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Abstract – Introducing genetic algorithms as a reliable and effective tool to find ordered
equilibrium structures, we predict minimum energy configurations of the square shoulder system
for different values of corona width λ. By varying systematically the pressure and choosing
different values of λ we are able to identify complete sequences of minimum energy configurations.
The results provide a deeper understanding of the system’s strategies to arrange particles in
an energetically optimised fashion, leading to the competing self-assembly scenarios of cluster
formation vs. lane formation.
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Introduction. – The ability of colloidal dispersions
to self-organise in a surprisingly large variety of ordered
structures markedly distinguishes soft matter from hard
(i.e., atomic) materials. The spectrum of ordered particle
arrangements encountered in soft matter systems does not
only contain low-symmetry, non–close-packed structures,
such as bco, diamond, or the A15 lattices [1–5]; soft-
matter particles are able to self-organise in considerably
more complex ways, forming thereby micellar and inverse
micellar structures [6,7], cluster phases [8], chain-like or
layered arrangements [7,9–12], or gyroid phases [13–15],
just to name a few of them.
In the investigation of self-organising phenomena in

soft-matter systems, theoreticians have developed reliable
tools. On one side efficient and accurate coarse-graining
procedures have been developed which, by averaging over
the large number of degrees of freedom of the solvent
particles [16,17], lead to effective potentials between the
colloidal particles. On the other side, there are statistical-
mechanics–based concepts which provide on the basis of
these interactions reliable information on the thermo-
dynamic properties that finally lead to the phase diagram
of the system at hand. Among those are density functional
theory [18], liquid state theories [19], or computer simula-
tions [20].
What is badly missing among the theoreticians’ tools is

a reliable way of how to predict the ordered equilibrium
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structures for a given system. In hard materials one
can safely rely on experience, intuition, or plausible
arguments: a set of pre-selected candidate structures is
chosen, comprising the usual suspects (such as fcc, bcc,
etc.) and at a given state point the lattice with the lowest
(free) energy is the stable one. In soft matter, however, the
situation is entirely different: as a consequence of the rich
wealth of emerging equilibrium structures a conventional
approach that is based on a biased pre-selection process is
bound to fail. Computer simulations are not very helpful
either, since they are time-consuming and risk to be
trapped in local energetic minima due to the rough and
complex energy surface.
In this contribution we present an alternative strategy

which we believe to be very powerful in the search of
equilibrium structures and which does not share the defi-
ciencies of the conventional approaches. We use genetic
algorithms (GAs), i.e., optimisation strategies, that adopt
features of evolutionary processes as key elements to find
the optimal solution for a problem [21]. In contrast to the
conventional methods, GAs allow for searching basically
among all lattice structures in a parameter-free and un-
biased way. Despite the fact that GAs have been proposed
several decades ago [21], their usefulness in finding ener-
getically optimized structures has been acknowledged only
recently (see, e.g., [22–24]). In the present contribution
we demonstrate the power of this approach for a two-
dimensional (2D) system where the particles interact via
spherically symmetric square-shoulder potentials. With
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the help of GAs we identify minimum energy configura-
tions (MECs), or, equivalently the zero-temperature phase
diagram. Provided with an efficient and reliable tool to
determine the free energy of a given system —like density
functional theory— the T > 0-region is also accessible to
GAs. However, such calculations are computationally too
expensive at the moment.

Genetic algorithms. – GAs mimic certain principles
and processes known from natural evolution like muta-
tion, mating and “survival of the fittest” to find the global
extremum in the function to optimise. Because of their
particular search strategies they are able to investigate
large areas in search space and to concentrate at the same
time their efforts on the most promising regions. It is in
particular this global scope which has made GAs a highly
appreciated tool in many fields. The basic unit of a GA
is a so-called individual, I, which represents one possible
solution of the problem, encoded in a string of genes.
Each gene can take on values out of a chosen alphabet.
The encoding of the candidate to the individual is a very
delicate task that has major influence on the performance
of the GA. A set of individuals is called generation. With
these definitions we can sketch the workflow of a GA:
first a starting generation is created at random, whose
individuals consist of arbitrary sequences of genes. Each
of the individuals I is assigned a “fitness-value” through
a problem-specific function f(I), assessing the quality
of the solution represented by the individual. A higher
fitness-value marks a better solution in this evaluation
process. According to their fitness, parent individuals
are selected for reproduction to generate new individuals
by simple operations like recombination and mutation,
for which many different methods have been proposed
in the literature. This circle, i.e., evaluation–selection–
recombination–mutation, is iterated until a sufficiently
large number of generations has been created. The individ-
ual with the absolutely highest fitness value is taken as the
final solution. Since GAs do not converge exactly to the
global minimum, additional refinement of the proposed
solution is aquired using a steepest-descent search.
In an effort to adapt this general algorithm to our partic-

