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Abstract. A review is given on recent studies of charged colloidal suspensions and
polyelectrolytes both in static and non-equilibrium situations. As far as static equilibrium
situations are concerned, we discuss three different problems: 1) Sedimentation density profiles
in charged suspensions are shown to exhibit a stretched non-bariometric wing at large heights
and binary suspensions under gravity can exhibit an analog of the brazil-nut effect known from
granular matter, i.e. the heavier particles settle on top of the lighter ones. 2) Soft polyelectrolyte
systems like polyelectrolyte stars and microgels show an ultra-soft effective interaction and
this results into an unusual equilibrium phase diagram including reentrant melting transitions
and stable open crystalline lattices. 3) The freezing transition in bilayers of confined charged
suspensions is discussed and a reentrant behaviour is obtained. As far as nonequilibrium
problems are concerned, we discuss an interface instability in oppositely driven colloidal mixtures
and discuss possible approaches to simulate electrokinetic effects in charged suspensions.

1. Introduction
If mesoscopic silica or polystyrene particles are brought into contact with a dipolar solvent
(such as water), ionic groups will dissociate into the solvent leaving back an oppositely charged
surface. This charging process is schematically shown in Figure 1. The net charge arising for
micron-sized colloidal spheres is huge and of the order of Z = 1000−100000 elementary charges.
Therefore these particles are called “polyions” or “macroions”. The microscopic ionic groups
which are dissociated in the solvent are called “counterions”. The fact that macroions are highly
charged brings them into the class of strongly coupled Coulomb systems, a field where the late
Yuri Klimontovich has brought in very originial ideas. Therefore we dedicate this paper to his
memory.

The traditional approach is the so-called “primitive model” of strongly asymmetric
electrolytes where the interaction between the different species is modelled by excluded volume
(hard core) and Coulomb interactions. The latter are reduced by a factor 1/ε from the bare
Coulomb law where ε denotes the dielectric constant of the solvent. Due to the long range
of the Coulomb interactions, there is a strong coupling between the ions leading to various
interesting effects both in equilibrium and non-equilibrium such as overcharging, like-charge
attraction and electrokinetic friction, see Refs. [1, 2, 3, 4, 5] for a review. The primitive model
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Figure 1. Sketch of charges at a macroionic surface on a molecular scale. The solvent molecules
are also shown.

can also be applied to polyelectrolytes which are long flexible or rod-like chain molecules with
charges along their backbone or with charged side groups. These chains can be linear or can
possess more complicated architectures such as star-like polyelectrolytes or crosslinked gels. A
conceptually simpler approach is based on the traditional linear screening theory of Debye and
Hückel which results in a Yukawa interaction between all charged macro-particles. The screening
is mediated by all the microions in the solution. If this model is applied to colloidal suspensions
and polyelectrolytes, there are still a variety of novel effects.

In this paper, we shall review some recent progress in the field of charged colloidal suspensions
and polyelectrolyte solutions, both for equilibrium and non-equilibrium situations. Regarding
equilibrium situations we discuss first of all colloidal sedimentation equilibrium. The associated
density profiles in charged suspensions are shown to exhibit a stretched non-bariometric wing
at large heights with an apparent mass that is smaller than the buoyant mass of the colloidal
particles. We explain this effect by counterion entropy. Furthermore, binary suspensions under
gravity exhibit a “colloidal brazil-nut effect” similar to that known from granular matter: the
heavier particles settle on top of the lighter ones provided their mass per charge is smaller than
that of the lighter particles. As a second example, we consider soft polyelectrolyte systems like
polyelectrolyte chains, polyelectrolyte stars and ionic microgels. These objects are governed by
a penetrable effective pairwise interaction as we demonstrate explicitly for long weakly charged
polyelectrolyte chains. In most cases, the dominant contribution to the pair interaction is again
counterion entropy. The penetrability leads to an equilibrium phase diagram with unusual
freezing properties including a reentrant melting transition and stable open crystalline lattices.
The third and last equilibrium situation considered here is the freezing transition in bilayers of
confined charged suspensions.

