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Particles that interact via a square-shoulder potential, consisting of an impenetrable hard core with
an adjacent, repulsive, steplike corona, are able to self-organize in a surprisingly rich variety of
rather unconventional ordered, three-dimensional structures. Using optimization strategies that are
based on ideas of genetic algorithms, we encounter, as we systematically increase the pressure, the
following archetypes of aggregates: low-symmetry cluster and columnar phases, followed by
lamellar particle arrangements, until at high pressure values compact, high-symmetry lattices
emerge. These structures are characterized in the isobaric-isothermal ensemble as configurations of
minimum Gibbs free energy. Based on simple considerations, i.e., basically minimizing the number
of overlapping coronas while maximizing at the same time the density, the sequence of emerging
structures can easily be understood. In contrast to a previous contribution �G. J. Pauschenwein and
G. Kahl, Soft Matter 4, 1396 �2008��, we present here a systematic investigation of this
phenomenon, considering a short, an intermediate, and a large shoulder width. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3006065�

I. INTRODUCTION

For more than 25 years considerable effort has been
dedicated to study the thermodynamic, structural, and dy-
namical properties of hard core particles with an adjacent
soft repulsive shoulder, i.e., so-called core softened poten-
tials. This class of potentials was probably first considered by
Hemmer and Stell1 in 1970 in a model where the soft repul-
sion was characterized by a linear ramp with an additional,
weak attractive tail. The system was introduced in an effort
to study the possibility of the occurrence of more than one
critical point in the phase diagram of a simple model system.
In numerous, subsequent investigations evidence was pro-
vided for a surprisingly rich variety of rather unusual prop-
erties of this class of systems: these features range from iso-
structural solid-solid transitions, where possibly several solid
structures are involved �see, e.g., Refs. 2–7�, over a very
complex phase diagram of the solid phases,8,9 to different
sorts of anomalous behavior, encountered in the static and/or
in the dynamic properties �see, e.g., Refs. 10–14�.

Within this class of core softened potentials the square-
shoulder interaction, consisting of an impenetrable hard core
with an adjacent, repulsive shoulder �or corona�, is undoubt-
edly the simplest representative. Despite its simple, radially
symmetric functional form this system is nevertheless able to
offer a large variety of unexpected features, which are mostly
related to its structural properties. This propensity and ability
for unconventional self-assembly scenarios was already dis-
covered in the remarkable study by Jagla9 on a particular
family of two-dimensional core softened systems, where the
square-shoulder system was included as a special case: in
this contribution evidence was given that the particles are
able to self-organize in a surprisingly broad variety of highly

complex ordered structures. In subsequent work on the two-
dimensional case these particle arrangements that include,
among others, cage or lane formation as well as micellar or
inverse micellar configurations were confirmed or newly dis-
covered both in computer simulations15,16 and in theoretical
investigations.17 A more systematic study of the ordered par-
ticle configurations of the two-dimensional square-shoulder
system was presented in Ref. 18.

The aim of the present contribution is to investigate in a
systematic and thorough way the ordered particle arrange-
ments of the square-shoulder system in three dimensions. To
this end we study the system at T=0 and in the NPT en-
semble; thus, we search for configurations that minimize the
Gibbs free energy, which we will term—to be consistent with
previous contributions—as minimum energy configurations
�MECs�. To provide a deeper insight into the self-assembly
strategies of the system, we have considered a small, an in-
termediate, and a large shoulder range. While preliminary
results have already been presented in Ref. 19, we identify in
the present, more systematic investigation an overwhelm-
ingly rich variety of MECs. Analyzing these data, we give
evidence that these MECs can be grouped together in four
structural archetypes that emerge in dependence of the value
of the pressure P that is exerted on the system: cluster struc-
tures are preferentially formed at low P values, while colum-
nar and lamellar structures are predominantly identified at
intermediate pressure values; finally, compact particle con-
figurations emerge at high pressures. While this general rule
might still be less obvious at small shoulder range, it is
nearly perfectly obeyed for an intermediate shoulder width
and definitely holds for the case of a broad corona. With its
simple functional form the interparticle interaction offers not
only many computational advantages.20 It allows to under-
stand via simple geometrical considerations the system’s
self-assembly strategy: it is, in particular, the range of thea�Electronic mail: pauschenwein@cmt.tuwien.ac.at.
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shoulder that turns out to be responsible in a highly sophis-
ticated way for the formation of the complex structures. In
addition, the flat energetic plateau of the shoulder with its
finite range represents a very sensitive antenna to distinguish
between energetically competing structures. Our observa-
tions provide a deeper insight into the system’s strategy to
form ordered equilibrium particle configurations, a knowl-
edge that might be useful to understand self-assembly pro-
cesses in other systems with more complex interactions.

