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We present a theoretical analysis of the structural properties and phase behavior of spherical, loosely
cross-linked ionic microgels that possess a low monomer concentration. The analysis is based on the
recently derived effective interaction potential between such particlesfA. R. Denton, Phys. Rev. E
67, 011804 s2003dg. By employing standard tools from the theory of the liquid state, we
quantitatively analyze the pair correlations in the fluid and find anomalous behavior above the
overlap concentration, similar to the cases of star-branched neutral and charged polymers. We also
employ an evolutionary algorithm in order topredict the crystalline phases of the systemwithout
any a priori assumptions regarding their symmetry class. A very rich phase diagram is obtained,
featuring two reentrant melting transitions and a number of unusual crystal structures. At high
densities, both the Hansen–Verlet freezing criterionfJ.-P. Hansen and L. Verlet, Phys. Rev.184, 151
s1969dg and the Lindemann melting criterionfF. A. Lindemann, Phys. Z.11, 609s1910dg lose their
validity. The topology of the phase diagram is altered when the steric interactions between the
polymer segments become strong enough, in which case the lower-density reentrant melting
disappears and the region of stability of the fluid is split into two disconnected domains, separated
by intervening fcc and bcc regions. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1850451g

I. INTRODUCTION

Cross-linked polymer networks have been one of the
main themes of research in polymer science for many
decades.1 The literature on the topic of uncharged networks
is very rich, a review has been presented in Ref. 2. Closely
related to these are networks formed by polyelectrolytesPEd
chains. Initial work on such systems, which are also referred
to aspolyelectrolyte gels, focused on the swelling behavior
in the presence of salt.3,4 Active interest in the swelling of
these gels remains to date, due to their ability to absorb large
amounts of water and act as superabsorbers or drug delivery
systems. Theoretical work on the swelling has been summa-
rized in the review article of Khokhlovet al.5 Computer
simulations have also played a very important role in under-
standing the conformations of charged gels,6–8 where the role
of short-range attractions has also been examined.9

Scaling down the size of the above-mentionedmacro-
scopic cross-linked gels, one obtains mesoscopically sized
particles, synthesized by cross linking of polymers that are
known as microgels.10,11 The most common polymer of

which microgels are made is polysN-isopropylacrylamided
sPNIPAMd, whereas other polymers such as polyacrylic
acid12 or polystyrene13 can also be used,10 and the prepara-
tion of novel, starch-based microgels has been recently re-
ported as well.14 Much in similarity with their macroscopic
counterparts, microgels can swell in a good solvent and this
property makes them promising as drug delivering
agents,12,15 once they have been designed to swell in the
vicinity of target sites.10 Most of the current industrial inter-
est in microgels focuses primarily on their usage in surface-
coating applications, due to their ability to act as rheological
regulators. At the same time, microgels are of great interest
as model colloidal particles, since they can bridge between
hard-sphere particles16 and soft colloids17 through suitable
modifications of their monomer- and cross-linking densities.
Depending on whether they carry a net charge or not, micro-
gels can be distinguished intoionic or neutral. Depending on
the monomer concentration in their volume, they are classi-
fied asuniform or core-shellmicrogels.

In the recent years, considerable work has been done
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regarding the internal conformations and swelling properties
of microgels and, in particular, the dependence of the latter
on parameters such as temperature,pH, solvent quality, net
charge, and salt concentration.17–22 Less is known, however,
about the structural properties and phase behavior of macro-
scopic solutions of microgel particles. Hellweget al.23 have
found that microgel particles form colloidal crystals akin to
those occurring in hard-sphere systems, whereas Gröhn and
Antonietti have performed static light-scattering experi-
ments, finding scattering intensities typical of dense, liquid-
like colloidal systems.24 Formation of structured clusters
from soft microgels has been reported by Fernández-Nieves
et al.,25 whereas Fernández-Barbero and Vincent have fo-
cused on the complexation between charged microgels and
oppositely charged colloids.26

A concept that greatly facilitates the theoretical investi-
gations of the structural and thermodynamic properties of
complex fluidsssuch as microgel solutionsd is that of the
effective interaction potentialbetween suitably chosen coor-
dinates that characterize the macromolecular aggregates as a
whole.27 Proposals for the effective potential between dense,
hard spherelike microgels have been put forward recently by
Wu et al.28,29 as well as by Berli and Quemada.30 For the
opposite case of loosely cross linked, ionic microgels, an
effective potential has been derived by Denton31 within the
formalism of linear-response theory, which allows for ansap-
proximated tracing-out of the counterion degrees of freedom.
In a recent publication,32 we have applied standard tools
from the theory of liquids, combined with a novel, evolution-
ary algorithm topredictstable solid phases, drawing thereby
the phase diagram of ionic microgel solutions for some se-
lected parameter values. In this paper, we present an ex-
tended account on the thermodynamicandstructural proper-
ties of ionic microgel solutions and the correlations between
the two for a wide range of parameters. We also offer a more
extensive account of the evolutionary algorithm employed
previously32 and we examine the effect of the stericsself-
avoidanced interactions on the topology of the phase dia-
gram. The latter have been ignored in the preceding work.32

In this way, we establish quantitative limits for the range of
physical parameters that can cause a change in the topology
of the phase diagram.

