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Phase diagram of a binary symmetric hard-core Yukawa mixture
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We assess the accuracy of the self-consistent Ornstein-Zernike approximation for a binary
symmetric hard-core Yukawa mixture by comparison with Monte Carlo simulations of the phase
diagrams obtained for different choices of the ratiof the unlike-to-like interactions. In particular,

from the results obtained at=0.75 we find evidence for a critical endpoint in contrast to recent
studies based on integral equation and hierarchical reference theories. The variation of the phase
diagrams with range of the Yukawa potential is investigated. 2@5 American Institute of
Physics. [DOI: 10.1063/1.1829632

I. INTRODUCTION the question whether the MF picture still holds when fluc-
o o _ . tuations in the order parameters of the LV and of the demix-
~ Symmetric binary fluid mixtures with appropriate atrac- ing transitions are taken into account. They applied the HRT
tive interactions can show both a liquid-vap@V) and a  to a hard-core Yukawa fluid mixtureHCYFM) and found
demixing transition when the relative strengtig =Kz, and  that the intermediate type Il persists up to the highest value
Ky, of the (attractive interactions between particles of simi- ¢ ,—0.8 at which a reliable solution of the HRT theory
lar and dissimilar species are different. According to thecq|q e obtained. Thus they did not find evidence for a CEP
value ofa=Kj,/Ky, several distinct phase diagrams are ob-jy conirast to the MF and simulation results for the square

;c_amed depe?]dlrll_%/ on where the dgglxmg tlransmori m;e well mixture. Reference hypernetted ch&RHNC) integral
ine) meets the LV coexistence curvét a s close 10 1, the o0 ation results by Antonevyckt al? for a symmetric

tendency.for the demixing tra_nsmpn IS sm.all u_nless the temi_ennard—.]ones{LJ) mixture also arrived at the conclusion
perature is low and the density high. TRdine is expected Ehat there is no CEP

to intersect the coexistence curve at a critical end poin Up to this point the different predictions for the phase

(CEP at a temperature well below the critical LV tempera- havi hat either th 0 of oh havior i
ture (type | phase diagramAt lower values ofa the CEP behavior §uggestt at either the scenario of phase behavior is
not generic and depends on the potential model or that the

moves to higher temperatures eventually merging with the " ° )
LV critical point giving rise to a tricritical poingtype Il1). An applied theories lack accuracy. In support of the latter hy-

intermediate situation can exist where the demixing trr:msipOth(:‘_‘s_'IS 1S fahMC finite S_'Z(T_ JS ca_hnl% St;:.d);] of th? d_e mllxmg
tion becomes first order for a density higher than that of thd"@nsition of the symmetric LJ mixturevhich convincingly

LV critical density. In that case one will have a triple point, a alests the existence of a CEP te+0.7. Similarly, integral
LV critical point, and a tricritical pointtype ). equation results based on the self-consistent Ornstein-

These three types of phase diagrams have been found fEMike approximgtior(SCOZA),ms which previously has
mean field(MF) calculations and Monte CarlMC) simu- been shown to give accurate rgsults for the coexistence
lations of a square well system with range &G denotes ~ curves (including the critical region of one component
the hard-core diametet In the simulations the type Il dia- systems;® predicted all three types of phase diagram for the
gram is found to occur in a rather narrow range HCYFM model atzo=1.8, in particular, a CEP at=0.75
0.65==0.68 while MF theory predicts a wider range, i.e., In contrast with the HRT results of Ref. 3.
0.605<«<0.708! Qualitatively MF and simulation results One aim of the present paper is to present MC simula-
agree though there is quite a quantitative discrepancy bdion results for the HCYFM model in order to establish the
tween the values of where one topology of the phase dia- accuracy of the theoretical approaches, SCOZA and HRT,
gram changes to the other. This may not be so surprising aéstricting ourselves to the equimolar case. In addition, we
MF theory neglects fluctuations in the order parameters ofnvestigate the change of phase diagram when the range of
the LV and demixing transitionsIn later work, using the the Yukawa potentials increases. Interestingly, exact results
hierarchical reference theorfHRT),? which is based on are available when this range gets infinitely largeoviding
renormalization group techniques, Pétial3 have addressed a stringent test of the SCOZA approach in this limit.
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Il. THEORY
A. The model

Once Eq.(4) is solved, the thermodynamic properties of
the system can readily be calculated. In particular, we require
the pressur® and the chemical potentials, and u, for the

We have studied a symmetric binary HCYFM. For the determination of the phase diagram. The coexistence equa-
parametrization of the interatomic potentials we have chosefions are again solved with well-tested numerical algorithms,
the following form (,j=1,2): taking benefit of some symmetry relations in s due to

the symmetry in the interactions.
It should be noted that there is evidence that SCOZA
@ results converge towards MSA resultszasecomes smaller:
this is reflected by the fact that for thez@aluesK(p,T,x)
~ — B (as required in the MSAand that the degree of ther-
modynamic inconsistency between the compressibility and
the energy route within MSA becomes smaller.

