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Type-IV phase behavior in fluids with an internal degree of freedom
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We have identified a fourth archetype of phase diagram in binary symmetrical mixtures, which is
encountered when the ratio of the interaction between the unlike and the like particles is sufficiently
small. This type of phase diagram is characterized by the fact that the � line �i.e., the line of the
second-order demixing transition� intersects the first-order liquid-vapor curve at densities smaller
than the liquid-vapor critical density. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2042447�
The first systematic investigations on the phase behavior
of binary symmetrical fluid mixtures have been presented in
Ref. 1. In such a system the interaction between particles of
the same species �labeled “1” and “2”� is equal, i.e., �11�r�
=�22�r�, while the potential between unlike particles is fixed
via �12�r�=��11�r�. Often it is convenient to view such a
binary mixture as a one-component fluid whose particles
carry an internal degree of freedom.1 We point out that as a
consequence differences to other conventions might occur,
where, for instance, the demixed phase is counted as two
independent phases.2 For ��1 we expect three phases: the
homogeneous vapor, the homogeneous fluid, which is also
called mixed fluid �MF�, and the two symmetrical demixed
phases �DFs�, which are counted as one single phase and the
internal degree of freedom indicates whether this phase is 1
or 2 rich. The interesting phase phenomena encountered for
this system result from an interplay of two competing tran-
sitions, i.e., the line of the second-order demixing transition
�critical line at x=0.5, termed in the literature often as � line�
and the first-order liquid-vapor �LV� transition. Already in
the field-free case, i.e., when the difference in the chemical
potentials of the two species is zero, we observe a rather
complex phase behavior: three archetypes of the phase dia-
grams have been identified up to now, depending on how the
� line intersects the first-order LV coexistence line. Using a
typology that had been introduced in a related context �see
also below�,3 the three cases are characterized as follows �see
Fig. 1 of Ref. 1�: �i� In the type-I phase diagram the � line
approaches the LV coexistence boundary at temperatures
well below its critical temperature Tcr intersecting this curve
in a critical end point �CEP�. Above the CEP temperature
TCEP, the vapor and the mixed liquid of intermediate density
coexist; they become identical at the LV critical point. The
fluid demixes at higher densities as one crosses the � line.
The coexistence line below the CEP is a two-phase line
where the vapor and the demixed phase coexist. �ii� In the
type-III phase diagram, the � line intersects the LV coexist-
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ence line at the LV critical point, resulting in a tricritical
point where the vapor and the demixed phase become critical
simultaneously. The first-order transition between the vapor
and the mixed liquid is completely suppressed. �iii� In the
type-II phase diagram the intermediate situation is realized:
the � line approaches the LV coexistence curve slightly be-
low the LV critical temperature. As in type I one finds a LV
critical point and, similar as in type III, a tricritical point is
observed. In addition, a triple point is encountered where the
vapor, the mixed liquid at intermediate density, and the de-
mixed phase at higher densities coexist.

Obviously � represents an external parameter that is re-
sponsible for the transition from one topology of phase dia-
gram to the next. Confirmed by subsequent investigations of
other binary symmetrical mixtures4–9 and using liquid-state
theories of different levels of sophistication the following
scenario is by now well established: even though the specific
� value where one type of phase diagram transforms
in the subsequent one will distinctively depend on the par-
ticular potential and the liquid-state theory applied, the se-
quence of types remains unchanged, i.e., I�at large ��
↔ II↔ III�at small ��.

In an effort to establish a link to the classification
scheme of van Konynenburg and Scott,10 we have summa-
rized in Table I translation rules between the types of van
Konynenburg and Scott and those introduced by Tavares et

TABLE I. Correspondence between the types of binary symmetric mixtures
classified by van Konynenburg and Scott �see Figs. 1 and 38 of Ref. 10� and
the types I, II, III, and IV introduced by Tavares et al. �Ref. 3�. Types II-�
and II-� are subtypes of type II that are described in more detail in Ref. 15.

van Konynenburg and Scott Tavares

��0 I-A ��1 no demixing
��0 II-A ��1 I

II-A* II-�
III-A* II-�
III-HA III

not classified IV
© 2005 American Institute of Physics08-1
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al.3 In their study of binary van der Waals mixtures van
Konynenburg and Scott have introduced three parameters to
characterize the mixture: �, 	, and �. Our binary symmetric
mixture corresponds to �=0 since particles are of equal size
and 	=0 since the like particle interactions are equal. Their
parameter � can be related to our parameter � �see below�.