The rest of the paper is organized as follows: In Sec. II
we present and discuss the effective interaction potential, on
which all further investigations are based. The properties of
the fluid phase are presented in Sec. III, whereas the evolu-
tionary algorithm employed for finding the optimal crystal
phases as well as the properties of the solid phases are shown
in Sec. IV. The resulting phase diagram is presented and
discussed in Sec. V, and the influence of the steric interac-
tions on it is the subject of Sec. VI. Finally, in Sec. VII we
summarize and draw our conclusions. Some technical re-
marks regarding the volume terms of microgel solutions in
comparison with those pertaining to hard, charged colloids
are relegated to the Appendix.

II. EFFECTIVE INTERPARTICLE POTENTIALS

We considerN charged microgels in the volumeV, with
densityr=N/V. Every microgel carries chargeZe, with the

elementary chargee, where the possible Manning-condensed
counterions have been subtracted. Due to electroneutrality,
the solution also containsNc=ZN monovalent counterions.
We limit ourselves to the salt-free case only. The system is
assumed to be dissolved in water at room temperature. An
effective interaction between the microgel particles can be
formally derived by taking a partial trace of the canonical
partition functionZ of the system. This task has been carried
out recently by Denton,31 who showed that the original par-
tition function can also be expressed as a canonical trace
over the microgel degrees of freedom only, employing a suit-
ably defined effective HamiltonianHeff, namely,

Z = kexps− bHeffdlm. s1d

In Eq. s1d above, the bracketsk¯l denote a canonical trace
and the subscript indicates that it has to be taken with respect
to the coordinates and momenta of the microgel particles
only. Moreover,b=skBTd−1, with the Boltzmann constantkB

and the absolute temperatureT.
The effective Hamiltonian has been shown to have the

form31

Heff = o
i=1

N
Pi

2

2m
+ o

i, j
veffsuRi − R jud + E0, s2d

wherePi denotes the momentum andRi the position vector
of the center of theith microgel, andE0 is a so-called “vol-
ume term” to be defined in Eq.s8d below. Each microgel
particle has a diameters. The effective potentialveffsrd pos-
sesses two branches, one valid for separationsr øs and one
for r .s. For overlapping particles, it has the form
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wheree is the dielectric constant of the solvent andvindsrd is
given by the expression
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1
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On the other hand, for nonoverlapping distances the effective
interaction crosses over to a screened electrostaticsYukawad
potential of the form
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veffsrd =
144Z2e2

ek4s4 Fcoshsks/2d −
2 sinhsks/2d

ks
G2e−kr

r
,

sr . sd. s5d

In Eqs.s4d and s5d above,k is the inverse Debye screening
length, which, for monovalent counterions and salt-free so-
lutions is given by the expression

k = Î4pZrlB, s6d

with the Bjerrum lengthlB expressing the distance at which
the electrostatic interaction between two elementary charges
roughly equals the thermal energy, namely,

lB =
e2

ekBT
, s7d

and having the valuelB=7.14Å for water at room tempera-
ture. The Bjerrum length is kept fixed to this value through-
out this work.

As a result of the partial trace of the partition function of
the original system, two effects show up. On the one hand
the pair potential acquires an explicit density dependence
through the parameterk. On the other hand, an extensive
volume termE0 appears in the effective Hamiltonian, which
contains contributions from the degrees of freedom of the
counterions and reads as

E0 = ZNkBTflnsZrL3d − 1g − N
6Z2e2

es
H1

5
−

2

k2s2

+
6

k3s3F1 −
4

k2s2 + S1 +
4

ks
+

4

k2s2De−ksGJ
− ZN

kBT

2
, s8d

whereL is the thermal de Broglie wavelength. ThoughE0

has no influence on the correlation functions of the macro-
ions, it forms an integral part of the thermodynamics of the
system, as is clear from Eqs.s1d and s2d. In Fig. 1sad we
show some selected plots of the effective potentialveffsrd,
where it can be seen that this quantity is ultrasoft and
bounded. Moreover, both the range and the strength ofveffsrd
shrink with increasing concentrationr of the microgels. On
the other hand, as can be seen in Fig. 1sbd, an increase of the
charge numberZ on the microgels renders the potential more
steeply repulsive. The volume termE0/V is a convex func-
tion of the densityr, whereas the one pertaining to hard
colloids can be concave.33 A comparison between the two
cases is presented in the Appendix.

