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We numerically investigate the formation of stable clusters of overlapping particles in certain systems interacting
via purely repulsive, bounded pair potentials. In close vicinity of a first-order phase transition between a
disordered and an ordered structure, clusters are encountered already in the fluid phase which then freeze
into crystals with multiply occupied lattice sites. These hyper-crystals are characterized by a number of
remarkable features that are in clear contradiction to our experience with harshly repulsive systems: upon
compression, the lattice constant remains invariant, leading to a concomitant linear growth in the cluster
population with density; further, the freezing and melting lines are to high accuracy linear in the density-
temperature plane, and the conventional indicator that announces freezing, that is, the Hansen-Verlet value
of the first peak of the structure factor, attains for these soft systems much higher values than for their hard-
matter counterparts. Our investigations are based on the generalized exponential model of index 4 (i.e.,Φ(r)
∼ exp[-(r/σ)4]). The properties of the phases involved are calculated via liquid state theory and classical
density functional theory. Monte Carlo simulations for selected states confirm the theoretical results for the
structural and thermodynamic properties of the system. These numerical data, in turn, fully corroborate an
approximate theoretical framework that was recently put forward to explain the clustering phenomenon for
systems of this kind (Likos, C. N.; Mladek, B. M.; Gottwald, D.; Kahl, G.J. Chem. Phys.2007, 126, 224502).

1. Introduction

The tendency of particles to form stable clusters is a well-
known feature of systems with long-range repulsions and short
range attractions,1-12 which, for example, are models for the
competition between electrostatic and depletion forces in
colloidal systems. However, when clustering behavior was also
observed in computer simulations of certain systems interacting
via bounded and purely repulsive pair potentials,13 it did not
receive due attention. Two reasons quite probably lie at the core
of this initial lack of follow-up investigations of this kind of
aggregation phenomenon: first, the fact that some general
organizing principle was missing that would rationalize and put
in physical context the appearance of clusters in the absence of
attractions; and second, some 10 years ago, bounded potentials
were viewed in general as rather academic, unrealistic model
interactions without any correspondences in nature. Meanwhile,
considerable progress in soft matter physics has cleared up the
second objection. In numerous examples, it was shown that the
concept of weakly diverging or bounded potentials is a realistic
one if understood as effective interactions, for example, between
polymeric macromolecules of low internal monomer concentra-
tions, such as polymer chains,14-16 dendrimers,17,18microgels19-21

or block copolymers,22,23 once the large number of degrees of
freedom of the constituent monomeric entities have been

averaged out via suitable methods (for an overview see ref 24).
The phase diagrams of these systems exhibited new and
surprising features that are in sharp contrast to the experience
accumulated over a long time in the study of the phenomena
typical of harshly repulsive systems. Apart from the clustering
phenomenon, there is another, complementary type of phase
behavior relevant in the context of the present work, that is,
that of re-entrant melting accompanied by a maximum freezing
temperature.25-27 Here, the fluid upon compression crystallizes
via a first-order phase transition for temperatures below an upper
marginal temperature, and it remelts again as the density is
further increased. Above the marginal temperature, no solid
phase is found, and the fluid is stable at all densities.

It took several years until the results of ref 13 were put into
a broader context within the scope of theoretical arguments.28

A criterion was derived which allowed for the classification of
the phase behavior of systems where particles interact via
bounded, strictly positive interactions on the basis of the
behavior of the potentials’ Fourier transform (FT) as either the
clustering or the re-entrant melting scenario. These investigations
also explained why the Gaussian core model (GCM) shows re-
entrant melting25,26,29-34,37 while the penetrable sphere model
(PSM)38-46 exhibits clustering, though they are both bounded,
purely repulsive potentials.

Another 5 years later, a consistent understanding of the
phenomenon of clustering was obtained via detailed free energy
calculations based both on density functional theory (DFT) and
on computer simulations.47,48Moreover, these studies confirmed
the theoretical results put forward in ref 28. Subsequently, we
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recently proposed a very general theoretical concept that
provided comprehensive understanding of the clustering phe-
nomenon and revealed several striking properties of the cluster
phase.49

In putting the clustering and crystallization scenario of ref
28 to a strict test, several aspects of the statistical mechanics of
the system have to be treated with particular care, since the
possibility of aggregation introduces additional complications.
First, the candidate crystal phases have to be identified in an
unbiased fashion, since packing arguments, which are usually
evoked for harshly repulsive interactions and which favor the
typical fcc-periodic arrangement, do not dictate the physics for
soft interactions.50 Second, by changing the number of particles
occupying a lattice site, clustering offers an additional possibility
to adjust and optimize the lattice constant of the crystal phases.
Thus, the latter becomes a variational parameter in the free
energy of the solid. Therefore, it is an intricate task to determine
the free energies of the different phases with sufficient accuracy
to be able to obtain the phase boundaries correctly. Finally, the
width of the particle oscillations around lattice sites as well as
the distribution of cluster sizes in the crystal have to be
determined. The purpose of this work is to address in detail the
issues mentioned above and to elucidate thereby the salient
physical mechanisms leading to cluster formation for a whole
class of repulsive and bounded interaction potentials. The above-
mentioned, recently proposed analytical approach to the problem
of clustering and crystallization of such potentials49 shed light
into the general underlying mechanisms present in these systems,
but the framework rested on a simplifying assumption: in
writing the expression for the free energy of the crystal phase
as a sum of contributions from the modes with wavenumbers
given by the crystal’s reciprocal lattice vectors (RLV), only the
first nonvanishing one was kept in the sum. Here, a full
minimization of the density functional is performed instead, and
in this way, the role of all of the RLV shells of the solid is
brought forward. It is seen that these cause a transition from
the bcc to the fcc arrangement at sufficiently high densities,
which is not predicted by the simplified theory of ref 49. A
short account of the present work has been presented in ref 47.