We then focus our attention to non-equilibrium problems. These are problems arising if an
external field is applied to an equilibrium charged suspensions [6]. Here the Brownian dynamics
of the suspensions becomes crucial. First an interface instability in oppositely driven colloidal
mixtures is described. Then we discuss possible approaches to simulate electrokinetic problems
in charged suspensions.
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2. Charged colloids under gravity
2.1. One-component charged suspensions
One hundred years ago, Einstein [7] suggested to extract Boltzmann’s constant kB from the
low-density wing of a colloidal sedimentation profile. In fact, Boltzmann statistics predicts an
exponentially decaying number density profile ρ(z) of the colloidal particles

ρ(z) ∝ exp(−z/�g) (1)

Here z is the height coordinate parallel to the direction of the gravitational acceleration g and

�g ≡ kBT/m0g (2)

is the gravitational length where m0 is the buoyant mass of a single colloidal particle and T is
the system temperature assuming an isothermal sample. Hence kB is obtained by the slope of
a plot of ln ρ(z) versus z provided all the other parameters are known. Perrin [8] actually used
this idea and determined kB. An interesting deviation from the ideal bariometric law (1) was
reported in 1993 using depolarized-light scattering experiments by Piazza et al [9]. In strongly
deionized charged colloidal suspensions, they found still an exponential decay of the colloidal
density profiles, but the associated decay length � was larger than the gravitational length �g.
This result can immediately be expressed in terms of an apparent mass m of the colloids which
is smaller than the buoyant mass m0, i.e. m/m0 = �g/� < 1.

The simplest theoretical understanding of the mass reduction is based on an entropic lift effect
as induced by the counterions [10, 11] provided they are slaved to the macroions due to the strong
Coulomb coupling. Suppose the system is salt-free and the Coulomb coupling is so strong that
the system is locally electroneutral. The latter assumption implies that the inhomogeneous
counterion density ρc(z) is enslaved to the macroion density ρm(z) via the constraint

qρc(z) = Zρm(z) (3)

where q is the counterion valency and Z is the macroion charge. The counterion entropy will
tend to delocalize the macroions. A straightforward density functional calculation then yields

m/m0 = 1/(Z/q + 1). (4)

This may be called an entropic lifting effect. A more detailed treatment including the effect
of added salt was done by Löwen [11] and van Roij [12]. In the latter work even density
profiles ρm(z) linear in z and the existence of a macroscopic electric field through the sample
counteracting gravity were predicted. This field was confirmed in recent experiments [13].
Computer simulations of the primitive model, on the other hand, were also used to predict
the colloidal density profiles. They reveal again a macroscopic electric field through the sample
[14]. Other simulations [15] confirm the result for the apparent mass m as obtained via the
density functional approach of Ref.[11].

A still open question is the effect of an external static field on the sedimentation profiles
of a charged suspensions. If the field counterbalances gravity, an interesting question is when
and how, the colloidal density profile delocalizes as revealed, e.g., by a divergent sedimentation
height

h =
∫ ∞

0
dz ρm(z)z. (5)

Based on Poisson-Boltzmann theory, delocalization transition (i.e. h → ∞) is expected when
the external electric field approaches the critical strength

Ec = m0g/|Ze|. (6)
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2.2. Colloidal “brazil nut” effect
Let us now discuss sedimentation of binary charged suspensions. Here we focus on an effect
which is similar to granular systems: Upon shaking binary granular grains in gravity the larger
particles lie on top of the smaller ones even if they are heavier and denser than the small ones.
This is due to a sifting mechanism in which tiny grains filter through the interstices between the
large particles well-known as “brazil-nut” effect: in a jar of mixed nuts or in a cereal package,
the largest species rises to the top [16, 17].

Recently, in Ref. [15], equilibrium density profiles of binary charged colloidal fluids under
gravity were calculated based on computer simulations of the primitive model and using density
functional theory. It was predicted that the heavier particles sediment on top of the lighter ones
provided they are very highly charged. In analogy to granular matter, this counter-intuitive effect
was called colloidal brazil-nut effect. Again it is generated by the entropy of the microscopic
counterions in the solution which are coupled to the macroions by strong Coulomb binding. In
fact, it is the ratio of buoyant mass per colloidal charge which controlls the efficiency of the
effect: the species with the smallest α is lifted most. Density functional theory predicts that a
brazil nut effect occurs at

m1

Z1/q + 1
=

m2

Z2/q + 1
(7)

where Z1, Z2 and m1, m2 are the charge numbers and the buoyant masses of the two species
and q is the counterion charge. This finding was supported by extensive Monte Carlo computer
simulations of the primitive model. Simulation results for the colloidal and counterion densities
are shown in Figure 2 confirming the criterion (7). Although the first species is heavier than
the second one, its averaged height is much larger than that of the second species in the case
Z1 = 45. It has also be shown in Ref. [15] that the brazil nut effect is stable with respect to
addition of salt but the overall salt concentration has to be relatively small.