III. PROPERTIES OF THE FLUID PHASE

The two quantities of central interest that describe the
pair correlations in the fluid phase in real and reciprocal
space are the radial distribution functiongsrd and the struc-
ture factorSskd, respectively. As is clear from Eqs.s3d–s5d,
the effective interaction at hand is density dependent. As it
has been repeatedly pointed out in the literature,34–37special
care should be taken when dealing with such effective poten-
tials, since it is crucial to take into account the context in

which they have been derived. In the case at hand, the pro-
cedure involved in the derivation of the effective interaction
is an approximate tracing out of the counterion degrees of
freedom, which has been carried out with the goal of leaving
the total free energy of the system unchanged. In other
words, the sum of the interaction free energy and the volume
terms should be the same as the original free energy of the
system. An important consequence of the partial trace over
the counterion degrees of freedom, however, is that the com-
pressibility and virial routes to the free energy38 do not yield
identical results.34 In this sense, neither the “fluctuation com-
pressibility” xfl given by thek→0 limit of the static structure
factor Sskd nor the “virial compressibility”xvir, obtained by
differentiation of the virial pressure with respect to the den-
sity, represent the true compressibility of the system. We can,
nevertheless, imagine a putative system with a density-
independent interaction potential, which is identical to the
present interaction potentialveffsr ;r0d at a given densityr0.
Since at this density the two systems appear identical, they
also have the same structure, as given by the functionsgsrd
andSskd—but not the same thermodynamics. Enforcing con-
sistency between the compressibility and virial routes has the
additional benefit of improving the agreement between the
obtainedSskd and corresponding simulation results.39 Hence,
we employ the Rogers–YoungsRYd closure40 in order to ob-
tain the correlation functions of the microgel solution at any
given density, treating the latter simply as a fixed parameter
in the interaction. We reiterate that, although the RY-closure

FIG. 1. The effective interaction potential between charged microgels, ac-
cording to Eqs.s3d–s5d. sad Fixed chargeZ=200 and for different microgel
densitiesr; sbd fixed densityrs3=1.0 and varyingZ. The particle diameter
has the values=100 nm.
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enforces the consistency of the two routes to the compress-
ibility, the resulting quantity does not represent the real com-
pressibility of the system at hand. We have also employed
the simplersand thermodynamically inconsistentd hypernet-
ted chainsHNCd closure to the Ornstein–Zernike relation in
order to provide a comparison between the two in obtaining
the phase diagrams of Sec. V.

In Fig. 2 we show representative results for the structure
factor Sskd as obtained by the RY closure. We see the char-
acteristic signature of the ultrasoft nature of the interaction,
namely, the growth of the height of the main peak ofSskd up
to, roughly, the overlap densityr* of the microgels, which is
then followed by an anomalous behavior: on the one hand
the height of the main peak startsdecreasingas the density
grows and on the other hand its position changes very
weakly with density abover* . Identical behavior has been
seen for solutions of star polymers39 and polyelectrolyte
stars.41,42 The insensitivity of the location of the peak above
the overlap density can be traced back to the crossover of the
potential from a Yukawa to a soft interaction and the latter
part is only felt above the overlap concentration. The decay
of the peak height and the associated loss of correlations at
high densities is a result of the ultrasoft character of the
interaction and points to a reentrant melting behavior of the
system, as it will be shown shortly.

Representative results for the radial distribution function
gsrd are shown in Fig. 3. Here we encounter the unusual
behavior that upon increasing the concentration the height of
the peak corresponding to the first coordination shellde-
creases. The physical origin of this phenomenon lies in the
fact that the interaction potentialveffsrd becomes itself softer
upon increasingr; the same behavior has been seen in the
case of polyelectrolyte star solutions,41 where again the in-
teraction is density dependent and softening asr increases,
but not in the case of neutral star polymers,39 where the
potential is density independent. Above the overlap density,
gsrd develops an unusual substructure inside the corona di-
ameters and the physical reasons behind this behavior have
been discussed in detail in Refs. 39 and 41. In view of the
striking similarities in the phenomenology of star polymers,
polyelectrolyte stars, and ionic microgels, it is fair to say that
they all belong to the class of soft matter systems that have

been termed asultrasoft. Dendritic macromolecules that fea-
ture a Gaussian effective potential between their centers of
mass are yet another member of this family.43,44

The pair correlation functions also offer a way to the
thermodynamics of the system via the so-calledl-integration

route.37 Consider the HamiltonianĤ=H−E0, with H andE0

being defined in Eq.s2d. It can be shown45 that the excess

free energy densityf̂exsrd associated withĤ can be calcu-
lated through the relation

b f̂exsrd =
1

2
r2E d3rbveffsr ;rdE

0

1

dlgsldsr ;rd, s9d

where gsldsr ;rd is the radial distribution function corre-
sponding to a fluid interacting by means of the “scaled” po-
tential veff

sldsr ;rd=lveffsr ;rd. The total free energy density

fsrd is then obtained by adding tof̂exsrd the ideal and
volume-term contributions, namely,46

bfsrd = rflnsrL3d − 1g + b f̂exsrd +
bE0

V
. s10d

The free energy is shown in Fig. 4 for some characteristic

FIG. 2. The structure factorSskd for Z=250 and for increasing densityr.
Note the anomalous behavior of the peak height.

FIG. 3. Radial distribution functionsgsrd for various combinations ofZ and
r, as indicated in the legend. The points in thesZ,rd plane have been chosen
to lie close to the phase boundaries between the fluid and incipient crystal
structures—see Fig. 7.