The rest of the paper is organized as follows: after introduc-
ing in section 2 the specific model whose phase diagram and
clustering properties we want to investigate, we briefly present
in section 3 the theoretical schemes that we require to calculate
the properties of the fluid and of the ordered cluster phases. To
put the results from theory to the test, we performed MC
simulations, whose implementation details are explained in
section 4. The subsequent section is devoted to a thorough
discussion of the results, and the paper is closed by a summary
of the results and outlook in section 6.

2. Model

Our investigations are focused on the generalized exponential
model of indexn (GEM-n). This is a family of bounded, purely
repulsive soft model systems defined by the spherically sym-
metric pair potential

whereε andσ are the model’s characteristic energy and length
scales. The non-negative parametern tunes the steepness of the
repulsion and allows us to consider a whole range of potentials
that includes not only the GCM forn ) 2, but also the PSM
for n f ∞ as special cases.

On the basis of the behavior of the structure factor,S(q),
within the scope of a mean field approximation, Likos et al.28

proposed a criterion that provides information about the topology
of the phase diagram of systems with bounded, purely repulsive
interactions. It states that if the FT,Φ̃(q), is a positive
semidefinite, monotonically decaying function, the potential
belongs to the so-calledQ+ class, and the system will show
re-entrant melting behavior upon compression. If, on the other
hand,Φ̃(q) exhibits oscillatory behavior and thus attains negative
values for certain ranges ofq, the potential is aQ( potential.
Such systems will show clustering, and the system will freeze
at all temperatures into a hyper-crystal with multiply occupied
lattice sites. Applying this criterion to the GEM-n family, one
can show the following (for a proof cf. Appendix A of ref 49):

(i) For n e 2, Φ̃(q) > 0 for all q, and we therefore expect
the re-entrant melting scenario for this index range. The phase
diagram of the GCM, which represents the limiting casen ) 2,
does in fact show this topology.26,32

(ii) For n > 2, Φ̃(q) oscillates, thereby delimiting the index
range where we expect clustering behavior. The PSM, for which
clustering was already documented in a previous contribution38

and which is recovered forn f ∞, is a representative of this
class.

In this work, we restrict our investigations ton ) 4 in an
effort to investigate the clustering phenomenon in detail by
means of a typical example for positive potentials with a
negative minimum (located atq*) in its FT. We then compare
our results to the theoretical predictions presented in ref 49.

Up to now, the effective interactions determined for the
various macromolecular systems already mentioned in the
introduction14-23 all showed re-entrant melting behavior, and
some even took the functional form of a GCM (i.e., a GEM-
2).16,17 In work under way, however, we have succeeded in
computationally designing amphiphilic dendrimers whose ef-
fective pair interactions show a functional form that can be
approximated very accurately with a GEM-n potential with
index n = 3.1,51 that is, well within theQ( range. Since
experimental realization of clustering systems is still missing,
we hope that this work as well as the results presented here
will serve as a motivation and useful guide to experimentalists
of how to assemble macromolecules in the lab such that their
effective interactions belong to theQ( class.

3. Theory

Since our main aim is to determine the phase diagram of the
GEM-4, we have to choose appropriate methods to determine
the free energies of the different states of matter involved, that
is, the fluid and the ordered cluster phases. For the latter ones,
we moreover need a reliable search algorithm that identifies
the crystalline candidate structures in an unbiased way.

3.1. Fluid Phase.We decided to calculate the properties of
the fluid phase within the mean field approximation (MFA), a
choice based on the theoretical background explained in ref 49.
For potentials lacking a hard core, the MFA ansatz for the direct
correlation function,c(r),

is used as a closure to the Ornstein-Zernike (OZ) equation,52

whereh(r) is the total correlation function,â ) (kBT)-1 is the
inverse temperature, andF is the number density. Equations 2
and 3 are solved numerically.

The thermodynamic properties of the fluid phase are then
calculated via the energy route, which relates the excess internal

Φ(r) ) ε exp[-(r/σ)n] (1)

c(r) ) -âΦ(r) for all r (2)

h(r) ) c(r) + F ∫ dr ′h(r′)c(|r - r ′|) (3)
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energy per particle,Uex/N ≡ uex(F,â), to the radial distribution
function (RDF),g(r) ) h(r) + 1, via

where the RDF isF andâ dependent. An additional integration
over â leads to the excess free energy per particle,Fex/N ≡
fex(F, â),

Where, in an exact closure, the virial, compressibility, and
energy routes to the free energy would provide identical
results,52 the approximate nature of the MFA leads to different
ones; that is, it suffers, as most closures do, from thermodynamic
inconsistency. We opted for the energy route because it delivers
the most accurate results in comparison with simulation (see
section 5).

3.2. Ordered Cluster Phases.The description of the proper-
ties of the solid phases is more delicate. A priori we do not
know which ordered structures the cluster phases will form in
equilibrium. In an effort to circumvent the arbitrariness inherent
to conventional approaches, we have solved the problem by
using a genetic algorithm (GA),53 that is, a tool which searches
among all possible lattices for the equilibrium structure. For
successful applications of this convenient and reliable tool, we
refer to refs 20, 21, and 53.

The basic idea of the GA can be outlined as follows: in an
initial step, we consider a large number of randomly generated
possible candidate structures, termed individuals, which form
a so-called (first) generation. A fitness value is assigned to each
individual which is a measure of its quality in the sense that a
better solution has a higher fitness value. In our case, we require
that a lower free energy of a lattice corresponds to a higher
fitness value. Next, suitable pairs of parents are chosen according
to their fitness, and via recombination, they create the individuals
(lattice structures) of the subsequent generation. With a certain
probability, these individuals are then subject to a mutation
process. We proceed in this way for a sufficiently long sequence
of generations, keeping track of the individual with the highest
fitness value, that is, the lattice structure with the lowest free
energy so far. In general, the algorithm converges rapidly toward
the equilibrium structure for a given state point. For conceptual
details, we refer to ref 53.

