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We have considered a system where the interaction, v�r�=vIS�r�+�2vMF�r�, is given as a linear
combination of two potentials, each of which being characterized with a well-defined critical
behavior: for vIS�r� we have chosen the potential of the restricted primitive model which is known
to belong to the three-dimensional Ising universality class, while for vMF�r� we have considered a
long-range interaction in the Kac �J. Math. Phys. 4, 216 �1963�� limit, displaying mean field �MF�
behavior. We study the performance of two theoretical approaches and of computer simulations in
the critical region for this particular system and give a detailed comparison between theories and
simulation of the critical region and the location of the critical point. Having shown by theoretical
arguments that the system belongs to the MF universality class for any positive value of � and shows
nonclassical behavior only for �=0, we examine to which extent theoretical approximations and
simulation can reproduce this behavior. While in this limiting case theoretical approaches are known
to fail, we find good agreement for the critical properties between the theoretical approaches and the
simulations for �2 larger than 0.05. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2405353�

I. INTRODUCTION

The exact determination of the critical properties of a
fluid �i.e., in terms of the location of its critical point and of
its universality class� represents a formidable challenge both
to theoretical approaches as well as to computer simulations.
Although integral-equation theories are quite successful in
predicting the thermodynamic and structural properties of a
variety of simple and more complex systems over a wide
domain in temperature-density space,1 they meet with vari-
able success in the critical region due to an unsatisfactory
treatment of long wavelength fluctuations which are of par-
ticular relevance in this region.2,3 To give an example, for the
modified hypernetted chain equation �MHNC�, which is
amongst the most accurate liquid state theories,4 the bound-
ary of the density region at which no solution is found does
not correspond to the spinodal and there is no divergence of
the compressibility. The mean spherical approximation
�MSA�, on the other hand, satisfies scaling laws in the criti-
cal region, though with peculiar critical exponents �mean
spherical exponents5�, but, similar to MHNC, fails to give a

proper treatment of the first order gas-liquid �GL� transition.2

For computer simulations, on the other hand, suitable tech-
niques have been developed that allow the determination of
the critical point via data extrapolation from simulations per-
formed in finite simulation volumes.6–8

The purpose of the present paper is to examine the per-
formance of theoretical approaches and of computer simula-
tions in the critical region for a system where the potential
v�r� is a linear combination of two interactions, exhibiting
different, but well-established critical behavior, i.e., three-
dimensional �3D� Ising �IS� and mean field �MF�,

v�r� = vIS�r� + �2vMF�r� . �1�

The dimensionless parameter �2 indicates the relative impor-
tance of the two contributions. For reasons given below, we
shall use a Coulombic interaction for vIS�r� and a Kac
potential9,10 for vMF�r� which we define as the limit, at fixed
volume V,

vMF�r� = lim
�*→0

�*3���*x� , �2�

where ��x�=−�q2 /���e−x /x� �x=r /�, � length scale, and q
has the dimension of a charge�. When the dimensionless pa-
rameter �*=�� tends to zero the strength of the potential
decreases and its range increases to infinity. It is crucial to
observe that the limit �→0 in Eq. �2� must be taken before
taking the thermodynamic limit, i.e., at fixed volume. Al-
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though one might expect that the critical behavior of the
system is the result of a competition between the Ising 3D
and the MF behavior, leading, for example, to a crossover
between the two universality classes, it turns out that the
criticality of the system is described by a MF behavior ex-
cept at �2=0 where the system behaves Ising-3D-like.

To overcome the problem of liquid state theories men-
tioned above, two advanced liquid state theories have been
proposed in recent years that are able to provide accurate
data in the critical region: the hierarchical reference theory
�HRT� of Parola and Reatto3 and the self-consistent
Ornstein-Zernike approximation �SCOZA� originally pro-
posed by Høye and Stell.11,12 Compared to standard liquid
state theories they are more successful in describing the criti-
cal region, providing, in particular, nonclassical �i.e., non-
MF� critical exponents. The HRT approach is a successful
merger2,3 of liquid state theory with renormalization group
ideas. In the simplest form of SCOZA �Refs. 13–15� �which
will be used here� the Ornstein-Zernike �OZ� equation is
supplemented by an approximate, MSA-type closure relation
for the direct correlation function containing a density- and
temperature-dependent function which is determined by im-
posing self-consistency between the compressibility and in-
ternal energy routes to the thermodynamics. SCOZA predicts
non-MF critical exponents;16 they are different when ap-
proaching the critical temperature from above or below and,
in both cases, satisfy hyperscaling.16 We note that the formal-
ism of SCOZA is not applicable for the Kac potential �i.e.,
for �=0� itself; instead, we rather have to consider a poten-
tial with a small, but finite parameter �. On the other hand,
this restriction also has the attractive feature that we can
study in detail how the critical behavior varies as � tends to
zero; indeed we can identify a crossover behavior between a
nonclassical and a MF behavior.

In addition we use a recent improved mean field theory
based on a loop expansion of the free energy of the restric-
tive primitive model17,18 �RPM� to describe the thermody-
namic properties of our system.

