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Abstract
Recently, particular interest has been placed in the study of a strikingly counter-intuitive
phenomenon: the clustering of purely repulsive soft particles. This contribution serves the
purpose of both reviewing our current understanding of the multiple occupancy crystals and
presenting details of recently developed tailor-cut approaches to the problem. We first indicate,
by use of analytically tractable examples, how such a phenomenon can arise at all. We then
show that the thermodynamic formalism has to be adapted when studying such systems and
present a novel computer simulation technique apt to do so. Finally, we discuss the intriguing
mechanical and structural responses of such systems upon increasing the density.

1. Introduction

As a rule-of-thumb, we can define soft matter as most
substances that, due to air travel regulations, are nowadays
only allowed to be carried in one’s hand baggage if they are
stored in containers of up to 100 ml and placed in a transparent
re-sealable plastic bag. Among these we find gels, lotions,
pastes, foams, sprays and most complex liquids, placing soft
matter everywhere in our everyday lives. This omnipresence
fuels the interest of scientists to study the properties and the
behavior of such substances. In the present paper, we will
focus on a particular class of soft matter systems: suspensions
of mesoscopic particles (ranging in size from 1 nm to 1 μm)
immersed in a solvent formed by particles of atomic size.

The typically huge number of constituents that build up the
mesoscopic particles is one of the key problems in theoretical
investigations of soft matter systems. It is not feasible to use
concepts based on statistical mechanics that are able to take
all the degrees of freedom of these building particles explicitly
into account. It is therefore more appropriate to focus rather

5 Present address: Department of Chemistry, Duke University, 124 Science
Drive, Durham, NC 27708, USA.

on a simplified representation of the interaction between two
macromolecules which may be obtained by applying suitable
coarse-graining procedures [1, 2]. These techniques average
over many internal and solvent molecular degrees of freedom,
leading to effective particles, but leaving the thermodynamic
properties of the system unchanged. These effective particles
are then identified by a set of simplified characteristics, such
as their center-of-mass position, relative orientation or spatial
extent, i.e. the radius of gyration. The interaction between
two such effective particles is modeled by an effective pair
potential. For a few colloidal dispersions such effective
interactions have been proposed or derived in the literature,
sometimes even in closed, analytical form: neutral [3] and
charged [4, 5] star polymers as well as microgels [6–9] are a
few examples. For an overview we refer to [2].

In the special case of polymeric macromolecules of low
inner monomer concentration, such as polymer chains [10–12],
dendrimers [13, 14], microgels [6–9] or diblock co-
polymers [15, 16], it is conceivable that—as a consequence of
their internal structure—these effective particles may overlap,
mutually penetrate or even intertwine when compressed.
The centers of mass of two such macromolecules might
even coincide as long as their constituent monomers do not
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overlap and still obey the excluded-volume conditions at
the microscopic level. Thus, since full overlaps between
the effective particles are possible, the resulting effective
interaction remains finite, i.e. bounded, at zero separation.
In striking contrast to the simple, harshly repulsive inter-
atomic potentials typically known from atomic systems, the
effective potentials characteristic of soft matter systems lead
to completely new features and a considerably richer variety
of ordered phases. Among those are not only the face-
centered cubic arrangement assumed by colloidal spheres
at high concentrations [17–19] and low-symmetry crystals
formed by soft spheres [20, 21], but also a variety of periodic
assemblies observed for charged colloidal mixtures [22] as
well as the gyroid and other microphases of diblock co-
polymer solutions [23–25].

In this work we will concentrate on a novel and
undoubtedly counter-intuitive form of self-assembly in soft
matter that was recently predicted: the formation of clusters
in systems interacting by soft, purely repulsive effective
potentials, i.e. the formation of aggregates of particles which
organize themselves into regular crystals with multiple site
occupancy [26, 27].

This paper is organized as follows: in section 2 we present
the most prominent models of bounded, purely repulsive
interactions and discuss their different phase behaviors. One of
these scenarios is the aforementioned clustering phenomenon.
In section 3, we motivate how purely repulsive particles can
agglomerate. Section 4 is dedicated to a detailed study of
the thermodynamic formalism governing clustering systems
and its consequences in computer simulations. The particular
case of the mechanical properties of these systems will also be
considered. We summarize and conclude in section 5.