The brazil nut effect is predicted only in the wings. For finite densities at lower height of the
sediment, however, Archimedes’ law applied to an effective volume set by the strength of the
interaction will also lead to a similar trend. Therefore it should be possible to see the brazil-nut
effect experimentally.

3. Polyelectrolytes with ultrasoft interactions: equilibrium properties
3.1. Effective interactions between weakly charged linear polyelectrolyte chains
As a first example, we briefly discuss weakly charged linear polyelectrolyte chains. Results for
the effective forces as a function of their mutual centre-of-mass separation D are presented in
Figure3. The effective potentials obtained are ultrasoft and bounded for vanishing center-of-
mass distances but nevertheless much more repulsive than those obtained for polymer chains.
The physical reasons lie both in the electrostatic repulsion between the charges carried on the
chains and in the entropically caused osmotic pressure of the counterions that are trapped within
the interior of the chains. The effective potential includes an explicit density dependence arising
from the redistribution of counterions inside and outside the chains upon a change of the overall
concentration. The data can very well be described by a Gaussian form in agreement with a
theoretical mean-field model [18].

3.2. Freezing in polyelectrolyte star solutions
Let us now discuss highly charged and star-like polyelectrolytes. Pioneering work on star-shaped
polyelectrolytes (“porcupines”) goes back to Pincus [19], who predicted that the force between
two polyelectrolyte stars should be dominated by the entropic contribution of the counterions.
Jusufi and coworkes used molecular Dynamics computer simulations of monomer resolved models
and put forward a variational theory to study the sizes, conformations and interactions of
polyelectrolyte stars for high charging fractions [20, 21]. An analytical expression of the effective
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Figure 2. Density profiles of macro- and counterions for Z1 = 45, 30, 25 (solid lines; top to
bottom). The second colloidal component is shown as a dashed line. Counterion densities (thin
lines) have been divided by Z1 + Z2. For clarity, curves pertaining to different simulation runs
have been shifted by 5 × 10−4 with respect to each other. The parameters are: m1/m2 = 1.5,
Z2 = 15, �2/σ = 10, with �2 denoting the gravitational length of the second species and
σ denoting the hard core diameter of the two species. Furthermore the Bjerrum length is
λB = σ/128 and the partial densities per area of both colloidal species are 0.1/σ2. There is no
added salt. From Ref. [15].
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Figure 3. Effective force Feff(D) acting on the center-of-mass of a polyelectrolyte chain as a
function of the interchain separation D scaled by the radius of gyration Rg of a single chain.
The results shown here pertain to chains with N = 100 monomers each and charging fraction
α = 0.10, i.e., every tenth monomer is charged. The solid line represents a mean-field theoretical
prediction, whereas points denote corresponding computer simulation data. From Ref. [18].
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interactions between two polyelectrolyte stars obtained by the theory was confirmed by the
simulations. A further analysis of the analytical expression [22] revealed that the old argument
of Pincus was right: the interactions we mainly dominated by the entropy of the counterions
which are confined in the dumbbell-shaped region between two overlapping polyelectrolyte stars.
As a consequence, the interaction is very soft, it is even bounded for complete overlap. The
physical origin of the soft interaction, however, is different from that discussed in the previous
chapter. One caveat one has to keep in mind, is that the interaction is density dependent, similar
to the classic Debye-Hückel resp. Derjaguin-Landau-Verwey-Overbeek result [1].

The full phase diagram of a star-shaped polyelectrolyte solution has also been calculated
[23] based on liquid-integral theory for the fluid and harmonic theory of different crystalline
solids. The result is presented in Figure 4 in the plane spanned by the arm number f and
the number density ρs of the stars. Two features are worth to be mentioned. First there is a
reentrant melting effect for increasing density and a fixed arm number f of about 15. There is
first freezing into an fcc lattice which transfoms into a bcc lattice and then melts again. There is
a further reentrant melting with an intermediate bcc solid. Second, for large densities a wealth of
open and exotic lattices are getting stable such as body-centered othogonal lattices, hexagonal
stacks, simple cubic lattices and a diamond lattice. The latter is of importance to fabricate
optical band-gap materials (photonic crystals). The common wisdom is that steep interactions
exhibit freezing into an fcc lattice and soft interactions - as the one-component plasma with
a neutralizing homogeneous backgroud - freeze into bcc crystals. For ultrasoft interactions, the
lesson to be learned from Ref. [23] and from studies with similar soft potentials [24, 25], is that
more open crystal lattices get thermodynamically stable. An experimental verification of this
phase diagram is still needed.

