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The vapor-liquid phase behavior and the critical behavior of the square-well �SW� fluid are
investigated as a function of the interaction range, �� �1.25, 3�, by means of the self-consistent
Ornstein-Zernike approximation �SCOZA� and analytical equations of state based on a perturbation
theory �A. L. Benavides and F. del Rio, Mol. Phys. 68, 983 �1989�; A. Gil-Villegas, F. del Rio, and
A. L. Benavides, Fluid Phase Equilib. 119, 97 �1996��. For this purpose the SCOZA, which has
been restricted up to now to a few model systems, has been generalized to hard-core systems with
arbitrary interaction potentials requiring a fully numerical solution of an integro-partial differential
equation. Both approaches, in general, describe well the liquid-vapor phase diagram of the
square-well fluid when compared with simulation data. SCOZA yields very precise predictions for
the coexistence curves in the case of long ranged SW interaction ���1.5�, and the perturbation
theory is able to predict the binodal curves and the saturated pressures, for all interaction ranges
considered if one stays away from the critical region. In all cases, the SCOZA gives very good
predictions for the critical temperatures and the critical pressures, while the perturbation theory
approach tends to slightly overestimate these quantities. Furthermore, we propose analytical
expressions for the critical temperatures and pressures as a function of the square-well range.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2137713�
I. INTRODUCTION

In the last decades the square-well �SW� fluid has been
the subject of extensive studies using different statistical me-
chanical methods. This is due to the following reasons: On
the one hand, the SW fluid itself represents a good and
simple model that includes the presence of attractive and
repulsive forces and is able to reproduce the behavior of
simple fluids. On the other hand, it has been incorporated as
an important ingredient in theories for complex fluids, in-
cluding mixtures, chain molecules, associating fluids, and
polar fluids, among others. Reference 1 gives an idea of the
state of the art of the methods and applications explored with
the SW potential. Furthermore, different values of the inter-
action range cover a large variety of different systems rang-
ing from sticky hard spheres in the limiting case of infinitely
deep and infinitely short-ranged SW potentials to the van der
Waals limit for long-ranged and very shallow potentials. Re-
cently, renewed attention has been paid to short-ranged SW
fluids2–5 as a model of colloids and protein solutions.6,7

Due to advanced simulation techniques and sophisticated
integral equation and perturbation theories, the liquid-vapor
phase diagram of the SW fluid is now very well
understood.1,8,9 As a consequence, there are nowadays sev-
eral analytic equations of state available for different values
of the range of the potential.2,3,10–16 Here, we have selected
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two theoretical methods and investigate their accuracy by
comparison with available simulation data for intermediate
and long ranges �� �1.25, 3�: the self-consistent Ornstein-
Zernike approach �SCOZA� and a perturbation theory. In
particular, we test their reliability when being applied to the
determination of the vapor-liquid transition.

The first theoretical approach used in this work is the
SCOZA, an advanced self-consistent integral equation theory
that has been applied with success to a variety of Hamil-
tonian systems: discrete systems such as the lattice gas17 as
well as continuum systems such as the Yukawa fluid.18 It is
based on a generalized mean-spherical ansatz �MSA�, intro-
ducing in the MSA closure relation a state-dependent func-
tion that is fixed through a thermodynamic consistency cri-
terion. Comparison with computer simulations showed in an
impressive way that SCOZA yields globally accurate struc-
tural and thermodynamic properties even near the phase tran-
sitions and in the critical region. Recently, it has also been
generalized to the study of binary mixtures.19,20 The only
drawback of the method is its restriction to model systems
for which the MSA is semianalytically solvable, like the
Yukawa18 or the Sogami-Ise fluid.21 A major challenge is
thus the solution of the SCOZA equations when one goes
beyond linear combinations of Yukawa tails that model the
soft contributions of the pair potential. This is done in this
work: we present here the generalization of the SCOZA to

hard-core potentials with arbitrary tails and describe the nu-
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merical solution algorithm of the SCOZA integro-partial dif-
ferential equation. In particular, we present its application to
the SW potential.

