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Thermodynamic consistency of the mean spherical approximation as well as the self-consistent
Ornstein–Zernike approximation �SCOZA� with the virial route to thermodynamics is analyzed in
terms of renormalized �-ordering. For continuum fluids, this suggests the addition of a short-ranged
contribution to the usual SCOZA direct correlation function, and the shift of the adjustable
parameter from the potential term to this new term. The range of this contribution is fixed by
imposing consistency with the virial route at the critical point. Comparison of the results of our
theory for the hard-core Yukawa potential with the simulation data show very good agreement for
cases where the liquid-vapor transition is stable or not too far into the metastable region with respect
to the solid state. In the latter case for extremely short-ranged interactions discrepancies arise.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2894474�

I. INTRODUCTION

By use of the self-consistent Ornstein–Zernike approxi-
mation �SCOZA�, very accurate results have been obtained
for the equation of state for fluids1,2 and lattice systems �or
the Ising spin system�.3–6 Also, in the critical region, the
results are very accurate, showing nonclassical critical
behavior,3 but a form of generalized scaling is obtained in
the critical region instead of full scaling.7

Looking more closely into the data, one finds that for the
lattice gas or nearest neighbor Ising model, results are some-
what better than those for the continuum fluid. The SCOZA
critical temperature Tc of the former is about 0.2% away
from the best estimates,8 while this separation is about 0.6%
for the commonly considered Yukawa fluid �z=1.8� accord-
ing to recent estimates based on Monte Carlo �MC�
computations.2,9 Here, we will analyze this situation in view
of renormalized �-ordering,10,11 and we will propose a modi-
fied version of SCOZA. A slightly simplified variant of this
scheme is implemented and numerically solved, essentially
yielding perfect agreement with simulations for potential
ranges relevant for the liquid state. For extremely short-
ranged potentials where the gas-liquid transition is deeply
buried inside the metastable region, however, agreement is
less satisfactory, and the numerical procedure may even fail
to converge to consistency with the virial pressure.

As SCOZA builds upon the mean spherical approxima-
tion �MSA�, we can understand that SCOZA is more accu-
rate for lattice gases than for fluids by noting that this is also
true for the MSA. Upon further analysis, it is seen that for
fluids, a significant contribution to the direct correlation
function of short range is missing. When this contribution is
included, it enlarges the amplitude of the correlation function
and thus amplifies the internal energy due to correlations
�which is negative�. This further increases the deviation from

the corresponding mean field or van der Waals type equation
of state �EOS�. Since correlations lower the critical tempera-
ture, the net result is a further lowering of it. For the Yukawa
interaction typically used as a model potential in simulations,
we expect this additional lowering to be something like
�0.5�0.4�% as a crude estimate. An immediate problem
here is the determination of the proper range of this short-
ranged piece of the direct correlation function. In this re-
spect, we can be guided by considering thermodynamic con-
sistency with the virial theorem to estimate the range
mentioned.

In Sec. II, we will investigate the relation between the
MSA and renormalized �-ordering for potentials of long
range. Then, in Sec. III, thermodynamic consistency with the
virial theorem is considered and applied to SCOZA. A modi-
fied theory is then formulated on this basis in Sec. IV, and
numerically applied to the one-Yukawa problem in Sec. V. A
short summary �Sec. VI� concludes our contribution.

II. RENORMALIZED �-ORDERING AND MSA

The MSA is the solution of the Ornstein–Zernike �OZ�
equation,

h̃�k� =
c̃�k�

1 − �c̃�k�
,

with boundary conditions

h�r� = − 1 for r � 1,

c�r� = − ���r� for r � 1. �1�

Here, h�r� is the pair correlation function, c�r� is the direct
correlation function, and

��r� = − e−z�r−1�/r �r � 1�

is the perturbing interaction; the hard-core diameter and the
unit of energy are set to unity for simplicity; and a tilde
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denotes Fourier transformation. �It should be noted that ��r�
is not restricted to interactions of Yukawa form.�

For a lattice gas or an Ising spin system, the boundary
conditions become

h�0� = − 1,

c�r� = − ���r� for r � 0.