3.3. Freezing in ionic microgels
A further example where soft interactions lead to reentrant melting and stable open crystal
structure are ionic microgels. We consider the case of spherical and weakly crosslinked but highly
charged gels. Their effective interaction is governed by the screened electrostatics. The simplest
approach to the effective interactions was discussed by Denton [26] and assumes homogeneously
charged spheres which are penetrable. Linear screening theory produces the pair interactions as
a convolution with the Yukawa kernel. The Fourier transform of the effective pair interaction
V (r) is then

ṽind(k) = −36
∏

Z2e2

ε

κ2

k6a4(k2 + κ2)

[
cos(ka) − sin(ka)

ka

]2

.

Here, Ze is the net microgel charge with the electron charge e, ε is the dielectric constant of
the solvent, a = σ/2 is the particle radius and κ =

√
4

∏
ncz2λB is the inverse Debye screening

length from the counterions of density nc and valency z. We will consider monovalent microions
in what follows and then their density nc is related to the microgel density ρ via the global
electroneutrality. Finally, λB = 7.1Å is the Bjerrum length. Note that the interaction is again
density dependent via the κ parameter.

The phase diagram was theoretically calculated in Ref. [27]. An example is shown in Figure
5 where the phases are plotted for different microgels charges Z as a function of the microgel
number density ρ scaled with the inverse cube of their diameter σ = 2a. Again there is reentrant
melting for increasing density ρ at fixed total charge Z for Z ≈ 250. And again, there are many
stable open lattice structures including now a trigonal low-symmetry structure which intervenes
between two body-centered orthogonal (bcs) structures of different anisotropies.
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Figure 4. Phase diagram of a polyelectrolyte star solution versus number density of the stars
ρs scaled with the corona radius R and versus arm number f . The charging fraction of the
monomers is 1/3. The Bjerrum length is fixed to λB = 7.1Å. There is no added salt. The points
denotes the phase coexistence between different crystal structures: apart from the fluid, there
are stable face-centered cubic (fcc), body centered cubic (bcc), body-centered-othogonal (bco),
hexagonally stacked (hex), simple cubic (sc), and diamond (dia) lattices. The squares denote
solid fluid transitions, the density gaps of the coexistence region are extremely small and not
resolved. The lines are guides to the eye. From Ref. [23].

3.4. Intuitive argument for reentrant melting and stable open lattices
Let us finally present a simple intuitive argument for the reentrant melting transition and the
stability of an open crystalline lattice. The typical shape of an ultrasoft effective interaction
potential needed to exhibit reentrant melting and stable open lattices has two ingredients, namely
a soft core and a separation distance (corona) σ above which the interaction is small. A linear
ramp potential, as sketched in Figure 6 , is one simple possible representative of this class.

Reentrant melting can be explained intuitively as follows, see Figure 6a: an increasing number
density ρ means that the mean interparticle spacing aN , i.e. the nearest neighbour distance, is
decreasing as aN ≈ ρ−1/3. For low density (corresponding to large aN ), the system is fluid,
since the repulsive interaction felt in the cage of neighbours is relatively small. Increasing the
density ρ, aN will reach σ from above where the system feels the strongly increasing repulsion.
This results in a freezing transition into a periodic lattice. Increasing the density ρ further, the
particle will softly penetrate each other, but the repulsive energetic penalty for penetration is
relatively weak. At the certain neighbour distance smaller than σ the system will realize this
and remelt again in order to increase its entropy again. This explains reentrant melting.