Finally, we have used grand canonical Monte Carlo
�GCMC� simulations performed on a hypersphere19,20 to-
gether with histogram reweighting techniques21 to locate the
critical point and the near critical coexistence curve.6,22

With respect to the contribution to v�r� with Ising 3D
criticality we resorted to the RPM. This choice has three
advantages: first, it is now well established by simulations
that the RPM belongs to the Ising 3D universality class.23,24

In addition, the critical parameters �i.e., temperature Tc and
density �c� and the near critical coexistence curve are accu-
rately known. Second, the reduced, dimensionless, critical
temperature and density of the RPM, Tc�0.0489−0.0492,
�c�0.076−0.080 �Refs. 23–25� �for the definition of the re-
duced units see Sec. II� differ notably from those of the Kac
model �lim�2→�Tc /�2�1.130 52, �c�0.27�, which would
not be the case by taking for vIS�r� a short range Yukawa
potential. Third, the improved MF theory outlined above can
be formulated with closed expressions for a size-symmetric
�and possibly charge-asymmetric� system of charged hard
spheres, including thus the RPM.17 These attractive features
are contrasted by one serious disadvantage: theoretical ap-

proaches that have been proposed up to date in the literature
are not able to provide results for Tc and �c for the RPM that
are in reasonable agreement with the predictions of
simulation.17,26–28 Nevertheless, the critical exponents we ob-
tain from our SCOZA investigation for the RPM show a
crossover behavior to MF.

The paper is organized as follows. After presenting our
model �Sec. II�, we give a brief introduction to the theoreti-
cal concepts that we apply to study the critical behavior of
our system: an improved MF theory and SCOZA �Sec. III�.
The section is closed with a comparison between the data
produced by these concepts. In Sec. IV we give details about
the simulation techniques that we apply and discuss the prob-
lems hereby encountered. In the subsequent section �Sec. V�
we make a comparison between the data obtained in the the-
oretical approaches and in the simulations. The paper is
closed with concluding remarks.

II. MODEL AND REDUCED UNITS

Using the RPM for vIS�r�, our potential v�r� is actually
the interaction of a binary system, thus

vij�r� = �� , r � �

qiqj

r
+ �2vMF�r� , r � � , � �3�

where vMF�r� is given in Eq. �2�.
Numerical results will be expressed in reduced units

�taking the hard-sphere �HS� diameter � as unit of length�:
reduced temperature T*=1/	*, where 	*=q2 /kBT� �q=q+

=−q− charge of the spheres, kB Boltzmann constant, and T
temperature�, reduced configurational chemical potential 
*

=
 /kBT, reduced volume V*=V /�3, and reduced density
�*=N /V* �N the number of particles�. However, for nota-
tional convenience we will drop the stars throughout the pa-
per.

III. THEORY

A. Improved mean field theory „MF2L…

The Kac potential energy Ep�C� of a grand canonical
�GC� configuration C, assuming, for instance, periodic
boundary conditions, is

Ep�C� =
1

2V
�
k��

ṽMF�k��̃�k��̃�− k� , �4�

where ṽMF�k� and �̃�k� are the Fourier transforms of vMF�r�
and the microscopic density, respectively. For a fixed volume

V, ṽMF�k�=�̃�k /�� vanishes for all nonzero �k�0� wave
vectors of Fourier space in the limit �→0 and ṽMF�0�
=�̃�0�. Thus

Ep�C� =
1

2V
�̃�0�2�̃�0� = − 2�q2V�2. �5�

The GC partition function of the model �Eq. �1�� is then
obtained as18
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V�	,�� 	 

0

�

d��3

�exp�− V�− �� + 	fRPM��� − 2�	q2�2�2�� ,

�6�

where we have replaced the sum over the number of particles
by an integral over the density which is valid for large sys-
tems and has no consequences for the thermodynamic limit
�here 	=1/kBT�. In Eq. �6�, fRPM�� ,	� is the Helmholtz free
energy per unit volume of the RPM fluid at density � and
��	
. Taking now the limit V→�, one gets

lim
V→�

−
1

V
ln V�	,�� = min

�
L�	,�,�� ,

�7�
L�	,�,�� = − �� + 	fRPM��,	� − 2�	q2�2�2.

The function L�	 ,� ,�� plays the role of a Landau
function.18,29 Denoting 	c

RPM the inverse critical temperature
of the RPM, we note that 	fRPM�� ,	� is an analytical and
strictly convex function of � for 	�	c

RPM. Therefore, since
the critical point of our model �cf. the simulation results of
Sec. V� occurs for 	�	c

RPM, the analyticity of fRPM�� ,	� for
these temperatures obviously implies that in the vicinity of
the critical point the derivatives with respect to � and 	 and
the Taylor expansion of L�	 ,� ,�� are well-defined quanti-
ties. From the standard analysis made in Ref. 47 and the
analysis of the Kac model, it can thus be inferred that the
composite system �Eq. �1�� will have MF behavior.9,18

Equation �7� can be taken as the starting point for an
improved MF theory. To this end an approximate expression
for fRPM�	 ,�� is inserted in the Landau function L�	 ,� ,�� of
Eq. �7� and L�	 ,� ,�� minimized with respect to � for each
inverse temperature 	 and reduced chemical potential �. At
low temperatures and arbitrary �, L�	 ,� ,�� has in general
two minima, �g and �l, but there is only one value of �, i.e.,
�coex�	�, for which the Landau function takes equal values at
the two minima. The corresponding minima are the densities
of the gas and liquid phases at coexistence, respectively.