2. Models

Arguably the best-studied model of bounded interaction is the
Flory–Krigbaum potential, proposed in the pioneering work of
its authors given in 1950 [28]. This Gaussian-like potential was
put forward as an effective interaction between polymer chains.
In the mid-1970s, the statistical mechanics of many-body
systems of particles interacting by Gaussian potentials became
the subject of a series of seminal papers by Stillinger and
coworkers [29–33]. The Flory–Krigbaum–Stillinger model has
thus become one of the most prominent models in the class of
bounded, purely repulsive interactions. It is now commonly
known as the Gaussian core model (GCM) and defined by

φGCM(r) = ε exp[−(r/σ)2], (1)

where ε and σ denote the energy and length scale,
respectively. Whereas Stillinger’s early work mainly
concerned mathematical properties of the system, such as
duality relations between real and reciprocal space and virial
expansions [29–33], later on the thermodynamics and phase
behavior took center stage [34–37] and very recently attention
has turned to the phonon spectra of the GCM in equilibrium
and shear crystals [38]. Concerning the phase diagram of
the GCM, it has been found [34, 35, 37] that, at high
temperatures T , the fluid phase is stable at all densities, while

at sufficiently low T compressing a GCM fluid leads via
a first-order phase transition to a cubic phase with singly
occupied lattice sites. Upon further compression, the crystal
might undergo a structural phase transition but eventually melts
anew [34, 35, 37]. This behavior is called re-entrant melting.

Are there physical systems that realize the GCM as
an effective interaction? Due to a series of theoretical
and simulation studies [10–12, 39–46], the question can be
answered in the affirmative. Indeed, the GCM allows for an
accurate description of the interactions of a pair of polymer
coils in good solvents. Still, the question remains: how
realistic is such an interaction for dense polymer chain systems
or for other colloidal systems? To this end, recent work
has provided further support for the validity of the GCM.
Louis et al [12] calculated the effective pair potential for
systems containing hundreds of polymer chains, covering a
broad range of concentrations ranging from dilute solutions
up to several times the overlap concentration. The study
confirmed the validity of the Gaussian-like pair interaction
for this system for the whole concentration range, with only
slight modifications of the length and energy scales beyond
the overlap concentration [12]. A way to avoid the density
dependence of the potential was furthermore offered by the
recent ‘multiblob’ approach of Pierleoni et al [47]. Other soft
matter systems such as microgels [6, 7] or dendrimers [13, 48]
were also shown to interact via Gaussian-shaped effective
potentials. For the latter case, similar results to those
presented by Louis et al in [12] were obtained for the
study of dense dendrimer systems [49]. Moreover, the
theoretical predictions for the shape of the effective interaction
of such dendrimers are also in very good agreement with
results from small-angle neutron scattering experiments [48],
which provides confidence that the GCM is indeed a realistic
model for the effective interactions between various polymeric
macromolecules.

Another member of the family of bounded interactions
is the penetrable sphere model (PSM), defined by the pair
potential

φPSM(r) =
{

ε r < σ

0 else.
(2)

The PSM has also been extensively studied recently [50–60].
Surprisingly, its phase behavior is markedly different from
that of the GCM. For all T , increasing the density of a
PSM fluid leads to the formation of clusters of overlapping
particles arranged in an ordered phase. So far, this clustering
phenomenon has not been observed in experiments or in
monomer-resolved simulations of soft matter systems, but
recent predictions by some of us [61] might change this state
of affairs. The assembly of pairs of amphiphilic dendrimers
in silico leads to effective interactions that are intermediate
between the GCM and the PSM. Compared to the GCM,
these potentials show steeper flanks as well as flatter regions
or even a dip at small separations. As we will argue in
the following section, these interactions fall in the clustering
class of potentials. Amphiphilic dendrimers could thus show
clustering behavior under appropriate conditions.
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3. Motivation

The above considerations and results raise the following
questions: how can particles that are purely repulsive actually
agglomerate in stable clusters and freeze into crystalline
assemblies? Furthermore, what is the qualitative difference
between the GCM and the PSM that is responsible for their
distinctly different phase behaviors? The following sections
sketch answers to these questions.