Objections against the simple functional form of the po-
tential are refuted by the argument that it is able to capture
the essential features of colloidal particles with core-corona
architecture as they are, for instance, treated in Ref. 21 and
references therein. Indeed, several of the MECs that we
could identify had already been encountered in previous the-
oretical, experimental, and computer simulation investiga-
tions: micellar and inverse micellar structures,17,22 spirals,23

chains and layers,8,9,11,17,24,25 and cluster phases,26–28 to name
a few examples.

Although the identification of MECs represents a
“simple” optimization problem of the Gibbs free energy, its
solution has turned out to be highly nontrivial. In this con-
tribution we present a systematic sequence of ordered MECs
for the three selected values of shoulder width. This achieve-
ment is mainly due to our search strategy, which is based on
ideas of genetic algorithms �GAs�. Introduced already sev-
eral decades ago in a completely different context,29 these
approaches have meanwhile become a highly appreciated op-
timization tool to identify ordered particle arrangements both
in hard30–32 as well as in soft matter systems.18,19,33–36 The
high reliability, flexibility, and efficiency of GA-based opti-
mization strategies, in combination with a particular search
strategy that is intimately related to the simple functional
form of the square-shoulder potential, make us believe that
the sequences of MECs that will be presented and discussed
in the following are complete.

The paper is organized as follows. In Sec. II we briefly
present the square-shoulder system. Section III deals with the
theoretical tools of this contribution: the GA-based search
strategy as well as the theoretical considerations to identify
close-packed particle arrangements of the system as a func-
tion of the shoulder width. The results of our investigations
are summarized in Sec. IV: we start with the close-packed
particle arrangements �as they play a key role in the search
strategy� and present and discuss in the following the MECs
that we have identified for the three different cases of shoul-
der width. The conclusions of the contribution are summa-
rized in Sec. V, which also contains the discussion of pos-
sible future work.

II. MODEL

We consider a system of particles that interact via the
square-shoulder potential, which we parametrize as follows:

��r� = �� , r � � ,

� , � � r � �� ,

0, �� � r .
� �1�

� is the diameter of the impenetrable core and �� is the
width of the adjacent, repulsive shoulder �or corona� of
height �, ��0. Further, we introduce the number density 	
=N /V �N being the number of particles and V being the
volume of the system� and the dimensionless number density
	�=	�3. Thermodynamic quantities will be used in the fol-
lowing reduced units: pressure P�= P�3 /�, internal energy
e�=E /N�, and Gibbs free energy g�=G /N�. Since we per-
form our investigations at T=0, G=E+ PV and hence g�

=e�+ P� /	�.
The simple functional form of the square-shoulder po-

tential with its constant potential barrier and its finite range
makes the system the “quintessential test system”20 for the
purpose of the present contribution. It also simplifies consid-
erably thermodynamic considerations. For a given periodic
particle arrangement, which we characterize by the number
of overlapping coronas, e� is a rational number: it is given as
the ratio of the number of overlaps per particle in the unit
cell divided by the number of these particles, which we de-
note as nb. For this particle arrangement g�=e�+ P� /	� is
therefore a linear function of the pressure P�, and is conse-
quently represented in the �g� , P�� plane by a straight line: its
slope is given by 1 /	�, while its intercept is the energy of the
configuration, e�. The limiting particle arrangement at low
pressures is easily identified as a close-packed arrangement
of spheres with diameter ��: thus e�=0 and the slope of g�

in the �g� , P�� diagram is given by 1 /	min
� =�3 /�2. For the

high pressure limit the situation is more delicate: while the
slope of g� as a function of P� is easily identified for obvious
reasons as 1 /	max

