYFM forz51.8 anda50.70. The solid
lines represent SCOZA results for first-order phase coexistence, the dashed
line the l line, and the dotted lines the metastable equimolar vapor-liquid
transitions. The circles are the MC results with error bars.

FIG. 4. Phase diagram of the HCYFM forz51.8 anda50.75. The solid
lines represent SCOZA results for first-order phase coexistence, the dashed
line the l line, and the dotted lines the metastable equimolar vapor-liquid
transitions. The circles are the MC results with error bars.

FIG. 5. Simulation results for the isotherms~dashed lines! of the HCYFM
for z51.8 anda50.75; from top to bottom:T51.08, 1.05, 1.02, 1.00, 0.98,
0.97, 0.96, 0.95, and 0.93. Full line—l line.
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At high temperatures, the demixing transition is a
second-order transition~cf. Introduction!. For a given value
of T and increasing values ofm, it is characterized first by the
broadening of the peak ofpd at un12n2u50. The valueml

of m at which the peak reaches its maximum width gives the
location of thel line at densityrl . Above ml the value of
pd(0,T,m) decreases and a peak located at values ofun1

2n2uÞ0 gives the demixing rateun12n2u/(n11n2) of the
demixed phase. This variation ofpd does not correspond to
any qualitative change ofpf which presents a narrow unique
peak at values ofr5^n11n2&/V increasing monotonically
with m.

The above procedure for locating the first-order transi-
tions applies easily when, at the phase equilibrium, the dif-
ference between the vapor densityrV and the equimolar~or
demixed! liquid densityrL ~or rd

L) or between the coexisting
liquid densities at the demixing transition,rd and rd

L , is
smaller than 0.3~here the subscript ‘‘d’’ denotes coexistence
densities of the demixing transition!. For these density dif-
ferences, several transitions between the low and high den-
sity phases occur in a MC run, giving an adequate sampling
of p(u,n1 ,n2 ,T,m), in particular, of the relative heights of
the peaks associated with the two phases. At low tempera-
ture, the density gap between the vapor and demixed liquid is

large and cannot be crossed during a MC run without biased
sampling, for instance, multicanonical sampling.17 Such a
sampling has not been used in this work and the vapor-
demixed liquid transitions at low temperatures have been
localized by looking for a value ofm such that above and
below this value the vapor and liquid phases are, respec-
tively, unstable. The uncertainty on the equilibrium densities
determined from the analysis ofp(u,n1 ,n2 ,T,m) is esti-
mated to be60.005; at low temperatures, where this analysis
could not be performed the error is estimated to be60.01.

The phase diagrams forz51.8 are shown in Figs. 2–4
where a varies from 0.65 to 0.75. A set of isotherms for
a50.75 is plotted in Fig. 5. The coexistence densities of the
various phases and the densities along thel line are summa-
rized in Tables I–III for the different isotherms considered in
the simulations.

The phase diagram ata50.65 ~cf. Fig. 2! is clearly of
type III. There is no LV critical point but a tricritical point at
Ttr'1.075 andr tr'0.517. Upon increasinga to 0.7, a LV
critical point emerges which fora50.7 has critical param-
etersTc'1.045 andrc'0.305. The tricritical point has a
temperatureTtr'1.02, i.e., lower than the critical tempera-
ture and a densityr tr'0.56 ~type II phase diagram!. At

TABLE I. Coexistence densities as a function ofa andT for z51.8; rV andrL are the equimolar vapor and
liquid coexistence densities;rd andrd

L the coexistence densities at the demixing transition;Dr is the error on
the densities;bmLV is the chemical potential~timesb! at the LV transition;bml is the chemical potential~times
b! at either thel line, the equimolar-demixed liquid transition or the equimolar vapor-demixed liquid transition.

T rV rL rl rd rd
L Dr bmLV bml

a50.65
1.15 0.541 0.005 22.48
1.13a 0.535 0.005 22.61
1.10 0.530 0.005 22.80
1.09a 0.525 0.005 22.87
1.08a 0.520 0.005 22.943
1.07 0.498 0.545 0.005 23.008
1.05 0.470 0.570 0.005 23.142
1.03 0.430 0.597 0.005 23.272
1.02a 0.230 0.610 0.01 23.337
1.00 0.195 0.654 0.01 23.403

a50.70
1.05 0.565 0.005 23.080
1.04a 0.270 0.385 0.563 0.005 23.352 23.165
1.03a 0.206 0.425 0.562 0.005 23.386 23.225
1.02 0.185 0.455 0.560 0.005 23.422 23.305
1.01 0.171 0.480 0.555 0.579 0.005 23.456 23.385
1.00 0.165 0.517 0.545 0.585 0.005 23.483 23.464
0.99 0.151 0.622 0.01 23.517
0.98 0.144 0.653 0.01 23.542

