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Continuing our investigation into the Hierarchical Reference Theory of fluids for thermodynamic
states of infinite isothermal compressibility κT we now turn to the available numerical evidence
to elucidate the character of the partial differential equation: Of the three scenarios identified
previously, only the assumption of the equations turning stiff when building up the divergence
of κT allows for a satisfactory interpretation of the data. In addition to the asymptotic regime
where the arguments of part I directly apply, a similar mechanism is identified that gives rise to
transient stiffness at intermediate cutoff for low enough temperature. Heuristic arguments point to
a connection between the form of the Fourier transform of the perturbational part of the interaction
potential and the cutoff where finite difference approximations of the differential equation cease to
be applicable, and they highlight the rather special standing of the hard-core Yukawa potential as
regards the severity of the computational difficulties.
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I. INTRODUCTION

In part I [1] of the present series of reports aiming
at a characterization of the asymptotic solution of the
Hierarchical Reference Theory (hrt, [2–8]) partial differ-
ential equation (pde) for thermodynamic states of di-
verging isothermal compressibility κT a total of three
different scenarios have been identified. Sticking to the
notational conventions and the definitions introduced in
part I, its appendix in particular, these are conveniently
distinguished by the values of the exponents r and s in
the relations

∂f

∂Q
= O(ε̄s),

∂2f

∂%2
= O(ε̄r)

(1)

assumed to hold for large ε̄ ≡ ε− 1, which itself is essen-
tially the exponential of f(Q, %). The latter is an aux-
iliary quantity related to the first derivative of the free
energy at density % with respect to the renormalization
group theoretical cutoff wavenumber Q. Its evolution is
governed by a quasi-linear pde of the form

∂f

∂Q
= d00 + d02

∂2f

∂%2
, d0i = O(ε̄); (2)

in case ε̄ acquires a power-law dependence on Q these
orders of the d0i are no longer valid and require some
modifications that can be found in section V of part I [1].
Integration of the above pde proceeds from Q = ∞ all
the way to Q = 0, thus mirroring the transition from the
hard spheres of diameter σ serving as reference system,
v(∞)(r) ≡ vhs(r), to the physically relevant target system
with potential v(0)(r) ≡ v(r) = vhs(r) + w(r). At inter-
mediate Q the cutoff dependent potential v(Q)(r) bears

little resemblance to v(r) [9] and should be regarded as a
purely formal device. Its precise definition can be found
in part I [1], together with that of f , ε̄, the pde co-
efficients d0i, and of any further symbols not explicitly
introduced.

According to eq. (A6) of part I [1] the isothermal com-
pressibility κT of the target system is proportional to ε̄
at Q = 0 so that infinite compressibility at the critical
point and within the binodal directly implies a singular
limit of f(Q, %) as Q→ 0. The boundaries of the density
range of diverging f are naturally identified with the den-
sities %v and %l of the coexisting vapor and liquid phase.
Outside the interval [%v, %l] as well as for non-vanishing
cutoff at arbitrary density, the solution f(Q, %) of eq. (2)
is guaranteed to be continuous and differentiable by con-
struction. As we have seen in part I [1], the conditions
of continuity, of occurrence of a singularity, and of finite-
ness allow us to extract a great deal of information from
the hrt pde. Of course, it is the initial and boundary
conditions imposed upon f that uniquely determine the
solution of the pde throughout its domain D and so se-
lect which of the three types of asymptotic solutions we
identified are realized in actual calculations.

The most natural assumption is, of course, that f(Q, %)
remains smooth even for Q→ 0 and ε̄→ ∞, correspond-
ing to r = s = 0; smoothness as we understand it is
tantamount to an ε̄ independence of the Q and % scales
characteristic of the variation of f , cf. eq. (1). As dis-
cussed in section III of part I [1], the strongest arguments
in favor of this simplistic smoothness assumption are the
intuitive appeal of the mechanism sketched there and the
prediction f ∝ 1/Q, immediately implying r = s = 0, of
the detailed analysis of ref. 7. These values of the ex-
ponents are, however, not easily reconciled with eq. (1)
and the asymptotic scaling of the coefficients d0i for large
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ε̄ indicated in eq. (2): Mathematical consistency can be
maintained in this scenario only by invoking the possi-
bility of a cancellation of terms that does, however, pose
rather stringent conditions we have not been able to con-
firm from the properties of the coefficient functions, cf.
section III of part I [1].

The other extreme, discussed in section VI of part I
[1], is described by exponents r > 0 and s > 1: In this
case the pde turns stiff in that part of the integration
domain D where ε̄ is large, and the solution there is char-
acterized by rapid low-amplitude oscillations around the
rather slowly varying, large mean value of f . In numer-
ical calculations on discretization grids that maintain a
finite separation of the mesh points even as f and ε̄ di-
verge, however, these oscillations can neither be followed
nor adequately represented. The solution of the finite dif-
ference (fd) approximation of the pde is therefore bound
to reproduce vanishing effective exponents reff and seff .
Smoothness so having been restored, if only as an arti-
fact of the computational scheme, the arguments of sec-
tion III B of ref. 7 naturally apply so that f ∝ 1/Q is to
be expected again numerically even though the markedly
non-smooth exact solution of the pde is likely to display
a stronger singularity, cf. sections VI and VII of part I
[1].

In addition to the two scenarios sketched above, re-
ferred to as the simplistic, or genuinely smooth one
(r = s = 0) and the stiff, or only effectively smooth
one (r > reff = 0, s > 1, seff = 0), respectively, there
is also the third possibility of a monotonous growth not
necessarily affected by cancellation: As discussed in sec-
tion V of part I [1], this implies only a very weak, viz.,
logarithmic divergence of f for Q→ 0 that is compatible
with a small range of values for the exponents r and s.
At any rate, it can be shown that ε̄ Q2 tends to a finite
limit for Q → 0. As we will see in section II, however,
the numerical evidence clearly rules out this possibility.

It is thus only the simplistic and the stiff scenarios that
remain to be considered in the bulk of this report in our
attempt to elucidate the true character of the asymp-
totic solution of the pde for infinite κT . To this end
we employ an unconditionally stable implicit predictor-
corrector scheme shortly outlined in section III A. A
more extensive discussion of the implementation can be
found in refs. 10, 11, where default settings for the
most important customization parameters are also doc-
umented, and further technical information is available
with the source distribution itself [12]. We illustrate
the types of behavior encountered in practical calcula-
tions by taking recourse to two simple model potentials
v(r) = vhs(r)+w(r), viz., to the hard-core Yukawa (hcy)
system,

whcy(r) =

{

−ε0 : r < σ
−ε σ

r e
−z (r−σ) : r > σ,

(3)

and to square wells (sws),

wsw(r) =

{

−ε : r < λσ
0 : r > λσ.

(4)

In both of these potentials, ε coincides with the negative
of the contact value of the interaction, limr→σ+ (−w(r)),
and so sets the energy scale of the problem. The poten-
tial range is given by 1/z and λσ, respectively. Unless
stated otherwise, ε0, the value of whcy(r) inside the core,
coincides with ε, a choice shared with the implementa-
tion by the authors of hrt and their coworkers referred
to as the original one in refs. 10, 11, q. v.. A short sum-
mary of the parameter sets and of the sample isotherms
considered in this study can be found in tab. I.