So, in this case, we have

� + �2h�0� = ��1 − �� =
1

�2��3 � �

1 − �c̃�k�
d3k �2�

for lattice cells of unit volume. �To keep the notation simple,
we do not explicitly indicate that k and similar arguments are
necessarily vectors in the lattice case, nor do we explicitly
point out restriction to the Brillouin zone, i.e., −�	ki	�

with i=x ,y ,z.� Defining ṽ�k�=−��̃�k�, we can now write

c̃�k� = c0 + ṽ�k� ,

where c0 is determined by Eq. �2�. For the reference system

alone, we then have ��̃�k�=0 by which h�0�= h̃�k��


 = � + �2h̃�k� � ��1 − �� =
�

1 − �c0
. �3�

More generally for �̃�k��0, we can define


c =
�

1 − �c0
,

and the core condition �2� becomes


 = 
c + 
c
2K �4�

with

K =
1

�2��3 � ṽ�k�
1 − 
cṽ�k�

d3k .

With 
 given by Eq. �3�, relation �4� can also be written
as


 = 
c�1 − 1
2
�
cK� , �5�

where a prime denotes differentiation with respect to �. In
this form, we can recognize the relation obtained by the re-
summation or renormalization process to obtain the equation
of state for fluids when the inverse range of the attractive
interaction � is used as a perturbing parameter10,11 �see Eqs.
�26� and �36� of Ref. 11�. In Eq. �5�, 
c represents the renor-
malized hypervertex 
 when graph expansion in terms of
�-ordering is considered.12,13 The 
 follows from the refer-
ence system, e.g., hard spheres, by use of the compressibility
relation as


 = �� ��p0

��
�−1

= � + �2h̃0�0� , �6�

where p0 and h0�r� are the pressure and the correlation func-
tion of the reference system. Thus, 
 represents the Mayer
graphs of the correlation function of the reference system.
For small �, they are regarded as �-functions of relative dis-

tance r so that only integral �6� is needed as a leading order
approximation.

Now with renormalization �Eq. �5��, the EOS becomes
more consistent, with better agreement between the energy
and compressibility routes and essentially common critical
point via the two routes.10 However, the remaining thermo-
dynamic inconsistency prevents well-defined isotherms near
the critical point, which is also the situation of the MSA for
the lattice gas or Ising model.

In contrast to the MSA for lattice systems, the MSA for
continuum fluids is not consistent with Eq. �5� and therefore
farther away from thermodynamic self-consistency. In fact,
for interactions of very long range, i.e., small �, the MSA for
continuum fluids also fulfills Eq. �4� but not Eq. �5�. This is
due to the difference in reference systems. For a Percus–
Yevick hard sphere reference system, one has


 =
�1 − ��4

�1 + 2��2 ,

instead of expression �3�, where �= �� /6�� for spheres of
unit diameter. From this, 
�=�2
 /��2 can be evaluated at
the critical density, i.e., �c	0.3 or �c	0.15 for interactions
of realistic range. �In mean field, �c=0.129.� With �=0.15,
we find

1
2
� = − 0.53 ¯ 	 − 0.5, �7�

which is only one half of the “MSA value” that follows from
Eq. �4�.

Compared with the mean field, the finite range of inter-
action lowers the critical temperature Tc, and we have

Tc 	

c



Tc

MF, �8�

where Tc
MF is the mean field value. �The spinodal curve and

thus Tc follow from the denominator of the integrand of in-
tegral �4� being zero at k=0.� In view of this, it is clear that
the MSA compressibility critical point is lowered too much
so that the more accurate energy route gives a classical criti-
cal point well above the former. For interactions of shorter
range where details of the core condition and hard-core cor-
relations become more important, the above results will be
modified, but the qualitative features of the MSA inconsis-
tency will remain.