In our particular problem, the GA searches for the optimum
ordered cluster structures atT ) 0, which are then considered
as candidates for the phase diagram at finite temperatures. At
T ) 0, the cluster phase has ideal properties: all clusters are
populated by the same number of particles, denoted asnc, which
sit perfectly on top of each other at the positions of an ideal
lattice. Our measure of fitness is related to the free energy,F,
which at T ) 0 is identical to the internal energy,U, and is
given by

where {R} denotes the set of Bravais lattice vectors of a
candidate structure for the cluster phase. Here, the first term is
the interaction energy of a particle with the (nc - 1) particles
of the same cluster, while the second one describes the
interaction with the other clusters of the crystal. In employing
the GA, we minimized the lattice sum per particle,U/N, with

respect to both the Bravais lattice and the cluster occupation
numbernc. Strictly speaking, atT ) 0, nc can only assume
integer values, if we insist that each site is occupied by an
identical number of particles; however, rational values ofnc

arising from populating different sub-lattices with different
integer occupation numbers and periodically repeating the
pattern are in principle also allowed. In our calculation, we
avoided these cases by employing a kind of mean-field
approach: possible corrections to the lattice sum from short-
range correlations that lead to differently populated sub-lattices
were ignored, and the occupation number of all sites was set
equal to the average value〈nc〉, a general real number. In reality,
irrational occupations are, of course, forbidden for a ground
state, pointing to the possibility of phase separation between
optimally occupied states with rational occupation. However,
at finite temperatures, it is expected that hopping processes will
allow for the migration of particles and lead to an equalization
of the average number〈nc〉 of particles on every site. Our
approximation of settingnc ) 〈nc〉 is expected to be valid for
temperatures that are low enough, so that the entropic contribu-
tion, -TS, associated with the hopping processes, can be ignored
in comparison with the lattice energy,U, in the expressionF )
U - TSfor the free energyF. Moreover, since we do not expect
sub-lattices to be populated by vastly different particle numbers
even atT ) 0, the error we make in replacingnc by 〈nc〉 is very
small, and the approach offers reliable information on the
possible crystal structures atT ) 0.

Determining the zero-temperature phase diagram for the
GEM-n family for various potential indicesn via the GA, we
find that, for n > 2, only fcc and bcc lattices appear, a result
that is in full agreement with the predictions in ref 49. This
also seems to indicate that the effective cluster-cluster interac-
tions are harshly repulsive, a typical feature for systems that
freeze in fcc and bcc solids, such as, for example, the Lennard-
Jones fluid. As we see from Figure 1, forn ) 2 (the Gaussian
core model), the GA yields conventional crystals consisting of
singly occupied sites, in agreement with the exact calculations
of Stillinger.34 For low densitiesFσ3 j 0.2, the GA predicts
fcc to be the stable phase which is in agreement with the results
obtained by Stillinger in ref 34 which predicts this phase for
Fσ3 < π-3/2 ∼ 0.18. For higher densities, we find the bcc
structure.

From the GA results, we see that for the densities considered
(0.2 < Fσ3 < 10) the bcc structure is dominant forn values

Uex

N
) 2πF ∫0

∞
drr 2g(r)Φ(r) (4)

âf ex(F, â) ) ∫0

â
dâ′uex(F, â′) (5)

F(T ) 0)

N
)

U

N
)

nc - 1

2
Φ(R ) 0) +

nc

2
∑
R*0

Φ(R) (6)

Figure 1. Cluster sizenc as a function ofFσ3 for different index values
n of the GEM-n potentials as predicted by the GA. As we can see,nc

) 1 for all densities in the case of the GCM. The small fluctuations in
the data of the GEM-3 stem from the fact that the free energy
differences between fcc and bcc are so small that the GA has difficulties
in deciding unambiguously between the competing structures.
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close to the clustering threshold valuen ) 2, while for larger
n, that is,n J 3, fcc becomes more favorable. At the boundary
between the two regimes (n ∼ 3), the energy difference between
the two structures is vanishingly small, resulting in the GA
having considerable difficulties to decide unambiguously
between the competing structures in this particular situation,53

which is also reflected in the small fluctuations in the data
of the GEM-3 in Figure 1. For alln > 2 considered, the
GA predictsnc > 1, which is displayed in Figure 1. In ref 49,
it has been shown thatnc is proportional toF/q*, whereq* is
the value of the wavenumber for whichΦ̃(q) has a minimum.
The results of Figure 1 fully confirm this proportionality relation.
The slope of thenc(F) versusF lines indeed decreases with
n since q* grows with n, as can be easily checked numeri-
cally.

With the possible candidate structures at hand, we can now
proceed to finite temperatures where it is most convenient to
describe the ordered cluster phases within the framework of the
classical density functional theory (DFT).35,36 As justified
explicitly in ref 49, we use a mean-field format for the free
energy functionalF [F],

where the ideal partFid[F] is given by

with Λ being the de Broglie wavelength, and the excess part,
Fex[F], is obtained via

For the inhomogeneous density field,F(r ), we use a periodic
array of Gaussian cluster density profiles

localized at the lattice sites{R}, that is,

Our choice of this particular shape for the density profiles
was anticipated in ref 49 and will be justified a posteriori when
comparing the theoretical data with the simulation results (see
section 5). The inhomogeneous density fieldF(r ) is uniquely
determined by two parameters characterizing the cluster density
profiles, that is, the widthR of the profile and the cluster
occupancy number or cluster size,nc. Minimizing the functional
given by eqs 7-9 with respect to bothR andnc at fixedF and
T gives us the theoretical predictions for the equilibrium values
of R andnc.