The stability of exotic open crystal lattices, on the other hand, is explained by discussing
simple lattice sums of the total potential energy. This corresponds to a zero temperature
(T = 0) consideration. Different lattice structures compete in their total potential energy and
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fcc bcc sc diamond

aNρ1/3 41/3/
√

2 2−2/3
√

3 1 8/
√

3
aNNρ1/3 41/3 21/3

√
2 2

√
2

aNNNρ1/3 41/3
√

2 21/3
√

2
√

3 2
NN 12 8 6 4
NNN 6 6 12 12
NNNN 24 12 8 12

Table 1. The first three nearest neighbour distances aN, aNN, and aNNN, reduced by ρ−1/3 and
the numbers, NN, NNN, and NNNN, of the first three neighbour shells for four different lattices
fcc, bcc, sc, diamond.

the structure that minimizes the potential energy per particle for a prescribed density will be
the stable phase. The lattice-sum potential energy U/N per particle reads

U/N =
1
2
[NNV (aN ) + NNNV (aNN ) + NNNNV (aNNN ) + ...] (XXX)

The factor 1/2 avoids double-counting and aN is the neighbour distance while aNN resp. aNNN

are the next nearest neighbour resp. the third nearest neighbour distance. They all scale with
the prescribed number density ρ as ρ−1/3. Correspondingly the positive integer numbers NN,
NNN and NNNN denote the number the nearest, next nearest and third-order neighbours. All
these quantities depend on the lattice chosen as summarized in Table 1.

Now the actual value of the lattice sums applied to a soft-core potential depends crucially
on the density. Let us discuss, for example, the case of an fcc lattice and a diamond structure,
see Figure 6b. If the density is such that the next nearest neighbours of the diamond structure
are kept out of the corona, the only contribution in the lattice sum (XXX) comes from the
first neighbours. Although aN is smaller in the diamond phase than in the fcc lattice, this is
more than compensated by the prefactor NN which is 4 for diamond and 12 for fcc. For steep
repulsions this is completely different as the sharp increase in V (r) makes an open lattice less
favorable. However, for ultrasoft potentials with a corona, there is a density window where an
open lattice (such as diamond) can get stable.

4. Freezing in bilayers of Yukawa particles
Let us now focus on phase behaviour in confined charged suspensions. A typical confinement
is achieved when the colloidal particles are between two narrows glass plates in a slit or wedge
geometry. As one knows from the phase diagram of neutral hard spheres between two neutral
plates, the crystalline phases exhibits layering and prism superlattices and there is a subtle
dependence on the plates distance [28, 29, 30, 31].

Recently the phase diagram was calculated for bilayers assuming a Yukawa pair interaction
V (r) ∝ exp(−κr)/r [32] for zero temperature. This is an appropriate model for charged colloid
or dusty plasmas [33, 34]. Five different nested bilayers crystalline structures were considered.
These are summarized in Table 2. The phase diagram which is shown in Figure 7 depends on
two length scale ratios, λ and η. Using the bilayer distance D, we define λ = κD and η = ρD2/2
where ρ is now the number density per area.

The phase diagram shown in Figure 7 is not a simple interpolation between the hard sphere
case (λ → ∞) and the confined plasma (λ → 0). The confined plasma was discussed earlier in
Refs. [35, 36]. There is a reentrant behavior of the IVA phase at fixed density upon varying λ as
indicated in Fig. 7 by the vertical arrow. This can in principle be confirmed in experiments on
charged suspensions as a function of added salt concentration [31].
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Phase a2/a1 c ρa2
1/2

I. Rectangular (0,
√

3) (a1 + a2)/2 1/
√

3
II. Rectangular (0, γ) (a1 + a2)/2 γ
III. Square (0, 1) (a1 + a2)/2 1
IV. Rhombic (cos θ, sin θ) (a1 + a2)α 1/ sin θ

V. Triangular (1/2,
√

3/2) (a1 + a2)/3 2/
√

3

Table 2. Structure and parameters of the different staggered bilayer crystals. a1 is set to
(a1, 0) where a1 is the nearest intralayer distance between particles. For phase II, γ = a2/a1

is the aspect ratio. For phase IV, θ is the angle between a1 and a2, and α is a free parameter
characterizing the relative lateral interlattice shift c. From Ref. [32].
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Figure 7. Phase diagram of the Yukawa bilayer in the (η, λ) plane. (a) The hard sphere
limit λ → ∞ is sketched on top. The dashed (solid) lines denote continuous (discontinuous)
transitions. The filled region corresponds to the coexistence domain of phases IV and V. The
tiny phase coexistence domain of phases IVA and IVB is thinner than the IVA/IVB boundary
line. Phase I appears only at extremely low η values and is not reported here. The vertical arrow
indicates the double reentrant behavior of phase IVA. The insets show the lattice geometries,
where the filled (open) circles correspond to the lower (upper) layer. (b) Magnification of
(a) showing a reentrant behavior of phase IVA occurring at moderate λ. The four diamonds
along the arrow indicate state points which were investigated by computer simulation at finite
temperatures. From Ref. [32].