The results of the computations reported in section III
do, indeed, allow us to infer the character of the pde for
subcritical temperatures, T < Tc, with great confidence,
if only indirectly due to the great computational sim-
ilarity of genuine and effective smoothness. Our main
evidence in favor of the stiff scenario derives from the
rather detailed and testable predictions it entails, all of
which are confirmed numerically. By way of contrast,
the simplistic scenario does not hold an explanation for
the observed trends, especially as regards the dependence
of the fd results on the properties of the discretization
grids.

Our conclusion that the pde actually turns stiff in part
of D for T ≤ Tc then paves the way for some purely
heuristic arguments relating the onset of smoothing in
Q to the form of the Fourier transform of the pertur-
bational part of the potential (section IV). So having
understood the behavior of the pde in the limit Q → 0
where asymptotic reasoning valid for large ε̄ applies, in
section V we then turn to similar computationally prob-
lematic features of its solution at much higher cutoff
where the numerical evidence points to a mechanism not
unlike that at work in the asymptotic region. We close
with an informal discussion of the reasons for the atyp-
ical computational properties of hcy fluids of moderate
inverse screening length z (section VI), postponing prac-
tical application of the insight into the solution of the
discretized pde gained thus far to later installments of
this series of reports [13].

II. THE MONOTONICITY ASSUMPTION

REFUTED

Of the three scenarios put forward in part I [1] and
touched upon in the introduction, the one mentioned last
differs markedly from the other two in that the assump-
tion of a merely logarithmic divergence of f furnishes
the rather specific prediction of ε̄ Q2 tending to a finite
limit for Q → 0. Of course, the possiblity of non-zero s
means that, in principle, the smoothing effect discussed
in section VI of part I [1] must be reckoned with. The
singularity being so mild, however, a possible reduction
of s > 0 to an effective value of seff = 0 is preempted by
the choice of step sizes ∆Q:

In our implementation of the theory the cutoff in the
ith fd step is parametrized as

Q(i) = ln
(

ea−i b + 1
)

, i = 0, 1, . . . ,
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as is the case for the program the original authors of hrt

and their coworkers employ, too. Here a is close to the
cutoff Q(0) ≡ Q∞ where initial conditions are imposed

on f , and b is the spacing ∆Q
∣

∣

∞
of successive cutoffs

in the large Q limit. For small Q we have to consider
i→ ∞: The exponential ea−i b then being small, we can
apply the first-order expansion ln(1 + x) = x+ O(x2) to
obtain Q(i) ≈ ea−i b; the step size in Q is then given by

Q(i+1) −Q(i) ≈ −Q(i)

(

1 − e−b
)

, Q(i) σ � 1,

which is proportional to the cutoff under consideration,
∆Q ∝ Q. If ε̄ Q2 is to approach zero or a finite constant
as predicted by the assumption of monotonous growth
these step sizes thus turn out of order O(ε̄−1/2) at most,
and our discretization should allow us to follow the vari-
ation of f reasonably well all the way to Q = 0. From
fig. 1, however, we see that ε̄ Q2 clearly diverges for
Q→ 0. As this finding is corroborated by further calcu-
lations with a smaller setting of the numerical parameter
∆Q

∣

∣

∞
, on finer density grids (down to ∆% = 5·10−4/σ3),

and for both hard-core Yukawa and square well potentials
we feel we can safely exclude the monotonous growth sce-
nario from further consideration.

III. SMOOTHNESS VS. STIFFNESS

As for the remaining two alternatives, an attempt to
distinguish numerically between genuine and effective
smoothness seems doomed at first sight. And indeed,
fig. 2 shows the small Q behavior of f within the bin-
odal as obtained numerically to be in excellent agreement
with f ∝ 1/Q, and figs. 2, 3, and 5 as well as the numer-
ical data demonstrate that f is of the form postulated in
part I [1], q. v.. Both of these observations fit the sim-
plistic scenario just as well as the stiff one. Nevertheless,
close scrutiny of the computational process and the nu-
merical results yields a wealth of indirect evidence that
we feel is sufficient to establish the character of the pde

for T < Tc with great confidence, if not with absolute
certainty. Of course, since the solution f(Q, %) is compu-
tationally smooth in either case, the simplistic scenario
can never be ruled out altogether as smoothness is its
sole defining property. Instead, we base our reasoning
on the rather specific, and numerically testable predic-
tions that follow from the assumption of stiffness of the
pde and stand in marked contrast to the expectations
furnished by the simplistic scenario. As we will show in
this section, it is the assumption of a stiff pde that is
in full accordance with the numerical findings whereas
smoothness is only marginally compatible with some of
their traits, especially as regards the sw data.

Before going into the details of the vastly different
consequences of the two scenarios, it is worthwhile to
step back for a moment and ask why we have to adopt
the eq. (2) in the first place if the most direct formula-
tion of the theory is that of a pde for the free energy

A(Q)(%) of the Q system at density %, cf. part I [1]. In-
deed, from eqs. (A2) and (A3) of part I [1] we see that
∂A(Q)/∂Q ∝ Q2 (f + const) for Qσ � 1, so that the
Q and % scales characteristic of A(Q)(%) are essentially
the same as those appropriate for f(Q, %). In the smooth
scenario there is then no reason for the formulation in
terms of f to be preferable to that in terms of the free
energy, provided proper care is taken to ensure stabil-
ity and convergence. This has certainly been the case in
our earlier work shortly summarized in appendix B.1 of
ref. 11 that nevertheless was unable to proceed to small
Q for T < Tc. Similar difficulties are reported in ref. 6,
and indeed to the best of our knowledge there are no
hrt results on simple one-component fluids for T < Tc

except in the quasilinear formulation of eq. (2) or vari-
ants thereof. — In the stiff scenario all this is, of course,
to be expected as the rapid low amplitude oscillations of
the solution in this case necessitate step sizes that are
reduced as some inverse power of ε̄ or the exponential of
∂A(Q)/∂Q, and only under special circumstances do the
discretized equations allow one to obtain a solution with
the much larger step sizes used in practical applications.
As noted in section II of part I [1], the auxiliary quantity
f(Q, %) was introduced exactly for this reason [8].

As discussed in section VI of part I [1], if the pde

becomes stiff in part of D the onset of smoothing may
involve either of two mechanisms, depending on whether
the step sizes ∆Q or ∆% become inadequate first. Not
surprisingly, the two possible orderings for the cutoffs
Q∆Q and Q∆% assigned in an interpretation of the nu-
merical results in terms of the stiff scenario entail vastly
different consequences and are therefore discussed sep-
arately in subsections III B (Q∆% > Q∆Q) and III C
(Q∆Q > Q∆%) below.