Inserting the ansatz (eq 11) into eqs 7-9, the functional
F [F]/N reduces to a functionf ) f(nc, R) that can be split into
an ideal, an inter-, and an intra-cluster contribution

For the ideal contribution, we find

which is an excellent approximation to the ideal free energy,
provided that the Gaussians in eq 11 do not overlap, which is
the case forRσ2 J 30, representing thus a physically reasonable
lower bound forR. Here, we takeσ as a typical scale for the
nearest-neighbor distanced in the lattice; as will be shortly
confirmed, the values we obtain in the case of the GEM-4 for
the different solid phases ared = 1.4σ.47 The inequality
Rσ2 J 30 thus corresponds toRd2 J 60, for which the degree
of overlap between neighboring Gaussians is indeed negligible.
Note also that from eqs 8 and 11 it is easy to see that forR f
0 the ideal free energy per particle tends tokBT[ln(FΛ3) - 1],
the finite free energy of the ideal gas, whereas the approximate
expression of eq 13 has a negative, logarithmic divergence there,
signaling the breakdown of the approximation for lowR values.

Further, for the other two terms in eq 12, we find

and

In eq 14,R denotes the modulus of the Bravais lattice vector
R. For a given densityF, the modulus of the lattice vectors
depends on the degree of clusteringnc, since the elementary
cell can expand by accumulating more particles per lattice site.
In Figure 2, we show for a particular state point of the GEM-4
system the typical dependence off(nc, R) on nc andR. It can be
seen that the surface takes the shape of a trough that runs parallel
to theR axis; that is, for eachR, the minimum with respect to
nc is located at annc value that isR independent. This is
connected with the tendency of the system to adjust its lattice
constant in such a way that the modulus of the first shell of
RLVs coincides with the valueq* at which Φ̃(q) attains its
negative minimum and confirms the analytical results of ref
49.

A detailed consideration of the separate contributions to
f(nc, R), given by eqs 13-15, as functions ofnc at fixedR and
shown in Figure 3 offers the key to understand the existence of
stable, finite clusters in this system. On increasingnc, the lattice
constant widens, the values ofR in eq 14 grow, and expensive
close contacts with nearest neighbor clusters are avoided as
shown by the fact thatfinter(nc) drops monotonically withnc.
On the other hand, the entropy loss due to particle aggregation,
expressed by the term lnnc in eq 13, and the self-interaction
within the cluster, given by eq 15, both disfavor the formation

F [F] ) Fid[F] + Fex[F] (7)

Fid[F] ) kBT∫ drF(r ){ln[F(r )Λ3] - 1} (8)

Fex[F] ) 1
2∫ dr1 ∫ dr2F(r1)F(r2)Φ(|r1 - r2|) (9)

Fcl(r ) ) nc(Rπ)3/2
e-Rr2

(10)

F(r ) ≡ ∑
{R}

Fcl(r - R) ) nc(R

π)3/2

∑
{R}

e-R(r-R2) (11)

f(nc, R) ) fid(nc, R) + finter(nc, R) + fintra(nc, R) (12)

fid(nc, R) ) kBT [ln nc + 3/2 ln(Rσ2/π) -
5/2 + 3 ln(Λ/σ)] (13)

Figure 2. âf(nc, R) given by eq 12 as a function ofnc and R for a
GEM-4 system atkBT/ε ) 0.5 andFσ3 ) 6 in the fcc phase.

finter(nc, R) ) ncx R

8π
×

∑
R*0

∫0

∞
dr

r

R
[e-R(r-R)2/2 - e-R(r+R)2/2]Φ(r) (14)

fintra(nc, R) ) (nc - 1)xR3

2π ∫0

∞
dr r 2 e-Rr2/2Φ(r) (15)
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of clusters which can be seen from the monotonic increase of
the respective terms withnc. On the other hand, very large values
of nc are unlikely because, at constant particle density, this would
reduce the cluster density to such an extent that even the (cluster)
nearest neighbor distance moves outside the range of the
potentialΦ(r). At this point, the entropic and self-interaction
terms dominate and stop further aggregation. The interplay of
these two competing contributions, the intracluster interaction
and entropy, on the one hand, and the intercluster contribution,
on the other hand, lead to an overallf(nc, R) which shows a
global minimum at a finite value of 1< nc < ∞, representing
the optimal, equilibrium cluster size for this state point and
rendering the clusters stable both against decomposition
(nc ) 1) and unlimited growth (nc f ∞). Uncontrollable growth
of nc would be unfavorable not only on the basis of thermo-
dynamic arguments presented above but also on more funda-
mental, mechanical stability grounds. Indeed, shouldnc and,
correspondingly, the lattice constant, grow too large, there would
be no appreciable restoring force from neighboring clusters to
provide the stabilization mechanism for small lattice oscillations,
and the crystal would lose its ordered structure.

4. Simulation

To put the theoretical results to the test, we performed Monte
Carlo (MC) simulations of the GEM-4 system in the canonical
ensemble, that is, at fixed particle numberN, volumeV, and
temperatureT. While in simulations of systems that freeze into
singly occupied crystals∼500 particles already provide suf-
ficiently reliable results, the situation is completely different in
systems where clustering transitions may occur. In this case, to
guarantee a sufficiently large number ofclusters, we need
considerably more particles in our simulation volume, rendering
the use of conventional MC techniques computationally rather
expensive where the determination of the distance between
particles and the evaluation of the potential energy of a given
particle configuration is the most time-consuming part.