3.1. From re-entrance to clustering

As an intuitive motivation for the existence of different types
of phase behavior depending on the nature of the bounded
interaction, let us consider a one-dimensional array of particles
separated by a fixed distance a and interacting via some
bounded, purely repulsive potential. Though the arguments put
forward in the following also hold in higher dimensions, this
choice makes the argument easier to visualize [62]. The sum of
the pair interactions forms the potential energy landscape that a
test particle inserted into this system would feel. In the case of
Gaussian interactions, we see in the upper row of figure 1 that
the resulting potential energy landscape has minima in between
the particles of the lattice, thereby suggesting that the preferred
location of the additional particle would destroy the periodicity.
However, if we change the interaction potential slightly by
making it steeper at its flank and flatter for small separations,
we obtain a distinctively different scenario (cf lower row of
figure 1). Now, the potential energy maxima form in between
the particles. This would therefore drive the test particle to
sit precisely on top of one of the particles of the system. The
position of the test particle is thus compatible with the lattice
structure, suggesting that clustering is preferred by this system.
Note that the test particle itself interacts with all other particles
and thereby modifies the energy surface, so this argument has
to be treated with some care, but it is nonetheless qualitatively
correct.

3.2. From fluid to multiply occupied crystal

It has to be stressed that the above discussion is based on purely
energetic arguments and neglects entropy. But since the role of
entropy in this problem is mainly to set the precise location
of the phase transition, this does not alter the ground state
ordering at high densities. To demonstrate this let us examine
a simple model for the free energy. For simplicity, we consider
the two-dimensional analog of the PSM, i.e. penetrable discs,
where an overlap between two discs results in an energy
penalty of ε. Again, our argument is independent of dimension,
but this choice makes a visualization of the system easier. By
making use of Widom’s particle insertion method, we first
approximate the free energy of a liquid consisting of penetrable
particles. In particular, we assume that, upon random insertion
of a particle in a uniform, dense fluid, the number of overlaps
nfl with the particles of the system is large, i.e. nfl � 1, and that
we may therefore ignore its fluctuations. The excess chemical
potential μex is then equal to the energy change �� upon
inserting an additional disc:

μex = �� = nflε = πρσ 2ε. (3)

Figure 1. The interactions (solid line) of a one-dimensional array of
GCM particles (gray circles) sum up to an effective potential energy
landscape (dashed line) felt by a test particle (upper row). As can be
seen, minima have formed in between the location of the particles.
Thus an additional particle will destroy the regular spacing. In the
lower row, the same is shown for particles interacting via
φ(r) = ε exp[−(r/σ )4], which has a flatter core region and a slightly
steeper flank than the GCM. Now, energetic minima of the collective
energy landscape have formed at the positions of particles, allowing a
test particle to sit on top of a lattice point, thereby causing the system
to cluster.

The free energy per particle of the fluid phase ffl is obtained by
adding the ideal gas contribution to μex/2:

ffl(ρ, T ) = kBT
[
ln(ρ	2) − 1

] + 1
2πρσ 2ε. (4)

Here, kB is Boltzmann’s constant and 	 denotes the de Broglie
wavelength.

Inspired by the study of hard discs [63, 64], we calculate
the free energy of a clustered solid within a cell model.
Assuming that the system wants to freeze in a close-packed
structure, i.e. a triangular lattice with lattice constant a
(cf figure 2), the number of particles nc that occupy a single
lattice site is

nc =
√

3ρa2

2
. (5)

Here again we consider the high density limit where nc � 1.
Moreover, we assume that, besides confining each other to the
vicinity of their lattice sites, the particles in neighboring boxes
do not interact and then, as can be gathered from figure 2, the
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Figure 2. Crystalline penetrable discs (diameter σ ) confine each
other to the vicinity of their lattice sites, which can be visualized by
plotting the corresponding exclusion discs (radius σ ). The area
accessible to the center of a test disc (shaded gray) in the middle of
the figure is bounded by the areas excluded by the surrounding
exclusion discs (the central disc itself is not shown).

free space available to the centers of the particles is limited to
a small area approximately given by

Afree ≈ 2
√

3(a − σ)2. (6)

Then, the ideal contribution to the free energy per particle is

f id
sol(ρ, T ) ≈ kBT

[
ln(nc	

2/Afree) − 1
]

= kBT

{
ln

[
ρa2	2

4(a − σ)2

]
− 1

}
. (7)

Since every cell contains nc particles, the energy per cell equals
εnc(nc − 1)/2, which amounts to an energy per particle of
ε(nc − 1)/2. Using (5), we then obtain the free energy of the
solid:

fsol(ρ, T ) = kBT

{
ln

[
ρa2	2

4(a − σ)2

]
− 1

}
+

√
3ρa2 − 2

4
ε.