The second theoretical approach considers the
intermediate-range square-well equation of state
�IRSWEOS� developed by Gil-Villegas et al.16 for 1.25��
�2 and the long-range square-well equation of state
�LRSWEOS� for ��2 obtained by Benavides and del Río.15

Both equations were developed by using a perturbation
theory. They are analytical in the temperature, density, and
intermolecular parameters. These equations have been incor-
porated in perturbation theories for discrete potentials,22 po-
lar square-well fluids,23–26 and binary mixtures.27 At the time
they were obtained they were compared with available simu-
lation data, but since more refined simulation techniques
have been developed recently, we will actualize the compari-
son in this work. In particular, we compare the LRSWEOS
with recent simulation data for 2���310. To the best of our
knowledge this region had never been investigated by simu-
lation techniques before, and this is the first time that the
long-range equation of state proposed by Benavides and del
Río will be tested.15 For the case of the longest interaction
range �=3 this equation reproduces very well the simulation
data.9,28

In Sec. II we describe the SCOZA method and the ana-
lytical equations of state used in the present work. The SW
phase diagrams, the saturation pressures, and the critical
points for different interaction ranges are shown and dis-
cussed in Sec. III. Comparisons with available simulation
data are included and particular emphasis is put on the criti-
cal region. Finally, in Sec. IV we close our paper with some
conclusions and perspectives.

II. THEORETICAL APPROACHES

We consider a system of spherical particles of diameter
� which are interacting via a square-well potential �SW

given by

�SW�r� = �� r � �

− � � � r � ��

0 r � �� ,
� �1�

where r is the interparticle distance, � is the depth of the
potential, and � is the reduced range of the potential well.
Appropriate reduced quantities can be defined by scaling
with the energy depth � and the hard-core diameter �, e.g.,
T*=kT /� , 	*=	�3. The two approaches used in this work
are presented in the following.

A. SCOZA for arbitrary hard-core potentials

The self-consistent Ornstein-Zernike approximation
�SCOZA� is based on a generalized MSA, introducing in the
MSA relation one or more density- and temperature-
dependent functions which are determined by enforcing con-
sistency between two or three different routes to thermody-
namics. Although the first concepts of SCOZA were
proposed by Høye and Stell29,30 nearly 30 years ago, its nu-
merical solution remained for a long time an unsolved prob-

17
lem and its practical applications started only in 1996. Up
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to now SCOZA has been solved for a small number of dis-
crete systems,17,31–36 and continuum systems,19,20,37–41 and
the results showed—when compared with computer
simulations—that the theory gives very accurate predictions
for the coexistence curves, even in the critical region, where
conventional liquid-state theories usually have to face the
following problems: the shape of the coexistence curve and
the location of the critical point are not reproduced correctly,
and the critical exponents are not the exact ones. Some the-
oretical approaches even fail to converge in the critical re-
gion, so that the liquid and vapor branches of the coexistence
curve remain unconnected. SCOZA is able to cope with
these problems: the liquid-vapor coexistence curve and the
critical point are localized very accurately, and the critical
exponents that have been studied both analytically by Høye
et al.42 and numerically by investigating the effective
exponents18,31,32 are close to the exact ones. However, in the
case of continuum fluids, applications of the SCOZA have
been restricted up to now to hard-core interactions with a
formally arbitrary number of adjacent Yukawa18 or
Sogami-Ise21 tails since the SCOZA formulation largely
takes advantage of the availability of the semianalytic MSA
solution for these systems. In order to solve SCOZA for
other pair potentials such as the Lennard-Jones38 or the Giri-
falco potential for fullerenes,40 these had to be approximated
by linear combinations of Yukawa tails. The obvious success
of the SCOZA has motivated us to contribute to its exten-
sion: here, we present the—now fully numerical—solution
of SCOZA for an arbitrary hard-core potential ��r� given by

��r� = �� r � �

w�r� r � � ,
� �2�

where the repulsion is characterized by the hard-sphere di-
ameter � and w�r� is an arbitrary tail. As will be shown in the
following the solution of the SCOZA for an arbitrary hard-
core potential corresponds to the solution of an integro-
partial differential equation.