Therefore, we had to speed up our MC simulations to make
them feasible for systems that show clustering transitions.
Motivated by the considerations in refs 54, 55, and 48, we
implemented lattice Monte Carlo (LMC) simulations, a tech-
nique originally proposed by Panagiotopoulos.56 The central idea
of LMC is to transform the continuous system into a lattice
model by restricting the possible particle positions within the
simulation box to a finite number of discrete coordinates. As a
consequence, there is only a finite number of possible distances
between pairs of particles. Assuming that the particles’ interac-

tion is translationally invariant, these distances can be stored
in a lookup table which only needs to be determined once at
the beginning of the simulation. We decided to discretize the
cubic simulation box via a grid of 2b possible positions along
each dimension,b being an integer number. Analysis of the
discretization errors, which are described in detail in refs 54
and 55, indicate thatb ) 8 is sufficient to reproduce the results
of conventional MC simulations. In addition, we also imple-
mented the cell list method to speed up the simulations even
further.57

5. Results

We start the discussion of our results by showing the
theoretical prediction for the phase diagram based on the MFA
and DFT results, depicted in Figure 4. To give a qualitative
understanding of the clustering phenomenon, we also show three
simulation snapshots in the same figure, all taken at the same
temperature, that is,kBT/ε ) 1.1, but at different densities and
in different phases. The explicit values for the densities are
Fσ3 ) 6, where the system is evidently in the fluid phase,
Fσ3 ) 7.5 for the cluster bcc andFσ3 ) 8.5 for the cluster fcc
phase.

In the following, we will focus on the different phases
encountered in Figure 4 and explain in detail how we determined
the phase diagram. We start by analyzing the disordered,
homogeneous phase. ForFσ3 ) 6 andkBT/ε ) 1.1, the system
is already very close to the DFT prediction of the freezing line
(cf. Figure 4). A closer investigation of the particle positions
shows that the fluid phase is actually a mixture of strongly
aspherical clusters of particles with a vast variation of cluster
sizes,nc. Turning to the RDF in Figure 5, we see that upon
increasing the density, the value ofg(0) starts to rise. This
maximum, which is also present in the fluid’s RDF, indicates
that particles indeed agglomerate to clusters already in the liquid
phase. In a system where particles interact via a continuous
potential, it is of course not possible to unambiguously define
a cluster in the fluid phase. As we show in the inset of Figure
5, the RDF does not completely vanish at its first minimum for
this particular state point and thus only gives an indication of

Figure 3. Contributions toâf(nc; R) according to eqs 13-15 as
functions ofnc for an fcc crystal formed in a GEM-4 system atkBT/ε
) 1, Fσ3 ) 9, andRσ2 ) 45.51, i.e., theRσ2 that minimizes the free
energy. The minimum inâf(nc; R) is found atnc ∼ 18.4.

Figure 4. Theoretical prediction for the phase diagram of a GEM-4
system (as discussed in the text). The solid lines are the coexistence
lines. We also show three snapshots of the system obtained from MC
simulations atkBT/ε ) 1.1 for the fluid phase (Fσ3 ) 6), the cluster
bcc phase (Fσ3 ) 7.5), and the cluster fcc phase (Fσ3 ) 8.5). Note that
for the two higher densities, every lattice site is multiply occupied.
The particle diameters are not to scale and were chosen arbitrarily to
optimize visibility.
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the spatial extent of the clusters. However, as soon as the system
freezes, the space between two clusters becomes nearly depleted,
thereby allowing for a definition of the extent of a cluster. The
cluster size,nc, can then either be defined by integration over
the first peak of 4πr2Fg(r) up to the first minimum ofg(r) or
via a cluster analysis, where the location of this first minimum
is used as a limiting value to group particles in clusters. The
inset of the same figure shows that the depopulated region
becomes broader asF is increased, which reflects the tendency
that at higher densities an increasing potential energy barrier
between the clusters drives particles out of these interstitial
regions and into the clusters. Such a behavior seems completely
counter-intuitive since this formation of stable clusters occurs
at the complete absence of attraction. Nevertheless, it can be
understood by considering the fact that full overlaps of particles
create additional space for the clusters, offering thus the system
a possibility to increase its entropy. Moreover, above the overlap
density, even an energetic gain may be achieved, since a single
full overlap could be less expensive than the sum of the costs
of the partial overlaps with the∼12 neighbors in a highly
coordinated, dense fluid. This is immediately evident in the case
of the PSM, for which the energy cost is independent of
separation once the particles overlap. A detailed account of these
contributions for the PSM is given in ref 38 in real space,
whereas a more general argument based on reciprocal-space
considerations can be found in ref 49.

In Figure 6, we show the structure factor,S(q), for the fluid
phase according to MC simulations. We see that the first peak
considerably exceeds the value of 2.85, which, according to the
Hansen-Verlet criterion,58,59 indicates the freezing transition
in harshly repulsive fluids. This demonstrates that the GEM-4
system can sustain a higher degree of spatial correlations than
hard matter systems before it freezes. Note that at this density
the fluid phase is indeed the stable one, since crystalline initial
configurations spontaneously lose their order and melt during
the course of the simulations.

Although the MFA does not capture the structural properties
of clustering in the fluid phase on a quantitative level, it turns
out that it can reproduce the increase ing(0) on a qualitative
level, which we show in the inset of Figure 5. As we can see
there, this feature is also predicted by the hypernetted chain
(HNC) or the Percus Yevick (PY) approximations52 with
different levels of success. Moreover, the thermodynamic results

obtained via the MFA energy route agree very well with results
of computer simulations. To visualize this, we present as an
example in Figure 7 the data for the reduced, dimensionless
pressure,âP/F, for the GEM-4 at a rather low temperature of
kBT/ε ) 0.5. To put the success of the energy route of the MFA
into a broader context, we also show in the same figure results
calculated from MFA via different thermodynamic (i.e., energy,
virial, or compressibility) routes, as well as using other liquid
state theories, such as HNC or PY.52 We see that PY fails to
reliably reproduce the simulation data especially at high
densities. HNC, on the other hand, performs very well but breaks
down, that is, whereg(0) J 1 and well before the actual
transition to a cluster solid. The results of the virial and energy
route of MFA lie on top of those of the virial route of HNC,
while the data of the compressibility route of MFA are in the
vicinity of the virial route results of PY. Thus, despite being
the simplest among the various closures to the OZ equation,
the MFA surpasses all other closures since results can still be

Figure 5. g(r) as a function ofr/σ for a GEM-4 system atkBT/ε ) 1.1
as determined from MC simulations of the states shown in the snapshots
in Figure 4. For the fluid phase atFσ3 ) 6, results from MFA, HNC,
and PY are shown in the inset. We want to stress that the fluctuations
seen in the data of the two highest densities are characteristic of LMC
results for solid systems.