0 rso

BP;(r)=

—Texp:—z(r—o)], r>o,

whereB=(kgT) ! (kg being the Boltzmann constant afid
is the temperatujeand o is the hard-corg HC) diameter
which will be used as the unit of length.is the inverse
screening length of the system. Due to the symmery,
=K, and the parameter is introduced vi&K ;,= aK ;. The
total number density ip=p;+ p,, where thep, andp, are ] ] )
the partial number densities ane=p;/p is the concentra- Grand canonical Monte Carl@&CMC) simulations have
tion of species 1. Reduced valugs=zo, p* =po®, and Peen carried out for five sets of values of the parameters
T* = o/K 4, will be used throughout the paper. For commod-and a: z=1.8 anda=0.65, 0.70 and 0.7%=0.1, a=0.70
ity we will drop the stars. andz=0.01, «=0.70. For the two lowest values=0.1 and
z=0.01 the range of the Yukawa potentials exceeds largely
the size of the cubic simulation cell of volumé= 2500
with periodic boundary conditions. As in the SCOZA theory
SCOZA is an advanced liquid state theory, which isthe particles interact with the full Yukawa potential the long
based on a mean spherical approximatipfSA)-type clo-  range has been taken into account in the simulations in order
sure relation to the, Ornstein-Zernik®Z) equations; it re-  to make a meaningful comparison with theory. We have used
lates the direct correlation functiors;(r) and the pair dis- the Ewald form of the Yukawa potentigtf. Appendix,*?
tribution functionsg;;(r), i, j=1, 2, to the®;;(r) via which includes properly the sizeable contribution of the pe-
gi;(1)=0 riodic replicas of the system to the internal energy when the

Cij (1) =Cpc;ij(r) +K;j(p, T,x)®j;(r)

lll. RESULTS

B. MSA and SCOZA

forr<1,

2

for r>1,

thereby introducing yet undetermined, state dependent func-
tionsK;;(p,T,x) which are fixed by the thermodynamic self-

C oo
consistency requirement for the isothermal compressibility, = = ‘::. .
calculated via the compressibility and the energy route. Tak- i | | °=;“'
ing advantage of the availability of the analytic solution of 0 o1 02 03

the MSA for the HCYFM with an arbitrary number of

[ |
sl 143
Fese? oo

component$? part of the formalism can be carried out
analytically? It should be pointed out that at present—due to
computational limitations—only a global consistency crite-
rium can be used: here the reducedal isothermal com-
pressibility x,.¢= pkgT x7 IS related to the excegever ideal
gas internal energy per volume by

azu_a 1_1Z _ _0)_8(1) @
(9P2_ﬁ:8 P ij PinCij(q_ ) _518 Xred '

where the tilde denotes the Fourier transforms ofdahé).

So we have to reduce the number of unknown functions
which was done by assuming tHQli (p, T.X)=K(p,T,x) for FIG. 1. From top to bottom are displayed the typical variationp;adndpy

all i andj The formalism of SCOZAfor a detailed presen- in the vicinity of the three different transitions occuring in the mixture. The

. . . first row corresponds to a second-order demixing transition of the mixture
tatl_on see Refs. 6 and )leads_, finally to a quasilinear para- i 7=0.1 anda=0.7 located aff = 105 andBu=—3.14; p, and p; are
bolic partial differential equation fou

plotted for Bu=—3.15 (filled circle), —3.14 (filled squarg¢, and —3.13
(filled diamond. The second row corresponds to a first-order demixing tran-
ou é%u sition of the mixture withz=1.8 anda=0.65 located aff =1.03 andBu
B(p,u) @ =P 4 =-38.272; p4 and p; are plotted forBu=—3.275 (filled circle), —3.272
ap (filled square, and—3.270(filled diamond. The third row corresponds to a