(8)
As a tends to σ with increasing density, (a − σ) does not
vanish exponentially fast, so at high densities the dominating
contribution for both the liquid and the cluster solid is the
energetic term linear in ρ. Comparing their coefficients for the
different phases, we find that π/2 >

√
3/4 and therefore the

cluster solid phase is more stable at high densities. Obtaining
the precise location of the fluid to crystal phase transition
would require a more careful analysis, but this argument
captures the essence of the underlying physics.

3.3. Cluster criterion

Putting together these toy model results suggests that clustering
occurs in the PSM, but not in the GCM, as a consequence of
how the pair interaction decays with increasing distance. But
which properties of the decay lead to clustering? Based on an
analysis of the behavior of the structure factor within the mean
field approximation, Likos et al [26] established a criterion

that allows us to determine whether clustering or re-entrant
melting behavior will be observed in systems interacting via
bounded, entirely repulsive potentials. The criterion applies
for pair interactions φ(r) that decay to zero sufficiently fast as
r → ∞, so that they are integrable and their Fourier transforms
exist. There are then two possible scenarios for the functional
behavior of the Fourier transform of the pair potential φ̃(q) as
a function of the wavenumber q [26].

• If φ̃(q) is a non-negative function, i.e. φ̃(q) � 0 for all
q , a system of such particles will show re-entrant melting.
Since the Fourier transform of the GCM is of Gaussian
shape, it belongs to this category, called Q+ class.

• Otherwise, if the Fourier transform φ̃(q) oscillates,
i.e. it attains negative values for certain ranges of
the wavenumber q , the system is expected to display
clustering behavior. The PSM is a representative of this
category, called Q± class.

Note that bounded pair interactions with shoulders flatter
than a Gaussian and also decaying faster than the GCM will
typically exhibit clustering. In fact, for the class of generalized
exponential models (GEM-n), with φ(r) = ε exp[−(r/σ)n],
n > 0, the transition from the Q+ to the Q± class occurs
precisely at n = 2 [65]. This explains why the effective
potentials found for amphiphilic dendrimers also fall into this
latter category.

4. Thermodynamics

A clustered solid can be contrasted with a regular, single-
occupancy crystal at finite temperatures, where there is always
a net, though small, concentration of point defects, i.e. of
vacancies and interstitials. Thereby, the number of particles
in the system differs from the amount of available lattice
sites, but this is often neglected in free energy calculations
since it hardly affects the results obtained for such solids.
In clustered crystals, however, this difference leads to more
than just a mere correction in the free energy because several
particles can share a single lattice site. In the bulk limit, a
system will find its equilibrium occupation per lattice site by
making adjustments at surfaces or by forming defect areas. A
description of clustered solids through simulation, however,
brings about novel methodological challenges. Here, the
system is constrained by the use of fixed box geometry and/or
fixed amounts of particles as well as the use of periodic
boundary conditions, which in combination may prevent the
system from relaxing to its equilibrium ground state. To
reliably simulate clustered solids, it is therefore essential to
determine the equilibrium occupation of lattice sites.

Fortunately, a solution can be derived [66] from the study
of crystal defects [67]. In any system where the amount of
particles N differs from the amount of given lattice sites Nc an
infinitesimal change in the constrained Helmholtz free energy
F can be written as

dF(μc) = −S(μc) dT −P(μc) dV +μ(μc) dN+μc dNc. (9)

Here, μc = (∂ F/∂ Nc)N,V,T is the change in free energy
associated with the insertion of a lattice site into the system.
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Note, however, that since no new degree of freedom has been
introduced, μc solely acts as a constraint on the other variables.
The constrained pressure P(μc) is thus given by

P(μc) = −
(

∂ F

∂V

)
N,T,Nc

, (10)

while the constrained chemical potential μ(μc) is

μ(μc) =
(

∂ F

∂ N

)
V,T,Nc

. (11)

The value of the constraint at equilibrium is set by the need
to preserve the extensitivity of the Gibbs free energy G. At
constant P(μc) and T

G = μN + μc Nc, (12)

so equilibrium properties are recovered when no work is
required to increase the size of a system by an additional lattice
site, i.e. μc = μc[N, V , T, N eq

c (N, V , T )] = 0. Here, N eq
c

is the equilibrium number of lattice sites corresponding to the
choice of N , V and T . It then follows that the equilibrium
pressure P is related to the constrained pressure P(μc) via

P(N, V , T ) = P(μc = 0) = P[N, V , T, N eq
c (N, V , T )],

(13)
and in a similar way the equilibrium chemical potential μ is
connected to the constrained one via

μ(N, V , T ) = μ(μc = 0) = μ[N, V , T, N eq
c (N, V , T )].