Before that, however, some general remarks are in
place: Letting the labels x and y refer to either Q or %, in
the stiff scenario smoothing in x sets in at Q = Q∆x and
can always be postponed, i. e., shifted to lower cutoffs
by decreasing the step size ∆x. If, however, the corre-
sponding exponent, r or s, is positive, the rapid growth
of f , ε̄ and, by way of eq. (1), of |∂2f/∂x2| as the so-
lution proceeds towards Q = 0 implies that the amount
by which Q∆x can be changed in this way and the atten-
dant computational effects must be small. For positive
exponents the Q∆x are thus fairly well defined despite
the gradual nature of the transition to the smoothing
regime. — Furthermore, without loss of generality as-
suming Q∆x > Q∆y, Q∆x is obviously independent of
the step sizes ∆y. The solution obtained numerically
at cutoffs below Qsmooth ≡ Q∆x is already affected by
smoothing in x so that there is no point in identifying
Q∆y with the cutoff where ∆y becomes too large to de-
scribe the variation of the no longer accessible true solu-
tion of the pde. Instead, Q∆y is taken to be the cutoff
where smoothing in y commences in the solution of the
fd equations (fdes), which implies a ∆x dependence of
Q∆y and may even induce Q∆y to vanish altogether. For
Q < Q∆y, the solution generated numerically by neces-
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sity conforms to the simplistic smoothness assumption as
reff = seff = 0 and so grows like 1/Q in a stable man-
ner. This proportionality also means that the form of f
for %1 < % < %2 remains constant from Q∆y all the way
to the final results at zero cutoff. (Here and below the
form of f at some cutoff Q refers to f(Q, %) as a function
of % without regard for the overall normalization of f .)
— The important mechanism sketched in section III of
part I [1] and the concomitant stabilization of form and
monotonicity of f do not explicitly depend on s and thus
always set in at Q∆%; incidentally, figs. 2 and 3 show its
preconditions, viz., flatness and compatibility with the
sketch of part I [1] to be met numerically. Of course,
both Q∆Q and Q∆% depend on temperature and density,
which is taken to be silently accounted for whenever we
speak of the form of f at one of the Q∆x, and they are
defined only in that part of D where f is large.

A. Numerical aspects

As some of the numerical effects are rather subtle, we
should also recall several key aspects of the implemen-
tation we rely on. This is a highly flexible and fully
modular computational framework for the solution of a
fd approximation of the pde by an implicit predictor-
corrector scheme thoroughly discussed in refs. 10, 11. For
consistency with eq. (2), in the calculations reported in
the present contribution we refrain from implementing
the core condition. The discretization is applied on uni-
form density grids and with the predetermined step sizes
∆Q of section II. Convergence of the fd equations has
been checked, and iteration of the corrector step does not
bring about noticeable changes.

In practical applications, the discretized equations gen-
erally cannot be solved down to arbitrarily small Q for
T < Tc, and the smallest cutoff reached we denote Qmin.
As the failure modes responsible for an end of the pro-
gram are known [10, 11] and can be linked to the local
behavior of the solution, v. i., the systematic changes in
Qmin upon variation of aspects of the numerical proce-
dure prove a powerful and readily accessible diagnostic
tool. For the calculations reported here, the immedi-
ate cause for abortion of the computation at some cutoff
Qmin is either an insufficient adaptation of the rescaling
necessary for representing quantities affected by exponen-
tiation of f — the scale of fig. 1 alone shows that, e. g.,
ε̄ cannot be represented in double precision — or else
because of non-real f and negative ε ≡ ε̄+ 1 in the pre-
dictor step. These two effects are linked to pronounced
increase and decrease of f , respectively.

Unlike the Q∆x, Qmin obviously does not depend on
the density. Instead, it is essentially determined by the
physical potential w(r), the temperature, the discretiza-
tion grid, and the formulation of the theory [10]. As for
the latter, if the pde is coupled to further constraints,
and the solution vector augmented by additional com-
ponents to be determined accordingly, the likelihood of

an early termination of the computation in the predic-
tor step generally increases, and so does Qmin. As the
customary manner of implementing the core condition
involves an expansion of the direct correlation function
inside the core [6, 10], the sensitivity of Qmin to an in-
crease in Ncc, the number of expansion coefficients, again
proves of interest.

With this rough sketch of some of the salient features of
the computational process — more detail can be found in
refs. 10, 11 and with the source code distribution [12] —
we are now ready for a detailed look at some numerical
results obtained for two model systems, viz., the hcy

and sw fluids exemplifying the cases Q∆% > Q∆Q and
Q∆Q > Q∆%, respectively.

B. Smoothing in % first

So let us first turn to the hcy fluid of inverse screening
length z = 1.8/σ already considered in ref. 10. As men-
tioned before, the numerical solution must be smooth at
any rate and is therefore compatible with the simplis-
tic scenario. For a genuinely smooth solution, however,
we expect only a small dependence of the results on ∆Q
and ∆% that should be essentially stochastic in nature,
stemming from the truncation error in an otherwise un-
problematic fd approximation of the pde alone.

As we shall see in a moment, the numerics can also
be reconciled with the stiff scenario if only we assume
smoothing to occur in the % direction first, Q∆% > Q∆Q.
In this case the mechanism responsible for stable growth
of f (cf. section III of part I [1]) is at work at all cutoffs
below Qsmooth. As an immediate consequence, the sta-
bility of the computational process is not an issue, and
incorporation of the core condition is entirely unprob-
lematic. An overflow due to an insufficient adaptation of
the re-scaling of non-O(1) quantities, v. s., is the only
possibility for numerical failure. The likelihood of this
is greatly reduced when ∆Q is decreased so that smaller
step sizes are generally accompanied by smaller values
of Qmin. A systematic ∆% dependence of Qmin is not
anticipated. — For a fixed density grid, we infer the
following characteristics of the ∆Q dependence of the
results: First of all, Q∆% exceeds Q∆Q and so cannot
depend on ∆Q, nor can f at Q∆%. On the other hand,
even though smaller step sizes (in our implementation
determined by the parameter ∆Q

∣

∣

∞
, cf. section II) cor-

respond to smaller Q∆Q, the large value of the exponent
s > 1 > 0 implies that the drop in Q∆Q must be ex-
ceedingly small. As furthermore the evolution from Q∆%

down to Q∆Q is determined by the solution at the onset
of smoothing and the properties of only the density grid,
the form of f below Q∆Q is virtually ∆Q independent.
— As for a variation of the density grid at fixed ∆Q, a
reduction of ∆% clearly entails a shift of Qsmooth ≡ Q∆%

to smaller cutoffs, which may in turn cause a change in
Q∆Q, too. These effects must be rather small because
of the non-zero exponenets r and s, and they must vary
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with the density for the same reason the Q∆x are density
dependent. A change of the % grid thus implies a small
change of the form of f at Q∆% and, hence, at Q∆Q and
all smaller cutoffs. As long as Q∆% does not fall below
Q∆Q, however, the ratio of the forms of f as obtained on
different discretization grids cannot depend on ∆Q.