a50.75
1.08 0.670 0.005 22.430
1.06a 0.218 0.395 0.663 0.005 23.376 22.630
1.05 0.190 0.430 0.660 0.005 23.410 22.730
1.04a 0.172 0.460 0.657 0.005 23.443 22.825
1.02 0.157 0.516 0.651 0.005 23.503 23.050
1.00 0.144 0.558 0.638 0.01 23.556 23.280
0.98 0.132 0.598 0.630 0.01 23.606 23.500
0.97 0.121 0.615 0.622 0.01 23.643 23.612
0.96 0.117 0.646 0.01 23.665
0.95 0.116 0.668 0.01 23.690
0.93 0.111 0.712 0.01 23.738

aReweighted isotherms.
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a50.75 thel line intersects the LV coexistence curve at a
critical end pointTcep'0.965,rcep'0.617~type I phase dia-
gram!. The critical temperatureTc'1.07 is slightly higher
than for a50.7 but the critical densityrc'0.305 is un-
changed within statistical error.

The sequence of phase diagrams obtained by SCOZA for
z51.8 is similar to that found in the simulations. In fact, the
phase diagrams obtained with SCOZA and simulations com-
pare quite favorably. As seen from Figs. 2–4 agreement is
excellent for the vapor-equimolar liquid transition. The de-
mixing transition occurs in the GCMC results for densities
systematically larger than in SCOZA theory, the difference
being of the order of 2%–5%. Similar differences occur for
the equilibrium densities between the vapor and the demixed
liquid. The temperatures of the tricritical and critical end
point are also in good agreement, the discrepancy being of
the order of the uncertainty, i.e., 0.5%–1%, on the tempera-
tures determined from the simulation data. For a quantitative
comparison of the theoretical results and simulation data we
refer to Table IV.

In Figs. 6 and 7 and Tables II and III we show the phase
diagrams fora50.7 when the range of the Yukawa potential
increases. Atz50.1 a narrow temperature range betweenT
596 and 98 is found in simulation where equimolar and
demixed liquids coexist withTtr'97.5 and r tr'0.49;
SCOZA predictsTtr'101 andr tr'0.48. As becomes visible

from Fig. 6 both simulations and SCOZA predict a kink at
the triple point of the coexistence curve. Upon further in-
creasing the range of the potential toz50.01 we recover a
type II phase diagram with coexistence between an equimo-
lar and a demixed liquid in the temperature range 8850–9100
with a tricritical point atTtr'9100 andr tr'0.479, in good
agreement with SCOZA resultsTtr'9220 andr tr'0.48.
Similar as forz51.8 we note that the MC vapor-liquid tran-
sition curve is very well reproduced by the SCOZA theory.

Finally, we point out that for the GCMC simulations the
temperature range for the existence of the first-order demix-
ing transition is non-monotonic asz decreases towards zero,
as shown by the variation of the ratio (Ttr2Ttrp)/Ttrp ~cf.
Table IV!, which is, respectively, equal to 0.02560.005
(z51.8, a50.7!, 0.00560.005 (z50.1, a50.7!, and 0.017

TABLE II. Same as Table I but fora50.7 andz50.1.

T rV rL rl rd rd
L Dr bmLV bml

110 0.529 0.005 22.79
107a 0.519 0.005 23.00
105 0.195 0.310 0.515 0.00523.510 23.14
104a 0.165 0.336 0.005 23.538
103a 0.151 0.360 0.504 0.005 23.566 23.30
102 0.143 0.380 0.502 0.00523.595 23.371
100 0.127 0.421 0.497 0.00523.648 23.512
99 0.493 0.005 23.590
98 0.115 0.464 0.490 0.01 23.698 23.665
97 0.102 0.480 0.480 0.515 0.01 23.738 23.738
96 0.107 0.565 0.01 23.745
95 0.106 0.593 0.01 23.760
90 0.092 0.675 0.01 23.863

aReweighted isotherms.

TABLE III. Same as Table I but fora50.7 andz50.01.

T rV rL rl rd rd
L Dr bmLV bml

10 000 0.530 0.005 22.83
9 800a 0.522 0.005 22.99
9 700a 0.516 0.005 23.06
9 600a 0.185 0.315 0.005 23.519
9 500 0.160 0.345 0.508 0.00523.549 23.23
9 400a 0.502 0.005 23.32
9 300 0.135 0.390 0.495 0.00523.615 23.41
9 200a 0.489 0.005 23.49
9 400 0.122 0.430 0.484 0.00523.668 23.568
9 000 0.115 0.461 0.480 0.510 0.0123.690 23.655
8 900 0.115 0.534 0.01 23.712
8 800 0.110 0.565 0.01 23.739

aReweighted isotherms.