We have used for fRPM the loop expansion of the RPM
free energy obtained in the field theoretical framework of
Refs. 17 and 18, i.e.,

fRPM = fRPM
�0� + fRPM

�1� + fRPM
�2� + ¯ , �8�

where the superscripts �p� denote the pth order contribution
to the loop expansion of fRPM.

At the tree level one has for the RPM,17

	fRPM
�0� = 	fHS��� − � ln 2 −

�

2
	q2vc�0� , �9�

where fHS��� denotes the excess free energy per unit volume
of the reference HS fluid for which the Carnahan-Starling
approximation30 was used in numerical calculations. The
� ln 2 contribution stems from the entropy of mixing and
vc�r� denotes the Coulomb potential, vc�r�=1/r for r�� and
regularized inside the core region.

The one-loop contribution 	fRPM
�1� reads

	fRPM
�1� =

1

2

 d3k

�2��3 ln�1 + 	�q2ṽc�k�� �10�

and coincides with the free energy in the random phase ap-
proximation �RPA�.17

Finally, the two-loop contribution 	fRPM
�2� , still tractable,

has the expression

	fRPM
�2� = −

	2

4
��q2�2
 d3rhHS,��r��2�r� , �11�

where hHS,��r� denotes the usual pair distribution function of
HSs at number density �; ��r� the propagator of the free
theory whose expression in k space is17

�̃�k� =
ṽc�k�

1 + 	�q2ṽc�k�
. �12�

As discussed at length in Refs. 17 and 18 the loop ex-
pansion is not a systematic expansion in some small physical
parameter and thus depends explicitly on the regularization
of the Coulomb potential vc�r� in the core �r���. In this
work we adopted the MSA regularization17 which ensures
that, at the one-loop level, the pair distribution function van-
ishes inside the core. Moreover, with this specification the
one-loop approximation of fRPM coincides with the opti-
mized RPA theory or the MSA theory if one adopts, as we
did, the Percus-Yevick expression4 for hHS,��r�.

With the MSA regularization,4

vc,MSA�r� = 1/r �r � �� , �13�

vc,MSA�r� =
B

�
�2 −

Br

�
 �0 � r � �� , �14�

B =
x2 + x − x�1 + 2x�1/2

x2 , �15�

where x=�� and �2=4�	�q2 is the Debye wave number
squared.

B. SCOZA

As noted in the Introduction the formalism of SCOZA is
not applicable if we choose in our interaction vij�r� � to be
zero. Therefore we consider a slightly modified potential,
v̄ij�r�, the so-called charged Yukawa model,31

v̄ij�r� = vij
C�r� + �2vY�r�, i, j = + ,− , �16�

where vij
C�r� stands again for the RPM, while the Yukawa �Y�

contribution reads

vY�r� = �� , r � �

− q2�*2

r
e−�*r/�, r � � . � �17�

In the limit �*→0, vY�r� reduces to vMF�r�.
For this particular system the set of OZ equations,
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hij�r� = cij�r� + �
k

�k�hik � ckj��r�, i, j,k = + ,− , �18�

where “�” denotes the convolution operation, can be decou-
pled: with �−=�+=� /2 and q+=−q−=q and introducing the
correlation functions

hY�r� = 1
2 �h++�r� + h+−�r��, cY�r� = 1

2 �c++�r� + c+−�r�� ,

�19�

hC�r� = 1
2 �h++�r� − h+−�r��, cC�r� = 1

2 �c++�r� − c+−�r�� ,

�20�

the set of OZ equations �18� decomposes into two indepen-
dently solvable one-component OZ equations for the Yukawa
and the Coulomb parts, namely,

hY�r� = cY�r� + ��hY
� cY��r� ,

�21�
hC�r� = cC�r� + ��hC

� cC��r� .

The formalism of SCOZA �Refs. 13 and 32� is based on
the MSA closure to the OZ equations, i.e.,

gij�r� = 0 for r � � ,

�22�
cij�r� = − 	v̄ij�r� for r � � .

Introducing gY�r�=hY�r�+1 and gC�r�=hC�r� leads to the
MSA closure for the decoupled OZ equations �21�,

hY�r� = − 1, r � � ,

�23�
cY�r� = cHS�r� − 	vY�r�, r � � ,

and

hC�r� = 0, r � � ,

�24�

cC�r� = − 	
q2

r
, r � � .

Above we have used for the correlation function of the HS
reference system, cHS�r�, the Waisman parametrization �for
details see Ref. 33�,

cHS�r� = K1���
exp�− z1����r − ���

r
. �25�

For the Yukawa part the formalism of SCOZA can be
applied in a straightforward way; introducing a yet unknown,
state-dependent function KY�� ,T�, the SCOZA closure rela-
tion �23� reads

hY�r� = − 1, r � � ,

�26�
cY�r� = cHS�r� − KY��,T�vY�r�, r � � .

For the Coulomb part the situation is more delicate: in Cou-
lomb systems the Stillinger-Lovett sum rules4,34 have to be
satisfied which would be violated when introducing a func-
tion KC�� ,T�, similar to what we did for the Yukawa contri-
bution in Eq. �26�. We therefore cannot extend SCOZA to the
Coulomb part and have to treat it rather within MSA, i.e., we

use the closure relations �24� for hC�r� and cC�r�.
Within the SCOZA formalism a partial differential equa-

tion �PDE� is derived that imposes thermodynamic self-
consistency between the energy and compressibility routes
and thus fixes the yet undetermined function KY�� ,T�. Thus
we have to calculate the internal energy and the compress-
ibility of the system within the framework of our theory. A
straightforward analysis leads to

u =
uex

V
= 2� �

i,j=+,−
�i� j
 drr2gij�r�v̄ij�r� = uY + uC, �27�

with uex being the excess �over HS� internal energy and in-
troducing

uY = 2��2
 drr2gY�r�vY�r� �28�

and

	uC = 2��2	

0

�

gC�r�q2rdr

=
w

4��3 ��1 + 2w − 1 − w� ,

�29�

w =�4���2q2

kBT
.