III. SCOZA EVALUATIONS

The SCOZA differs from the MSA in its imposition of
thermodynamic consistency between the energy and com-
pressibility routes to thermodynamics: A state-dependent free
parameter is introduced into the pair structure and deter-
mined in such a way that the consistency condition

�a

��
= �

�2�u

��2 , �9�

holds. Here,
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u =
1

2
�� ��r��h�r� + 1�d3r �10�

is the configurational part of the internal energy per particle
as computed from the energy route, and

a = 1 − �c̃�0� �11�

is the reduced inverse compressibility as obtained from the
compressibility route.

In earlier SCOZA evaluations, the MSA form �Eq. �1��
of the direct correlation function has been used with � re-
placed by an effective value �e. The contribution to the in-
ternal energy per particle u1 from correlations is then given
by integral �4� as

− �u1 =
1

2�e

cK , �12�

with ṽ�k�=−�e�̃�k�. �Note that a “self-energy” term −���0�
is included in Eq. �12�, but it will not contribute in Eq. �9�
anyway.� In addition, one has the mean field term u0

=�2�̃�0� /2 such that u=u0+u1. For continuum fluids, 
c

should also depend on k, i.e., 
c= 
̃c�k�, which we disregard
here to simplify the argument. Now at the critical point, 1

−
c�ec�−�̃�0��=0 is valid for both MSA and SCOZA that
directly builds upon MSA via Eq. �1�. For the former �e

=� so that �ec=�c, but one notes that both MSA and
SCOZA have the same configurational internal energy at the
critical point just as in the lattice case.

Now with relation �5�, the internal energy u1 can no
longer be equal to the MSA one at the critical point since the
vertex function 
c is different. According to the relation

1 − 
c�ec�− �̃�0�� = 0,

a change in 
c means a change in �ec while 
cK in Eq. �12�
remains unchanged. The change in 
c thus has the conse-
quence that the internal energy contribution from u1 at the
critical point, u1c1 /�ec=
c, is also modified.

In SCOZA computations, the shift in Tc relative to the
mean field value Tc

MF is determined by Eq. �5� to leading
order and not by the MSA 
c from Eq. �4� since the former
is closer to thermodynamic consistency. At the same time,
the SCOZA energy u1 is dictated by the MSA 
c. Thus, there
results an inaccuracy in the SCOZA u1 with a corresponding
inaccuracy in the SCOZA Tc. The reason is that to leading
order the shift down in Tc relative to Tc

MF is proportional to
u1. In terms of u1, Eq. �5� is ��e=��


 = 
c�1 + A�, A = − 
��u1/� . �13�

However, by solving SCOZA, u1 is changed into the MSA
value that follows from the 
c=
c

MSA of Eq. �4� instead of
Eqs. �5� or �13�,

u1
MSA =


c
MSA


c
u1.

This new value modifies Eq. �13� into


 = 
c�1 + A

c

MSA


c
� .

When inserted into Eq. �8�, this gives an additional shift in Tc

compared with the use of Eq. �13�, viz.,

�Tc = 
 1

1 + A
−

1

1 + A

c

MSA


c
�Tc

MF

	 − �1 −

c

MSA


c
�ATc

MF. �14�

Now with Eq. �4�, we approximate


 	 
c
MSA�1 + 
cK� 	 
c

MSA�1 + 2A� ,

where the last relation follows from comparison with Eq. �5�
and using the numerical value �Eq. �7�� for 
�. When in-
serted into Eq. �14� and expanded, this means

�Tc 	 − A2Tc
MF. �15�

Evaluations for the Lennard–Jones �LJ� interaction gave10,11

A = 1 −

c



= 1 −

Tc

Tc
MF = 1 −

0.2545 � 4

0.272 � 4
= 0.064

so that

�Tc 	 − 4.2 � 10−3Tc
MF 	 − 4.5 � 10−3Tc. �16�

IV. MODIFIED SCOZA DIRECT CORRELATION
FUNCTION

The lowering on Tc given by Eq. �15� can be understood
in terms of a graph expansion. There is a significant contri-
bution of short range to h�r� and the direct correlation func-
tion c�r� that is not properly taken care of by previous
SCOZA computations. To leading order it is connected to the

� term of Eq. �5�. In terms of graphs, 
 represents the
hypervertex where the graphs are those of the reference sys-
tem correlation function plus ��r�, i.e., ���r�+�2h0�r�. On
two � vertices of these graphs, a chain bond K with end-
points or vertices 
 that can be replaced by 
c to leading
order and a symmetry factor 1

2 are added. This contribution is
then added to the reference system correlation function or
vertex 
 to obtain the renormalized vertex 
c.