P In-n 'V

: . : : irst-order transition between undemixed phases of the mixture with
which has to be solved numerically with suitable boundaryf: 1.8 anda—0.7 located al — 1.02 andBu——3.422.p, . p; are plotted for

and initial C(_)nditi_ons. Details a_lbout the solution algorithm g,— 3 45 (filled circle), —3.422 (filled squarg, and —3.420 (filled
are summarized in the Appendix of Ref. 7. diamond.
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FIG. 4. Phase diagram of the HCYFM far=1.8 anda=0.75. The solid

'Hes represent SCOZA results for first-order phase coexistence, the dashed
ine the X line, and the dotted lines the metastable equimolar vapor-liquid
transitions. The circles are the MC results with error bars.

FIG. 2. Phase diagram of the HCYFM far=1.8 anda=0.65. The solid
lines represent SCOZA results for first-order phase coexistence, the dash
line the \ line, and the dotted lines the metastable equimolar vapor-liquid
transitions. The circles are the MC results with error bars.

Yukawa potential has a long range. The simulations have
been performed with the Ewald Yukawa potential for all val-
ues ofz although for our simulation box size truncation of
the Yukawa potential would entail negligible effects for
z=1.8.

After summation oru, the histogram®;(n;+n,,T,w)
and pg(Jny—n,|,T,u) were used to locate the phase
transitions:® The first-order transition between the equimolar
vapor and liquid is characterized by the existence of two
. ) ) ) _peaks inps at the values oh;+ n, associated with the vapor
AI'I the S|mglat|0ns have been. realized for. identical 4 liquid densitieg and p‘. For a given value o, the
chemical potentials of the two Specigsi=s1=xa, IMPlY- o4 ilibrium between these two phases is located at the value
ing tr_lat, at low densities, the average numbers of the partlclgf uyy, Where the two peaks have equal height. The vapor
speciegn,) and(n) are equal. At a given value of tempera- 5 |iquid phases in equilibrium are equimolar if farval-

turle -I(_j a';'?d c_hlemical poten(tji_a,u,l a typical simulation ir(;- ues close tqu,y, (below or abovea unique peak is observed
volved 10 trial MC moves(displacement, insertion, or de- j, 1, 5 In;—n,|=0. On the other hand, equilibrium takes

letion of a particle.. In the by!k, equimolar, or demix.ed fluid place between an equimolar and demixed phase when for
phases, the relative precision on the total dengity(n, below x,y, Py has a peak an,—n,|=0 and aboveu,, a

+n,)/V is =1%. The location of the phase transitions is peak at a finite value dh,—n,|. In this case the demixing

based on the determination of the joint probability of they.,gjtion is a first-order transition. Typical histograms figr

internal energy and numbers of particlgs(u,ny,nz, T,u).  5pq pg are shown in Fig. 1. For details we refer the reader to
The latter function can be estimated directly from the SiMU+he caption

lations or computed by combining the results obtained for
different, but close, values df and u following a reweight-

ing procedure well documented in the literatite!® The
reweightedp(u,n4,n,,T,«) functions were calculated from 29
a set of simulations near the transition involving at least four B
MC runs of ~8x 1(? trial MC moves. 24

~-.
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FIG. 3. Phase diagram of the HCYFM far=1.8 anda=0.70. The solid

lines represent SCOZA results for first-order phase coexistence, the dash&diG. 5. Simulation results for the isotherrtgashed linegsof the HCYFM
line the \ line, and the dotted lines the metastable equimolar vapor-liquidfor z=1.8 anda=0.75; from top to bottomT=1.08, 1.05, 1.02, 1.00, 0.98,
transitions. The circles are the MC results with error bars. 0.97, 0.96, 0.95, and 0.93. Full linexdine.
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TABLE I. Coexistence densities as a functionefind T for z=1.8; p¥ andp" are the equimolar vapor and
liquid coexistence densitiepy andpb the coexistence densities at the demixing transitigmjs the error on

the densitiespu,y is the chemical potentidgtimesg) at the LV transitionBu, is the chemical potentigtimes

P) at either the\ line, the equimolar-demixed liquid transition or the equimolar vapor-demixed liquid transition.