The explicit expression of uC was derived within MSA by
Waisman and Lebowitz.35

In a similar manner the reduced, dimensionless com-
pressibility �red�=�kBT�T� can be calculated for our system,
leading to

��red�−1 = 1 −
�

2
�c̃++�0� + c̃+−�0�� = 1 − �c̃Y�0� , �30�

where the tilde denotes the Fourier transform.
SCOZA imposes thermodynamic consistency between

the energy and the compressibility routes via the following
PDE:

�
�2u

��2 =
�

�	
� 1

�red
 . �31�

Using Eqs. �27�–�30� and a few trivial manipulations one
ends up with the following equation:

B��,uY�
�uY

�	
+ D��,uC� = C���

�2uY

��2 , �32�

i.e., a PDE which has a structure similar to the standard
SCOZA-PDE for the one-component fluid �see, e.g.,
Ref. 15�. B�� ,uY� is formally identical to the corresponding
standard SCOZA expression36 B�� ,u� and is obtained for the
present problem by simply replacing u by uY; again, C���
=�. Finally, one finds for the additional coefficient D�� ,uC�
the following relation:
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D��,uC� = − �
�2uC

��2 . �33�

Once the PDE �32� is solved, further thermodynamic quan-
tities �notably the pressure and the chemical potential� follow
via standard thermodynamic relations.15,36

While previous applications of SCOZA were rather dedi-
cated to the determination of the coexistence curves and to a
reliable location of the critical point within reasonable accu-
racy, we rather focus in the present contribution on a quan-
titative description of the critical properties. This means that
we have to approach the critical point very closely: introduc-
ing �= �T−Tc� /Tc, we need accurate and reliable data down
to ��10−10 or even less. Compared to previous SCOZA ap-
plications this requires a considerable increase in the numeri-
cal accuracy. We have realized this goal by suitable modifi-
cations of the code and by increasing the default numerical
accuracy to fourfold �extended� precision. Taking these mea-
sures is, in particular, indispensable for small � and �2 val-
ues, where the Coulomb and Yukawa potentials at contact
differ by many orders of magnitude. Of course this increase
in numerical accuracy is accompanied by a considerable in-
crease in computational effort.

C. Comparison between the theoretical approaches

In Fig. 1 we show the phase diagram of the system for
�2=1. We display results obtained from the improved MF
theory both on the one- and on the two-loop level. We show
also SCOZA results, varying the index � from 1.8 down to
0.01, which—within numerical accuracy—is already very
close to the Kac limit. We observe that in this limit the
SCOZA data really “converge” to the results obtained within
the improved MF theories. A more detailed analysis shows
that for �=0.01, the SCOZA data coincide with the results
obtained on the one-loop level, while there is a slight differ-
ence with respect to the two-loop level. This outcome is
valid for any value of �. Although a formal proof may be
difficult, the limit �→0 of SCOZA will reproduce the exact

MF result for hY�r� and cY�r�, while hC�r� and cC�r� are
solutions of the MSA. The one-loop theory is precisely built
with these ingredients and should coincide with SCOZA as
�→0. The MF2L theory improves hC�r� and cC�r� for all �,
although for �→0 the improvement is minor �cf. Sec. V�.
Comparison with simulation data will show that the two-loop
level indeed represents an improvement. An even more
elaborate version of the two-loop version of the improved
MF theory that requires the pair distribution function to van-
ish inside the core will certainly lead to an even better agree-
ment with simulations.

In Fig. 2 we show results obtained for the effective criti-
cal exponent �eff as a function of �, obtained from SCOZA
for �2=0.16 and for a sequence of � values; � varies from
1.8 down to 0.01. � characterizes the divergence of the com-
pressibility as one approaches the critical point from above,
i.e., �T��−�. The effective exponent �eff is obtained by dif-
ferentiating the logarithm of �T with respect to the logarithm
of � along the critical isochore. While in the MF universality
class � is 1, its SCOZA value16 �mean spherical� is 2.

For ��0.2, �eff varies with decreasing � as found in the
computations of this exponent by SCOZA performed for sys-
tems with an Ising 3D critical behavior.37 For ��0.1 this
variation of �eff is strongly modified. We observe that �eff

keeps a MF value in the temperature domain 10−7��
�10−4, before crossover to the mean spherical exponent
value takes place. The region of crossover shrinks drastically
as � is lowered. At �=0.01 the MF behavior is found up to
�=10−9, indicating that the critical behavior is likely to be
MF over the entire � range at �=0 as expected in the Kac
limit �cf. Introduction and Sec. III A�.