10,11

For lattice gases, however, we do not need to explicitly
consider this term as the core condition �Eq. �4�� is then
equivalent to Eq. �5�. To fulfill the former, a constant c0 is
added to the direct correlation function c�r� at r=0. This can
also be regarded as a short-ranged piece of the perturbing
potential such that ṽ�k� in expression �4� is replaced by c0

+ ṽ�k�. The consequence of this is that the chain bond inte-
gral �4� becomes zero and renormalization �Eq. �5�� drops
out as c0 has already taken care of it.

For continuum fluids, however, Eq. �5� cannot be re-
placed by a c0�r� only inside hard cores if the core condition
is to be kept; the short-ranged part of it goes outside the core
in contrast to the lattice gas system. Thus, c�r� must have a
contribution of short range outside the hard core �beyond that
of the hard sphere reference system, cHS�r��. This term will
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have both an amplitude and a range. In a SCOZA scheme,
this means there are two unknown parameters if now the
remaining part of c�r� is just its MSA form outside the core,
i.e., the new term replaces the earlier need for an effective
temperature.

Assuming the added short-ranged piece to the direct cor-
relation is also of Yukawa form, the SCOZA direct correla-
tion function for the one-Yukawa potential now becomes

c�r� = K1
e−z1�r−1�

r
+ K2

e−z2�r−1�

r
+ cHS�r�, r � 1. �17�

The first term can be treated as in MSA, i.e., its amplitude
can be identified with the inverse temperature, K1��, while
its form coincides with that of the interaction, z1�z; this also
means that c�r� asymptotically coincides with −���r� for
large r as it should except at the critical point. K2 and z2, on
the other hand, are the two unknown parameters of the added
short-ranged piece to c�r�. Obviously, conventional SCOZA
is recovered when setting z2=z1=z, with K1+K2 playing the
role of the effective inverse temperature �e.

The use of an effective parameter �e is common to con-
ventional SCOZA problems. So the differences between vari-
ous SCOZA problems lie in the actual equations used. These
again depend on whether continuum fluids or lattice gases
are considered, and further they depend on the pair interac-
tion used. However, in the present case, this conventional
scheme is modified by which we have two unknown param-
eters present in Eq. �17�. As only one parameter can be de-
termined in “standard” SCOZA, an option is to keep the
range fixed and to make evaluations for various values of z2

to see how the estimated change in Tc comes out. Further-
more, SCOZA allows the contact value of h�r� at the hard-
core surface to be obtained so that we can also check con-
sistency with the virial theorem. Alternatively, the range
parameter z2 can also be adjusted alongside K2 as a function
of � and � so that consistency between all three of the en-
ergy, virial, and compressibility routes is obtained through-
out the temperature-density plane. In this more ambitious
SCOZA evaluation first proposed by Høye and Stell,14 both
unknown parameters, K2 and z2, are supposed to be simulta-
neously determined. This scheme thus bears some resem-
blance to the version of the generalized MSA studied in Ref.
15 that did not, however, take into account cHS�r� outside the
core.

Yet another possibility is to keep z2 fixed for all densities
and temperatures, choosing it in such a way that consistency
with the virial theorem is achieved at the critical point. This
has the advantage over full consistency of being much easier
to implement while it can be expected that this simpler ver-
sion already incorporates most of the effect of full consis-
tency with the virial route, at least when using the location of
the critical point and the phase boundary to gauge the rela-
tive accuracy and performance of various liquid state theo-
ries as we will do here.