FIG. 4. Free energy density, including the volume term. The density gap
represents the region where the solid phases are stable.
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values of the charge parameterZ. Note that the free energy
density is free of concave parts, i.e., there is no spontaneous
liquid-gas phase separation in the system, in agreement with
the fact that the structure factorsSskd of the microgel par-
ticles show no divergence at the limitk→0. The liquid free
energy calculated in the fashion described above has been
employed to draw the phase diagrams in Sec. V, in conjunc-
tion with the free energies of the solid phases. The way in
which these have been calculated is described in the follow-
ing section.

IV. CANDIDATE SOLID PHASES: EVOLUTIONARY
ALGORITHM AND HARMONIC THEORY

We now turn to the solid phases: first we have to find out
the possible candidate structures into which the ionic micro-
gels can freeze. To this end, we have applied a genetic algo-
rithm sGAd which was recently proposed and implemented
by some of us.47 While up to now equilibrium structures in
freezing processes were determined from a preselected set of
candidatessan approach which always carried the risk of
“forgetting” a possible candidated, our GA is able to predict
crystal structures into which the fluid can freeze via an un-
restricted, unbiased, and parameter-free search algorithm.

In a more general context, GAs can be considered as
optimization strategies that use features of evolutionary pro-
cesses as key elements; their purpose is to find optimal so-
lutions for a given problem.48 Originally developed by Hol-
land and co-workers,49 it has meanwhile been applied in
many fields,48 such as economics, immunology, biology, or
computer sciences. Astonishingly enough, the attractive fea-
tures of GAs have not yet been discovered in physics. In
recent work we could demonstrate that GAs can represent
also in physics a very powerful tool: they have been used in
freezing studies of several systems47 and have thereby
proven to be a reliable, efficient, and accurate tool; we are
therefore convinced that in the near future GAs will merit
more appreciation in physical problems where their ideas
might be applied in a vast variety of problems.

The basic unit in a GA is an individualI which, in turn,
is built up by a fixed number of genes. In our application an
individual contains in a coded form information about a crys-
tal structure; it has been coded by the binary alphabet, i.e.,
each gene can assume the values 0 or 1 and each individual
can be viewed as a binary code of the set of primitive vectors
of a Bravais lattice; for nonsimple lattices the positions of
the additional particles in the basis unit of the structureswe
have restricted the number of basis atoms to eightd have to be
included as well. Note that the limited number of genes in an
individual leads to a limited accuracy in this representation.
Special care has been taken to guarantee that different but
equivalent parametrizations of a crystal structure are repre-
sented by one individual only; for details we refer again to
Ref. 47. Further we assign via a fitness functionfsId a posi-
tive fitness value to each individualI; this is done in the
sense that a higher value of this function characterizes a bet-
ter solution. For the present contribution we have chosen for
fsId the following form:

fsId = exph− fFsId − FsIfccdg/FsIfccdj, s11d

FsId is the free energy for a crystal structure represented by
the individualI andIfcc is the individual representing the fcc
lattice. The free energy of any given crystal structure was
calculated within a harmonic theory in the approximation of
the Einstein model, as we discuss below.

A large number of individuals—in our case 1000—form
a generation; the individuals of the first generation are cre-
ated at random. Triggered by the fitness values of the indi-
viduals, pairs of parents are chosen from this generation:
they create the individuals of the subsequent, second genera-
tion. This is done via a so-called one-point crossover pro-
cess: cutting both parents at a randomly chosen position, we
cross combine the respective parts and create thus two indi-
viduals of the second generation. In addition, we perform
with a probability pm—in our case we chose
pm=0.001—mutations: in a given generation we flip the
value of each gene from 0 to 1 or vice versa with the prob-
ability pm. In this manner we arrive at a different generation
of individuals. We repeat the above steps to create individu-
als of the subsequent generation and continue this iteration
over several steps: our experience has shown that 100 gen-
erations are by far sufficient to guarantee convergence.

In each generation we retain the individual with the
highest fitness value. Among the “fittest” individuals of each
generation, we consider the one with the absolutely highest
fitness value to be the best individual, representing thus the
solution of the optimizationssearchd algorithm. Due to the
limited accuracy induced by the finite number of genes in an
individual sand, consequently, of the binary representation of
the lattice parametersd this solution is refined in a subsequent
steepest descent minimization, and represents then the stable
crystal structure of the search.

The possible candidate structures into which our ionic
microgels can freeze have been selected atT=0, i.e.,F=U,
where for a given crystal structure the internal energyU has
been calculated via a lattice sum. ThesT=0d-phase diagram
is depicted in Fig. 5, indicating which crystal structure rep-
resents for a given state of the system the stable one. At low
densitiessi.e., up tors3,2.5d we encounter for allZ values
the usual suspects, i.e., the fcc and bcc lattices. As we in-

FIG. 5. The sT=0d-phase diagram of the system, as obtained from the
minimization of the lattice sums employing the genetic algorithm.
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crease the density, interestingly enough—and characteristic
for systems with soft potentials—more open structures ap-
pear: hexagonal, trigonal with a bco section for higher
charges, and hexagonal again. Note that in the phase diagram
for star polymers50 the bco and the diamond structures are
encountered, while in polyelectrolyte star solutions the bco,
the hexagonal, and the sc structures are the stable crystals.41

Within the error bars indicated in Fig. 5, the GA is converg-
ing to two solutions with equal fitness values, indicating the
phase transition from one structure to the other. In Fig. 6 we
show representative sections of the hexagonal and the trigo-
nal lattice, along with the respective conventional unit cells.