The version of the SCOZA considered here is based on
the Ornstein-Zernike �OZ� equation

h�r� = c�r� + 		 d3r�c�r��h�
r − r�
� �3�

supplemented with the following closure relation:

g�r� = 0 for r � � ,

c�r� = cHS�r� + K�	,
�w�r� for r � � . �4�

h�r� and c�r� are the total and direct correlation functions;
g�r�=h�r�−1 is the pair distribution function; cHS�r� is the
direct correlation function of the hard-sphere �HS� reference
system given, for example, by the Waisman
parametrization;43 and K�	 ,
� is a yet undetermined func-
tion depending on the thermodynamic state that is given by
the density 	 and the inverse temperature 
=1/kBT ,kB being
the Boltzmann constant. The closure resembles the one used
in the lowest-order gamma-ordered �LOGA� approximation,
which is equivalent to the optimized random-phase

44,45
approximation �ORPA� where K�	 ,
�=−
 is fixed.
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Here, K�	 ,
� is not given a priori but is determined through
the thermodynamic self-consistency requirement between the
compressibility and the energy route to the thermodynamic
properties.46

We recall that, according to the compressibility route,
the reduced isothermal compressibility is given by

1

�red =
�
P

�	
= 1 − 	c̃�k = 0� , �5�

where c̃�k� denotes the Fourier transform of c�r�

c̃�k� =	 c�r�e−ikr d3r . �6�

On the other hand, the excess �over ideal� internal energy per
unit volume u, calculated via the internal energy route, is

Uex

V
= u = 2�	2	

�

�

dr r2w�r�g�r� . �7�

If �red and u are consistent with each other, they must stem
from a unique Helmholtz free-energy density F /V= f = f id

+ fex, where f id and fex are the ideal and excess parts of the
free-energy density. Thus

	
�2u

�	2 = 	
�2

�	2

�
fex

�

=

�

�

�	

�

ex

�	
� =

�

�

� 1

�red� , �8�

where 
ex=�fex/�	 is the excess chemical potential. For ap-
proximate g�r� �as obtained, for instance, by conventional
integral equation and perturbation theories46� Eq. �8�, where
�red is given by Eq. �5� and u by Eq. �7�, is not fulfilled. In
the SCOZA, however, this consistency is enforced through
an appropriate choice of the yet undetermined function
K�	 ,
� that is obtained by solving the partial differential
equation �PDE� �Eq. �8�� supplemented by Eqs. �3�, �4�, �5�,
and �7�.

First, we reformulate the PDE �Eq. �8�� as a PDE for the
unknown function u

	
�2u

�	2 =
�

�u
� 1

�red� �u

�

= B�	,u�

�u

�

, �9�

where the diffusion coefficient of the quasilinear diffusion
equation is B�	 ,
�=� /�u�1/�red�. In the numerical solution
of the PDE the partial derivative � /�u�1/�red� is approxi-
mated by the central difference quotient

�

�u
� 1

�red��	,u�


 � 1

�red�	,u + �u� −
1

�red�	,u − �u��� �2�u� .

�10�

What remains is to determine �red as a function of u. This
will be outlined in the following: First, we determine the
unknown function K�	 ,
� for a given value of u by solving

the nonlinear equation
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F�	,K,u� = u − 2�	2	
�

�

drr2w�r�g�r;K� = 0, �11�

with the Newton-Raphson �NR� method �the derivative re-
quired in this scheme is approximated numerically�. In each
step of the NR iteration the pair distribution function g�r ;K�
is determined for a given value of K by solving the OZ
equation �3� together with the closure relation �4� using the
Labik, Malijevsky, and Vonka �LMV� algorithm,47 which is a
powerful combination of a Newton-Raphson technique and a
Picard iteration. Once K is determined for a given value of u
it is straightforward to calculate the direct correlation func-
tion c�r ;u� and thus �red�	 ,u� from Eq. �5�.

The PDE has been solved numerically via an implicit
finite-difference algorithm described in detail in31 in the re-
gion �
 ,	�� �0,
 f�� �0,	0�. The integration with respect to

 starts at 
=0 and goes down to lower temperatures. At
each density and temperature the nonlinear equation
F�	 ,K ,u�=0 is solved, yielding K and thus �red for a given
value of u+�u and u−�u. To ensure rapid convergence of
the NR iteration we take as initial guess for the values of K
the solution at the previous temperature step.