V. NUMERICAL RESULTS

In our computations, we found it advantageous to adopt
the Waisman recipe for the direct correlation function cHS�r�
of the hard sphere reference system, i.e.,

cHS�r� = KHS
e−zHS�r−1�

r
, r � 1,

with density dependent parameters KHS and zHS that repro-
duce the Carnahan Starling equation of state.2,16 Just as in
conventional SCOZA, the direct correlation function outside
the hard core is then just a sum of Yukawa terms for which
the solution of the OZ equation together with the core con-
dition, h�r�=−1 for r�1, is semianalytically known by way
of a Wiener–Hopf factorization and Eqs. �10� and �11� can be
evaluated efficiently.17,18

The main change required vis-à-vis the conventional
theory is the shift from K1, which acquires an explicit tem-
perature dependence, to K2 as the adjustable parameter; also,
it becomes necessary to implement the virial route
expressions19 that are not normally featured in SCOZA com-
putations but already appeared in the preliminary evaluation
of our recent adaptation of SCOZA to molecules with soft
cores.20

For an interaction composed of a hard core of unit diam-
eter with a perturbing tail ��r�, the virial theorem,

�P

�
= 1 +

2�

3
��1 + h�1 + � − ��

1

�

r3�h�r� + 1����r�dr ,

relates the pressure P both to the contact value h�1+ � of the
pair correlation function and to an averaged interparticle
force away from the contact. In the case of a direct correla-
tion function of multi-Yukawa form outside the core, the
same steps that lead to the energy route u and the compress-
ibility route a, Eqs. �10� and �11�, also provide us with ex-
plicit expressions for the Laplace transform G�s� of r
+rh�r� �Ref. 17� from which the contact value can be worked
out.18 If, on the other hand, the interaction is a sum of
Yukawa terms with inverse length scale parameters zi, it is
easily seen that the integral on the right-hand side of the
relation above reduces to a sum of linear combinations of
G�s� and dG�s� /ds with s set to each of the zi. As both
conditions are met in our case, the virial pressure can be
numerically evaluated no less efficiently than the other ther-
modynamic quantities commonly entering SCOZA.

Implementation of the theory outlined in Sec. IV started
from our reimplementation of conventional SCOZA, which
has been developed with a view to great conceptual simplic-
ity, modularity, and flexibility and has turned out to be a
convenient test bed for modifications of both the theory and
its numerical realization. Methodically, it largely follows the
work of Schöll-Paschinger;21 the main differences are the
avoidance of general nonlinear solving routines through the
systematic use of linearizations �which also eliminate the
need for cumbersome implicit differentiations and inciden-
tally brings about a significant speed advantage� and an im-
proved implementation of the artificial spinodal boundary
condition �see below� that is more computationally efficient
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and does not restrict the estimated spinodal to the discretiza-
tion grid, nor does it use the ill-founded criterion of minimal
width of the spinodal.

For the computations below, we solved the SCOZA par-
tial differential equation �PDE� �Eq. �9�� by an iterated
predictor-corrector method on density grids of N�=103 den-
sity steps spanning the range 0	�	�max=1 with the ideal
gas �u=0� and the MSA �K2=0� as boundary conditions at
�=0 and �=�max, respectively. The inverse temperature �
was turned on from �=0, where the hard sphere reference
fluid provided the initial conditions, down to the critical
point with temperature steps decreasing upon approaching
the critical point in approximate proportionality to
min��a�� ,��. Below the critical point, the temperature steps
again increased in such a way that the shift of the spinodal
per integration step was limited to less than one density step.
Below the critical point, there is a region where the analyti-
cal solution of the OZ equation becomes invalid,22 and even
a fully numerical procedure6 that does not rely on the ana-
lytical result eventually runs into problems of numerical
convergence.23 Either way, it proves necessary to remove
part of the solution from the PDE’s domain through the im-
position of an artificial boundary condition at the spinodal. In
our implementation we do so by estimating its location at the
new temperature from the solution of the PDE at the previ-
ous temperature on nearby grid points and forcing the inter-
nal energy there to be compatible with a=0. Pressure and
chemical potential are obtained by thermodynamic integra-
tion at fixed density, starting from the hard-core reference
fluid at �=0. This allows the binodal to be found by locating
densities �v��� and �l��� of the coexisting vapor and liquid
phases of equal pressure, P��v ,��= P��l ,��, and chemical
potential, 
��v ,��=
��l ,��. The critical point is identified
with the locus where the liquid and vapor branches of the
spinodal and the binodal meet.