IV. SIMULATIONS

A. Methods

A detailed test of the validity of the theoretical ap-
proaches has been made by comparison with GCMC simu-
lations. The GCMC simulations are performed on a hyper-
sphere using the approach, detailed in Refs. 19 and 20, where
the system of charged spheres is viewed as a single compo-

FIG. 1. Phase diagram in the �T ,�� plane of the system investigated in the
present study for �2=1. Results were obtained via the improved MF theory
�both one- and two-loop levels� and SCOZA �for different values of �—see
text�; lines as indicated in the legend. In addition, a line connecting the
respective critical points is drawn.

FIG. 2. �Effective� critical exponent � as a function of � �for the definition
see text� of the system investigated in the present study for �2=0.16 as
obtained from SCOZA for different values of �, lined symbols as indicated
in the legend.
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nent fluid of charged bihard spheres constrained to move at
the surface of a four dimensional sphere. The practical
implementation of this method, which is particularly adapted
and efficient for simulating Coulomb systems of size N
�10 000, can be found in Ref. 40.

Sampling of configuration space of the system is made
according to the GC probability distribution,

p�N,RN,�,
,T,V�

=
VN exp�	�
N − URPM�RN� − UMF�N,V,����

N!�3N�T,V,
,��
. �34�

Here  is the grand canonical partition function20 and RN

indicates the positions of the N charged spheres �or charged
bihard spheres�; URPM�RN� is the energy of the RPM com-
prising Coulomb and hard core interactions. The term
UMF�N ,V ,��=−aq2�2N2 �with a=2� /V� is the MF contribu-
tion to the internal energy as explicited in Sec. III A.

For each value of �, we determine the critical point and,
in its vicinity, the coexistence line of the GL transition. The
location of the latter is obtained from the histograms,

H�N,u,�,
,T,V�

= C
 dRN��u − URPM�RN��p�N,RN,�,
,T,V� , �35�

where C is a constant of normalization. By integration of
H�N ,u ,� ,
 ,T ,V� over u, one obtains the histogram
h�N ,� ,
 ,T ,V� which shows, in the vicinity of the GL coex-
istence line, two peaks located at N=Ng and Nl, respectively,
and corresponding approximately to the densities �g and �l of
the gas and the liquid.

At given T and �, the values of 
e�L� �L characteristic
size of the system defined as V1/3� corresponding to GL equi-
librium are affected by finite size effects. Therefore the esti-
mates of 
e�L� are made for increasingly large volumes and
are then extrapolated to the thermodynamic limit. Several
procedures are possible to define for a finite volume V the
states of GL coexistence: First one can determine 
e�L� such
that the two peaks in h�N ,� ,
 ,T ,V� have equal area.38 This
procedure, however, does not allow, at fixed V, a very precise
location of the critical point as in its vicinity the two peaks of
h�N ,� ,
 ,T ,V� tend to merge. A second method to locate, at
fixed V, phase equilibrium as well as critical temperatures
and densities has been proposed by Wilding and Bruce.6 It
relies on the use of histograms of the variable M=�−s�u
−aq2�2N2� /V,

p�M,�,
,T,V�

=
 du�
N

��M − � + s�u − aq2�2N2�/V�

�H�N,u,�,
,T,V� . �36�

For an appropriate choice of the parameter s, M is such that
at GL equilibrium and near the critical point the distribution
p�M ,� ,
 ,T ,V� satisfies the symmetry relation,

p�M − �M�,�,
,T,V� = p�− M + �M�,�,
,T,V� , �37�

expected for the order parameter that characterizes phase
transitions of the Ising 3D or the MF universality class. Va-
lidity of the field mixing approach6,39 implies that, at the GL
phase equilibrium, the histogram h�N ,� ,
 ,T ,V� correspond-
ing to the symmetrized distribution p�M ,� ,
 ,T ,V� has two
peaks of equal area.

A third possibility is to apply an unbiased finite size
scaling method presented by Fisher and co-workers.8,41

If one defines x= ��M� / ��M2�1/2 with �M=M− �M�,
the critical temperature Tc�L� is obtained by determining the
values 
, T, and s, which enable to fit p�x ,� ,
 ,T ,V�
� p�x� to the critical distribution pc�x� of the order parameter
of a system of known universality class. For example pc�x�
can be the distribution of magnetization of the Ising 3D
model or that of the order parameter of a lattice spin model
of the mean field universality class. For the Ising 3D model
pc�x� is known accurately from MC simulations42 and ex-
actly for the MF universality class �see below�. The values
Tc�L� obtained for increasingly large volumes V can then be
extrapolated to obtain Tc���.

From the histograms p�x� obtained at fixed volume the
moments ��M2� and ��M4� can be calculated and from
these the fourth order cumulant, QL�	�= ��M2�2 / ��M4�,
which in the vicinity of Tc���=1/	c, has the form43

QL�	� = Q* + a1�	 − 	c�Ly� + a2�	 − 	c�2L2y�

+ a3�	 − 	c�3L3y� + ¯ + b1Lyi + ¯ . �38�

Q* and the exponents y� and yi are characteristics of the
universality class of the system and can be determined, to-
gether with 	c, by a fit of the QL�	� obtained for different
system sizes.