Figure 6. Structure factorS(q) as a function ofqσ as obtained by MC
simulations for a fluid GEM-4 system close to freezing, i.e., atkBT/ε
) 1.1 andFσ3 ) 6. The value of the first peak ofS(q) is considerably
higher than the Hansen-Verlet threshold value that indicates freezing
in harshly repulsive systems.

Figure 7. Reduced, dimensionless pressure,âP/F, as a function of
Fσ3 for the GEM-4 atkBT/ε ) 0.5, calculated via different thermody-
namic routes (V, virial; C, compressibility; and E, energy route) and
using various liquid state theories.52 MC simulation data are given by
the symbols. While PY fails to reliably reproduce the simulation data
especially at high densities, HNC initially provides a reasonable
approximation but fails to converge well before the system crystallizes
for densities aroundFσ3 ∼ 3. This leaves the energy route of the MFA
as the best option to describe the properties of the fluid. Note that the
MC data point at the highest density already corresponds to the solid
phase.
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obtained when approaching the freezing transition. Note that at
higher temperatures MFA is similarly accurate as the HNC in
reproducing the data of simulations, as was shown in ref 49.
All of these considerations leave the energy route of MFA as
the best option to describe the properties of the fluid. A more
detailed analysis of MFA data in direct comparison with
computer simulation results can be found in ref 60 for several
values of potential indexn.

Thus, we are now able to calculate the free energy of the
fluid via MFA and those of the competing solid structures, that
is, fcc and bcc, via DFT as discussed in subsection 3.2. In Figure
8, we show the modified free energy density,âF̃σ3/V ≡ âFσ3/V
+ KFσ3, for the fluid and the two cluster solid phases as a
function of density at fixed temperaturekBT/ε ) 1.1. The term
KFσ3 was added to enhance visibility, but it is irrelevant for
the determination of the coexistence densities. In the same
figure, we also show data from MC simulations, where we
determined the free energy via Widom’s particle insertion
method.57,61 In the case of bounded potentials, this also works
for the solid phases since, in contrast to harshly repulsive
potentials, overlaps of particles only cost a finite amount of
energy. As we see in Figure 8, the MC results are in good
agreement with the DFT data. However, from this figure, it is
also apparent how small the energy differences between the
competing solid cluster phases are. Because of the size of the
present error bars, it is therefore not possible to determine the
exact location of the phase transition via conventional MC
simulations. For this, more sophisticated simulation techniques
of higher precision, using, for example, thermodynamic integra-
tion, are needed, which go beyond the scope of this paper.62

Yet, in the MC simulations performed so far, we have observed
that, for densities smaller than the DFT freezing density, crystals
are not stable and spontaneously melt, which supports the basic
validity of the DFT data. Also, our free energy MC data seem
to indicate that the true bcc-fcc phase transition may be slightly
shifted to higher densities compared to the DFT results.

Therefore, Figure 4 only shows the theoretical prediction of
the phase diagram, which was obtained from the free energy
curves via the common tangent construction and which we are
going to discuss on a more quantitative level in the following.
The approximate, analytical theory of ref 49 predicts for the
freezing line (f) a straight line of the form:

where|Φh (q)| ≡ |Φ̃(q)|/(εσ3) = 0.127 is the absolute value of
the negative minimum of the FT of the GEM-4 potential.
Plotting eq 16 in the phase diagram, we see that it is reasonably
close to the coexistence line predicted by the present, full
numerical MFA and DFT calculations, which lead to an almost
straight line that can be fitted by

Thus, eq 16 slightly overestimates the region of stability of
the solid because it neglects contributions from RLVs which
are positive, resulting thereby in an artificial lowering of the
crystal’s free energy.

Upon compression, the system undergoes a first-order transi-
tion into a cluster bcc phase, which occupies a wedge like shape
in the (T, F) plane. As the density is further increased, the system
exhibits another first-order transition into the cluster fcc phase
which remains stable for all higher densities. The coexistence
region between the two ordered structures is very narrow and
not visible on the scale of Figure 4. Furthermore, MFA and
DFT predict that, atkBT/ε = 0.4, the liquid and the two-ordered
cluster phases coexist at a triple point. Below this temperature,
the bcc phase vanishes, and the liquid freezes directly into the
now thermodynamically more favorable cluster fcc crystals. As
was already shown in ref 28, the mean field assumption, which
both the MFA and the DFT rest upon, breaks down at very low
temperatures. Therefore, using the present methods, no reliable
prediction about the location of the phase boundaries can be
made for this region of the phase space. Instead, one might
proceed along the lines of Stillinger’s treatment of the Gaussian
core model25,29,30 and perform a mapping of the Boltzmann
factor of the system onto that of hard spheres. Defining an
effective, density-dependent hard sphere diameter and using the
known results for the freezing of hard spheres, the freezing
boundaries forT f 0 could be determined. This, however, lies
beyond the scope of the present work.

As noted above, because of the magnitude and the overlap
of the error bars of our MC free energy results, there are certain
density ranges where we cannot, at present, decide whether fcc
or bcc is the stable crystalline phase. Still, because of the
similarity between the data of most properties of the two phases,
MC simulations are indispensable to gain deeper insight into
the clustering phenomenon, since they provide the connection
between the microscopic details of the system and the mean
field assumptions of the various theories involved. In the rest
of the discussion, we either will present MC data for those solid
phases predicted by DFT in cases where the effect discussed is
independent of the actual crystal structure or will show data
for both phases for all other cases.