As conformance with the simplistic scenario is certain
anyway, it remains to be seen to what degree the de-
tailed predictions of the stiff one are fulfilled in actual
computations. To this end, in tabs. II to IV we sum-
marize the numerical results for a hcy potential with
z = 1.8/σ obtained on density grids with ∆% = 10−2/σ3

and ∆% = 5 ·10−4/σ3 and varying ∆Q. For fixed density
grid (tabs. II and III, respectively), Qmin and, hence,
the final values of f markedly depend on ∆Q, the for-
mer generally decreasing and the latter increasing upon
reduction of the step size. On the other hand, both the
form of f and its magnitude at fixed cutoff — to be found
in the tables under the headings of F y

x and fxQmin σ,
respectively — remain largely unchanged. Comparing
the results obtained with different settings for ∆%, the
change in the final values of f is indeed almost com-
pletely due to the differences in Qmin. The magnitude
at fixed Q, on the other hand, is affected only moder-
ately, viz., by a few per cent for a twenty-fold increase in
the density resolution, and it depends on % but not on
∆Q, cf. tab. IV. Qmin itself is not affected by the density
grid in a systematic way. Of the two sample isotherms
that founder at comparatively large cutoff Qmin, viz.,
the ones at ∆Q

∣

∣

∞
= 0.003/σ3, ∆% = 10−2/σ3 and at

∆Q
∣

∣

∞
= 0.004/σ3, ∆% = 5 · 10−4/σ3, only the former

does not enter the asymptotic regime where f ∝ 1/Q, as
can clearly be seen from tab. IV. All in all, the numerical
results are in excellent agreement with stiffness, and we
note that for this system and the density grids considered
Q∆Q must be sought around 10−2/σ.

C. Smoothing in Q first

In our previous work on hrt [10, 14] we repeatedly
stressed the vastly different numerical properties of the
hcy and sw potentials. This is certainly not anticipated
on the basis of the simplistic scenario that furnishes only
the same prediction of a small discretization grid depen-
dence well explained by the truncation error as for the
hcy system. Still, the assumption of a genuinely smooth
solution is certainly compatible with the numerics, if only
marginally so in the face of the most prominent feature
of the evolution of f , viz., episodes of much more rapid
variation than mere proportionality to 1/Q.

Assuming the pde to turn stiff for large f instead, and
furthermore Q∆Q to exceed Q∆% for the present system,
there is a Q range Q∆% < Q < Q∆Q where fdes are
used with inappropriately large step sizes ∆Q while os-
cillations in % are not yet suppressed. For these cutoffs,
the stabilization wrought by the mechanism of growth
first introduced in section III of part I [1] is not effec-

tive yet, and there is no reason for f to be convex from
below throughout the density range %1 < % < %2. On
the other hand, the overall profile of f is expected to
resemble fig. 1 of part I [1], and seff = 0 once more sug-
gests a general growth proportional to 1/Q. The sign
of ∂2f/∂%2 is thus unconstrained, and its modulus in-
creases in unison with f , i. e., in proportion to 1/Q. As
d00/d02 is of order O(1) in ε̄, however, the O(1) growth
of ∂2f/∂%2 may well be sufficient to destabilize the mech-
anism of growth discussed in section III of part I [1] at
some Q ∈ (Q∆%, Q∆Q), and so give rise to a much more
rapid variation of f as a function of Q. Of course, these
near-discontinuities of f will occur at different cutoffs for
different densities, most often close to the edges %1 and
%2 of the region of large f where the Q∆x are small-
est, and neighboring densities will experience them at
roughly the same cutoff. Furthermore, in principle the
jumps should lead to both increases and decreases in f ,
depending on the sign of ∂2f/∂%2 at slightly larger Q.
Considering the numerics, however, a large change in f
is almost certain to bring the calculation to an end, and
all the failure modes discussed in section III A are rele-
vant for Qmin. A comparatively mild increase of f , on
the other hand, may relax the relative curvature of f to
the point of allowing the solution to enter once more an
episode of near-stability characterized by growth in ap-
proximate proportion to 1/Q. As for an incorporation of
the core condition, in accordance with section III A the
attendant introduction of additional degrees of freedom
is likely to exacerbate the risk of triggering such a jump
in f , cf. section V. — To understand the grid depen-
dence of the numerics under the assumption of stiffness,
recall that Qmin itself is the location of a failed jump in
f . As smoothing in Q is the driving force behind the
computational process, Qmin must be quite sensitive to
∆Q, but there is no reason for Qmin to be monotonous
in ∆Q. The density grid, on the other hand, is still ad-
equate for the elliptic boundary value problem in % at
constant Q. If the numerical process were stable, there
should thus be no appreciable dependence of the results
on ∆% at all. In the absence of the stabilization wrought
by smoothing in %, however, even the small differences
seen upon variation of ∆% must be expected to shift the
episodes of rapid evolution to slightly different cutoffs in
an unsystematic way. By the same token, the ∆% depen-
dence of the final form of f should be small, and different
∆Q should leave it unaltered as long as the number and
the approximate positions of the jumps do not change.
As those are least frequent close to the maximum of f ,
its form is expected to be most stable in the central part
of the density interval of large f .

In tabs. V and VI we summarize the numerical results
for a sw potential of range λ = 3 obtained on the same
discretization grids as the hcy data of section III B. Of
course, the numerics cannot be in contradiction with the
simplistic scenario. As for the consequences of stiffness,
the most prominent feature predicted concerns the occur-
rence of near-discontinuities of the solution of the fdes.
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These jumps are, indeed, to be found in the data under-
lying fig. 3 at the positions marked with arrows, and sev-
eral of them can be seen clearly even on the logarithmic
scale of the graph. All the other expectations following
from the stiff scenario with Q∆Q > Q∆% also compare
well with the data of tabs. V and VI: In particular, a
pronounced ∆Q dependence of Qmin is accompanied by
only a very modest effect as ∆% is varied, even though
the relative change in ∆% is much larger than that in
∆Q. Excluding the pathological data with negative f
(v. i.), the final forms of f are mostly ∆Q independent,
and the forms obtained on the two density grids differ
but slightly. Only the isotherm with ∆Q

∣

∣

∞
= 0.010/σ in

tab. VI presents a somewhat different shape than those
at smaller ∆Q

∣

∣

∞
. The differences in the numbers given

under the heading F y
x are, however, still in accordance

with the stiff scenario as discrepancies appear only close
to the edge of the density range of large f . As for the
first entry of tab. V (∆Q

∣

∣

∞
= 0.003/σ), negative f corre-

sponds to exceedingly small values of ε ≡ ε̄+ 1 ∼ 10−27.
This is found to be the result of a downward jump from
f ∼ +104 (ε ∼ 105000) at only slightly higher cutoff
where the form of f again corresponds to that of the
other isotherms. Clearly, even a minor perturbation of
the numerical process might easily have led to negative
ε and hence to a numerical exception; in this case our
implementation would have discarded the last step, and
the final results would once more conform with those of
the remainder of tab. V.