Interestingly, these three topologies of phase diagrams
were also encountered in other systems: Heisenberg fluids3,11

and Stockmayer fluids;12 “translation rules” can be provided
that prescribe how the vapor, the mixed, and the demixed
phases of the present model “translate” into the coexisting
phases of the respective system. Even though these systems
obviously describe a completely different scenario, in a
wider context they can be considered as one-component flu-
ids with an additional internal degree of freedom �such as the
dipolar and magnetic moments, or the particle species label�.
Thus they form one class of systems and are therefore char-
acterized by the same archetypes of phase diagrams. In each
of them a parameter can be identified that takes over the role
of �, triggering thus the consecution of types of phase dia-
grams which in all cases reads I↔ II↔ III. We conclude by
pointing out that the same types of phase diagrams are en-
countered if above fluids are exposed to external fields, such
as classical spin fluids in an external magnetic field13 or flu-
ids in contact with porous materials.14 The change between
the types of phase diagrams is then triggered by a complex
interplay between the internal degree of freedom and the
external field.

This nice and consistent scenario is only disturbed by the
fact that a fourth type of phase diagram had been encoun-
tered in Heisenberg fluids3,11 but not in the other systems
mentioned above: in the literature it is denoted as type IV.3

Here the � line intersects the LV coexistence curve at a CEP
at a density which is smaller than the density of the LV
critical point.

In the present contribution we report about our investi-
gations to localize this type of phase behavior in binary sym-
metrical mixtures. These efforts are motivated and justified
by the fact that for this system—being undoubtedly the sim-
plest representative in this class of systems—systematic in-
vestigations can be carried out much easier than in any other
case. Simplifications in the conceptual and computational
complexity with respect to the other systems of this class
become, in particular, apparent when an external field is
applied.15 The liquid-state theories we have used are based
on the mean spherical approximation �MSA�, i.e., an ap-
proach that clearly goes beyond the mean-field level and is
thus able to provide also quantitative information about the
phase behavior. In particular, for the system of our choice, a
binary symmetrical hard-core Yukawa �HCY� mixture, MSA
can be solved to a large extent analytically,16,17 which repre-
sents an additional and not negligible advantage over other
systems of this class, which, in general, require a signifi-
cantly larger amount of numerical and conceptual efforts. In
addition, we have used the self-consistent Ornstein-Zernike
approximation18 �SCOZA�, an advanced liquid-state concept,
which is able to provide even quantitative predictions for the

phase boundaries and for the location of the critical points.
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We have indeed found type-IV phase behavior for our
binary symmetrical mixture: it is realized as � is decreased
below the � range that characterizes the type-III topology. To
reestablish the link to the van Konynenburg and Scott clas-
sification scheme we point out that our particular choice of �
�i.e., �=0� corresponds in Ref. 10 to �=1; as can be seen
from Fig. 2 of Ref. 10 this region had not been investigated
by these authors. The reasons why this type of phase behav-
ior had not been encountered in the numerous investigations
of binary symmetrical mixtures performed up to now remain
rather obscure, in particular, in view of the fact that its pos-
sible existence was already surmised on a qualitative level in
Ref. 1 �and referring further details to Ref. 19�. One plau-
sible justification might be related to the fact that we had to
face considerable numerical problems to solve MSA and
SCOZA for this particular archetype �see below�.

Our investigations are based on a binary symmetrical
HCY mixture, where particles of species i and j interact via
potentials �ij�r�, given by

��ij�r� = �
 , r � �

−
Kij

r
exp�− z�r − ��� , r � � , � �1�

with i , j=1,2; �= �kBT�−1 �kB being the Boltzmann constant
and T the temperature�, � is the hard-core �HC� diameter
which will be used as the unit of length, and z is the inverse
screening length of the system. Symmetry imposes K11

=K22 and the parameter � relates the unlike to the like inter-
actions via K12=�K11; in this contribution ��1. The total
number density is 
=
1+
2, where 
1 and 
2 are the partial
number densities and x=
1 /
 is the concentration of species
1 �or also called molar ratio�. Reduced values z�=z�, 
�

=
�3, and T�=� /K11 will be used throughout the paper; for
simplicity we drop the stars from now onwards. We point out
that we only consider the equimolar �or field-free� case.