ular problem, we first have to find a suitable encoding of
the candidate structures to the individuals. To this end,
we have utilised two different strategies: i) a simple lattice
parametrisation where the lattice vectors and positions
of eventual basis particles are translated via the binary
alphabet to strings of 0s and 1s; ii) a more refined strat-
egy, which is specially adapted to systems for which clus-
ter phases are to be expected, has been developed: in this
“cluster-biased” version the lattice sites are populated by
ordered (i.e. regular) dimers or trimers. Hence individuals
include additional information describing the orientation
and the distance of particles in the cluster. In this way
more particles per unit cell can be considered, reducing
at the same time the number of parameters, which leads
to a considerably enhanced performance of the GA for

complex lattices. For hard-core particles, particular care is
in order to prevent the creation of individuals that repre-
sent unphysical configurations with overlapping cores.
Working at fixed particle number N , pressure P , and

temperature T , we have decided for the standard form of
f(I), i.e.,

f(I) = exp{−[G(I)−G0]/G0}, (1)

where, at T = 0, the Gibbs free energy reduces to
G=U +PA, A being the area of the unitcell. G0 stands
for the Gibbs free energy of a reference structure. In
contrast to previous applications (for details see [25]), the
number-density η=N/A represents a parameter to be
optimised in the search process and is thus included in an
encoded form in the individual.

The system. – The interaction potential of the
square-shoulder system consists of an impenetrable core
of diameter σ with an adjacent step-shaped, repulsive
corona (with range λσ), i.e.,

Φ(r) =



∞, r� σ,
ε, σ < r < λσ,
0, r� λσ,

(2)

ε being the height of the shoulder. The search for MECs
for this particular system represents undoubtedly the most
stringent test for the GA: “with its flat plateau and
as sharp a cutoff as possible” the MECs can be easily
classified by the number of overlapping coronas which
makes the potential a “quintessential” [2] test system. The
fact that we restrict ourselves to a 2D system does not
represent a limitation at all. On the contrary, the particle
arrangements can be visualised in a very convenient way
that makes it much easier to understand the sequence of
MECs as the pressure is increased. Objections that the
system is oversimplified and only of academic interest
can easily be refuted: there exist a number of realistic
soft systems with a core-corona-architecture that can be
described using a square-shoulder interaction [12]. Among
these are, for instance, colloidal particles with block-
copolymers grafted to their surface where self-consistent
field calculations lead to effective interactions that closely
resemble Φ(r) given in (2) [26].

Results. – The search for MECs for the square-
shoulder potential has been pioneered by Jagla [10] and
was carried on in later work by Malescio and Pelli-
cane [11,12] using Monte Carlo simulations and geometri-
cal considerations. Further theoretical work on this system
was presented in [7]. The results shown in these publica-
tions are indeed remarkable: a large variety of MECs has
been identified where —despite the radial symmetry of
Φ(r)— particles often arrange in asymmetric structures,
forming thereby lanes or ring-like structures. However, the
authors of above-mentioned studies raise doubts them-
selves that their set of MECs might not be complete.
By using GAs, we are able to present in the following
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Fig. 1: Complete sequence of MECs for the square-shoulder
system of shoulder range λ= 1.5. Dark spheres mark the
particles’ hard cores, whereas the repulsive shoulder is given
by grey coronas. Configurations correspond (from left to right
and from top to bottom) to pressure values indicated in fig. 2
by vertical arrows.

sequences of MECs that show a considerably larger vari-
ety than the ones identified up to now and which can
easily be understood via energetic arguments. Although
we cannot provide a rigorous proof there is evidence that
these sequences are complete.
Our results offer a deeper insight that the square-

shoulder system develops different strategies to form
MECs, dependig on the range of the shoulder λ. Among
the systems we have investigated we present in the follow-
ing results for three different values for λ, correspond-
ing to a small (λ= 1.5), an intermediate (λ= 4.5), and
a large shoulder range (λ= 10). Standard reduced units
are used: P � = Pσ2/ε, U� =U/(Nε), and G� =G/(Nε) =
U�+P �/(ησ2).
We start with λ= 1.5 and show in fig. 1 the MECs