T p ot P Pa Pg Ap By Bua
@=0.65
1.15 0.541 0.005 ~2.48
113 0.535 0.005 ~2.61
1.10 0.530 0.005 ~2.80
1.09 0.525 0.005 ~2.87
1.08 0.520 0.005 ~2.943
1.07 0.498 0.545  0.005 ~3.008
1.05 0.470 0570  0.005 ~3.142
1.03 0.430 0597  0.005 ~3.272
1.02 0.230 0610  0.01 ~3.337
1.00 0.195 0.654  0.01 ~3.403
a=0.70
1.05 0.565 0.005 ~3.080
1.04 0270 0385 0563 0.005 -3352  -3.165
1.03 0.206 0425  0.562 0.005 -3.386  —3.225
1.02 0185 0455  0.560 0.005 -3.422  —3.305
1.01 0171 0.480 0555 0579 0005 -3456  —3.385
1.00 0165  0.517 0545 0585  0.005 -3.483  —3.464
0.99 0.151 0622 0.1 ~3.517
0.98 0.144 0.653  0.01 ~3.542
@=0.75
1.08 0.670 0.005 ~2.430
1.06 0.218 0395  0.663 0.005 -3.376  —2.630
1.05 0190 0430  0.660 0.005 -3410  -2.730
1.04 0172 0460  0.657 0.005 -3.443  -2.825
1.02 0157 0516  0.651 0.005 -3503  —3.050
1.00 0144 0558  0.638 0.0l 3556  —3.280
0.98 0132 0598  0.630 0.0l 3606  —3.500
0.97 0121 0615 0622 0.0l -3643  -3612
0.96 0.117 0.646  0.01 ~3.665
0.95 0.116 0.668  0.01 ~3.690
0.93 0.111 0712 0.01 ~3.738

*Reweighted isotherms.

At high temperatures, the demixing transition is alarge and cannot be crossed during a MC run without biased
second-order transitiofcf. Introduction). For a given value sampling, for instance, multicanonical samplifigSuch a
of T and increasing values @i, it is characterized first by the sampling has not been used in this work and the vapor-
broadening of the peak qfy at [n;—n,|=0. The valuex,  demixed liquid transitions at low temperatures have been
of u at which the peak reaches its maximum width gives theocalized by looking for a value of. such that above and
location of theA line at densityp, . Above u, the value of  pejow this value the vapor and liquid phases are, respec-
Py(0.T,n) decreases and a peak located at valuesnof el unstable. The uncertainty on the equilibrium densities
—Ny|#0 gives the demixing ratfn, —n,|/(ny+ny) of the  yotarmined from the analysis qf(u,ny.n,,T,u) is esti-
dem|xed_ph.ase. This Va”a“of‘ Ph does not corresponq 0 mated to bet0.005; at low temperatures, where this analysis
any qualitative change g which presents a narrow unique could not be performed the error is estimated tot@01
pg(;:k at values op=(n,+n,)/V increasing monotonically The phase diagrams far=1.8 are shown in Figs 2'_4
with . . ’ . '

TMhe above procedure for locating the first-order transi_wherea_varles frqm (_)'65 to 0.75. A set of |soth_§rms for
tions applies easily when, at the phase equilibrium, the dit®=0-75 Is plotted in Fig. 5. The coexistence densities of the
ference between the vapor density and the equimolafor various phases and the densities alongittiee are summa-

demixed liquid densityp" (orp'a) or between the coexisting rized in Tables I-Ill for the different isotherms considered in
liquid densities at the demixing transitiopy and pjj, is  the simulations. S
smaller than 0.3here the subscriptd” denotes coexistence The phase diagram ai=0.65 (cf. Fig. 2 is clearly of