On the basis of the data gathered for the three states
corresponding to the simulation snapshots in Figure 4, we show
in Figure 9 how the cluster size distribution changes at fixed
temperature when compressing the system. As already men-
tioned before, in the fluid, the cluster size distribution is very
broad, also because of the complications to define clusters in
an unambiguous manner. For the bcc structure encountered at
intermediate densities, the distribution of cluster sizes is already
considerably narrower than in the fluid, and the mean occupancy
number has also increased. In the fcc phase atFσ3 ) 8.5, a
detailed study of the centers of mass of the clusters shows that
the structure is less distorted than the bcc structure at

Figure 8. DFT and MC results for the modified free energy density
âF̃σ3/V ≡ âFσ3/V + KFσ3 of the GEM-4 system as function ofFσ3 at
kBT/ε ) 1.1. A term KFσ3, irrelevant for the determination of the
coexistence densities, has been added for clarity of presentation. The
error bars of the MC results in the main plot are smaller than the symbol
size. Inset: a close-up on the region of the bcc-fcc transition. Here, a
different linear termKFσ3 has been added to the free energies.

kBTf

ε
) 1.393|Φh (q)|Ffσ
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Fσ3 ) 7.5. As we see from the data in Figure 9, the mean cluster
size has increased further, and the cluster size distribution has
become even narrower. This implies that the effective inter-
cluster potential has become more repulsive with increasingF.
Summarizing, two tendencies are clearly visible with increasing
density: the position of the maximum of these curves, indicating
the most probable cluster size, shifts to higher values while their
width is reduced. This confirms on a more quantitative level
the observations made at the beginning of this section that with
increasingF the clusters become larger and more uniform in
size.

In Figure 10, we plot the MC data for the mean value ofnc

along an isothermkBT/ε ) 1.1 as a function ofF for both the
bcc and the fcc phase. These data are complemented by the
theoretical prediction of DFT, wherenc is the value minimizing
f(nc, R) at a given state point. We see thatnc turns out to be
proportional to the density. This has far-reaching consequences
on the behavior of our system. Sincenc ) cFσ3, with c being a
constant, the lattice constanta of the conventional cubic unit
cell can be expressed as

whereγ ) 2 for bcc andγ ) 4 for fcc crystals. This shows
that the lattice constant is density independent and does not
change under compression, a behavior already predicted in ref

28 that has been put on a sound theoretical basis in ref 49. This
means that, in striking contrast to harshly repulsive systems,
the GEM-4 system does not react to an increase in density by
diminishing its lattice constant. On the contrary, it is evidently
more favorable for additional particles that are inserted into a
fixed volume to join the clusters that have already formed at
the lattice sites. We find that, for the GEM-4,abcc = 1.58σ and
afcc = 2.00σ. In ref 49, it has been argued that the emergence
of this single length scale is set byq*, the location of the negative
minimum inΦ̃(q); that is, it is a property solely determined by
the functional form of the interaction potential. Using the values
of the lattice constants quoted above, we find it straightforward
to show that the first nonvanishing RLVs of the bcc and fcc
lattices have the magnitudesσK1,fcc = 5.44 andσK1,bcc= 5.62.
Thus, both lie very close to the valueσq* = 5.57, in agreement
with the arguments put forward in ref 49. Within very good
approximation, these values are constant at all densities, a feature
that has also been seen in similar, two-dimensional models and
has been termed the unwavering magnitude of the wave vector.63

Finally, we point out that there is a discontinuity innc as the
system undergoes a first-order transition from the bcc to the
fcc phase (independent of its eventual exact location).

Another characteristic feature of the system seen in
Figure 9, namely, the tendency of the cluster size distribution
to become narrower with increasing density, can be understood
by the fact that a largerF brings about a concomitant growth in
the energetic barrier separating particles on one lattice site from
those occupying another, neighboring one. Thus, hopping
between sites becomes prohibitively expensive, and the clusters
tend to show reduced “polydispersity”. In addition, the localiza-
tion parameterR increases linearly withF; that is, the clusters
become more compact as the density is increased. While the
MC data for nc nearly coincide with the DFT results, the
agreement between the theoretical predictions forR and its
corresponding value extracted from the simulations is slightly
worse on quantitative grounds but is still excellent on a
qualitative level. We point out that the linear dependence of
both nc and R on F has also been predicted in the theoretical
framework of ref 49.

In Figure 11, we analyze the spherically averaged distribution
Fcl(r) of the particles inside a cluster. The state point we have
chosen (kBT/ε ) 0.1 andFσ3 ) 9) is taken from the region
where the fcc cluster phase is definitely the stable one. Following
the assumption made in eq 10, we fit the raw MC simulation
data with a Gaussian shape forF(r), with R andnc as adjustable

Figure 9. Distribution of cluster sizenc as obtained from MC
simulations of the three states of the GEM-4 system shown in Figure
4 (i.e., atkBT/ε ) 1.1). With increasing density, the maximum ofnc

shifts to higher values, and the distribution becomes narrower.

Figure 10. nc andRσ2 as functions ofFσ3 for the GEM-4 systems at
kBT/ε ) 1.1. Discontinuities of both quantities at the density of the
first-order bcc-fcc phase transition are visible. Lines, DFT results;
symbols, MC simulations.

a
σ

) (γnc

Fσ3)1/3

) (γc)1/3 ) const. (18)

Figure 11. Cluster density profileFcl(r) of a cluster fcc crystal of the
GEM-4 system atkBT/ε ) 0.1 andFσ3 ) 9. The semilogarithmic plot
of Fcl(r) againstr2/σ2 in the inset corroborates the Gaussian shape of
the distribution.
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parameters. Though there might be slight differences at smallr
(where the statistics of MC is, as expected, poorest), the good
qualitative agreement between simulation data and the fitted
curve justifies a posteriori the assumption for the shape of the
density profileF(r) postulated in eq 10.

The excellent qualitative and the often even surprisingly good
quantitative agreement between all MC and DFT results
presented in this work provide a high level of confidence to
the internal consistency of the underlying theoretical concept.