� =1 /�2, the value of e� depends in a sensi-
tive way on �. In Sec. III B we will give evidence that the
square-shoulder system shows a rich variety of close-packed
scenarios as � varies.

With the above considerations in mind, we can anticipate
that the g� values of all MECs will be located on a sequence
of intersecting straight lines in the �g� , P�� plane, each of
them being characterized by a slope of 1 /	�, with 1 /	min

�

�1 /	��1 /	max
� , and by an intercept e�. This fact will sim-

plify considerably our search for MECs �see discussion in
Sec. IV B�.

III. THEORY

A. Genetic algorithms

The MECs of our system have been identified with a
search strategy that is based on ideas of GAs. GAs are very
general optimization tools that model natural evolution pro-
cesses, such as recombination, mutation, or survival of the
fittest.29 Their successful applications in a wide range of
fields demonstrate their flexibility and reliability. The basic
ideas of GAs can be summarized as follows: the central
quantity of this concept is an individual I, which represents
a possible solution to the problem. The quality of a solution,
i.e., of an individual I, is measured via a so-called fitness
function f�I�. Individuals with a higher fitness value are as-
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sumed to be of higher quality. In our search for ordered
particle configurations that minimize the Gibbs free energy,
an individual corresponds to a lattice while the fitness func-
tion is related to G and will be specified below. Starting from
a large number of individuals, which represent the initial
generation, individuals of a subsequent generation are cre-
ated with recombination and mutation processes, both of
them having a highly stochastic character. Individuals with a
higher fitness value are preferred in the reproduction process.
In addition, mutation operations are performed on the indi-
viduals with some probability pm. By iterating this process
we create a reasonably large number of generations. The fi-
nal result of the GA-based search strategy is the individual
with the overall highest fitness value.

For our particular problem an individual I is identified
by a �possibly nonsimple� periodic crystal structure. Due to
the highly stochastic character of the reproduction and of the
mutation processes, a straightforward implementation of the
algorithm is prone to propose a large number of ordered
configurations where the hard cores of the particles overlap
and which therefore correspond to unphysical particle ar-
rangements. This, in turn, causes a drastic reduction in the
efficiency of the algorithms. To overcome this problem we
have developed a particular parametrization of an arbitrary
simple lattice via three lattice vectors �a1 ,a2 ,a3	:37 here, a1

= 
a1
 represents the shortest possible distance between two
lattice sites in the entire lattice and a2= 
a2
 is the second
smallest distance in the lattice �i.e., a1�a2� with a1 and a2

being linearly independent; finally, a similar relation holds
between a3 on one side and a1 and a2 on the other side. Thus
if a1��, it is guaranteed that the hard cores of the particles
will not overlap and consequently the GA will create only
simple lattices where overlap of the cores is avoided a priori.
For nonsimple lattices, the distances between all particles
within the unit cell and including also the particles of the 26
neighboring cells have to be determined. If the smallest of
these distances, l0, is smaller than a1, then the lattice is
scaled with a factor a1 / l0. The rather complex formalism is
most conveniently implemented in the NPT ensemble. Thus,
a state is characterized by a value for the pressure P, while
the equilibrium density 	 is a result of the optimization pro-
cedure. For details we refer to Ref. 37.