The boundary conditions are the following: For 	=0 we
set

u�	 = 0,
� = 0, ∀ 
 . �12�

For the boundary condition at high density 	0 we make use
of the so-called high-temperature approximation

�2u

�	2 �	0,
� =
�2u

�	2 �	0,
 = 0�, ∀ 
 . �13�

The initial condition u�	 ,
=0� can be determined by taking
into account that for 
=0 the direct correlation function c�r�
coincides with that of the HS gas, thus K�	 ,
=0�=0. The
unphysical region inside the spinodal is excluded from the
integration, and the boundary conditions on the spinodal are
chosen as follows: the value of K on the spinodal is obtained
by solving numerically the nonlinear equation

F�	,K� =
1

�red = 1 − 	c̄�k = 0,K� = 0 �14�

via a NR technique. In each step of the NR iteration
c�k=0,K� is determined by solving Eq. �3� supplemented
with �4�. Once we have K, and thus the structure functions,
the internal energy on the spinodal uS is calculated from the
energy route Eq. �7� and the boundary conditions on the
spinodal are

u�	Si
,
� = uS�	Si

�, i = 1,2, �15�

where 	Si
�i=1,2� are approximations of the spinodal densi-

ties on the discrete density grid at a given temperature. Their
values are determined by locating the change of sign of
1/�red.

Once u�	 ,
� has been calculated by solving the PDE
�9�, the pressure P and the chemical potential 
 are obtained

by integrating �
P /�
 and �

 /�
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�
P

�

= − u + 	

�u

�	
, �16�

�



�

=

�u

�	
, �17�

with respect to 
, where we have taken as integration con-
stants at 
=0 the Carnahan-Starling48 values for 
P and 




P�	,
 = 0� = 	
1 + � + �2 − �3

�1 − ��3 ,



�	,
 = 0� = ln 	 +
8� − 9�2 − 3�3

�1 − ��3 , �18�

where �=	�3� /6 is the packing fraction.
For the numerical solution of the PDE we have chosen a

density and temperature grid spacing of �	*=�	�3=0.001
and �
*=��
=5�10−4 for ��1.5 and �
=5�10−3 for
��1.5. Furthermore we have used 	0

*=1.2 for ��1.5 and
	0

*=1.15 for ��1.5 and �u*=�u�3 /�=10−4. For the Fourier
transforms required in the LMV algorithm we have used for
the discrete representation of the structure functions 1024
grid points with a spacing of �r*=�r /�=0.01 in real space.

B. Perturbation theory

We have selected the intermediate-range square-well
equation of state �IRSWEOS� developed by Gil-Villegas
et al.16 for 1.25���2 and the long-range square-well equa-
tion of state �LRSWEOS� for ��2 obtained by Benavides
and del Río15 since they describe very well the SW thermo-
dynamic properties in a wide range of temperatures and den-
sities. Both equations have been obtained from the high-
temperature perturbation expansion, originally introduced by
Barker and Henderson.49 In this approach the excess Helm-

FIG. 1. �a� Liquid-vapor phase diagram of a SW fluid of intermediate range
IRSWEOS and the SCOZA results, respectively. Symbols show the simulatio
�Ref. 10�, Vega et al. ��� �Ref. 52�, and de Miguel ��� �Ref. 53�. We a
Liquid-vapor phase diagram of a SW fluid of intermediate range �=1.375 an
SCOZA results, respectively. Symbols show the simulation data of del Río e
also show the critical points predicted by IRSWEOS ��� and SCOZA ���.
holtz free energy can be expressed as
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A

NkT
=

AHS

NkT
+

1

T*a1�	*,�� +
1

T*2a2�	*,�� + aR�	*,�,T*� ,

�19�

where AHS is the free energy of the hard-sphere reference
fluid; a1�	* ,�� ,a2�	* ,��, and aR�	* ,� ,T*� are the first-order,
second-order, and residual perturbation terms, respectively;
and T*=kBT /� is the reduced temperature. For the
IRSWEOS, the explicit analytical expressions for these
terms are given in Ref. 16. The residual term is an estimate
of the higher-order terms. The LRSWEOS is a second-order
theory which means that there is no residual term. The ex-
plicit form of a1�	* ,�� and a2�	* ,�� can be found in Ref. 15.
The main advantage of this equation of state is that it pro-
vides a correction to the van der Waals limit and that its
low-density expansion is exact to the order of the fourth
virial coefficient. The second-order terms of both equations
of state are more accurate than the corresponding local com-
pressibility approximation �LCA� or macroscopic compress-
ibility approximation �MCA� values proposed by Barker and
Henderson.49 Both equations give results that are comparable
to those produced by the equation of state proposed by Patel
et al.10