Let us shortly return once more to the most
salient feature of the numerical solution, viz., its near-
discontinuities. Disregarding the analytical considera-
tions of part I [1] it might be tempting to imagine that,
for T < Tc, the pde generates a shock front approxi-
mately symmetrically moving outward towards the den-
sities %v and %l of the coexisting phases as Q approaches
zero. In this view of the numerical process the jumps
occur when the shock reaches the corresponding density.
Such an interpretation is not consistent with the data:
According to fig. 3 the near-discontinuities of f occur
repeatedly at the same density (most conspicuously for
% = 0.1/σ3), and rapid change at one density is gener-
ally accompanied by similar behavior at other densities.
Neither of these observations is compatible with the idea
of a moving shock front, nor is there any reason why the
binodal should be linked to a shock front in sws but not
in the hcy fluid, cf. section III B.

D. Assertion of stiffness

Summarizing the numerical evidence presented so far
we find that of the three scenarios found in part I [1] only
the possibility of a merely logarithmic singularity of f can
be ruled out with certainty. We are then faced with the
two alternatives of genuine smoothness of the pde on the
one hand, and effective smoothness as a result of an fd

approximation to a stiff pde on the other hand. As shown

in the preceding subsections III B and III C, neither of
them is in direct contradiction with the numerical data.

The crucial difference is their respective specificity and
testability: The simplistic scenario does not make any
predictions beyond the smallness of the discretization
grid dependence of the numerical results, nor does it offer
any of the detailed understanding of the computational
process that is necessary for accurate and reliable inter-
pretation of the fd results. By way of contrast, stiff-
ness of the pde in part of its domain provides a con-
sistent framework for the interpretation of the numerics
and furthermore entails a number of concrete and numer-
ically testable consequences, all of which are in excellent
agreement with our data once the correct ordering of the
Q∆x has been chosen. In combination with the analyti-
cal considerations of part I [1] and our earlier statements
regarding the importance of the formulation of the hrt

pde employed, the specificity and great number of these
predictions provide ample, although necessarily indirect
evidence in favor of the stiff scenario.

From this point on we will therefore take it for granted
that the hrt pde does, indeed, turn stiff in part of its do-
main for subcritical temperatures. On this basis we now
aim to further enhance our understanding of the hrt nu-
merics in the remainder of this report, shedding some
light on the location of Q∆Q (section IV), extending our
findings in the asymptotic region to intermediate Q (sec-
tion V), and finally clarifying the outstanding numerical
properties of the hcy potential vis-à-vis other physical
systems (section VI).

IV. THE ONSET OF SMOOTHING IN Q

If our view of the underlying pde and the numerical
process is correct, it is natural to inquire into the typical
values of the cutoffs Q∆x where smoothing in x sets in.
As the exponents r and s are non-zero by assumption,
these cutoffs may only weakly depend on the discretiza-
tion grid and so are largely determined by the pertur-
bational part of the potential alone. As far as Q∆% is
concerned, we are currently in no position to even ten-
tatively predict its location from the properties of the
model system under consideration. For smoothing in Q,
on the other hand, we now present some purely heuris-
tic arguments that shed some light on the factors that
influence the value of Q∆Q by relating the likelihood of
finding it at some cutoff to the form of the Fourier trans-
form w̃(k).

In order to extract a likely position of Q∆Q from the
pde we consider a thermodynamic state of diverging
isothermal compressibility at a cutoff that is low enough
for smoothing in Q to have set in at least partially,
Q <

∼ Q∆Q: In view of the gradual transition between
the smoothing and non-smoothing regimes, the effective
exponent seff may not vanish exactly yet; nevertheless
it seems safe to assume seff < 1. Let us now define an
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auxiliary quantity ψ(Q, %) through the relation

K̃ + ψ ũ0 = −
φ̃

ε̄
. (5)

In the notation of our earlier work on hrt [1, 10, 11, 14]

ψ corresponds to φ̃0 + γ0, where γ0 is an expansion coef-
ficient in the direct correlation function used to enforce
thermodynamic consistency in the form of eq. (A5) of
part I [1]. Solving the above relation for ψ and differen-
tiating once with respect to Q we find

∂ψ

∂Q
= −φ̃0

(

∂

∂Q

1

ε̄
+

∂

∂Q

K̃

φ̃

)

,

which is valid at all cutoffs except close to the zeros Qφ̃,i

of φ̃ and ũ0 where eq. (5) cannot be inverted to yield ψ.
As shown in section 2.4.1 of ref. 11, the compressibility
sum-rule also allows one to derive a pde for γ0 that is
equivalent to eq. (2) itself. Taking into account the den-
sity independence of the potential we easily find that the
evolution of ψ is given by

∂ψ

∂Q
= −

Q2

4π2

∂2

∂%2
ln ε

=
Q2

4π2

(

−ũ2
0

∂2f

∂%2
+ φ̃

∂2

∂%2

1

K̃

)

.

Equating the two expressions for ∂ψ/∂Q we can now
solve for ∂2f/∂%2 and insert the result into the pde (2)
to obtain the rate of change of f as

∂f

∂Q
= d00+

d02 4π2

Q2 ũ2
0

(

φ̃0
∂

∂Q

1

ε̄
+

∂

∂Q

K̃

ũ0

)

+
d02 φ̃0

ũ0

∂2

∂%2

1

K̃

(6)
for Q away from the Qφ̃,i. Of course, both d00 and d02

are negative in the case under consideration [1].
For smoothing in Q to set in we expect f to be large al-

ready, ε̄� f � 1, or else reasoning based on the asymp-
totic behavior for large ε̄ is inapplicable. Furthermore,
as Q∆x is that value of the cutoff where the step sizes ∆x
become insufficient for representing the exact solution of
the pde, the most likely position of Q∆Q is where the
slope −∂f/∂Q of f is rather large. At the same time, for
a hard-sphere reference system Q∆Q can only depend on
the form of the Fourier transform of the perturbational
part of the interaction potential, i. e., on ũ0 = φ̃/φ̃0

rather than on φ̃ itself: The temperature T = 1/kB β en-
ters the calculation only as a pre-factor to the interaction
potential, viz., through φ = −β w so that the normaliza-
tion of φ̃ only fixes an energy or temperature scale.

With this in mind we return to eq. (6): Of the expres-
sions appearing on its right hand side the one involving
the Q derivative of 1/ε̄ is of order O(ε̄seff−1) in ε̄ and so
can be neglected if seff < 1 as assumed. As we are look-
ing for an effect triggered by the form of φ̃ alone we do
not have to consider the derivatives of the properties of
the hard sphere reference system encoded in K̃ either. It

is then the term involving the Q derivative of ũ0 that is
of interest to us in the first place: The ideal gas contribu-
tion −1/% to K̃ ensures positive d02 K̃, and consequently
the relevant term is the product of ∂ũ0/∂Q and mani-
festly positive factors. Now assume that Q∆Q is less than
the position of the first minimum of ũ0 so that only the
monotonous growth of ũ0 towards its global maximum at
Q = 0 remains to be covered by the solution of the pde:
Clearly, as the calculation proceeds in the negative Q di-
rection, the steeper this rise of ũ0, the more the ∂ũ0/∂Q
term counteracts the growth of f , thereby effectively fur-
ther delaying the onset of smoothing in Q. Most likely,
Q∆Q will thus be found at cutoffs so low that ũ0 already
levels off towards its limiting value of unity. Even a su-
perficial glance at ũ0 for two typical potentials, viz. sws
(solid curve) and the hcy system with z = 1.8/σ (dashed
curve) displayed in fig. 4 shows that, for these systems, ũ0