5. Interface instability in oppositely driven colloidal mixtures
When binary mixtures of charged colloidal particles are driven by an external field, as e.g.
gravity or an electric field, they form particle lanes provided the external strength of the drive
is high enough. This was shown in nonequilibrium Brownian dynamics computer simulations
[37, 38, 39] and by theory [40, 41]. The direction of the lanes is along the driving force direction.
Typically the starting configuration is a completely mixed state.

Here we focus on another starting configuration namely a completely demixed state. Such a
situation may be experimentally achieved in colloid-polymer mixtures [42]. The data published
here are new and have some relevance in interpreting the Rayleigh Taylor instability without
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surface tension. For a finite surface tension, similar data have been published in [43].
We consider a two-dimensional model system interacting via a set of Yukawa pair potentials.

The asymmetric binary colloidal mixture comprises N1 + N2 Brownian colloidal particles in an
area S [37]. N1 particles are of type 1, the other N2 are of type 2 with partial number densities
ρ1 = N1/S and ρ2 = N2/S. In the following we set ρ1 = ρ2 = ρ. The colloidal suspension is held
at fixed temperature T via the bath of microscopic solvent particles. Two colloidal particles are
interacting via effective Yukawa potentials as follows:

V (r)
kBT

= U0 σ
exp(−κ(r − σ))

r
. (8)

Here r is the center-to-center separation, U0 is the interaction strength measured in terms of
the thermal energy kBT and κ is the inverse screening length and σ is a further length scale.
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Figure 8. Simulation snapshots for a) t = 0 τB, b) t = 0.45τB, c) t = 0.9τB, d) t = 1.35τB.
Simulation parameters are: κσ = 3, U0 = 10, Fσ

kBT = 90, ρσ2 = 0.5, N1 = N2 = 1000, ∆ = 0
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The dynamics of the colloids is completely overdamped Brownian motion. The friction
constant is ξ = 3πησ with η denoting the shear viscosity of the solvent. The constant external
force acting on the ith particle of species j, �F

(j)
i , has the same amplitude but an opposite

direction for the both constituents of the binary mixture. It is �F
(1)
i = F�ey and �F

(2)
i = −F�ey

where �ey is a unit vector along the y-direction of the system.
The stochastic Langevin equations for the colloidal trajectories �r

(j)
i (t) (j = 1, 2) (with

i = 1, ..., N1 for j = 1 and i = 1, ..., N2 for j = 2) read as

ξ
d�r

(j)
i

dt
= −�∇

�r
(j)
i

[
Nj′∑
k=1

V (| �r(j)
i − �r

(j′)
k |) +

Nj∑
k=1,k �=i

V (| �r(j)
i − �r

(j)
k |)] + �F

(j)
i + �K

(j)
i (t), (9)

where j′ is the complementary index to j (j′ = 1 if j = 2 and j′ = 2 if j = 1). The right-
hand-side includes all forces acting onto the colloidal particles, namely the force resulting from
inter-particle interactions, the external constant force, and the random forces �K

(j)
i describing

the collisions of the solvent molecules with the ith colloidal particle of species j. The latter are

Gaussian random numbers with zero mean, �K
(j)
i = 0, and variance

( �K
(k)
i )α(t)( �K

(n)
j )β(t′) = 2kBTξδαβδijδknδ(t − t′). (10)

The subscripts α and β stand for the two Cartesian components. Note that within this simple
Langevin picture, hydrodynamic interactions are ignored.

We solve the Langevin equations of motion by Brownian dynamics simulations [44, 45, 46]
using a finite time-step and the technique of Ermak [47, 48]. We use a square cell of length
� with periodic boundary conditions. The typical size of the time-step ∆t was 0.003τB, where
τB = ξσ2/kBT is a suitable Brownian timescale. We simulated typically 500 time steps which
corresponds to a simulation time of 1.5τB.

A set of different snapshots are presented in Figure 8 for different times. The starting
configuration at t = 0 (see Fig. 8.a) is a completely demixed configuration. One clearly sees the
onset of an interfacial instability upon a strong drive such that particles driven alike form lanes
which are penetrating eachother.