These five crystal structures define the set of possible
candidate structures for the phase diagram; we do not assume
that for T.0 new candidates might emerge in the freezing
transition. These phase diagrams are now calculated as al-
ready described in Ref. 41: for the five candidate structures
we calculate the free energy within the approximate Einstein
model51,52 sfor details we refer the reader to Sec. IV of Ref.
41d and compare them with the free energies of the compet-
ing fluid phasessee preceding sectiond. They are discussed in
the subsequent section.

V. PHASE BEHAVIOR

In Fig. 7 we show the phase diagram in thesZ,rs3d
plane of our model ionic microgel fors=100 nm. The pa-
rameterZ represents the bare charge number of the microgel
that can be measured at vanishingly small particle concentra-
tions. The net charge numberZnet, after taking into account

the counterions absorbed within the microgel is a density-
denpendent quantity that can be calculated using Eq.s38d of
Ref. 31, namely,

Znet= Z
6

ks
S1 +

2

ks
De−ks/2Fcoshsks/2d −

sinhsks/2d
ks/2

G .

s12d

The length scales stems from the diameter of the microgel
particles at infinite dilution. The microgel size can change at
finite concentrations as a result of two competing mecha-
nisms: the increase of the fraction of absorbed counterions,
which tend to swell the network, and the osmotic pressure
from neighboring microgel particles that lead to shrinkage of
the same. Within our theory we are not able to make quan-
titative predicitions as to the density dependence of the par-
ticle size. Therefore we scale the density with the unper-
turbed microgel diameters. Steric contributions to the
interaction are neglected for the moment; their influence on
the phase behavior will be discussed in more detail in Sec.
VI. The results are based on the RY closure for the fluid
phase. It is easy to check that our potential belongs to theQ+

class,53 so we can anticipate that re-entrant melting will oc-
cur for this model system and that we can definitely exclude
clustering effects. For densities up tors3,3 we observe the
first reentrant melting process: forZ*200 the liquid
freezes—first into an fcc structure which then transforms into
a bcc structure—and then remelts again. The RY and the
HNC approximations give qualitatively similar results; on a
quantitative level we note that HNC has the tendency to
broaden the fcc/bcc region in the phase diagram, predicting
freezing already forZ*140. Upon further compression
rather exotic and open structuresshexagonal, bco, and trigo-
nald emerge, a feature which is characteristic and meanwhile
well known for systems with soft interactionsssee also Refs.
50 and 41d; these structures are stable forZ*350. In this
region of the phase diagram the RY and the HNC results
agree now also on aquantitativelevel: obviously the mixing
parameter in the RY closure leads to a complete suppression
of the PY component and we can conclude that HNC gives

FIG. 6. Representative sections of the hexagonalstopd and the trigonal
sbottomd lattices, with the respective elementary unit vectors indicated.

FIG. 7. The phase diagram of ionic microgels, as obtained by the procedure
described in the text. The free energy of the fluid has been calculated by
employing the RY closure. The dashed line denotes the locus of points on
which the main peak ofSskd attains the Hansen–Verlet value. Here the
diameter of the microgels is kept fixed ats=100 nm.
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thermodynamically self-consistent and therefore accurate re-
sults. Compared to the low density part this region of the
phase diagram is considerably more complex and diversified
ssee insets of Fig. 7d: this points out that the energies of the
competing crystal structures are very close to each other.

We finally focus on the small liquid gap atrs3,3 be-
tween the bcc and the hexagonal structures. Despite consid-
erable efforts we are not able to predict the topology of the
phase diagram in this density range for higher charges: on
the one side we encounter convergence problems to solve the
integral equationsfvalues of the main peak inSsqd of ,10
have been obtainedg, on the other side the validity of the
model breaks down for such highZ values; thus a closer
analysis of this region of the phase diagram is out of reach.

The broken lines in Figs. 7 and 8 locate those states of
the system, where the value of the main peak of the static
structure factor of the fluid phase,Ssq0d assumes a value of
2.85. Passing this value represents a classical and well-tested
indication for an incipient freezing transition in repulsive
systems, the Hansen–Verlet rule.38,54 From our results it be-
comes evident that this criterion can only be used for smaller
densities, i.e., up to approximately the overlap densityr*

where the broken lines lie close to the freezing lines. Beyond
r* , the Hansen–Verlet criterion clearly fails: the broken lines
lie deeply in the liquid phase region of the phase diagram,
i.e., far away from the freezing transition. We can conclude
that the Hansen–Verlet freezing rule is applicable for our
system only for densities belowr* .