levels off when Q (or λQ, in the case of sws) is no more
than a few 10−1/σ. This is certainly not in contradiction
to the estimate presented at the end of section III B, espe-
cially in the light of section VI below and considering the
density and temperature dependence of the Q∆x. Sup-
port for this view also comes from figs. 2 and 3: These
demonstrate that the transition to the regime where f
mostly grows like 1/Q, corresponding to vanishing seff ,
occurs at similar values of the cutoff. All in all, we there-
fore expect that either Q∆Q is larger than the position of
the first minimum of ũ0, the case not considered above,
or else that Q∆Q should be located at a much smaller cut-
off, viz., where ũ0 is already close to unity and |dũ0/dQ|
is small. It is the latter of these possibilities that is in ac-
cordance with the data displayed in figs. 2 and 3 and the
tables referenced earlier so that our arguments, heuristic
as they are, do indeed seem to provide us with a means
of estimating Q∆Q in a satisfactory way. Unfortunately,
the location of Q∆% so far eludes determination from the
potential alone by a comparably simple line of thought,
and actual numerical solution of the pde currently is the
only way of studying Q∆%(T, %) available to us.

V. BEYOND ASYMPTOTICS

On the basis of this understanding of the relation be-
tween w̃ ∝ φ̃ ∝ ũ0 and Q∆Q one might expect numerical
difficulties linked to the discretization grid to first sur-
face at about the same cutoff, viz., around Q ∼ 10−1/σ
for the potentials considered earlier. However, the mon-
itoring variant of our code [10–12] that must be credited
with first highlighting and bringing to our attention the
purported stiffness of the equations clearly signals the
inadequacy of number and spacing of the vertices in the
fdes already at much higher cutoff, viz., typically for
5 < Qσ < 10: Indeed, the asymptotic region of large ε̄
can never even be reached without renouncing control of
the local truncation error in solving the equations since
otherwise the step sizes appropriate in fd calculations
would render the results of fixed precision floating point
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operations insignificant, cf. section III E of ref. 10.

In combination with the observed patterns of the evo-
lution of f at intermediate and small Q illustrated in
figs. 2, 3, and 5, our experience with the numerics of
hrt leads us to propose the existence of several regions
of large f within D where phenomena similar to those
discussed before are to be reckoned with: Most impor-
tantly, the variation of the exact solution of the pde may
be characterized by rapidly diminishing density and cut-
off scales incompatible with a realistic discretization grid
not only in the asymptotic region but also at higher cut-
off. And indeed, right next to the high density boundary
we see a number of patches of large f in fig. 5. Other than
in part I [1], however, at intermediate Q the guarantee of
continuity of f is no longer accompanied by that of its un-
boundedness, both of which are necessary to ensure the
validity of conclusions drawn from the asymptotic behav-
ior of the various terms in the pde for large ε̄ alone. The
small value of ũ2

0 evident from fig. 4 further complicates
the situation in that ε̄ may not be large compared to f
even for f � 1. Still, from the expressions for the pde

coefficients given in part I [1] we deduce that d02 is nega-
tive and appreciable for all Q in the relevant cutoff range
except very close to the Qφ̃,i where it vanishes as φ̃2, and
that d00 is likely to be rather large in modulus for f � 1
due to the terms linear in f ; for the special considera-
tions applying to the immediate vicinity of the Qφ̃,i, cf.

part III [13] as well as appendix A.4 of ref. 11.

It is then conceivable that f may become large in some
parts of D and, by way of the d0i behavior there, prompt
rapid further growth when Q proceeds to smaller val-
ues. As signalled by our code when monitoring the evo-
lution of the numerical solution [10], this in turn effec-
tively mandates either impractically small step sizes ∆Q
or else deliberate resignation of bounded local truncation
errors, v. s.. Just as in section III C, such a rapid growth
of f almost certainly induces an accompanying growth of
|∂2f/∂%2| on the grid, and any oscillations of the density
curvature will carry over to ∂f/∂Q. Qualitatively the
situation is then quite similar to that in the asymptotic
region, and it seems reasonable to surmise that transient
stiffness at intermediate cutoff might be the reason for the
inability of a numerical scheme insisting on local conver-
gence and appropriateness of the dynamically adjusted
discretization mesh to ever proceed to Q ∼ Q∆x.

Without the backing of more formal arguments much
of the above line of thought may seem insubstantial and
might thus be viewed with suspicion. There are, however,
a number of numerical effects that provide at least indi-
rect evidence for the point of view just laid out. Among
those we have already identified and discussed in our ear-
lier work on hrt, the plummeting step sizes observed
when determining the discretization grid from the lo-
cal curvature of appropriate components of the solution
vector [10, 12] are the most direct evidence in favor of
stiffness of the pde at intermediate Q. Further support
comes from our study of sws of varying range [14]: There
the peculiar shifts in the critical temperature whenever

λ is close to a simple fraction have been linked to the
modulation of ε̄ by the interference of c̃ref2 and φ̃; and
considering our remarks on the effect of augmenting the
solution vector to include new degrees of freedom beyond
f (section III A), it is significant that the critical point
is accessible in a wider λ range when coupling the pde

to a smaller number of expansion terms for taking into
account the core condition, cf. section IV E of ref. 14 and
appendix E of ref. 11. Assumption of transient stiffness
also explains why the lowest temperature attainable nu-
merically, denoted 1/kB βmax,# in refs. 11, 14, may well
be higher than Tc even though stiffness in the asymp-
totic region is a problem only for T ≤ Tc, and that the
isotherms show not the least sign of phase separation
for β < βmax,# < βc, the critical temperature being
known independently from related computations or by
other methods. — There are also some more intricate
effects stemming from the interplay of the Qφ̃,i with the
boundaries of the cutoff ranges where the step sizes ∆Q
are inappropriate, as well as from the % dependence of
the onset of smoothing in the presence of a local density
grid refinement. As the manifestations of both of these
in the width of the two-phase region cannot be discussed
without reference to the details of the data analysis on
non-uniform high-resolution density grids they will be
dealt with only in part III [13].

VI. HARD CORE YUKAWA VS. OTHER

POTENTIALS

By now we have arrived at what we feel to be as satis-
factory an understanding of the numerical process as can
be expected from considerations as summary in charac-
ter as those put forward in part I [1] and in the preceding
section V of the present contribution: In our view, prac-
tical discretization grids are expected to cause numerical
problems for low enough temperature both as the diver-
gence of the isothermal compressibility κT is built up for
Q→ 0 and at much larger cutoff when the pde temporar-
ily turns stiff in isolated patches of D. Other sources of
difficulties like those arising at the initial condition and
the high-density boundary have been discussed exten-
sively elsewhere [10, 11, 14].