For the implementation of the individuals we use the
encoding strategy for three-dimensional lattices presented in
Ref. 35. Note that for each GA run, the number of particles
per unit cell has to be fixed; in an effort to identify also
complex structures with a large number of basis particles, a
series of GA searches has to be performed at each state point
where the number of particles per unit cell varies over a
reasonable range. Distances and angles are encoded in binary
strings with a length ranging from 4 to 6. Since in the NPT
ensemble the Gibbs free energy has to be minimized, we use
the following fitness function:

f�I� = exp�− �G�I� − G�I0��/G�I0�	 , �2�

where I0 corresponds to some reference structure. A pool of
700 individuals is evolved through reproduction and muta-
tion processes over 500 generations �for further details con-
cerning these processes, see Ref. 35�: creation of individuals

of the new generation from individuals of the preceding gen-
eration is carried out via one-point or random crossover op-
erations, while the mutation process, which reintroduces lost
genetic materials and avoids inbreeding, is realized with a
mutation probability of pm=5%. For each state point, 1000
of such independent runs have been carried out. Finally, the
individual with the overall lowest G value, Imin, is consid-
ered to be the solution of the GA. To account for the limited
accuracy caused by the encoding procedure, the parameters
of Imin were refined via a final Powell optimization
algorithm.38

B. Close-packed structures

The limiting case at high pressures is always a crystal
where the hard cores of the particles arrange in a close-
packed structure. Thus the slope of the line that expresses the
linear dependence of g� on P� in the �g� , P�� plane is obvi-
ously given by 1 /	max

� =1 /�2. However, the intercept of this
line, i.e., the energy of this arrangement, e�, requires more
careful considerations. Below we will give evidence that the
square-shoulder system is able to self-organize not only in
the well-known close-packed scenarios, i.e., in fcc or hex-
agonally close-packed �hcp� lattices, but also in more com-
plex structures.39 We emphasize that the square-shoulder sys-
tem serves—due to its flat plateau and due to the finite range
of the corona—as an antenna that is able to identify in a very
sensitive way between competing particle arrangements.

In an effort to find for a given value of � the energeti-
cally most favorable close-packed arrangement of the par-
ticles, we proceed as follows. We consider the lattice as be-
ing built up by periodically repeated stacking sequences of nl

hcp layers, introducing for convenience the conventional la-
bels, A, B, and C.40 A stacking sequence of nl layers can
therefore be described by a string of nl of these symbols. The
trivial close-packed arrangements, fcc and hcp, are thus char-
acterized by the sequences ABC �with nl=3� and AB �with
nl=2�. For a given value of nl we consider all possible stack-
ing sequences of length nl; without loss of generality we start
all sequences with the label A. Some of the proposed se-
quences have to be ruled out: this is the case when two
neighboring layers carry the same index. Some of them can
be ruled out: this is, for instance, the case when symmetry
considerations reveal that two different stacking sequences
lead to the same crystal.

Pursuing this strategy we find for the smallest nl values
the following situation: for nl=2 we have only the hcp struc-
ture �AB� and for nl=3 we recover the fcc lattice �ABC�.
Also for four- and five-layer stackings only one representa-
tive remains: ABAC and ABABC can be identified, respec-
tively. At nl=6, we encounter for the first time two non-
equivalent stacking sequences, namely, ABABAC and
ABACBC. With increasing nl the number of possible stack-
ing sequences increases drastically. For instance, for �=4.5,
where we have considered stackings with up to 12 layers, we
were able to identify 133 different sequences. A comprehen-
sive table of possible stacking sequences for a given value of
nl is presented in Ref. 41.

Finally, for a given value of � we include a sufficiently
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large number of layers and evaluate and compare the ener-
gies e� of all candidate stackings. The finite range of the
shoulder and its flat energy plateau help reduce the numerical
effort considerably. On some occasions we encounter degen-
eracy, i.e., two �or even more� different stacking sequences
are characterized by exactly the same value of e�. In such
cases, we consider the shortest among these stacking se-
quences to be the energetically most favorable configuration
with the only exception that we favor fcc to hcp.42

IV. RESULTS

A. Close-packed structures

With the above considerations in mind we can now iden-
tify the equilibrium close-packed structures for the square-
shoulder system as they occur at high pressure values. These
particle arrangements are summarized in Fig. 1, starting from
�=1 �corresponding to hard spheres� and extending to a
shoulder width of �=4.5. The figure contains the energy e�

of the respective structures and symbols characterize their
stacking sequences.