The salient features of the phase diagram are typical for
the class of systems that have been termedultrasoft
colloids55 and shows striking similarities with the previously
obtained phase diagrams of charged, polyelectrolyte stars41

and neutral star polymers.50 Below the overlap density, we
encounter the crystallization into the fcc lattice, which is due
to the Yukawa tail of the interaction potential. Upon further
increase of the density, the Yukawa interaction becomes
softer, due to the absorption of counterions inside the micro-
gel, causing thereby a transition into the bcc lattice. The
same effect has been seen in the phase diagram of polyelec-
trolyte stars.41 For neutral star polymers, where the pair po-
tential is density-independent, the fcc-bcc transition takes
place when the functionalityf of the stars is changed, since
1/ f formally plays there the role of the Debye screening
length in the Yukawa interaction. The remelting of the bcc
crystal upon increasing the density beyond its overlap value,
as well as the unusual crystal structures thereafter are caused
by the ultrasoft effective potential for strong overlaps. The
fact that the crystal types themselves and their sequence of
appearance in the phase diagram differs from the other, pre-
viously examined ultrasoft systems,41,50 shows that the de-
tails of the ultrasoft interactions are relevant for the stabili-
zation of particular lattice structures.

In Fig. 8 we show phase diagrams for ionic microgels
for two different values ofZ in the ss ,rs3d plane; the prop-
erties of the liquid phase have now been calculated within
the HNC approximation. ForZ=200 only freezing into an
fcc and a bcc structure is observed, followed by a reentrant
melting process close tor* . The situation is considerably
more complex forZ=400, as could already be expected from
Fig. 7: in particular, for smalls valuessi.e., s&50 nmd and
intermediate to high densities, freezing into a hexagonal, a
bco, and a trigonal structure with a subsequent re-entrant
melting is observed.

In Fig. 9 we show the free energy differences between
the fluid phase and the crystal structures encountered in the
phase diagram forZ=600 ands=100 nm; the properties of
the fluid phase have been calculated within the HNC ap-
proximation. From this figure one can easily see the stable
phases as the density is increased: first fcc, then bcc, fol-

FIG. 8. Phase diagrams on thesr ,sd plane for fixed values ofZ. sad Z
=200 andsbd Z=400. Here the fluid free energy has been obtained through
the HNC closure. The Hansen–Verlet locus is also shown as a dashed line.

FIG. 9. Free energy difference per particle between the various solid phases
and the fluid forZ=600. The fluid free energy has been calculated by means
of the HNC closure. The inset shows a detail of the main plot at the region
of high densities.
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lowed by the small corridor of a stable fluid phase forrs3

,3. Then follows the part of the phase diagram where the
more exotic crystal structuresshexagonal, bco, trigonal, and
hexagonal againd emerge; note that—as one can also see
from the inset—the energy differences between the compet-
ing phases are now considerably smaller than between fcc
and bcc. Forrs3*6 the system remelts again.

In Fig. 10 we display—as a quantitative analysis of the
crystal structures encountered in the phase diagrams—aspect
ratios of the trigonalsc/ad, the hexagonalsc/ad, and of the
bco sb/a and c/ad lattices forZ=600 ands=100 nm. We
point out that the trigonal lattice for densities up to,1.8
with an aspect ratio ofc/a;Î6 is equivalent to the fcc struc-
ture and that the trigonal lattice for densities 1.8&rs3

&2.6 withc/a;Î3/8 is equivalent to the bcc lattice. In Fig.
10 one easily recognizes the transition densities of fcc
→bcc and bcc→hexagonalsvia the fluid phased by the dis-
continuities in the aspect ratio curves. Note the agreement
between thec/a ratio for the bco and the trigonal structure
for rs3*2.7: this reflects the fact that both structures have
large similarities in their first coordination shellsssee also
the results for the star polymers50d.

Finally, in Fig. 11 we display the Lindemann ratiosL.
The latter is defined as the ratio between the root-mean-

square displacement of a particle from a lattice cite, due to
the harmonic oscillations, over the nearest-neighbor distance
a. The parameter combination chosen isZ=600 and s
=100 nm for the five different candidate structures as func-
tions of the density. For classical crystals of particles that
interact by means of steeply repulsive interactions, a Linde-
mann ratio of 10 to 13% indicates an incipient melting
transition.56 We see that this criterion is still valid forrs3

&3, i.e., where the classical freezing structures fcc and bcc
are encountered. However, as we increase the density and as
we proceed to the more open structures, the Lindemann ra-
tios of these structures clearly pass this threshold. It is ex-
pected, of course, that for the highly anisotropic exotic struc-
tures at high densities, the Lindemann ratios along the
various lattice directions will show a corresponding aniso-
tropy. Nevertheless, even for the more isotropic fcc and bcc
crystals, the Lindemann ratios show a clear increase at highr
values, an indication of the softening of the crystals that
become more delocalized. Further, although fcc and/or bcc
have over the entire density range investigated the smallestL
values, they do not represent the stable structures: instead, in
the high-density region strongly anisotropic structures have
been found to be the stable ones.