Throughout our numerical work we consistently found
that hcy fluids of moderate inverse screening length like,
e. g., the one with z = 1.8/σ repeatedly used in this
report as well as in ref. 10 exhibit all these phenomena
only in a rather mild form. ForQ→ 0 this is immediately
clear in the stiff scenario if only we accept the in itself un-
explained finding of Q∆% > Q∆Q. At intermediate Q, on
the other hand, the merely qualitative considerations of
section V do not allow us to directly tackle the problem
of clarifying the computational benignity of hcys. Both
the relative order of Q∆Q and Q∆% in the asymptotic re-
gion and the comparable innocuousness of the stiffness
at higher cutoff seem, however, to be linked to a spe-
cific feature of the form of the Fourier transform of the
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perturbational part of the hcy interaction potential:

Once more considering fig. 4, an important difference
between the hcy and sw curves is apparent right away:
With the default choice of ε0 = ε, the local extrema of the
hcy ũ0 at Q > 0 are comparatively small in modulus, as
can also be seen from the numbers quoted in the caption
to fig. 4. It is easily checked that the special standing
of the default hcy system in this regard remains unchal-
lenged even for other parameters and types of potentials:
The main difference between sws and other short-ranged
non-hcy potentials like, e. g., Lennard-Jones systems
concerns the phase of the swings of ũ0, i. e., the loca-
tion and spacing rather than the modulus of the local
extrema. As for the hcy case, although an increase in z
(leading to a shorter ranged potential) reduces the slope
of ũ0 and enhances the local extrema, the effect is quite
small for moderate screening length and approaches the
sw case only in the limit z → ∞ that actually transforms
vhcy into a sw potential of vanishing well width, λ = 1.

As for the reason for Q∆Q being less than Q∆%, recall
the decisive rôle in fixing Q∆Q of the steepness of ũ0(Q)
as it rises towards its global maximum of unity at Q = 0
(section IV). A natural question is then by what stan-
dard the slope of ũ0 should be judged: One possibility is,
of course, its absolute value, but this requires the pde to
sense the global normalization of φ̃, which is conceivable
but seems rather unlikely despite the short rangedness
of the potential. An intriguing alternative is to assume
that it is the variation of ũ0 at larger Q that sets the
scale relative to which the steepness of ũ0 must be as-
sessed. Not only does this tie in well with the numerics
at intermediate cutoff (v. i.) but it also provides a sim-
ple explanation for the particularly small value of Q∆Q

in the hcy case: In relation to the undulations of ũ0 at
higher Q, the final growth of ũ0 is particularly promi-
nent for a hcy potential with ε0 = ε, and the onset of
smoothing in Q is postponed more effectively than, e. g.,
in the sw case. The dependence of ũ0 and, hence, of Q∆Q

on λ and z then also explains the deteriorating accuracy
and growing numerical problems for narrower potentials
previously found for both model potential types [14, 15].

A very similar line of thought also allows us to under-
stand the exceptional computational properties of hcy

fluids at intermediate cutoff: For every one of the patches
of potential stiffness including the asymptotic region
there is an associated temperature below which computa-
tional problems prevent bounded local truncation errors
on practical discretization grids whereas the fd equations
may still admit a numerical solution. For small cutoff,
these difficulties are linked to the build-up of the diver-
gence of the isothermal compressibility, the relevant tem-
perature coincides with Tc, and for T > Tc there is never
any form of stiffness [6, 11]. Before entering the asymp-
totic region, however, the only measure of temperature
available to the pde is the amplitude of the oscillations
of φ̃ at higher Q. The particularly small local extrema
characteristic of the hcy fluid then effectively render the
numerics at intermediate cutoff similar to what would be

found only at much higher T/Tc in other systems, thus
reducing the problem posed by transient stiffness there.

In case the above line of thought actually captures the
feature responsible for the singular position of the de-
fault choice of hcy potential, our interest is naturally
drawn to the form of ũ0, and to the choice of w(r) in-
side the core in particular: With hard spheres serving
as reference system, w(r) is not uniquely determined for

r < σ but nevertheless affects φ̃ throughout D. This car-
ries over immediately to f and all the other properties of
the Q system except in the limits Q → ∞ and Q → 0.
(The necessary independence of the physically significant
quantities obtained in the latter limit is actually borne
out in a rather satisfactory way in some preliminary cal-
culations on the Girifalco description of fullerenes [16].)
The importance of the continuation of w(r) inside the
core can also be seen from the dot-dashed curve in fig. 4,
corresponding to the hcy potential with ε0 = 0: Just
as in ref. 14, any discontinuity in w(r) is bound to fea-
ture prominently in the Fourier transform, and even a
moderate deviation from the standard choice of ε0 = ε
is found to render the local extrema of ũ0 comparable
the sw case, and furthermore to cause numerical diffi-
culties at intermediate Q similar to those found in sws
[10, 11]. On the other hand, if we not only avoid such a
discontinuity but rather extend the Yukawa form all the
way to the origin — hardly an unproblematic choice in
our formulation as it entails diverging direct correlation
function at r = 0 and invalidates the expansion method
of taking into account the core condition [6] —, we ob-
tain ũ0(Q) = z2/(z2 +Q2) which is positive and strictly
monotonous for all Q (dotted curve in fig. 4). The prop-
erties of ũ0 pointed out before and the attendant espe-
cially attractive numerical properties of hcy fluids with
the standard setting of ε0 thus appear merely as a result
of a particular choice, shared with the original implemen-
tation, of w(r) for r < σ in eq. (3) and so are no genuine
traits of this model system.

Heuristic as the considerations of this section are, not
only do they provide us with an explanation on the level
of the pde for the dependence of the numerical properties
of the pde on the potential type, the form of w(r) inside
the core, and the interaction range but they also point
to a rather special standing of the hcy potential in the
usual parameterization of eq. (3). By the same token,
care must be exercised when drawing general conclusions
on the merits of hrt relative to those of other liquid state
theories on the basis of hcy calculations alone, which
should be kept in mind when interpreting the findings
of ref. 15 where inverse screening lengths in the range
1.8/σ ≤ z ≤ 9/σ have been considered. The alleged

influence of the form of φ̃ on the severity of the numer-
ical difficulties encountered when solving the hrt pde

also opens up the possibility of tuning the computational
properties of some given potential by optimizing w(r) in-
side the core in such a way that the local extrema are
reduced in magnitude, an avenue largely unexplored to
date the merit of which we are currently in no position
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to assess.
With these rather informal and partly speculative con-

siderations the present installment of this short series
of reports on the character and essential features of the
hrt pde for thermodynamic states of infinite isothermal
compressibility κT draws to an end: Building upon the
analysis of part I [1], in the early sections of this report
we have presented a host of numerical evidence that we
deem sufficient for establishing the stiff scenario for the
asymptotic solution at phase separation. On this basis
we have then been able to extend some of our conclusions
to similar effects at intermediate values of the cutoff Q,
and we have tentatively identified the way the form of φ̃
affects the numerics there as well as in the asymptotic
region. All in all, we feel that we have amassed a con-
siderable amount of numerical experience and arrived at
a rather detailed self-consistent perception of the com-
putational process all the way from the initial conditions
imposed at large Q to the final results at Q = 0 where
the solution reproduces infinite κT at the critical point
and at phase coexistence. Given the precarious nature

of the hrt numerics and the not altogether unproblem-
atic relation between the pde and the fd approximation
of it such an understanding is of prime importance if
systematic mistakes are not to be introduced into the re-
sults unknowingly. We will strive to bring to fruition our
concept of the integration of the discretized equations in
part III [13] where we will also discuss the significance
of our findings so far for the data analysis, an endeavour
that seems all the more worthwhile in view of the high
promise of hrt as one of the few theories of the liquid
state that remain applicable even in the critical region.
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system βc ε %c σ3 β ε %v σ3 %l σ3

sw, λ = 3 0.1011 0.26(1) 0.115 0.075(5) 0.510(5)

hcy, z = 1.8/σ 0.8316 0.33(1) 0.875 0.145(5) 0.525(5)