(14)
These expressions relate the properties of a (small) constrained
system to the bulk limit. Note that, in the density functional
treatment of this problem [65], the variational free energy F[ρ]
is minimized with respect to the lattice site occupancy nc, a
condition that is formally identical to setting μc = 0.

In canonical simulations, the constraint can be tested by
rewriting the free energy and solving for

μc = F(μc) + P(μc)V − μ(μc)N

Nc
. (15)

In an effort to identify the equilibrium states of a clustering
system, the locus μc = 0 must be found for each state point.
At a given N , V , T and Nc, the quantities F(μc), P(μc) and
μ(μc) to be inserted into the right-hand side of (15) may be
directly computed from Monte Carlo (MC) simulations using,
respectively, thermodynamic integration, the virial equation
and Widom’s particle insertion method [68]. By iterating this
procedure for different N and V , while keeping ρ, Nc and
T constant, the equilibrium configuration for the given state
point is identified as depicted in figure 3. The virial equation
and particle insertion methods are by now standard simulation
methodologies, but the thermodynamic integration to obtain
F(μc) for this specific system brings in a few subtleties. These,
as well as some special physical features of clustering systems,
are discussed in the following sections.

Figure 3. Typical example of Monte Carlo simulation results
(circles) for μc as a function of the lattice occupation nc for an fcc
solid of particles interacting via φ(r) = ε exp[−(r/σ )4] at state point
kBT/ε = 0.2 and ρσ 3 = 1.8. The equilibrium occupation number is
identified as the state where μc = 0. The dashed line serves as a
guide to the eyes.

4.1. Thermodynamic integration for cluster solids

To determine the free energy of solids, Frenkel and Ladd [69]
developed a high accuracy technique based on thermodynamic
integration [70]. Assuming that the system of interest is
governed by the interaction potential �(rN ), its free energy
at a given state point can be related to the known free energy
of a reference system Fref interacting via �ref(rN ). During
the course of the simulations, the system’s intermolecular
interactions are slowly turned off while the interactions of the
reference system are simultaneously turned on. The easiest
way to achieve this is to consider the following potential energy
function where this process is realized in a linear dependence

�λ(rN ) = (1 − λ)�(rN ) + λ�ref(rN ), (16)

with coupling parameter λ. For λ = 1 the reference system is
simulated, while for λ = 0 the system of interest is recovered.
The free energy can then be calculated via

F = Fref +
∫ λ=0

λ=1
dλ

〈
∂�λ

∂λ

〉
λ

. (17)

Using (16), this reduces to

F = Fref +
∫ λ=0

λ=1
dλ 〈�ref − �〉λ, (18)

which expresses the free energy difference as an ensemble
average that can be readily measured in MC simulations.

In the original scheme [69], the reference system was an
Einstein solid where particles are connected to their respective
lattice sites via harmonic springs [68]. This is a reasonable
choice for perfect single-occupancy crystals. However, in
multiple-occupancy crystals, not only can several particles be
found on a given lattice site, but they can also hop from
one lattice site to the next, a property explicitly confirmed
in Molecular Dynamics simulations of cluster crystals [71].
In this case ideal gas particles that move in potential wells
centered around the lattice sites are a more convenient
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reference system (cf figure 4). More formally, we set

�ref(rN ) =
N∑

i=1

φref(ri ), (19)

with

φref(r) =
{

0 r ∈ ⋃Nc
i=1 v0(Ri)

Umax otherwise,
(20)

where Umax is the maximal height of the potential barrier and
v0(Ri) describes a small volume centered around the lattice
vector Ri , i = 1, . . . , Nc, of the crystal under study. The
free energy calculation does not depend on the size or shape
of the volume v0 as long as these volumes do not overlap and
allow us to construct a reversible path to the reference system.
For instance, the crystal structure would melt if these regions
were too big, so typically the dimensions of v0 are chosen to
roughly fit the width of the cluster density distribution, i.e. the
distribution of particles around a lattice site (cf figure 4).