This computation is then repeated for different values of
z2. To illustrate the dependency of the critical parameters on
z2, let us consider the potential with z=1.8 that is known to
exhibit thermodynamics roughly equivalent to the LJ inter-
action. As can be seen from Fig. 1, the critical temperature
obtained with z2�z1=z is indeed a bit lower than that for
conventional SCOZA �z2=z1=z�, and typical shifts are com-
parable to the estimate �Eq. �16�� obtained using results for
the LJ interaction.

As we solve the SCOZA PDE, we compare the pressure
obtained from thermodynamic integration to the virial route
result. In general, for every value of z2 there will be lines
along which consistency between SCOZA and the virial
theorem occurs; this is illustrated, again for the case of z
=1.8, in Fig. 2. As can be seen, the geometry of these lines is
rather complex, especially below the critical point. We ex-
pect this distribution of z2 values to quite closely resemble
the function z2�� ,�� that would be obtained with the more
general version of the theory imposing consistency with the
virial route throughout the PDE’s domain �cf. Sec. IV�.

In the present contribution, however, we consider a sim-
pler version of SCOZA, where z2 is determined from consis-
tency at the critical point only. Numerically, the search for
this optimal value of z2 calls for repeated solutions of the

SCOZA PDE and might thus seem to be exceedingly burden-
some. In contrast, e.g., to Ref. 24 where this is indeed a
concern, however, we can use the semianalytic solution of
the OZ equation. In combination with a very small number
of Yukawa terms in Eq. �17�, the integration of the PDE
down to the critical temperature is sufficiently fast so that the
search for z2 does not constitute a problem.

FIG. 1. Variation of the critical temperature Tc with the inverse range pa-
rameter z2 of the adjustable part of the direct correlation function for the
potential with z=1.8. The z2 is varied from z2=z, corresponding to conven-
tional SCOZA �Tc=Tc

S�, up to z2=600.

FIG. 2. Loci of consistency with the virial route for the hard-core Yukawa
potential with z=1.8 and various values of z2. Consistency is achieved at the
critical point for z2=z

2
*=7.571 45. The binodal obtained in this case is

shown by the dotted line. This figure combines the results of several runs of
our SCOZA implementation during each of which z2 was kept fixed as
opposed to a more general version of the theory where z2 would be adjusted
during a single run.
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In Table I, we list the results both of the version of
SCOZA outlined in Sec. IV �z2�z1=z� and for conventional
SCOZA �z2=z1=z� for various potentials, and we compare
them to moderately recent simulations: MC results obtained
with N=108 particles for z� �3.9,7 ,25,100�;25 Gibbs en-
semble MC �GEMC� data for z� �1.8,3 ,4� �N=108� �Ref. 9�
and for z� �3.9,7� �N=216�;26 as well as the results of grand
canonical MC �GCMC� simulations in combination with fi-
nite size scaling �FSS� analysis for z=1.8 �Ref. 2�. The same

data are also displayed in Fig. 3. It should be noted that the
liquid-gas transition considered here is metastable with re-
spect to the solid for rather short-ranged potentials, viz., for
z�6;26 in particular, the highest z values for which simula-
tions are available, viz., z� �25,100� correspond to interac-
tions for which the fluid-fluid transition is buried deep inside
the metastable region.25

First limiting ourselves to moderately short-ranged po-
tentials �z	10�, a comparison of conventional SCOZA �z2