MSA and SCOZA are based on the same closure relation
to the Ornstein-Zernike �OZ� equations which reads for the
present model,

gij�r� = 0 for r � 1,

�2�
cij�r� = cHC;ij�r� + K�
,T,x��ij�r� for r � 1.

We have introduced the direct correlation functions cij�r� and
the pair distribution functions gij�r�, i , j=1,2, and cHC;ij�r�
are the direct correlation functions of the HC reference sys-
tem. For MSA, K�
 ,T ,x��−� while in the SCOZA frame-
work the yet undetermined state-dependent function
K�
 ,T ,x� is fixed by the global thermodynamic self-
consistency requirement for the isothermal compressibility,
calculated via the compressibility and the energy route. We
point out that—depending on the system parameters—a
small degree of inconsistency remains.

The rather complex formalism of SCOZA �for details we
refer to Refs. 7, 9, and 20� largely takes benefit of the avail-
ability of the analytic MSA solution for a HCY mixture with
an arbitrary number of components.16,17 This justifies a pos-
teriori our choice for this particular system, which, as we

explicitly point out, does not represent any restriction: any
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other binary symmetrical mixture with a different �short-
ranged� potential would have lead on a qualitative level to
the same results.

Once MSA or SCOZA have been solved, the thermody-
namic properties of the system can readily be calculated. In
particular, we require the pressure P and the chemical poten-
tials �1 and �2 for the determination of the phase diagram.
The coexistence equations have been solved with well-tested
numerical algorithms, taking benefit of some symmetry rela-
tions in �’s due to the symmetry in the interactions �again,
for details, see Refs. 7 and 20�.

In Fig. 1 we show the phase diagram of a particular
HCY system obtained within SCOZA, characterized by
z=1.8 and �=0, corresponding to a pure HC repulsion be-
tween particles of different species. The � line intersects the
first-order LV coexistence curve on the low-density �i.e., on
the vapor� side in a CEP. Above the LV critical temperature
Tcr we observe a mixed fluid at lower densities and a de-
mixed fluid at higher densities. In the temperature range be-
low Tcr and above TCEP two-phase coexistence between a
demixed fluid of intermediate and a demixed fluid of high
density is observed, the two phases becoming identical above
Tcr. If one decreases the temperature to TCEP a critical DF of
intermediate densities coexists with a noncritical DF of
higher densities; below TCEP one finds coexistence betweeen
a homogeneous vapor and a DF at higher densities.

From the numerical point of view, the determination of
the type-IV phase diagram is considerably more delicate than
in the other three archetypes. First, close to Tcr and TCEP the
solution algorithms for the coexistence equations break
down; we therefore leave the respective regions open. The
more serious numerical problems we had to face in the
type-IV topology are the following: the surface Sstab, where

2 2

FIG. 1. Type-IV phase diagram of a binary symmetrical HCY mixture with
z=1.8 and �=0 calculated within SCOZA: the full line is the coexistence
line, the dashed line is the stable � line, and the dotted line is the metastable
� line. The full line corresponds to the MF-DF coexistence line below the
CEP temperature TCEP and the DF-DF coexistence line above TCEP.
�� G /�x �=0, G being the Gibbs free energy, separates stable
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from unstable states �e.g., cf. discussion in Ref. 17�. In a
fully self-consistent approach, this surface touches the coex-
istence surface for the demixing transition, Sdemix, along the
� line and this is, e.g., the case as z→0: SCOZA �and MSA�
become fully self-consistent and we have indeed observed9

that Sstab and Sdemix touch along the � line. For larger z
values this consistency is violated �to a moderate degree�; if
� is sufficiently large, then Sstab lies now completely inside
the demixing region.

For the present study, however, we were faced on several
occasions with the situation that Sstab was not inside the de-
mixing region as � was lowered, but instead was shifted to
smaller densities; thus the demixing transition could not be
determined numerically. These results were confirmed both
by MSA and SCOZA. From several similar cases reported in
literature �see, e.g., Ref. 21� we know that if a liquid-state
theory breaks down, then it is not clear whether this can be
related to a complete instability of the system. Only further
investigations, e.g., by using different liquid-state theories or
computer simulations might lead to a conclusive decision.