Since the barrier height between the lattice sites is finite
(Umax < ∞), it is a simple exercise to show that the canonical
partition function of the reference system Qref is given as

Qref = 1

	3N N !
(
V0 + Vbarre

−βUmax
)N

, (21)

where V0 = Ncv0 and Vbarr = V − V0 is the volume excluded
by the barriers. The reference free energy then follows as

Fref = −kBT log Qref. (22)

Apart from the standard MC local particle displacements,
two additional trial moves are introduced to avoid sampling
problems. At λ = 0, the barrier is completely turned off
and has therefore no influence on the evolution of the system.
Still, the barrier enters the formalism in the evaluation of (18).
Since the system’s center-of-mass motion cannot be restricted
as easily as in regular crystals and will randomly fluctuate,
particles slowly move on and off the barrier. Therefore,
〈∂�λ/∂λ〉λ=0 = �ref − � will change quite drastically during
the course of the simulation, resulting in large uncertainties
in this quantity. We thus introduce a deliberate random
displacement of the system’s center of mass. Such moves
will almost always be accepted as λ approaches zero because
the change in potential energy is minimal, and will thus
guarantee a uniform and complete sampling. Another problem
is encountered at the other end of the λ range, i.e. for λ ∼ 1.
Now, the barrier might be so high that particles cannot cross
from one potential well to a neighboring one via standard MC
moves. We therefore implement moves where a particle is
moved to a completely random position within the simulation
box. At λ = 1, these will be accepted with probability V0/V .

4.2. Special features: behavior upon increase in density

Since thermodynamic equilibrium is only obtained when μc =
0, one might argue that, once the equilibrium points are found,
any references to the artificial μc field can be discarded. Yet,
for second derivatives of the constrained free energy, such as
the bulk modulus B = V (∂2 F/∂V 2), μc does matter, unless

Figure 4. Schematic, one-dimensional representation of the
thermodynamic integration scheme for multiple-occupancy crystals.
While turning off the interactions of interest, potential wells of
increasing height confine the particles to their lattice sites (black
circles). The solid curves caricature the density distributions of the
clusters.

one already has the complete equilibrium free energy curve at
hand.

In single-occupancy crystals, B = −V (∂ P/∂V )N,T,Nc

can be computed directly in simulations [72, 73] for a given
state point through

B = 2P + ρkBT

3
+ 〈〉 − N

ρkBT
〈δ(�)2〉, (23)

where

� = ρkBT − W

3V
(24)

is the instantaneous pressure with virial W , so P = 〈�〉.
Fluctuations in the pressure are given by 〈δ(�)2〉 = 〈�2〉 −
〈�〉2. The remaining term is complex in general, but reduces
to

 = 1

9V

∑
i< j

r 2
i j

∂2φ(ri j )

∂r 2
i j

(25)

for pairwise additive interaction potentials φ(ri j), i and j being
two particles at distance ri j .

For cluster crystals the artificial system conditions during
simulations further modify the bulk modulus. Starting
from (13), we write

B ≡ −V

[
∂ P(N, V , T )

∂V

]
N,T

= −V

[
∂ P(μc = 0)

∂V

]
N,T

.

(26)
Differentiating (13) with respect to V we get

B = −V

[
∂ P(μc)

∂V

]
N,T,Nc

− V

[
∂ P(μc)

∂ Nc

]
N,T,V

(
∂ Nc

∂V

)
N,T

= Bvir − Bdel, (27)

where the right-hand side is evaluated at μc = 0. As we can
see from this formula, the system can respond to compression
via two different mechanisms that are schematized in figure 5.
The first one, expressed by Bvir, reflects the behavior that we
intuitively expect from a system that is compressed: since
the overall volume gets smaller, particles move closer to
each other, which leads to affine shrinking of the crystal.
The clustering systems under study here, however, also have
another mechanism in answer to compression: they can delete
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Figure 5. Systems interacting via purely repulsive, bounded
interactions that lead to clustering can react to compression via two
different mechanisms. On the left-hand side of the bottom panel,
particles move closer to each other (at constant number of lattice
sites), leading to an affine shrinking of the system. On the right-hand
side, lattice sites are deleted and particles redistribute onto the
remaining sites.

lattice sites, redistributing the particles from these clusters
onto the remaining clusters in the bulk of the crystal. This
contribution is captured by Bdel.

To see which of these two mechanisms is preferred by
clustering systems, we determine the bulk modulus by MC
simulations for a potential that belongs to the clustering class,
i.e. the GEM-4 from the family of potentials introduced above.
The bulk modulus B obtained via (27) for the respective stable
solids at different temperatures (cf the phase diagram for this
system in [66]) is compared in figure 6 to the direct numerical
differentiation of the equilibrium (i.e. μc = 0) free energy
results. A remarkable agreement is obtained between the two
approaches. Using (23), we can calculate the affine bulk
modulus Bvir by itself, which does not capture the lattice site
deletion mechanism. It is remarkable that, being far from
negligible, the correction to Bvir amounts to a reduction of over
40% of its value, as can be seen in figure 6. We therefore see
that deletion of lattice sites substantially weakens the response
of the system to compression.