proposed by the GA, with dark spheres marking the
particles’ hard cores and grey coronas representing the
repulsive shoulders. Figure 2 displays the corresponding
thermodynamic properties G� and U� as functions of
P �. At very low pressure, particles populate an ideal
hexagonal lattice, thus avoiding overlapping coronas.
Upon compression, the system must pay in some form a
tribute to the reduced space in terms of an energy penalty,
i.e. via a first overlap of the shoulders. Obviously, for this
λ-value, the formation of lanes is energetically the best
solution. Along these lanes, particles are in direct contact
(and, consequently have overlapping coronas), forming a
one-dimensional close-packed arrangement. Parallel lanes,
however, try to avoid corona overlap and the shoulder
width λ serves as a spacer (see magnified view). As the
pressure is further increased, new strategies are required.
While particles still prefer alignment along lanes their
internal arrangement is modified: rather than forming
straight lines, the lanes are zig-zag shaped due to energetic
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Fig. 2: Gibbs free energy (black line), G�, and internal energy
(grey line), U�, as functions of P � for a system of shoulder
range λ= 1.5, all scaled with U∗m = 3, the internal energy of
the hcp-structure. Vertical arrows indicate MECs depicted in
fig. 1. Broken lines indicate limiting cases of MECs (see text).

reasons, which is a compromise between the reduced avail-
able space and the imminent energetic penalty due to addi-
tional corona overlaps. Neighbouring lanes are arranged in
such a way, that each particle is now in direct contact with
three other ones. Alternatively, the staggered lanes can
also be viewed as a ring-like structure: six particles form
elongated rings where λ serves again as a spacer, fixing
the width of the cage, as can be seen from the magnified
view. In the end, further compression causes the system to
collapse into the close-packed hexagonal structure where
each particle is in direct contact with six neighbours.
The functional form of G� and U� can nicely be under-

stood via the following, general thermodynamic consid-
erations (cf. fig. 2): For a given particle configuration,
characterised by the number of overlapping coronas, U�

is constant; thus G� =U�+P �/(ησ2) is a straight line as
a function of P � with slope 1/η. Two limiting cases (indi-
cated as broken lines in fig. 2 and characterised by slopes
1/ηmin and 1/ηmax) can easily be identified: an arrange-
ment where disks of diameter λ form a close-packed struc-
ture (with ηmin =N/Ahex(λ) = 2/

√
3(λσ)2 and U� = 0) and

the hexagonal lattice where the particles’ hard cores form a
close-packed structure (with ηmax =N/Ahex(σ) = 2/

√
3σ2

and U� =U�max = 3). All other MECs are located on lines
of slope 1/η, with 1/ηmax � 1/η� 1/ηmin. It is this fact
which we use when scanning along the pressure-axis, as
introduced in more detail in [27]: We determine the first
pressure value by intersecting the two lines representing
the limiting cases in the G�/P �-diagram. The GA is then
employed to find a configuration with a lower Gibbs free
energy at the determined pressure. The resulting straight
line corresponding to the newly found structure is then
again intersected with the previous ones, which yields the
next pressure values to be investigated by the GA, start-
ing always from the intersection point at higher pressure.
By iterating this procedure, we are able to investigate the
whole pressure regime efficiently, without risking to miss
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Fig. 3: MECs for the square-shoulder system of shoulder range λ= 4.5. Configurations correspond (from left to right and from
top to bottom) to pressure values indicated in fig. 4 by vertical arrows. The sequence shown here is a representative selection
from the MECs found.

a MEC due to a too widely spaced pressure grid and to
obtain G� =G�(P �) as a sequence of intersecting straight
lines. The energy levels U� (also depicted in fig. 2) that
characterise the MECs are of course rational numbers, i.e.,
number of overlapping coronas divided by the number
of particles per unit cell. As we proceed to λ= 4.5 the
systems develops completely different strategies to form
MECs as the pressure is increased. These configurations
are depicted in fig. 3, while fig. 4 displays the thermo-
dynamic properties. The hexagonal pattern imposed by
the non-overlapping coronas (observed at extremely low
pressure values and not displayed in fig. 3) is soon super-
seded by a novel strategy, namely cluster formation. At
low pressure, dimers are formed which populate the sites
of a distorted hexagonal lattice. Upon further compres-
sion, these aggregates become larger until they reach the
size of six particles. The degree of distortion of the under-
lying hexagonal lattice is imposed by the shape of the
clusters: therefore, the trimers, which have nearly circular
shape, sit on an almost perfect hexagonal lattice, while for
elongated hexamers the structure is strongly distorted. As
the system is further compressed, formation of clusters
is obviously energetically less attractive and lane forma-
tion sets in. With increasing pressure the structure of the
MECs becomes more complex. In the beginning each lane
is built up by a linear sequence of dimers and thus closely
resembles the first lane scenario observed for λ= 1.5.
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Fig. 4: Gibbs free energy (black line), G�, and internal energy
(grey line), U�, as functions of P � for a system of shoulder
range λ= 4.5, all scaled with U∗m = 36, the internal energy of
the hcp-structure. Vertical arrows indicate MECs depicted in
fig. 3. Broken lines indicate limiting cases of MECs (see text).