From these considerations, the following conclusions
can be drawn:sid we confirm earlier results that for ultrasoft
interactions highly asymmetric structures are found to be
specific in the intermediate- and high-density region of the
phase diagram. The arguments that have justified closed
packed structures in systems with harshly repulsive interac-
tions have to be reconsidered thoroughly: due to the rela-
tively small energy penalty for short interparticle distances in
systems with bounded potentials it is from the energetic
point of view more attractive to first build a shell of a few
neighbors at rather short distances and then a second shell of
particles at rather remote distances. This explains why the
anisotropic, exotic crystals with a small number of nearest
neighbors are preferred in freezing processes at high densi-
ties.sii d It therefore does not surprise that the well tested and
established freezing rulessdue to Hansen and Verlet or based
on the Lindemann ratiod are valid only in a restricted part of
the phase diagram and can no longer be used to predict freez-
ing transitions in the entire phase space: above the overlap
densityr* these traditional melting/freezing criteria are vio-
lated. We take these two findings as indications that a rich
variety of unexpected new phenomena is still waiting to be
discovered in the physics of systems with soft interactions.

VI. INFLUENCE OF THE STERIC INTERACTIONS

Up to now, the steric repulsion that is due to the overlap
between the monomer units of two interacting microgels has
been ignored and the analysis has been carried out exclu-
sively on the basis of the electrostatic and counterion-
induced interactions between the macromolecular aggre-
gates. We will now add to the effective potential, Eqs.
s3d–s5d, the steric repulsions. In agreement with the deriva-
tion of the electrostatic interactions in Ref. 31, we model the
microgels as homogeneous spheres of diameters, each being
characterized by a monomer volume fractionf in its interior.

FIG. 10. Representative results for the aspect ratios of the conventional unit
cells of the of the various crystal structures. Shown here are results for
Z=600.

FIG. 11. The Lindemann ratios of the various crystal structures as a function
of the density forZ=600.
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Within the framework of standard Flory–Huggins theory,1

the steric free energyFst
s1d associated with a single microgel

particle is given by the relation

Fst
s1d =

V0

vc
kBTS1

2
− xDf2, s13d

whereV0=ps3/6 is the volume of the microgel particle,vc

is the typical volume occupied by a monomer, andx is the
Flory–Huggins parameter characterizing the solvent quality,
with x=0 representing an athermal solvent andx=1/2 aQ
solvent.

Generalizing now the Flory–Huggins arguments to two
overlapping microgels separated by a distanceDøs, we can
derive the associated steric free energyFst

s2dsDd as

Fst
s2dsDd =

2V0

vc
kBTS1

2
− xDf2F1 −

3

2
SD

s
D +

1

2
SD

s
D3G + 2Fst

s1d.

s14d

Accordingly, the steric interactionvstsDd=Fst
s2dsDd−Fst

s2ds`d
=Fst

s2dsDd−2Fst
s1d takes the form

bvstsDd = 5aF1 −
3

2
SD

s
D +

1

2
SD

s
D3G , D ø s;

0, D . s,
6 s15d

where the dimensionless prefactora is given by the relation

a =
2V0

vc
kBTS1

2
− xDf2. s16d

The typical size of swollen, ionic PNIPAM microgels lies in
the range 100 nm&s&600 nm. We fixs=100 nm in order
to compare the phase diagrams tht include the steric interac-
tion with the one shown in Fig. 7, which is based on the
electrostatic potential alone, and for which the same value of
s was chosen. For ionic PNIPAM microgels, the typical
monomer volume fraction lies in the range 10−3&f&6
310−2, see Table 2 in Ref. 10. In order to estimate the
“monomer volume”vc, we have to take into account the
Manning-condensed counterions that form “bound pairs”
with the backbones of the chains. It has been shown57 that a
good estimate isvc=30,2, with the typical monomer length
,<3 Å. Using Eq.s16d, we estimate the range of values for
the parametera to be

s 1
2 − xd & a & 200s 1

2 − xd , s17d

where 0øxø1/2.
We now consider the total interaction potentialvtotsrd

=veffsrd+vstsrd, where veffsrd is given by Eqs.s3d–s5d and
vstsrd by Eq. s15d above. As representative values for the
prefactora we choosea=100 anda=50 and we redraw the
phase diagrams following the same procedure described be-
fore. The resulting phase diagram fora=100 is shown in
Fig. 12. It can be seen that for sufficiently large values of the
chargeZ si.e., Z*150d, the steric interaction has practically
no influence on the phase boundaries, since the electrostatic
one, which scales withZ2, dominates. For low charge values,
however, the steric interaction causes freezing into fcc and
bcc lattices in the region in which the electrostatic interaction

alone cannot support any crystalline phases. As a matter of
fact, the topology of the phase diagram is altogether modi-
fied, in the sense that the stable fluid region is now broken up
into two fluid stability domains separated by a fcc region that
is followed by a bcc one, as the density grows at fixedZ. The
influence of the steric repulsion, therefore, is to extend the
region of stability of the solid phases. This is also demon-
strated in Fig. 13, pertaining toa=50, where it can be seen
that the steric repulsion is not strong enough to alter the
topology of the phase diagram; however, a growth of the
stability regions of the crystals takes place nevertheless. An-
other consequence of the introduction of the steric part in the
effective potential is a broadening of the stability region of
the fcc lattice against the bcc. This is clearly due to the
increased repulsion of the interaction potential, an effect that
favors the formation of close-packed structures. The critical
value ac for which the fluid region is split up into two dis-
connected domains has been found to beac>70.