=z1=z� and of our modified SCOZA proposed here �z2�z1

=z� shows two general trends: As expected, the critical tem-
perature is shifted to lower values; for the LJ value of z
=1.8 this difference is about 0.7% and thus well compatible
with the estimate �Eq. �16��. Furthermore, the shift in critical
temperature is also accompanied by a small decrease of the
critical density. Both effects become more pronounced as z
becomes larger. The available simulations confirm that the
shift in Tc is certainly in the right direction, and the agree-
ment is excellent considering the uncertainties of the simu-
lation studies that generally cite nonoverlapping confidence
intervals for the same interaction. For some values of z, the
prediction of our modified SCOZA falls right into the confi-
dence interval of some study, as is the case for z=1.8 and the
sophisticated analysis of Ref. 2 or for z=4 and the GEMC
result of Ref. 9. For the nearby value of z=3.9 deemed rel-
evant to the fullerene C60, on the other hand, two different
studies25,26 agree that our Tc is too high, if by significantly
different amounts, whereas our prediction is right between
the results of the same two references for z=7. For z=3, our
modified SCOZA is marginally compatible with the GEMC
results. By way of contrast, conventional SCOZA �z2=z1

=z� yields too high a critical temperature in all cases. This

TABLE I. Comparison of the critical temperatures and densities for hard-
core Yukawa fluids of various inverse range parameters z. SCOZA results
were obtained as described in Sec. V, with z2 determined from consistency
with the virial route as proposed in Sec. IV, or set equal to z as in conven-
tional SCOZA. The simulation results are taken from the literature.

z Tc �c Method

1 2.518 14 0.279 SCOZA, z2=z
2.513 88 0.279 SCOZA, z2=5.955 60

1.8 1.218 69 0.3145 SCOZA, z2=z
1.212�2� 0.312�2� GCMC, FSS �Ref. 2�
1.210 13 0.312 SCOZA, z2=7.571 45
1.177�5� 0.313�13� GEMC �N=108, Ref. 9�

2 1.088 11 0.323 SCOZA, z2=z
1.078 77 0.320 SCOZA, z2=8.033 31

3 0.740 25 0.359 SCOZA, z2=z
0.728 60 0.352 SCOZA, z2=10.561 67
0.715�11� 0.375�27� GEMC �N=108, Ref. 9�

3.9 0.602 00 0.387 SCOZA, z2=z
0.589 80 0.373 SCOZA, z2=13.085 09
0.571 4 ¯ MC �N=108, Ref. 25�
0.549�3� 0.37�2� GEMC �N=216, Ref. 26�

4 0.591 08 0.390 SCOZA, z2=z
0.578 89 0.375 SCOZA, z2=13.377 49
0.576�6� 0.377�21� GEMC �N=108, Ref. 9�

5 0.508 85 0.415 SCOZA, z2=z
0.496 78 0.392 SCOZA, z2=16.430 66

6 0.456 24 0.437 SCOZA, z2=z
0.443 90 0.402 SCOZA, z2=19.758 02

7 0.418 81 0.454 SCOZA, z2=z
0.411�2� 0.50�2� GEMC �N=216, Ref. 26�
0.405 30 0.403 SCOZA, z2=23.440 57
0.400 0 ¯ MC �N=108, Ref. 25�

8 0.389 77 0.463 SCOZA, z2=z
0.374 46 0.397 SCOZA, z2=27.544 52

9 0.365 74 0.465 SCOZA, z2=z
0.348 42 0.386 SCOZA, z2=32.093 89

10 0.344 97 0.462 SCOZA, z2=z
0.325 78 0.372 SCOZA, z2=37.081 03

25 0.235 3 ¯ MC �N=108, Ref. 25�
0.187 06 0.307 SCOZA, z2=z
0.158 29 0.170 SCOZA, z2=165.804 99