For the MF universality class pc�x�=A exp�−ax4� with
A= ���3/4��221/4 /�3/2, a= 1

2 ���3/4��4 /�2, Q*=2���3/4��4 /
�2=0.456 947, y�=d /2=1.5, and yi=−d /2=−1.5, where d is
the dimensionality of the system.44,45 As is well known the
MF exponents do not satisfy hyperscaling. In comparison,
for the Ising 3D universality class, Q*=0.629, y�=1.59, and
yi=−0.83.46

B. Results

Simulations have been performed for the values
�2=100, 11.11, 1.0, 0.1, 0.05, and 0.02 and volumes V
=1000, 4000, 8000, and 16 000. For each pair of �2 and V of
the order of �5–10��109 MC trial moves were sampled. At
volume V=16 000, even for such a large number of configu-
rations the statistical error remained large so that the deter-
mination of phase equilibrium and the location of the critical
point was based solely on the smaller volumes. Furthermore,
a reweighting procedure allowed to extend the results ob-
tained at the � values listed above to neighboring values of �.

An approximate location of the GL transition inferred
from the appearance of two peaks in the histograms
h�N ,� ,
 ,T ,V� indicates that �Tc ,�c� varies from approxi-
mately �113, 0.25� at �2=100 to �0.075, 0.11� at �2=0.02.
From these values we can conclude that for the range of �
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values considered, the critical temperature of our model is
markedly higher than the critical temperature of the RPM
��2=0�, i.e., Tc

RPM�0.049.23

From the fact that Tc is larger than Tc
RPM, and the analy-

ticity of the free energy at the critical point established in
Sec. III A, it follows that the critical behavior of our model
belongs to the MF universality class. In particular, the critical
exponents in Eq. �38� giving QL�	� near the critical point are
MF-like and in the procedure of Bruce and Wilding,6 p�x�
has to be adjusted to the distribution pc�x� of a model with
MF criticality.

In Table I we summarize the critical temperatures Tc�L�
obtained at V=8000 by fitting p�x� to the distribution pc�x�
corresponding to the MF universality class and Tc

Q estimated
from the fit of QL�	� calculated for the volumes V=1000,
4000, and 8000 at the six values of �2 considered in the
simulations. The fits of QL�	� are realized with five free
parameters and Q*, y�, and yi fixed at their MF values �cf.
Eq. �38��. QL�	� was calculated, for each volume, along the
coexistence line by the procedure outlined above, and, for
T�Tc�L�, for values of 
 and s such that p�x� remained
symmetric with respect to x=0. For each volume, 8–12 val-
ues of QL�	� were determined in the neighborhood of Tc�L�,
i.e., �±3% from Tc�L�. These temperatures Tc

Q are in good
agreement with values for Tc�L� obtained at V=8000 �cf.
Table I�. In the table �c�L� denotes the average density of the
thermodynamic states at 
c�L� and Tc�L�.

The considered values of �2 were too different to allow
reweighting in the whole range of parameters �2�0.1. How-
ever, it was possible to combine histograms obtained at �2

=0.05 and 0.1, on one hand, and those at �2=0.02 and 0.05,
on the other. Furthermore, the results at �2=0.10 could be
reweighted up to 0.13, and those at �2=0.02 to 0.01. How-
ever, combination of the H�N ,u ,� ,
 ,T ,V� was possible
only at volume V=1000 due to insufficient overlap of the
energies at the larger volumes.

Figures 3 and 4 show the variation of Tc�L� and �c�L� as
a function of �2 between �2=0.01 and 0.13 for V=1000. GL
coexistence curves are presented in Figs. 5–8 for �2=0.02,
0.05, 1.0, and 11.11 and the three volumes V=1000, 4000,
and 8000. The error in Tc�L� is of the order of �0.3% –0.1%
depending on the amount of sampling of the histograms
h�N ,� ,
 ,T ,V�. Tc�L� decreases weakly ��1% � when V
varies from 1000 to 8000 and differs from Tc

Q by about
1%. From these results it is concluded that in the range

0.01��2�0.13, the values of Tc�L� obtained by reweighting
for V=1000 provide an estimate of Tc

Q or Tc�L� at V=8000
with an uncertainty of the order of �1% �cf. Table II�.

The variation of the critical density with volume is small
�cf. Table II�, of the order of the statistical error on
h�N ,� ,
c�L� ,Tc�L� ,V�, estimated to be �0.5% –1.0% de-
pending on sampling in the simulations. A second estimate of
�c, denoted �c

d�L�, is based on the rule of rectilinear diameter,
i.e., �c

d�L�= ��g�T ,L�+�l�T ,L�� /2 valid at a MF critical point
for T close to Tc. The values of �c

d�L� given in Table II for the
different values of � and V were obtained by retaining only
the coexistence densities �g�T ,L� and �l�T ,L�, which were

TABLE I. Variation of the critical temperatures and densities with �2:
Tc

Q—critical temperature obtained from the intersection of the cumulants
QL�	�; Tc�L� and �c�L�—fit of simulation data at V=8000 to the universal
MF distribution; Tc

S and �c
S—SCOZA �with �=0.01�; Tc

�2� and �c
�2�—MFL2.

For statistical error see text.

�2 Tc
Q Tc�L� �c�L� Tc

S �c
S Tc

�2� �c
�2�

100.0 113.5 113.4 0.250 113.2 0.249 113.2 0.249
100/9 ¯ 12.62 0.251 12.60 0.249 12.60 0.249

1.0 ¯ 1.172 0.242 1.163 0.243 1.173 0.243
0.10 0.1596 0.1599 0.190 0.148 0.176 0.1604 0.193
0.05 0.1054 0.1062 0.151 0.0972 0.0959 0.1066 0.135
0.02 0.0742 0.0748 0.111 0.0825 0.0225 0.0850 0.032

FIG. 3. Variation of the critical temperature Tc with strength �2 of the Kac
potential: MF2L—squares and dashed line, SCOZA—triangles up and
dashed line, and solid circles—MC simulations for V=1000 �see text�. The
solid line is a linear fit of the simulation data. Diamond and triangle down
indicate the critical temperatures of the RPM ��2=0� obtained by the MSA
approximation �Ref. 26� and simulation �Refs. 23 and 25�, respectively.