III. LIQUID-VAPOR PHASE DIAGRAM AND CRITICAL
BEHAVIOR FOR VARIABLE INTERACTION
RANGE

One way to test the theoretical approaches used in this
work is to analyze the vapor-liquid phase diagrams predicted
by both frameworks and compare them with available simu-
lation data.50 Special attention is devoted to the critical re-
gion where SCOZA is known to yield accurate results. In this
analysis we have considered two regimes of � values: inter-
mediate �1.25���2� and long �2���3� ranges.

In Figs. 1�a� and 1�b� the liquid-vapor phase diagram of

1.75, and 1.5 in the �T* ,	*� plane. The solid and dashed lines represent the
a of del Río et al. ��� �Ref. 1�, Elliot and Hu ��� �Ref. 51�, Patel et al. ���
ow the critical points predicted by IRSWEOS ��� and SCOZA ���. �b�
5 in the �T* ,	*� plane. The solid and dashed lines represent IRSWEOS and
�� �Ref. 1�, Elliot and Hu ��� �Ref. 51�, and Vega et al. ��� �Ref. 52�. We
�=2,
n dat

lso sh
d 1.2

t al. �
a SW fluid of intermediate range � is shown. In this and in
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the following figures, the solid and dashed lines represent the
perturbation equations of state �IRSWEOS and LRSWEOS�
and the SCOZA results, respectively. Symbols show the
simulation data obtained by del Río et al.1 via a hybrid
Monte Carlo method, by Elliott and Hu51 using molecular-
dynamics simulations, by Patel et al.10 who performed both
Gibbs ensemble Monte Carlo �GEMC� and NVT-Monte
Carlo simulations, by Vega et al.52 with Gibbs Ensemble
Monte Carlo, and by de Miguel53 who used finite-size scal-
ing techniques to explore the critical region. As we can see,
both theoretical approaches give quantitatively good agree-
ment with the simulation data, specially for the vapor side of
the coexistence line. For higher coexistence densities and for
��1.5 the IRSWEOS gives better predictions than SCOZA
if one stays away from the critical region, while for �=2 and
high saturated densities, the agreement of SCOZA with
simulation data is better than that of the IRSWEOS. As ex-
pected, the IRSWEOS overestimates the critical points and
SCOZA gives very good predictions for all the � values con-
sidered.

In Fig. 2 we show the liquid-vapor phase diagram for
2���3. Both approaches are in good agreement with the
simulation data by Patel et al.10 It seems that the SCOZA
predictions are more accurate than the LRSWEOS. However,
in the region 0.4�	*�0.6 and for � values of 2.3, 2.5, and
2.7, the simulation data vary in a discontinuous way when
switching from NVT results to GEMC results; some data are
reproduced well by SCOZA and others by
LRSWEOS �see also Fig. 3�. This behavior seems to be due
to the use of Gibbs ensemble and NVT simulation techniques
for the different regions of temperature. Unfortunately, Patel
et al. have not reported the correct uncertainties on their
simulated data,54 and the size of the symbols that we selected
is not necessarily a real estimation of the errors. Since no
simulation data are available for the critical points, we show
in Fig. 2 only the critical points predicted by both

FIG. 2. Liquid-vapor phase diagram of a SW fluid of long range �=2.3, 2.5,
2.7, and 2.8. The solid and dashed lines represent the LRSWEOS and
SCOZA results, respectively. We also show the critical points �CP� predicted
by both LRSWEOS ��� and SCOZA ���. No simulation data are available
for the CP in this � regime. Open circles show the simulation data of Patel
et al. ��� �Ref. 10�.
LRSWEOS and SCOZA.
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Both theories show good agreement at the highest �
value considered in this work although LRSWEOS overesti-
mates the critical temperature, as we can see directly from
Fig. 3. In this figure we compare our results with three inde-
pendent sets of simulation data calculated with different
techniques: Benavides et al.28 who used the molecular-
dynamics technique, Orkoulas and Panagiotopoulos who per-
formed grand canonical Monte Carlo �GCMC� simulations,9

and Patel et al.10 who performed both GEMC and NVT-
Monte Carlo simulations. We notice that far from the critical
region the main differences between the theoretical ap-
proaches and simulation data appear for high coexistence
densities and reduced temperatures below 7.5. As in Fig. 2,
simulation data show different tendencies. Then still, the ori-
gin of the discrepancies between our theoretical results and
simulation data is not clear. Additionally, more simulation
studies would be required.