densities of the demixing transitipnFor these density dif- type Ill. There is no LV critical point but a tricritical point at
ferences, several transitions between the low and high derf+~1.075 andp,~0.517. Upon increasing to 0.7, a LV
sity phases occur in a MC run, giving an adequate samplingritical point emerges which fow=0.7 has critical param-
of p(u,ny,n,,T,u), in particular, of the relative heights of etersT,~1.045 andp,~0.305. The tricritical point has a
the peaks associated with the two phases. At low temperdemperaturel,~1.02, i.e., lower than the critical tempera-
ture, the density gap between the vapor and demixed liquid isire and a densityp,~0.56 (type Il phase diagrajm At
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TABLE Il. Same as Table | but for=0.7 andz=0.1. TABLE IV. SCOZA values for the temperatures and densities of critical,
tricritical, and critical end points obtained for the five HCYFM systems
T pY pt N Pd i Ap By By investigated. Ty, denotes the triple point temperature; for comparison,
GCMC results are given in brackets with a typical uncertainty of 0.2%—
110 0.529 0.005 279 3%
107 0.519 0.005 —3.00
105 0.195 0.310 0.515 0.005-3.510 —3.14 7=1.8 a=0.65 Type Il T,~1.12(1.075
104 0.165 0.336 0.005 —3.538 py~0.50(0.517
103 0.151 0.360 0.504 0.005-3.566 —3.30
102 0.143 0.380 0.502 0.005—-3.595 -3.371 z=1.8 a=0.70 Type Il T.~1.04(1.049
100 0.127 0.421 0.497 0.005—3.648 —3.512 p.~0.315(0.305
99 0.493 0.005 —3.590 Ty~1.05(1.02
98 0.115 0.464 0.490 0.01 —3.698 —3.665 py=~0.54(0.56
97 0.102 0.480 0.480 0.515 0.01 —3.738 -—3.738 Tip~1.002(0.995
96 0.107 0.565 0.01 —3.745
95 0.106 0.593 0.01 —3.760 z=1.8 a=0.75 Type | Tcep~097 (0963
90 0.092 0675 0.01 ~3.863 Poey™~0.59(0.617
T.~1.07(1.07)
2Reweighted isotherms. p.~0.315(0.309
z=0.1 «=0.70 Type I T.~106.1(106.0
. . . pc~0.25(0.25
a=0.75 the\ line intersects the LV coexistence curve at a T,~101.0(97.5
critical end poinfT ¢;~0.965,p..;~0.617 (type | phase dia- py=0.48(0.49
gram. The critical temperaturd.~1.07 is slightly higher Tup~96.9(97.0
than for a=0.7 but the critical densityp.~0.305 is un- _, ., 2=0.70 Type I T,~9717(9750
changed within statistical error. p.~0.25(0.25
The sequence of phase diagrams obtained by SCOZA for T,~9220(9100
z=1.8 is similar to that found in the simulations. In fact, the py=~0.48(0.479

phase diagrams obtained with SCOZA and simulations com- Tup~8870(8950

pare quite favorably. As seen from Figs. 2—4 agreement is
excellent for the vapor-equimolar liquid transition. The de-

mixing transition occurs in the GCMC results for densities¢ Fig. 6 both simulations and SCOZA predict a kink at
systematically larger than in SCOZA theory, the differenceye riple point of the coexistence curve. Upon further in-

being of the order of 2%—-5%. Similar differences occur forcreasing the range of the potentialze-0.01 we recover a
the equilibrium densities between the vapor and the demixeg/pe Il phase diagram with coexistence between an equimo-
liquid. The temperatures of the tricritical and critical end |5, 3nd a demixed liquid in the temperature range 8850—9100
point are also in good agreement, the discrepancy being Qfii 5 tricritical point atT,~9100 andp,~0.479, in good
the order of the uncertainty, i.e., 0.5%—1%, on the temperaégreement with SCOZA resultS,~9220 and p,~0.48.
tures determined from the simulation data. For a quantitativeyjiyilar as forz=1.8 we note that the MC vapor-liquid tran-
comparison of the theoretical results and simulation data Wejtion curve is very well reproduced by the SCOZA theory.
refer to Table IV. Finally, we point out that for the GCMC simulations the

_ InFigs. 6 and 7 and Tables Il and Ill we show the phasgemperature range for the existence of the first-order demix-
diagrams fora=0.7 when the range of the Yukawa potential g transition is non-monotonic asdecreases towards zero,
increases. Aiz_= 01a narrow temperature range .betwé'en as shown by the variation of the ratid {— Ty,)/Typ (cf.
=96 and 98 is found in simulation where equimolar and4p|e IV), which is, respectively, equal to 0.028.005

demixed liquids coexist withT,~97.5 and p,~0.49; (z=1.8, =0.7), 0.005-0.005 £=0.1, a=0.7), and 0.017
SCOZA predictsT,~101 andp,~0.48. As becomes visible ' ' ’ ’

TABLE Ill. Same as Table | but for=0.7 andz=0.01. 1201
T s P e pa pq A Buw By 1ok