TABLE IV. SCOZA values for the temperatures and densities of critical,
tricritical, and critical end points obtained for the five HCYFM systems
investigated.Ttrp denotes the triple point temperature; for comparison,
GCMC results are given in brackets with a typical uncertainty of 0.2%–
0.3%.

z51.8 a50.65 Type III Ttr'1.12 ~1.075!
r tr'0.50 ~0.517!

z51.8 a50.70 Type II Tc'1.04 ~1.045!
rc'0.315~0.305!
Ttr'1.05 ~1.02!
r tr'0.54 ~0.56!
Ttrp'1.002~0.995!

z51.8 a50.75 Type I Tcep'0.97 ~0.965!
rcep'0.59 ~0.617!
Tc'1.07 ~1.07!
rc'0.315~0.305!

z50.1 a50.70 Type II Tc'106.1~106.0!
rc'0.25 ~0.25!
Ttr'101.0~97.5!
r tr'0.48 ~0.49!
Ttrp'96.9 ~97.0!

z50.01 a50.70 Type II Tc'9717 ~9750!
rc'0.25 ~0.25!
Ttr'9220 ~9100!
r tr'0.48 ~0.479!
Ttrp'8870 ~8950!

FIG. 6. Phase diagram of the HCYFM forz50.1 anda50.70. The solid
lines represent SCOZA results for first-order phase coexistence, the dashed
line thel line. The circles are the MC results with error bars.
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60.005 (z50.01, a50.7!. However, in SCOZA this se-
quence was found to be monotonic: 0.048 (z51.8, a50.7!,
0.042 (z50.1, a50.7!, and 0.040 (z50.01,a50.7!.

IV. CONCLUSIONS

One of the aims of this paper was to resolve the discrep-
ancy between predictions of two different theoretical ap-
proaches, SCOZA and HRT, for the phase diagrams of the
HCYFM at values ofa*0.73. While SCOZA provides a
clear prediction of a CEP~type I!, no such evidence was
found in the HRT calculations;3 rather a type II behavior with
a tricritical point is predicted up toa50.8, the highest value
at which solution of the HRT equations could be obtained.3

The good agreement between SCOZA and the present MC
results pleads in favor of a type I phase diagram fora*0.73.
We note here that the range of existence of the type II phase
diagram of the HCYFM, given by the simulation and
SCOZA, is shifted to somewhat higher values ofa compared
to the square-well binary fluid mixture where the range of
this phase diagram type~cf. Introduction! is 0.65,a,0.68.1

The similarity of phase diagrams found for binary fluid mix-
tures of square well,1 hard-core Yukawa,6 LJ systems5 as
well as for classical spin systems,19 dipolar models,20,21 or
living polymers22 suggests a generic behavior for a wide
class of potential models.1

The precision of SCOZA even improves when the range
of the Yukawa potential increases. In the limit of infinite
range an exact result can be derived forz50 ~Ref. 9! exhib-
iting a rigorous scaling of the transition temperatures as 1/z2,
which for finite z is approximately reproduced by the MC
and SCOZA results.
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APPENDIX: EWALD SUMMATION

Using an Ewald summation method the energy of the
~one component! Yukawa system

U5
1

2
G (

i , j ; iÞ j

exp~2zri j !

r i j
~A1!

can be written12

U ~ iÞ j !5
1

2
G (

i , j ; iÞ j
(

n
H erfcS gur i j 1H"nu1

z

2g D
3exp~zur i j 1H"nu!1erfcS gur i j 1H"nu2

z

2g D
3exp~2zur i j 1H"nu!J 1

2ur i j 1H"nu

1
1

2
G (

i , j ; iÞ j

4p

V (
G

exp@2~G21z2!/4g2#

G21z2

3exp~ iG"r i j !; ~A2!

for the self-term we obtain

Uself5
1

2
GNH(

nÞ0
H erfcS guH"nu1

z

2g Dexp~zuH"nu!

1erfcS guH"nu2
z

2g Dexp~2zuH"nu!J 1

2uH"nu

1
4p

V (
G

exp@2~G21z2!/4g2#

G21z2
2

2g

Ap

3exp~2z2/4g2!1z erfcS z

2g D J. ~A3!

In the above expressionsH is a 333 matrix whose columns
are the Cartesian components of the three vectors describing
the parallelepipedic box$a,b,c% which for the case of a cubic
simulation cell (Lx5Ly5Lz) becomes proportional to the
unit matrix. The volume is V5detH. Further, k
52p( tH)21n denotes all possible reciprocal vectors com-
patible with the box geometry; (tH)21 is the inverse of the
transposed matrixH, defined above, andn5(n1 ,n2 ,n3) with
ni integers. The parameterg controls the rate of convergence
of the sums in direct and reciprocal space. It can be noted
that in Eqs.~A2! and ~A3! the sums in reciprocal space in-
clude theG50 term. In the limitz→0 a compensating back-
ground term (24p/g2V) has to be added to the sum to
prevent divergence of these terms.12 The above expressions
can be generalized easily to the binary case.
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