100 0.153 8 ¯ MC �N=108, Ref. 25�
0.060 59 0.07 SCOZA, z2=z

FIG. 3. Critical temperatures Tc for hard-core Yukawa potentials with vary-
ing inverse length scale z as computed by conventional SCOZA �dashed
line� and by various simulations relative to the prediction T

c
* of our modified

version of SCOZA. For the simulations, the crosses mark the value of Tc,
the vertical bars indicate the uncertainties where available, and the labels
identify the source: A—GCMC, FSS �Ref. 2�; B—GEMC �N=108, Ref. 9�;
C—MC �N=108, Ref. 25�; D—GEMC �N=216, Ref. 26�; cf. Table I.
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situation is graphically summarized in Fig. 3; to judge by Tc,
the variant of SCOZA studied in the present contribution
thus constitutes a genuine progress over its conventional
form, and the available simulations are not sufficiently accu-
rate to point out systematic deficiencies in the critical tem-
peratures predicted. As for the critical density, both old and
new SCOZA are well compatible with the results for z
� �3,3.9,4�. Only for z=1.8 are we able to differentiate be-
tween the two versions of the theory: The modified SCOZA
is in perfect agreement with the extremely narrow confidence
interval obtained by way of GCMC and FSS methods
whereas conventional SCOZA lies somewhat outside this
range, thus also hinting at the superiority of our modifica-
tions for the critical density.

As the potential becomes more and more short ranged,
however, discrepancies start to appear. For one, our modifi-
cations always bring about a shift of the critical density to
lower values, but at z=7, the GEMC �c is already higher
than that of conventional SCOZA. Similarly, the critical tem-
perature is always lowered, but the MC simulations for the
two highest values of z listed in Table I, viz., z� �25,100�
yield critical temperatures that are far greater than those of
conventional SCOZA; furthermore, consistency with the
virial theorem does not seem achievable at all for z=100,
presumably due to numerical difficulties with the evaluation
of the virial pressure �Ref. 19�. Clearly, more work is needed
to clarify the situation at these extremely high values of z
that are, however, far outside the range of stability of the
liquid-vapor transition and thus of limited interest for a liq-
uid state theory.

VI. SUMMARY

In the present contribution, we have considered in some
depth the question of thermodynamic consistency between
MSA and SCOZA �that builds upon MSA but incorporates
consistency between the energy and compressibility routes�
on the one hand, and the virial route on the other hand. The
basis for our investigations is formed by an analysis of the
solution of the MSA closure in the presence of the core con-
dition in the light of renormalized �-ordering that highlights
a crucial difference between the lattice and the continuum
cases. For the latter it is seen that a short-ranged piece must
be added to the direct correlation function, and it is this term
that we propose to be adjusted instead of the usual potential
term. This scheme has been numerically implemented in a
simplified version where only the amplitude of this contribu-
tion to c�r� is varied throughout the �� ,�� plane according to
the usual SCOZA procedure implementing consistency be-
tween the energy and compressibility routes only whereas its
range is fixed by imposing consistency with the virial route
at the critical point only. Comparison with the results of vari-
ous simulation studies shows that these modifications bring
about significant improvements over conventional SCOZA;
particularly encouraging is the perfect agreement with a so-
phisticated and extremely accurate study combining GCMC
simulations with FSS analysis for z=1.8 �Ref. 2�.

If all of our evaluations have been restricted to the hard-
core Yukawa class of interactions, the question naturally

arises whether this approach can also be applied to other
types of potentials. In this respect, it is clear that nothing
prevents us from adding some Yukawa term to the MSA
direct correlation function for, say, a LJ potential and using
the same strategies for evaluating its range parameter and
solving the modified SCOZA PDE. At the same time, how-
ever, the form of the Yukawa potential is special in that it is
most attractive right at the core whereas more realistic inter-
actions reach the maximum of the depth of the potential only
at greater distances. For these a contribution of Yukawa form
to the direct correlation function hardly seems appropriate.
So clearly more work is needed before the results presented
here can be transferred to other cases. Nevertheless, we ex-
pect the strategy of using the virial theorem �that is not tra-
ditionally featured in SCOZA at all� as a means of gauging
the fluid structure close to the repulsive core to remain the
key for fixing the form of the adjustable part of the direct
correlation function. This strategy, it should be noted, was
also prominently featured in our earlier work on SCOZA for
molecules with soft cores.20
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