Figure 4 shows the reduced critical temperature Tc
* as a

function of the SW range. Both theories predict very well the
tendency of the reduced critical temperatures. We notice that
the IRSWEOS and LRSWEOS overestimate the Tc

* system-
atically. If we consider that SCOZA predicts the critical
points with high accuracy, as becomes visible in the phase
diagrams of Figs. 1–3, the SCOZA results for the different �
values considered in this work can be used as a good predic-
tion of the critical temperatures. This allows us to propose
the following analytical expression for the reduced critical
temperature as a function of the interaction range � that was
obtained by a polynomial fit to the SCOZA predictions:
Tc

*���=3.737−5.172�+2.205�2+0.070�3.
The reduced critical density 	c

* as a function of � is
shown in Fig. 5. A clear dispersion of the simulation data
predicted by several authors can be seen, making a compari-
son with the theories presented here rather difficult. Never-
theless, both theoretical approaches follow qualitatively the
behavior of the reduced critical densities shown separately

FIG. 3. Liquid-vapor phase diagram of a SW fluid for �=3. The solid and
dashed lines represent the LRSWEOS and the SCOZA results, respectively.
We also show the critical points predicted by LRSWEOS ���, SCOZA ���,
and Orkoulas and Panagiotopoulos �+� �Ref. 9�. Symbols show the simula-
tion data of Benavides et al. ��� �Ref. 28�, Orkoulas and Panagiotopoulos
���, and Patel et al. ��� �Ref. 10�.
for each author �see, for example, the results indicated by the
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triangles ��; for decreasing � we find a rather flat region
��� �2.3,3��, then a decreasing of 	c

* followed by a rapidly
increasing 	c

* if one moves further to smaller interaction
ranges. Although the critical points for the region 2���3
have not yet been explored by simulations, SCOZA and
LRSWEOS allow us to visualize the behavior of the reduced
critical density in this region. Both approaches converge ba-
sically to the same value at �=3 that was obtained by Ork-
oulas and Panagiotopoulos.

Figures 6 and 7 show the Clausius-Clapeyron represen-
tation of the saturated pressure for all � values considered in

FIG. 4. Critical temperature as a function of the range of the potential, �.
The solid and dashed lines are a polynomial fit to the critical temperatures
predicted by both perturbation theory �IRSWEOS and LRSWEOS� �small
symbol +� and SCOZA �small symbol �� for the � values used in this work.
The lines serve as a guide for the eye. Symbols show the simulation data of
del Río et al. ��� �Ref. 1�, Vega et al. ��� �Ref. 52�, de Miguel ��� �Ref.
53�, Orkoulas and Panagiotopoulos ��� �Ref. 9�, Elliot and Hu ��� �Ref.
51�, and Pagan and Gunton ��� �Ref. 55�.

FIG. 5. Critical density as a function of the range of the potential, �. The
solid and dashed lines are interpolations between critical densities predicted
by both perturbation theory �IRSWEOS and LRSWEOS� and SCOZA for
the � values used in this work. The lines serve as a guide for the eye.
Symbols show the simulation data of del Río et al. ��� �Ref. 1�, Vega et al.
��� �Ref. 52�, de Miguel ��� �Ref. 53�, Pagan and Gunton ��� �Ref. 55�,
Elliot and Hu ��� �Ref. 51�, and Orkoulas and Panagiotopoulos ���

�Ref. 9�.