6. Simulating electrokinetic effects
Nonequilibrium effects in charged suspensions require a realistic description of the dynamics
both for the macroions and the microions. In particular, hydrodynamic interactions mediated
via the solvent when the macro- and microions are moving are getting important resulting in
electrokinetic effects. Hydrodynamical interactions are completely irrelevant for equilibrium
properties and were therefore not considered in the previous considerations of equilibrium
structure and phase diagrams.

Significant progress has been made in the last decade in studying the hydrodynamics of
many neutral colloids either by discrete lattice-Boltzmann methods, continuum solvent models,
or dissipative particle dynamics [49]. A special method was proposed by Tanaka and Araki in
Ref. [50]: quite complementary to lattice-Boltzmann methods where the fluid solvent is put on
a “solid” grid, in the ulimit: Command not found.

Tanaka-Araki method the solid particle is modelled as a highly viscous fluid. This
“fluidization method” avoids the numerically costly non-slip boundary condition at the colloidal
surfaces and provides an efficient computation of dynamical phenomena.

The hard problem is to include both explicit ions and hydrodynamics on the same level
combining electrostatics for the microions and hydrodynamics for the solvent. One obvious
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escape route is to simulate macroions, microions and explicit solvent (as e.g. water within the
SPC/E interaction) by molecular dynamics. Recent progress has been made by Dzubiella and
Hansen [51] but certainly only small macroparticles size (appropriate for proteins) can be treated
on present-day computers. A complementary strategy (more appropriate for microsized colloids)
is to stick to a mesoscale treatment of the solvent flow and to couple this dynamically to the ion
density field. One of the recent attempts based on lattice-Boltzmann approaches was proposed
by He and Li [52] assuming local charge neutrality. A different lattice-Boltzmann approach with
an additional charge density field was introduced by Warren [53] and later technically improved
by Horbach and Frenkel [54] and by Capuani and coworkers [55].

Recently, two further approaches were proposed: Kodama and coworkers [56] have proposed
another approach which is based on the “fluidization method” [50] of the solid colloidal particles.
The electrostatics of the microions is described on the level of Poisson-Boltzmann theory.
Kodama et al then consistently couple the diffusive dynamics of the microion density field
(including added salt) to the hydrodynamics of the solvent flow. They were able to solve a
full dynamical problem of electro-deposition of charged colloids near a charged planar substrate.
Second, Lobaskin and Dünweg [57] proposed an efficient hybrid lattice Boltzmann and Langevin
molecular dynamics scheme which is designed for charged suspensions as well [58].

Other interesting problems of charged colloidal dynamics are electrophoresis [59], electrolyte
friction [60], conductivity in suspensions driven by an electric field [62, 63] and crystal nucleation
and growth [61, 64]. With similar techniques are described above [52, 53, 54, 56] it should be
possible to tackle these problems in the near future.

7. Conclusions
While equilibrium situations are by now well-understood for simple systems, there are still many
fascinating open questions for complex fluids. We have shown examples as sedimentation density
wings in charged suspensions and very rich equilibrium freezing diagrams for systems governed
by ultrasoft interactions.

On the other hand, if simple systems are brought into nonequilibrium, such as charged
colloidal dispersions in external fields, genuine non-equilibrium effects arise which require a
more sophisticated theoretical treatment. The next decades will see much more efforts (and
hopefully progress) in this area. The relevant reserach directions can be classified according
to the complexity diagram shown in Figure 9 which provides a road-map of complexity. On
the x-axis system complexity is shown while there is another kind of complexity, namely the
complexity of the question posed, shown at the y-axis. On the one hand, system complexity
is related to the statistical degrees of freedom present in the system. The simplest case are
spherical particles while mixtures and orientational degrees of freedom represent a higher level
of system complexity. On the other hand, the complexity of the question asked can comprise
equilibrium situations, such as inhomogeneous systems near walls and in restricted geometries,
steady-state non-equilibrium cases such as systems under permanent shear flow or other time-
independent or oscillatory external fields. Finally, full non-equilibrium situations arise if a field
is turned on or switched off.

The research routes which can be followed are shown as arrows schematically in Figure 9. We
anticipate that the next decades will reveal a wealth of interesting physics in this interdisciplinary
domaine.
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Figure 9. Classification of complexity and main research routes in the research field of colloidal
dispersions in external fields. From Ref. [6].
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