ACKNOWLEDGMENTS

This work was supported by the Österreichische Fors-
chungsfond under Project Nos. P-14371-TPH, P15758-TPH,
and P17378-TPH, and the Jubiläumsfond der Stadt Wien
�Project No. 1080/2002�, and a grant through the Programme
d’Actions Intégrées AMADEUS under Project Nos.
06648PB and 7/2004. The authors are indebted to helpful
discussions with Dominique Levesque and Jean-Jacques
Weis �Orsay� and gratefully acknowledge the hospitality at
the Laboratoire de Physique Théorique at Orsay where part
of this work was performed.

1 N. B. Wilding, F. Schmid, and P. Nielaba, Phys. Rev. E 58, 2201 �1998�.
2 A. Bolz, U. K. Deiters, C. J. Peters, and T. W. de Loos, Pure Appl. Chem.

70, 2233 �1998�.
3 J. M. Tavares, M. M. Telo da Gama, P. I. C. Teixeira, J.-J. Weis, and M.
J. P. Nijmeijer, Phys. Rev. E 52, 1915 �1995�.

4 O. Antonevych, F. Forstmann, and E. Diaz-Herrera, Phys. Rev. E 65,
061504 �2002�.

5 D. Pini, M. Tau, A. Parola, and L. Reatto, Phys. Rev. E 67, 046116-1
�2003�.

6 N. B. Wilding, Phys. Rev. E 67, 052503-1 �2003�.
7 E. Schöll-Paschinger and G. Kahl, J. Chem. Phys. 118, 7414 �2003�.
8 E. Schöll-Paschinger, E. Gutlederer, and G. Kahl, J. Mol. Liq. 112, 5
�2004�.

9 E. Schöll-Paschinger, D. Levesque, J.-J. Weis, and G. Kahl, J. Chem.
Phys. 122, 024507-1 �2005�.

10 P. H. van Konynenburg and R. L. Scott, Philos. Trans. R. Soc. London,
Ser. A 51, 495 �1980�.

11 J.-J. Weis, M. J. P. Nijmeijer, J. M. Tavares, and M. M. Telo da Gama,
Phys. Rev. E 55, 436 �1997�; M. J. P. Nijmeijer and J.-J. Weis, Phys. Rev.
Lett. 75, 2887 �1995�; Phys. Rev. E 53, 591 �1996�.

12 B. Groh and S. Dietrich, Phys. Rev. E 50, 3814 �1994�; Phys. Rev. Lett.
72, 2422 �1994�; 74, 2617 �1997�.

13 W. Fenz, R. Folk, I. M. Mryglod, and I. P. Omelyan, Phys. Rev. E 68,
061510-1 �2003�; I. P. Omelyan, I. M. Mryglod, R. Folk, and W. Fenz,
ibid. 69, 061506-1 �2004�; I. P. Omelyan, W. Fenz, I. M. Mryglod, and R.
Folk, Phys. Rev. Lett. 94, 045701-1 �2005�.

14 E. Paschinger, D. Levesque, G. Kahl, and J.-J. Weis, Europhys. Lett. 55,
178 �2001�; E. Schöll-Paschinger, D. Levesque, J.-J. Weis, and G. Kahl,
Phys. Rev. E 64, 011502 �2001�.

15
 J. Köfinger, Diploma thesis, Technische Universität Wien, 2004.

AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



134508-4 E. Schöll-Paschinger and G. Kahl J. Chem. Phys. 123, 134508 �2005�
16 L. Blum and J. S. Høye, J. Stat. Phys. 19, 317 �1978�.
17 E. Arrieta, C. Jedrzejek, and K. N. Marsh, J. Chem. Phys. 95, 6806

�1991�.
18 D. Pini, G. Stell, and R. Dickman, Phys. Rev. E 57, 2862 �1998�; D. Pini,

G. Stell, and N. B. Wilding, Mol. Phys. 95, 483 �1998�.
Downloaded 05 Oct 2005 to 128.131.48.66. Redistribution subject to 
19 D. Roux, C. Coulon, and M. E. Cates, J. Phys. Chem. 96, 4174 �1992�.
20 E. Schöll-Paschinger, Ph.D. thesis, Technische Universität Wien, 2002;

thesis available from the homepage: http://tph.tuwien.ac.at/~paschinger/
and download “PhD.”

21 L. Belloni, J. Chem. Phys. 98, 8080 �1993�.
AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