Downloaded 03 Sep 2007 to 128.131.48.66. Redistribution subject to
this work. It is obvious from Fig. 6, that for intermediate
ranges SCOZA and IRSWEOS yield a good description of
the saturated pressure when compared with simulation data.
However, we observe a deviation between the approaches
when ��1.6, where IRSWEOS gives a better description
especially for low temperatures �see the simulation data for
�=1.5�. For long ranges, as shown in Fig. 7, the agreement
between both theoretical approaches is very good for the
whole temperature range. In particular, there are no differ-
ences between theories and simulation data for the case �
=3.

Figure 8 describes the behavior of the reduced critical
pressure Pc

* as a function of the SW range. This figure illus-
trates that the IRSWEOS and LRSWEOS tend to overesti-
mate Pc

* for all � values. Nevertheless, the SCOZA is in

FIG. 6. Clausius-Clapeyron representation of the saturated pressure as a
function of the range of the potential, 1.25���2. The solid and dashed
lines are perturbation theory �IRSWEOS and LRSWEOS� and SCOZA for
the � values used in this work. Symbols show the simulation data of del Río
et al. ��� �Ref. 1�, Orkoulas and Panagiotopoulos ��� �Ref. 9�, and Elliot
and Hu ��� �Ref. 51�.

FIG. 7. Clausius-Clapeyron representation of the saturated pressure as a
function of the range of the potential, 2���3. The solid and dashed lines
are perturbation theory �LRSWEOS� and SCOZA results for the � values
used in this work. Symbols show the simulation data of Orkoulas and Pa-

nagiotopoulos ��� �Ref. 9�.
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excellent agreement with the simulation data. Based
on the SCOZA results, we also propose an analytical
expression for the reduced critical pressure as a function
of the interaction range � : Pc

*���=0.155+0.326�−0.705�2

+0.385�3−0.053�4. The critical-point parameters Tc
* , 	c

*,
and Pc

* obtained within SCOZA and the IRSWEOS and LR-
SWEOS are summarized in Table I. The Tc

* values given
therein can be compared with simulation data and other the-
oretical results listed in Table I and Table II of Ref. 8. We
have not included the data of Vega et al.52 in Fig. 6 and 8
since their saturated pressures show an error between 10%
and 20% and the slope exhibits an unphysical behavior when
� is varied �see also the discussion by Elliott and Hu51 and
del Río et al.1�.

A comparison with simulation data has shown that the

FIG. 8. Critical pressure as a function of the range of the potential, �. The
solid and dashed lines are polynomial fits to the critical pressures predicted
by both perturbation theory �IRSWEOS and LRSWEOS� �small symbols +�
and SCOZA �small symbols �� for the � values used in this work. The lines
serve as a guide for the eye. Symbols show the simulation data of del Río et
al. ��� �Ref. 1�, Elliot and Hu ��� �Ref. 51�, and Orkoulas and Panagioto-
poulos ��� �Ref. 9�.

TABLE I. Critical-point parameters Tc
* , 	c

*, and Pc
*

SWEOS and LRSWEOS.

SCOZA

� Tc
* 	c

* Pc
*

3 9.941 0.258 0.87
2.8 8.069 0.262 0.70
2.7 7.230 0.266 0.63
2.5 5.712 0.275 0.50
2.3 4.366 0.278 0.37
2 2.699 0.252 0.20
1.8 1.957 0.247 0.13
1.75 1.809 0.249 0.12
1.7 1.672 0.252 0.11
1.6 1.427 0.260 0.10
1.5 1.210 0.272 0.09
1.4 1.014 0.286 0.08
1.375 0.978 0.291 0.07
1.3 0.843 0.319 0.07
1.25 0.761 0.343 0.07
Downloaded 03 Sep 2007 to 128.131.48.66. Redistribution subject to
accuracy of SCOZA deteriorates with decreasing interaction
range. In this context we have investigated the sensitivity of
the numerical solution of the SCOZA PDE with regard to the
choice of the density 	0, which is the value of the density
where the high-density boundary condition of Eq. �13� is
placed. For the long-ranged SW fluid we found that the so-
lution is rather insensitive to the choice of 	0. For example,
for �=3 and 	0

*=0.8, 0.9, 1, 1.1, and 1.2 the resulting coex-
istence curves are practically indistinguishable on the scale
of the figures. However, with decreasing interaction range �

we observed that we had to move 	0 to larger densities in
order to obtain SCOZA results that are insensitive to a fur-
ther increase of 	0. On the other hand, the possibility of
moving 	0 to larger densities is limited by the fact that the
LMV algorithm no longer converges for very high densities
and low temperatures. As a compromise we have chosen
	0