FIG. 4. Same as Fig. 3 but for the critical density �c. The MC results for the
RPM are from Ref. 23 �triangle down� and Ref. 25 �triangle left�,
respectively.
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closest to the critical point at Tc�L� and �c�L�. The coexist-
ence densities �g�T ,L� and �l�T ,L� correspond to the two
maxima of h�N ,� ,
 ,T ,V� whose associated distribution
p�x� is symmetric �see above�. The uncertainty of the loca-
tion of the maxima of h�N ,� ,
 ,T ,V� increases when T ap-
proaches Tc�L� so that the error on �c

d�L� is of the order of
�2%. The result for �c

d�L� is somewhat lower than �c�L�
though compatible within the combined error estimates.

As mentioned previously in the literature,7 agreement of
p�x� with a pc�x� characteristic of a universality class is nec-
essary but not sufficient to make unambiguous conclusions
about the universality class of a model system when studied
by simulation. This uncertainty is illustrated for �2=0.02 and
V=8000 in Fig. 9, which shows excellent fits of both the
pc�x�’s corresponding to the Ising 3D and MF universality
classes.

As stated above, Tc�L� can be estimated from a fit of
p�x� to the MF pc�x� distribution and Tc

Q from the fits of

QL�	� realized with five free parameters and Q*, y�, and yi

fixed at their MF values. The uncertainties on Tc�L� and Tc
Q,

equal to 1–2%, are due to the statistical and systematic errors
on p�x� and QL�	� which are of the order of 1%–2%. It
corresponds to simulations of �5–10��109 MC trial moves
for each volume and � value. It results mainly, as already
discussed in Ref. 23 for the case of the RPM critical point,
from the low densities at which the GL critical point occurs
in our model for �2�0.2. However, such an uncertainty on
the MC estimates of QL�	� and the limited range of consid-
ered volumes in the simulations does not allow a direct and
precise estimate of Q*, y�, and yi as it should result from the
fit of QL�	� with the eight free parameters present in Eq.

FIG. 5. Comparison between simulation and theoretical estimates for the
coexistence curve at �2=100/9 in the vicinity of the critical point. The
symbols represent MC results for the different volumes: V=1000 �circles�,
V=4000 �squares�, and V=8000 �triangles�; MF2L �dashed line�; and
SCOZA �full line�.

FIG. 6. Coexistence curve at �2=1 in the vicinity of the critical point. The
symbols represent MC results for the different volumes: V=1000 �circles�,
V=4000 �squares�, and V=8000 �triangles�; MF2L �dashed line�; SCOZA
�full line�; and one-loop approximation �dash-dotted line�.

FIG. 7. Coexistence curve at �2=0.05 in the vicinity of the critical point.
The symbols represent MC results for the different volumes: V=1000
�circles�, V=4000 �squares�, and V=8000 �triangles�; and MF2L �dashed
line�. The inset shows SCOZA �full line� and the one-loop approximation
�diamonds�.

FIG. 8. Coexistence curve at �2=0.02 in the vicinity of the critical point.
The symbols represent MC results for the different volumes: V=1000
�circles�, V=4000 �squares�, and V=8000 �triangles�; MF2L �dashed line�;
SCOZA �full line�; and one-loop approximation �diamonds�.
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�38�. In spite of the fact that the agreement of such fits with
MC data is quite good �examples are presented in Figs. 10
and 11�, the uncertainties on Q*, y�, and yi are of the order of
20%–30%.

V. COMPARISON: THEORIES VERSUS COMPUTER
SIMULATIONS

While the results obtained of the two theories and the
simulation data have already been discussed in the respective
subsections, we focus in the following on a direct compari-
son between the theoretical and the simulation data.

To this end we go back to Table I where we have col-
lected critical data �i.e., Tc and �c� for different values of �2

as obtained from the GCMC simulations, the improved MF
theory, and SCOZA; in the latter case we have chosen �
=0.01, i.e., a value that has turned out to be sufficiently small
to make the potential vY�r� Kac type. From these data we can
conclude that both theories are able to reproduce the critical
temperatures and critical densities for large and intermediate
values of �2�1 very accurately. In the range of �2 values,
0.06–1, the MF2L approximation remains quantitative, while
SCOZA differs from the simulation results by �10% for the
critical temperature and �30% for the critical density. Below
�2�0.06 the RPM contribution to the potential becomes
dominant and we find, not surprisingly, that the theoretical
data start to differ from the simulation results; in both theo-

TABLE II. Variation of the critical temperatures and densities with system
size and �2: Tc�L� and �c�L�—fit of simulation data at volume V to the
universal MF distribution; �c

d�L�—from rule of rectilinear diameter �see
text�. For statistical error see text.