VII. SUMMARY AND CONCLUDING REMARKS

We have examined in detail the structural and phase be-
havior of spherical, ionic microgels, which form a member

FIG. 12. The phase diagram of ionic microgels with diameters=100 nm,
including now the steric interaction of Eq.s15d. Here, the prefactora in Eq.
s16d has the valuea=100. Notice the extension of the intervening fcc and
bcc phases toZ=0 and the resulting separation of the domain of stability of
the fluid into two disconnected regions.

FIG. 13. Same as Fig. 12 but for a valuea=50 of the prefactor in Eq.s15d.
Notice that the fluid region remains connected but the regions of stability of
the fcc and bcc lattices are extended.
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of the class of ultrasoft colloids. This character is manifested
in their effective interaction potential, whose soft and
bounded character lies in the heart of a host of characteristic
properties of such systems: anomalous correlation functions,
reentrant melting regions and unusual crystal phases. Since
the crystalline symmetry of the solids stabilized by such in-
teractions is not cubic and the usual arguments that are based
on hard-sphere mappings and the concomitant close-packed
structures do not apply for such interactions, an extended
search over a large variety of crystalline arrangements is nec-
essary. To this effect, the evolutionary algorithm employed
and presented in this work, provides a reliable and efficient
tool to predict the equilibrium structures of the system, once
an accurate scheme for the estimate of their free energies is
available.

Our findings should be verifiable in experiments using
loosely cross linked and highly charged microgel particles,
whose synthesis is practicable with modern chemical tech-
niques. We also anticipate that, in analogy with star-polymer
solutions that show a similar topology of their equilibrium
phase diagram,50 ionic microgels may display unusual non-
equilibrium glass behavior,58 including reentrant liquification
or melting by addition of free homopolymer chains.59
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APPENDIX: ON THE RELATION BETWEEN
THE VOLUME TERMS FOR PENETRABLE
MICROGELS AND FOR IMPENETRABLE
COLLOIDAL SPHERES

In Ref. 33, linear response theory, which is formally
identical to the approach of Ref. 31, has been applied to
derive effective interaction potentials and the volume term of
charge-stabilized colloidal suspensions consisting of hard,
charged colloidal particlesschargeZed, their corresponding
counterions and possibly salt. The volume termF0 there
reads for the salt-free case as33

F0 = ZNkBTflnsZrL3d − 1g −
sZed2

2es

Nks

1 + ks/2

+ kBT
h

1 − h

2n+n−

n+ + n−
− ZN

kBT

2
, sA1d

whereN is the number of colloidal particles in the solution,
s is their diameter,n± are the number densities of the
positively/negatively charged species,k is given by Eq.s6d,
andh is defined as

h =
prs3

6
, sA2d

with the densityr of the colloidal particles. A comparison of
Eq. s8d with Eq. sA1d shows that the two volume terms are
different, a manifestation of the physical discrepancy be-

tween the two systems: the microgels are penetrable to the
counterions but the colloids are not. Nevertheless, in the
mathematical limit of vanishing spatial extent of the
colloids60 and the microgelsss→0 for bothd, the two expres-
sions, Eqs.s8d and sA1d should coincide. For Eq.sA1d we
easily obtain

lim
s→0

F0 = ZNkBTflnsZrL3d − 1g − Nk
sZed2

2e
− ZN

kBT

2
.

sA3d

If we now naïvely take thes→0 limit in Eq. s8d, how-
ever, we do not obtain an expression identical to Eq.sA3d
above. In order to resolve this apparent inconsistency, we
first note that the volume termE0 is defined asfsee Eq.s14d
in Ref. 31g

E0 = ZNkBTflnsZrL3d − 1g +
N

2
lim
r→0

vindsrd

+ Nr lim
k→0

F−
1

2
v̂indskd + Zv̂mcskd +

Z2

2
v̂ccskdG , sA4d

with the Fourier transformsv̂indskd, v̂mcskd, andv̂ccskd of the
induced, microgel-counterion, and counterion-counterion in-
teractions, respectively. In going from the general Eq.sA4d
to Eq. s8d of the main text, the limitsr →0 andk→0 have
been taken whiles is held fixed at a finite value. When we
consider the limiting case of vanishing microgel extent, the
limit s→0 must be takenbeforethe limits r →0 andk→0
are carried out. With the help of Eqs.s34d ands40d of Ref. 31
and taking into account thatv̂ccskd=4pe2/ sek2d, we first find
that the third term in Eq.sA4d yields the corresponding third
term in the right hand side of Eq.sA3d, whereas the second
term takes the form:

lim
r→0

lim
s→0

vindsrd = −
4psZed2

e

1

s2pd3 E d3k
k2

k2sk2 + k2d

= k
sZed2

e
. sA5d

Introducing the last result into Eq.sA4d above, we obtain the
second term of Eq.sA3d and the equality lims→0E0

= lims→0F0 is established.
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