TABLE I: Overview of systems and sample isotherms: βc and %c give the location of the critical point, %v and %l the extent
of the two-phase region at the inverse temperature β considered in the tables and figures to follow. The numbers have been
obtained from hrt calculations not imposing the core condition. All of the digits indicated for βc are significant.

∆Q
˛

˛

˛

∞

σ Qmin σ f0.2 f0.2 Qmin σ F 0.3
0.2 F 0.4

0.2 F 0.5
0.2

0.003 9.914 · 10−3 3.643 · 102 3.612 1.862 1.755 0.590

0.004 3.995 · 10−5 8.990 · 104 3.592 1.867 1.758 0.585

0.005 5.014 · 10−5 7.163 · 104 3.592 1.867 1.758 0.585

0.010 9.943 · 10−5 3.612 · 104 3.592 1.867 1.758 0.585

TABLE II: ∆Q dependence of the final results for a hard-core Yukawa system: Just as in figs. 1 and 2, z = 1.8/σ, β = 0.875/ε,
and ∆% = 10−2/σ3; we use the notation fx for f(Qmin, x/σ3) and define F y

x = fy/fx.

∆Q
˛

˛

˛

∞

σ G0.2 G0.3 G0.4 G0.5

0.003 1.011 1.013 1.018 1.072

0.004 1.017 1.016 1.022 1.087

0.005 1.017 1.016 1.022 1.086

0.010 1.017 1.016 1.022 1.086

TABLE IV: ∆% dependence of the form of the final results for a hard-core Yukawa system at varying ∆Q: The parameters
coincide with those of tabs. II and III; perusing the notation introduced there, Gx is fx Qmin σ as evaluated for ∆% = 5 ·10−4/σ3

divided by the same quantity for ∆% = 10−2/σ3.

∆Q
˛

˛

˛

∞

σ Qmin σ f0.15 F 0.25
0.15 F 0.35

0.25 F 0.45
0.35

0.003 4.181 · 10−4
−1.415 · 105 2.379 1.635 0.392

0.004 3.198 · 10−4 3.597 · 104 1.589 0.965 0.523

0.005 3.318 · 10−4 3.465 · 104 1.589 0.965 0.523

0.010 3.576 · 10−4 3.225 · 104 1.589 0.965 0.523

TABLE V: ∆Q dependence of the final results for a sw system with λ = 3, β = 0.115/ε, and ∆% = 10−2/σ3; we use the same
notation as in tab. II.

∆Q
˛

˛

˛

∞

σ Qmin σ f0.15 F 0.25
0.15 F 0.35

0.25 F 0.45
0.35

0.003 4.206 · 10−4 2.812 · 104 1.584 0.974 0.547

0.004 3.302 · 10−4 3.589 · 104 1.584 0.974 0.547

0.005 3.318 · 10−4 3.551 · 104 1.584 0.974 0.547

0.010 3.685 · 10−4 3.178 · 104 1.589 0.974 0.545

TABLE VI: ∆Q dependence of the final results for a sw system: The parameters and notation coincide with those of tab. V,
except for ∆% = 5 · 10−4/σ3.

∆Q
˛

˛

˛

∞

σ Qmin σ f0.2 f0.2 Qmin σ F 0.3
0.2 F 0.4

0.2 F 0.5
0.2

0.003 3.131 · 10−5 1.167 · 105 3.652 1.865 1.768 0.625

0.004 1.004 · 10−2 3.638 · 102 3.653 1.865 1.768 0.625

0.005 5.014 · 10−5 7.285 · 104 3.652 1.865 1.768 0.625

0.010 1.004 · 10−4 3.637 · 104 3.653 1.865 1.768 0.625

TABLE III: ∆Q dependence of the final results for a hard-core Yukawa system: The parameters and notation coincide with
those of tab. II, except for ∆% = 5 · 10−4/σ3.
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FIG. 1: ε̄ Q2 as a function of Q for various densities inside the binodal: The data have been obtained for a hard-core Yukawa
potential with inverse screening length z = 1.8/σ and for an inverse temperature of β = 0.875/ε; the numerical precision in the

calculations was ε# = 10−2, the step size for infinite cutoff was ∆Q
˛

˛

˛

∞

= 10−2/σ.
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FIG. 2: f as a function of Q for various densities inside the binodal: The data have been obtained for the same hard-core
Yukawa potential and with the same numerical parameters as in fig. 1. The dashed line indicates the slope corresponding to
proportionality of f to the reciprocal of the cutoff; subsequent symbols are separated by ten steps in the −Q direction.



13

10−3 10−2 10−1

Qσ

101

102

103

104

f

f ∝ 1/Q

% = 0.1/σ3

% = 0.2/σ3

% = 0.3/σ3

% = 0.4/σ3

% = 0.5/σ3

FIG. 3: f as a function of Q for various densities inside the binodal: The data have been obtained for a sw potential with λ = 3
and at a temperature of β = 0.115/ε; otherwise, the remarks of fig. 2 apply. Arrows mark several of the near-discontinuities
discussed in section IIIC.
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Qσ

0.0
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1.0

ũ0

SW, λ = 1
HCY, z = 1.8/σ
HCY, z = 1.8/σ, ε0 = 0
z2/(z2 +Q2), z = 1.8/σ

FIG. 4: ũ0 as a function of Q for sw and hcy potentials with the parameters indicated: If, contrary to eq. (3), the Yukawa
form is retained even inside the core, ũ0(Q) is given by z2/(z2 +Q2). As far as the sw potential is concerned, λ and Q enter ũ0

only in the combination λQ so that a variation of the potential range only introduces a linear rescaling of the Q dependence
of the function. We have checked that the graph remains qualitatively unchanged for different parameter settings. The first
minimum of ũ0 is −0.02 for the default hcy potential, −0.09 for the hcy potential with ε0 = 0, and slightly above −0.09 for
the sw potential.
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FIG. 5: f(Q, %) for intermediate cutoff as a logarithmic contour plot: The data has been obtained for sws with λ = 3 at inverse
temperature β = 1/kB T = 0.115/ε. Both the approach to the low-density boundary condition of vanishing f at densities below
0.01/σ3 and the final build-up of infinite compressibility at cutoffs below 10−1/σ have been excluded from the graph.