�2 V Tc�L� �c�L� �c
d�L�

0.020 1000 0.075 95 0.112 0.102
0.020 4000 0.075 06 0.111 0.108
0.020 8000 0.074 77 0.111 0.108

0.050 1000 0.107 09 0.153 0.146
0.050 4000 0.106 20 0.151 0.147
0.050 8000 0.106 25 0.151 0.143

0.100 1000 0.161 25 0.189 0.183
0.100 4000 0.160 15 0.189 0.186
0.100 8000 0.159 93 0.190 0.187

1.0 1000 1.181 0.244 0.244
1.0 4000 1.174 0.244 0.243
1.0 8000 1.172 0.242 0.239

100.0 1000 114.0 0.250 0.249
100.0 4000 113.5 0.245 0.248
100.0 8000 113.4 0.247 0.246

FIG. 9. Matching of pc�x� Ising 3D �T=0.073 85, 
=−9.7953, and
s=−1.03� �two peaks� and pc�x� MF �T=0.074 77, 
=−9.6901, and
s=−0.98� at �2=0.02 and V=8000.

FIG. 10. Fourth order cumulant QL�	� as a function of inverse temperature
	 at volumes V=1000 �solid circles�, 4000 �squares�, and 8000 �triangles� at
�2=0.02. The lines are fits of the simulation data using 8 free parameters, in
Eq. �38�.

FIG. 11. Fourth order cumulant QL�	� as a function of inverse temperature
	 at volumes V=1000 �solid circles�, 4000 �squares�, and 8000 �triangles� at
�2=0.1. The lines are fits of the simulation data using 8 free parameters, in
Eq. �38�.
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ries, critical temperature and density tend to the MSA values
of the RPM for �2=0 whose failure to reproduce the simula-
tion data for the RPM is well documented.17 As pointed out
above, SCOZA identifies with the one-loop MF theory for all
�2 as �→0.

The coexistence curves in the vicinity of the critical
point obtained from theory and simulation are compared in
Figs. 5–8 for selected values of �2. The convergence of the
coexistence curves with system volume can be appreciated
from these figures; the results obtained for volume V=8000
appear to be close to the infinite system limit. The MF2L
approximation for the coexistence curve agrees well with
simulation data for �2�0.1 but deteoriates when approach-
ing the RPM limit where the critical temperature is overes-
timated and the critical density is underestimated. One
should note, however, that even at �2=0.02 the critical tem-
perature differs from the MC result by only 10%. The MF2L
approximation is a definite improvement over either the one-
loop approximation or SCOZA and could still be improved
by requiring the pair distribution function to vanish inside
the core at the two-loop level.

As noted above, SCOZA provides data that are in a less
satisfactory agreement with simulation data than those of the
improved MF theory. Despite this deficiency, SCOZA was
able to provide useful information about the critical behavior
of the system: having nonclassical critical exponents we
have been able to trace the crossover from a MF to a non-MF
behavior, as we approach the Kac limit �see Fig. 2�, verifying
that the system displays MF criticality for �=0.

VI. CONCLUSION AND OUTLOOK

We have investigated the critical behavior of a system
where the interaction is a linear combination of two poten-
tials, each of them having a well-defined critical behavior,
viz., Ising 3D or MF. Taking the RPM for the first contribu-
tion and a Kac-type potential for the latter one, we could
vary via a parameter �2 the weight of the respective contri-
butions. Our investigations have been carried out with
GCMC simulations and two theoretical approaches, i.e.,
SCOZA and the improved MF theory. The theoretical argu-
ment of Sec. III shows that the MF behavior at the critical
point is expected for all �2�0.

We have given a detailed account how the simulations
and the theoretical approaches perform in the critical region.
We showed that the three theories considered in this work
�SCOZA, MF1L, and MF2L� provide a quantitative determi-
nation of the location of the critical point of the considered
model. In addition the SCOZA results provide strong evi-
dence when �→0 for a MF value of the effective �eff up to
a distance 10−9 to the critical temperature before crossover to
the mean spherical value of 2 occurs.

The location of the GL critical point �based on the MF
universality class� and the coexistence lines are obtained
from simulation within a numerical accuracy of �1% –2%
with a slight variation with the volume V. For our model we
find excellent agreement between the theoretical approaches
and computer simulations for �2 values down to �1; the
improved MF theory, MF2L, performs in an excellent way

even down to �2�0.05. Only for very small values of �2, i.e.,
close to the pure RPM, simulation data and theoretical re-
sults start to deviate.

We highlight the ambiguity arising when determining
critical temperatures by fitting universal critical point order
distribution functions by showing that for the present system
almost equally good fits are obtained for both the universal
Ising 3D and MF distributions.

Finally, by referring to the theoretical developments pre-
sented in Sec. III A, we can remark that the critical tempera-
ture is obtained by requiring that the second derivative of
L�	 ,� ,�� with respect to the density vanishes, which yields

	c�
2fRPM��,	�/��2 � �T

−1 = 2�	cq
2�2, �39�

where �T denotes the isothermal compressibility of the RPM.
Arguing that for small �2 �T��Tc−Tc

RPM��, where � is the
critical exponent of the compressibility of the RPM �or, more
generally, that of the system with potential vIS�, it is con-
cluded that

Tc − Tc
RPM � �2/�. �40�

This relation provides a means to evaluate the exponent
�. By simulation this turns out to be practical only for large
systems �V�20 000� which are necessary to accurately
sample the density distribution function in the very low den-
sity gas phase of the RPM near the critical point as stressed
already in Sec. III A.
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