Because of the limitations of the MC simulations we use
(constant box size and shape and fixed number of particles),
phase transitions from bcc to fcc are highly unlikely to be
observed. Still, spontaneous freezing of an initially liquid system
as well as melting of a crystal during the course of a simulation
have been observed. Thus, it is indispensable to unambiguously
identify the crystalline structures within MC simulations. In
Figure 12, we have calculated the RDF of the centers of mass
of the clusters, that is,gcl(r), for the three systems shown in
Figure 4. AtFσ3 ) 6, that is, still in the fluid phase,gcl(r) shows
a behavior that is typical for a fluid. At the higher densities,
Fσ3 ) 7.5 andFσ3 ) 8, the occurrence of pronounced peaks is
yet another imprint of the fact that the clusters form regular
solid structures. The fact that these peaks become more
pronounced at higher densities corroborates once more our
observation that the lattice structure is then less distorted and
thus better defined. The positions of the markers in Figure 12
indicate the distancesRi

fcc or Ri
bcc of the different shells of

neighbors around a central particle for the fcc or the bcc lattices.
Their height is normalized analogously to the RDF and is
proportional to the number of neighbors in the respective shell.
As expected, forFσ3 ) 7.5, the positions of the peaks ingcl(r)
coincide with theRi

bcc of the bcc lattice, while forFσ3 ) 8.5,
they coincide with the fcc ones, confirming that the initial
structures did not melt or transform. Also, the height of the
peaks ofgcl(r) is correlated with the height of the respective
markers. Thus,gcl(r) can serve as a clear indication of the
respective crystalline structure of the systems.

As we have shown in Figure 11, the particles have a certain
freedom to fluctuate around their equilibrium positions, that is,
the perfect lattice sites, which can lead to slightly distorted
crystals during the simulations. It is therefore convenient to find
a more quantitative measure of the degree of crystallinity in
our system, which has to fulfill several prerequisites: it has to

be capable of unambiguously distinguishing between a liquid
and the different crystalline phases, and it has to be insensitive
to the orientation of the crystal in space. It was shown that the
bond order parametersQ4, Q6, W4, andW6,64,65whose definitions
are based on spherical harmonics, can be used as quantitative
measures of cubic crystallinity, meeting all of the aforemen-
tioned requirements. In perfect cubic crystals, these parameters
assume a unique value characteristic of the respective crystal
structure. On the other hand, in a real crystal, these bond order
parameters will have slightly different values at individual lattice
sites, since the clusters fluctuate around their perfect positions.
This leads to a distribution of bond order parameter values that
can serve as a characteristic fingerprint of the different structures.
Decomposing such a fingerprint to a linear combination of the
corresponding distributions of known structures then allows for
a quantitative determination of the structure of the system in
the simulation box.65 In the case of the MC simulations for the
GEM-4 system, this tool has proven to be a reliable means to
unambiguously distinguish between the liquid phase and the
different hyper-crystals.

6. Conclusions

In this contribution, we have demonstrated that particles
interacting via purely repulsive, bounded potentials and which
have oscillating FTs are able to form stable clusters of
overlapping particles. On the basis of investigations of the
GEM-4 system, we show that the clustering phenomenon occurs
both in the dense fluid and in the ordered, solid phases. In the
fluid phase, these clusters are characterized by a broad distribu-
tion of cluster population. In the solid phases, which emerge
from the fluid phase via first-order phase transitions, these
clusters arrange themselves at the lattice sites of hyper-crystals.
While the bcc structure is only stable in a narrow, wedge-like
region of the (T, F) plane, the fcc cluster crystals are stable in
the overwhelming part of phase space. Both freezing and melting
lines are linear in the temperature range considered. In both
solid phases, the respective lattice constant remains unchanged
upon compression of the system, causing a linear growth with
density of both the cluster population number and of the width
of the approximately Gaussian distribution of particles inside a
cluster. The properties of the fluid phase have been calculated
in the MFA, while the solid cluster phases have been treated
within classical DFT using a mean-field format, a simplification
that has been justified in preceding theoretical considerations.49

Complementing LMC simulations in the canonical ensemble
provide data that are consistent with the DFT results. On the
basis of investigations of the GEM-4 system, the present
numerical work fully confirms the theoretical predictions made
for Q( systems.

This new class of crystals also opens up a host of interesting
questions regarding the dynamics of both individual particles
and collective motions. For one, periodic solids withnc particles
per site can be seen as Bravais lattices with a basis; it is thus
expected that they will feature phonon spectra with 3nc acoustic
branches and 3(nc - 1) optical ones. The calculation of such
spectra is challenging, especially asnc grows. It is nevertheless
a very interesting problem to see the evolution of the spectra
with increasingnc and to investigate the question whether these
evolve with nc following some systematic rules. At the same
time, it makes no sense to speak about 3nc phonon modes when
nc is a noninteger: there is a second type of excitation in the
system, namely, “excess” particles that hop from one site to
the other and bring about an arbitrary (noninteger) occupancy
nc. Recent results66 indicate that the hopping processes bring

Figure 12. Radial distribution functiongcl(r) of the centers of mass
of the clusters for the three states of the GEM-4 system displayed in
Figure 4 (i.e., atkBT/ε ) 1.1). The markers indicate the positions of
the neighboring shells of perfect bcc and fcc lattices, while the heights
of the markers are proportional to the number of particles in the
corresponding neighboring shells.
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about a long-time diffusivityD in such periodic crystals, with
D ∼ exp(-AF/T), A being some constant. A concerted effort to
understand those processes via analytical approaches and
simulation is under way. The combined effects of phonons and
hopping, the appearance of possible phononic gaps in the
material,67 and the ways to tune those will be the subject of
future work.
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(44) Malijevský, A.; Santos, A.J. Chem. Phys.2006, 124, 074508.
(45) Santos, A.; Malijevsky´, A. Phys. ReV. E 2007, 75, 021210;2007,

75, 049901(E).
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