*=1.15 for the shorter-ranged cases. The error of the
SCOZA solution due to the influence of the high-density
boundary condition amplifies if one goes down to lower and
lower temperatures when solving the SCOZA PDE. So,
while the critical-point temperature Tc

* is still precisely pre-
dicted also for the short ranged SW fluids the accuracy of the
liquid side of the coexistence curve deteriorates �see, e.g., the
SCOZA coexistence curve for �=1.5 of Fig. 1�. This dete-
rioration of the SCOZA for short-ranged SW fluids might be
due to the fact that the only assumption made by the
SCOZA, namely, that the direct correlation function is of the
same range as the interaction potential, is no longer suitable
for very short-ranged potentials. These difficulties are also
encountered with other liquid-state theories, such as the
MSA or the ORPA, which are known to fail for very narrow
attractive potentials. In order to improve the performance of
the ORPA for narrow attractive wells Pini et al.56 have de-
veloped a modified version of the ORPA, which they called
nonlinear ORPA, since the contributions to the direct corre-
lation function are nonlinear in the interaction potential. Tak-
ing into account a functional form of the direct correlation

ifferent values of � obtained from SCOZA and IR-

IRSWEOS and LRSWEOS

Tc
* 	c

* Pc
*

10.089 9 0.253 3 0.920 6
8.187 8 0.254 3 0.750 2
7.333 1 0.254 8 0.673 6
5.805 2 0.256 3 0.536 5
4.504 4 0.258 2 0.419 7
2.785 1 0.242 9 0.232 9
2.089 5 0.256 4 0.186 7
1.948 4 0.263 0 0.180 1
1.817 1 0.271 0 0.175 1
1.577 6 0.292 2 0.168 8
1.360 3 0.322 4 0.166 7
1.155 5 0.367 7 0.168 1
1.104 8 0.382 6 0.168 8
0.948 5 0.439 8 0.170 0
0.831 9 0.491 7 0.165 4
for d

1
9
7
6
7
1
9
8
9
4
2
1
9
5
3
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function similar to that considered in the nonlinear ORPA
might also improve the SCOZA for short-ranged interactions
and is left to future work.

IV. CONCLUSIONS

We have used the self-consistent Ornstein-Zernike ap-
proximation �SCOZA� and analytical equations of state
based on a perturbation theory �IRSWEOS and LRSWEOS�
to determine the liquid-vapor phase diagram of the square-
well fluid of variable interaction range. In general, both ap-
proaches describe quantitatively the vapor-liquid phase dia-
gram of the square-well fluid when compared with
simulation data.

We have shown that SCOZA yields very precise predic-
tions for the binodal curves especially for the case of long-
ranged SW systems ���1.75�. Furthermore, the analytical
equations of state are able to describe the binodal curves and
the saturated pressures for the whole range of � values con-
sidered if one stays away from the critical region. It is well
known that the prediction of the critical points by means of
the standard statistical mechanics techniques such as pertur-
bation theories, integral equation theories, or density-
functional theories is a difficult task. However, we have
shown in the present work that SCOZA gives accurate esti-
mates for the critical thermodynamic variables for all the �
values considered. In particular, for ��1.5, the predictions
for the critical temperatures and the critical pressures agree
with the simulation results to about 5%. This has allowed us
to present analytical expressions for the critical temperatures
and pressures as functions of �. In all cases considered, the
analytical equations of state tend to overestimate these
critical-point parameters. For the critical density we ob-
served a larger dispersion of both simulation data and theo-
retical approaches. When comparing the theoretical ap-
proaches with simulation data for ��2 we noticed an erratic
behavior of the simulation data10,28 in the liquid branch, sug-
gesting that additional more refined simulations are required.

Due to the success of SCOZA in describing the critical
region, further analysis will be considered in future work.
Finally, we conclude that this work allows us to identify the
regions of applicability of both frameworks, at least for the
SW fluid of variable interaction range. We find that both
approaches complement each other and they are efficient
methods that can be used in a great variety of applications.
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