This reluctance of clustering systems towards affine
shrinking is also reflected in the systems’ reaction to an
increase in density at constant volume. Density functional
theory predicts [26, 27, 65] that the equilibrium lattice constant
of the crystals shows only small variations and then saturates
at high densities. Essentially, the lattice spacing is set
by requiring that the shortest reciprocal lattice vectors of
the crystal have a magnitude that coincides with q∗, the
wavenumber at which φ̃(q) attains its negative minimum.
Consequently, the equilibrium lattice site occupation for all

Figure 6. Results for the reduced dimensionless bulk modulus for
the GEM-4 system from direct differentiation of the free energy for
three different temperatures in the stable crystal structures (fcc
(black) and bcc (gray) at kBT/ε = 0.5 (solid line), kBT/ε = 0.8
(dashed line) and at kBT/ε = 1.1 (dotted–dashed line)), along with
the values at three state points for Bvir (pluses, obtained via (23)) and
B = Bvir − Bdel (stars).

Figure 7. Variation of the primitive cell volume vc with density in
equilibrium (i.e. at μc = 0) for three different temperatures in the
respective stable crystal structures (fcc (black) and bcc (gray) at
kBT/ε = 0.5 (solid line), kBT/ε = 0.8 (dashed lined) and at
kBT/ε = 1.1 (dotted–dashed line)) of a GEM-4 system.

clustering systems should scale linearly with density, i.e.

nc = cρσ 3, (28)

where c is a constant that is only determined by the details
of the interaction potential [65]. Let us assume that this
equation were strictly fulfilled. When we then increase
the density of a clustering system via addition of particles
while keeping the volume fixed, the particles distribute on
existing clusters without changing either the underlying crystal
structure6 or the volume of a primitive unit cell vc = Nc/V .
Simulations confirm that this density functional theory result is
asymptotically true for high densities. But at all densities, the
volume of a primitive cell changes relatively little (cf figure 7).
As a final remark, it can be seen from simulations that

6 Remarkably, although there is incessant hopping of particles from one site
to another, rendering these crystals ergodic and endowing them with a non-
vanishing long-time diffusivity, the underlying crystal structure remains intact.
In fact, this does not happen despite the hopping mechanism but because of it.
For details, see [71].
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the polydispersity of the clusters decreases as the density
increases and particles are less likely to hop between lattice
sites. Therefore, the clusters behave more and more like
hard spheres. Along with the existence of an almost density-
independent lattice constant, this result explains why clustered
solids are expected to be stable even at high pressures and/or
densities.

5. Conclusions

In this paper, we showed how soft matter particles that repel
each other via a special class of soft, bounded interactions
can still form clusters which solidify into crystals. To study
this behavior with computer simulations, it is essential to
adjust the thermodynamic relations to take into account the
particular nature of the solid cluster phase. Using this modified
formalism, it is then possible to determine the equilibrium
cluster occupation number, i.e. the amount of particles per
lattice site, within the constraints exerted by typical computer
simulations. It has to be stressed that this formalism is also
fully relevant in the context of micelle formation. For instance,
it was seen that block co-polymers build micelles that can
freeze into cubic structures [74]. Also here the equilibrium
number of polymer chains per micelle has to be determined
via the thermodynamic formalism presented in this paper
to guarantee evaluation of equilibrium properties within the
simulations. Finally, we note that bounded interactions have
recently also become the subject of considerable activity from
a mathematical physics perspective, since they allow for the
determination of exact ground states [75, 76], they admit the
application of generalized duality relations [77] and they can
be extended to arbitrary dimensions [78].
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the Österreichische Forschungsfond (FWF) under project
no. P17823-N08 as well as travel funding by COST-P13
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50 3191
[11] Dautenhahn J and Hall C K 1994 Macromolecules 27 5399
[12] Louis A A, Bolhuis P G, Hansen J P and Meijer E J 2000

Phys. Rev. Lett. 85 2522
[13] Götze I O, Harreis H M and Likos C N 2004 J. Chem. Phys.