10 000 0.530 0.005 -2.83 I

9 800" 0.522 0.005 —2.99 [

9700 0.516 0.005 —3.06 =100

960F 0.185 0.315 0.005 —3.519 I

9500 0.160 0.345 0.508 0.005-3.549 —3.23 [

9 400! 0.502 0.005 -3.32 90

9300 0.135 0.390 0.495 0.005-3.615 —3.41 [

9200 0.489 0.005 —3.49 [

9400 0.122 0.430 0.484 0.005-3.668 —3.568 o

9000 0.115 0.461 0.480 0.510 0.01-3.690 —3.655

8900 0.115 0.534 0.01 —-3.712

8800 0.110 0.565 0.01 —3.739 FIG. 6. Phase diagram of the HCYFM far=0.1 anda=0.70. The solid

lines represent SCOZA results for first-order phase coexistence, the dashed

aReweighted isotherms. line theX line. The circles are the MC results with error bars.
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9500

. APPENDIX: EWALD SUMMATION

9000f Using an Ewald summation method the energy of the
f (one componentYukawa system

8500
L 1 expl—zr;;
E U==T K—”) (A1)

8000, N REY Fij

A I U P P PP A W
001 02 03 04 05 08

4 .
can be writtef?

FIG. 7. Phase diagram of the HCYFM far0.01 anda=0.70. The solid

lines represent SCOZA results for first-order phase coexistence, the dashed

1 z
line the\ line. The circles are the MC results with error bars. U(is&j)zzri jZ#j ; (erfc< 'erij + H'nl + 2_7

z
+0.005 =0.01, «=0.7). However, in SCOZA this se- ><exp(z|rij+H-n|)+erfc< 7|r”+H'n|_Z)

quence was found to be monotonic: 0.048-(.8, «=0.7),

0.042 =0.1, «=0.7), and 0.040 £=0.01,2=0.7). ><exp(—z|rij+H.n|)}—2| TH
rij ‘n

IV. CONCLUSIONS +1F 5 4772 exd — (G?+2%)/4y?]
2 ifivi V G G2+22

One of the aims of this paper was to resolve the discrep-
ancy between predictions of two different theoretical ap- X exp(iGr;); (A2)
proaches, SCOZA and HRT, for the phase diagrams of the )

HCYFM at values ofa=0.73. While SCOZA provides a for the self-term we obtain

clear prediction of a CERtype ), no such evidence was 1 .
found in the HRT calculation$rather a type Il behavior with Use==T'N E [erfc< y|H-n|+ = |exp(z|H-n|)
a tricritical point is predicted up ta=0.8, the highest value 2 n#0 2y

at which solution of the HRT equations could be obtaified. . 1
The good agreement between SCOZA and the present MC +erfc( y|H-n|— —) exp(—z|H-n|)]—
results pleads in favor of a type | phase diagramda0.73. 2y 2|H-n|
We note here that the range of existence of the type Il phase .
diagram of the HCYFM, given by the simulation and + —2
SCOZA, is shifted to somewhat higher valuessatompared Ve
to the square-well binary fluid mixture where the range of

this phase diagram typef. Introduction is 0.65<«<0.68" xgxp(_z2/472)+zerfc<i
The similarity of phase diagrams found for binary fluid mix- 2y
tures of square weli,hard-core Yukaw4,LJ systems as
well as for classical spin systerfsdipolar model$®2* or

exd — (G?+2%)/4y?] 2y
G’+7° Jr

]. (A3)

In the above expression$ is a 3<3 matrix whose columns
livi | 22 ic behavior f id are the Cartesian components of the three vectors describing
lving polymers® suggests a generic behavior for a wide o parallelepipedic bofa,b,c} which for the case of a cubic

class of pote_nt_ial modefs. _ simulation cell (,=L,=L,) becomes proportional to the
The precision of SCOZA even improves when the range it matrix. The volume is V=detH. Further k

of the Yukawa potential increases. In the limit of infinite =2m(*H)"n denotes all possible reciprocal vectors com-
range an exact resglt can be derlv.e.dzfenro (Ref. 9 exhib- patible with the box geometry!H) ! is the inverse of the
iting a rigorous scaling of the transition temperatures a$ 1/ transposed matrikd, defined above, and= (N ,n,Nns) with
whtljcgéoor;j:lte z IIS approximately reproduced by the MC , ‘iyteqers. The parametercontrols the rate of convergence
an results. of the sums in direct and reciprocal space. It can be noted
that in Egs.(A2) and (A3) the sums in reciprocal space in-
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