At higher pressure values, however, the system forms
parallel lanes which are now built up by larger clusters.
The increasing complexity of this inner structure makes
simple energetic explanations in terms of overlapping coro-
nas impossible. However, the grey shades in fig. 3 give
evidence that the formation of clustered lanes is an effi-
cient strategy to avoid an overlap between neighbour-
ing lanes, which represents a considerably higher energy
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Fig. 5: MECs for the square-shoulder system of shoulder range λ= 10. Configurations correspond (from left to right and from
top to bottom) to pressure values indicated in fig. 6 by vertical arrows. The sequence shown here is a representative selection
from the MECs found.

penalty. The tendency to form parallel lanes is maintained
until the system finally collapses into the close-packed
hexagonal structure (not shown in fig. 3). The consid-
erably richer wealth of MECs encountered for λ= 4.5 is
reflected by the large number of energy levels in the plot
U� vs. P � and the number of intersecting straight line
segments in the diagram of G� vs. P �. The structures
shown in fig. 3 capture the general trends observed.
Finally, for λ= 10, the strategies of the system to form

MECs seem at first sight similar to the previous case: at
low pressure, the hexagonal pattern of minimum density
(not shown in fig. 5) is soon replaced, as the system again
prefers the formation of clusters, which are located on
slightly distorted hexagonal lattices. However, we observe
that inside a cluster the cores of the particles are some-
times arranged in a disordered fashion, while for λ= 4.5
only clusters with an ordered internal particle arrange-
ment occur. The strategy is obviously the following: once λ
is sufficiently large so that cluster formation is supported,
the system tries to arrange particles so that the shape
of the cluster becomes as circular as possible. This, in
turn, guarantees that the underlying structure is close to
the energetically most favourable hexagonal lattice. For
λ= 4.5, where the core region still represents a consider-
able fraction of the particle diameter, the system has to
proceed rather carefully to fulfil this requirement, lead-
ing to the ordered arrangements of the cores. For λ= 10,
however, the core region is nearly negligible with respect
to the core width. Now both regular and irregular particle
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Fig. 6: Gibbs free energy (black line), G�, and internal energy
(grey line), U�, as functions of P � for a system of shoulder
range λ= 10, all scaled with U∗m = 180, the internal energy of
the hcp-structure.. Vertical arrows indicate MECs depicted in
fig. 1. Broken lines indicate limiting cases of MECs (see text).

arrangements inside the core can lead to circular-shaped
clusters of the same size, having practically the same
G�-value. Again, at higher pressure values lanes with an
increasingly complex inner structure are formed. Some
of them (for example, the last one displayed in fig. 5)
might be comparable to the Bernal spirals observed
experimentally in three-dimensional colloidal systems [28].
Lane formation persists until the system finally collapses
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into the close-packed hexagonal structure (not shown in
fig. 5). If the square-shoulder particles still represent a
reasonable model for macromolecules at such high pressure
values is questionable.
Let us come back to the disordered clusters. If we

extrapolate these results to even larger values of λ —or,
equivalently, to a vanishing core— and briefly switch to
three dimensions, we arrive at another soft-matter model
system that has been studied in detail in the literature: the
penetrable sphere model (PSM) [29]. Among the remark-
able, well-documented features of this system is its ability
to form cluster phases: at sufficiently high densities clus-
ters of overlapping particles populate the lattice sites of
a regular fcc lattice [30]. Detailed simulations of a closely
related system that also shows clustering [8] have revealed
that the internal structure of the clusters is completely
random. These observations are consistent with our results
in the sense, that an increasing corona width (or, equiv-
alently, a vanishing core) favours formation of disordered
clusters of particles, which in turn populate sites of regu-
lar lattices. Obviously first precursors of this phenomenon
occur at λ= 10 [31,32].

Conclusion and outlook. – Summarising, our results
allow to understand the full sequence of MECs for the
square-shoulder system on an energetic level and thus
provide a deeper understanding under which conditions
the system prefers to form either lanes or clusters: if λ is
small, formation of clusters is prohibited due to geometric
reasons, hence particles arrange in lanes of variable shape
or in connected structures. As soon as the range of the
corona is sufficiently large, formation of clusters sets in,
dominating the low-pressure regime. For systems that
exhibit clustering, lane formation starts at higher pressure
values. Since the lanes themselves are built up by clusters,
one is led to interpret the crossover to the lane regime as
a structural change of the cluster crystal.
The results of our investigations are, however, not only

of relevance in basic research; they can also be useful from
a more applied point of view. Having established GAs as
a reliable tool for finding ordered equilibrium structures,
strategies of self-assembly can be better understood, also
for systems with a substantially more complex interpar-
ticle interaction. This is certainly of use in technological
applications, such as nanolithography or nanoelectricity.
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