120 7761
[14] Ballauff M and Likos C N 2004 Angew. Chem. Int. Edn

43 2998
[15] Pierleoni C, Addison C, Hansen J P and Krakoviack V 2006

Phys. Rev. Lett. 96 128302
[16] Hansen J P and Pearson C 2006 Mol. Phys. 104 3389
[17] Pusey P N and van Megen W 1986 Nature 320 340
[18] Gasser U, Weeks E R, Schofield A, Pusey P N and Weitz D A

2001 Science 292 258
[19] Anderson V J and Lekkerkerker H N W 2002 Nature 416 811
[20] Ziherl P and Kamien R D 2000 Phys. Rev. Lett. 85 3528
[21] Ziherl P and Kamien R D 2001 J. Phys. Chem. B 105 10147
[22] Leunissen M E, Christova C G, Hynninen A P, Royall C P,

Campbell A I, Imhof A, Dijkstra M, van Roij R and van
Blaaderen A 2005 Nature 437 235

[23] Hajduk D A, Harper P E, Gruner S M, Honeker C C, Kim G,
Thomas E L and Fetters L J 1994 Macromolecules
27 4063–75

[24] Matsen W M 1998 J. Chem. Phys. 108 785
[25] Ullal C K, Maldovan M, Thomas E L, Chen G, Han Y J and

Yang S 2004 Appl. Phys. Lett. 84 5434
[26] Likos C N, Lang A, Watzlawek M and Löwen H 2001
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[45] Schäfer L and Baumgärtner A 1986 J. Physique 47 1431
[46] Czech R and Hall C K 1991 Macromolecules 24 1535
[47] Pierleoni C, Capone B and Hansen J P 2007 J. Chem. Phys.

127 171102

8

http://dx.doi.org/10.1016/S0370-1573(00)00141-1
http://dx.doi.org/10.1103/PhysRevLett.80.4450
http://dx.doi.org/10.1103/PhysRevLett.88.018301
http://dx.doi.org/10.1063/1.1480007
http://dx.doi.org/10.1103/PhysRevE.67.011804
http://dx.doi.org/10.1103/PhysRevE.68.049904
http://dx.doi.org/10.1103/PhysRevLett.92.068301
http://dx.doi.org/10.1063/1.1850451
http://dx.doi.org/10.1051/jphys:0198900500210319100
http://dx.doi.org/10.1021/ma00097a021
http://dx.doi.org/10.1103/PhysRevLett.85.2522
http://dx.doi.org/10.1063/1.1689292
http://dx.doi.org/10.1002/anie.200300602
http://dx.doi.org/10.1103/PhysRevLett.96.128302
http://dx.doi.org/10.1080/00268970600911540
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1126/science.1058457
http://dx.doi.org/10.1038/416811a
http://dx.doi.org/10.1103/PhysRevLett.85.3528
http://dx.doi.org/10.1021/jp010944q
http://dx.doi.org/10.1038/nature03946
http://dx.doi.org/10.1021/ma00093a006
http://dx.doi.org/10.1063/1.475439
http://dx.doi.org/10.1063/1.1765734
http://dx.doi.org/10.1103/PhysRevE.63.031206
http://dx.doi.org/10.1103/PhysRevLett.96.045701
http://dx.doi.org/10.1063/1.1747866
http://dx.doi.org/10.1063/1.432891
http://dx.doi.org/10.1063/1.436191
http://dx.doi.org/10.1063/1.438029
http://dx.doi.org/10.1103/PhysRevB.20.299
http://dx.doi.org/10.1103/PhysRevB.22.3790
http://dx.doi.org/10.1016/S0378-4371(97)00246-X
http://dx.doi.org/10.1088/0953-8984/12/24/302
http://dx.doi.org/10.1103/PhysRevE.62.7961
http://dx.doi.org/10.1103/PhysRevE.71.050102
http://dx.doi.org/10.1103/PhysRevB.71.024301
http://dx.doi.org/10.1002/macp.1976.021771123
http://dx.doi.org/10.1002/macp.1976.021771124
http://dx.doi.org/10.1021/ma60074a018
http://dx.doi.org/10.1007/BF00810480
http://dx.doi.org/10.1051/jphys:019860047090143100
http://dx.doi.org/10.1021/ma00007a015
http://dx.doi.org/10.1063/1.2803421


J. Phys.: Condens. Matter 20 (2008) 494245 B M Mladek et al

[48] Likos C N, Rosenfeldt S, Dingenouts N, Ballauff M, Lindner P,
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