As long as 1����2, only nearest neighbor interactions
have to be considered. All stackings are characterized by the
same number of overlapping coronas; the energy of a tagged
particle amounts to half the number of nearest neighbors, i.e.,
e�=6. Although for �2���2�2 /3, the second nearest
neighbors start to play a role, we still obtain for all possible
stackings the same value for e�, namely, e�=9. For 2�2 /3
����3, the different stackings are characterized by differ-
ent energy values; among these, the fcc structure is one of
the stackings with the lowest e� value, namely, e�=9, while
all other stackings are energetically equal or less favorable.
Therefore in this � interval, fcc remains the simplest, ener-
getically most favorable structure. For �=�3, a hcp lattice
with e�=19 becomes the simplest structure with the lowest e
value. Further stacking sequences can be extracted from Fig.
1 for � values up to 4.5. This figure shows that for a few �

intervals also stacking sequences other than fcc or hcp are
obtained as the energetically most favorable close-packed
particle arrangements at high pressures.

B. Configurations that minimize the Gibbs free
energy

Once we have determined the limiting high pressure
MECs, we can proceed to the identification of the whole
sequence of MECs as a function of the pressure. This is done
in Secs. IV B 1–IV B 3 where we have considered square-
shoulder systems with a short ��=1.5�, an intermediate ��
=4.5�, and a large ��=10� shoulder width. Abbreviations of
the underlying lattices that are used in the text and in the
figures are summarized in Table I.

For �=1.5 we shall give a detailed geometrical interpre-
tation of these particle arrangements; this will provide clear
evidence about the system’s strategy to arrange the particles
at a given pressure in such a way as to minimize the number
of overlapping shoulders and to maximize at the same time
the density. Although we will not be able to pursue these
geometrical considerations in full detail for the other � val-
ues, we will be able to identify an emerging sequence of
structural archetypes as we increase the pressure: while at
low pressures particles tend to arrange in clusters, which then
populate the positions of regular lattices, we encounter with
increasing pressure columnar, lamellar, and, finally, compact
structures. With a few exceptions this rule is obeyed for �
=4.5, while it is strictly followed for �=10. For a more de-
tailed presentation we refer to Ref. 41.

Before we present and discuss the sequences of MECs in
detail we briefly outline how we can take benefit from the
fact that for this particular system g� is a linear function of
P�. Our search algorithm is sketched in Fig. 2. In the first
step, we determine the intersection point of the two straight
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FIG. 1. Energy per particle, e�, for the simplest, energetically most favor-
able close-packed particle arrangements for the square-shoulder system as a
function of � �full curve�. Symbols specify the stacking sequences as la-
beled; see also text.

TABLE I. Standard abbreviations for the 14 Bravais lattices used in the text
and the captions. The seven crystal systems are separated by blank rows.

Bravais lattice Abbreviation

Simple cubic sc
Body centered cubic bcc
Face centered cubic fcc

Hexagonal hex

Trigonal �rhombohedral� trig

Simple tetragonal st
Centered tetragonal ct

Simple orthorhombic so
Single face centered orthorhombic sfco
Body centered orthorhombic bco
Face centered orthorhombic fco

Simple monoclinic sm
Single face centered monoclinic sfcm

Triclinic tric

174107-4 G. J. Pauschenwein and G. Kahl J. Chem. Phys. 129, 174107 �2008�

Downloaded 12 Nov 2008 to 128.131.48.66. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



lines in the �g� , P�� diagram which represent the high and the
low pressure limiting cases; let the corresponding pressure
value be P�1�

� . At this state point we perform a sequence of
GA searches. In each of these runs we consider a different
number of basis atoms, where the maximum number of basis
particles depends on the value of �. This optimization step
leads to a new particle configuration which is characterized
by a Gibbs free energy g�1�

� that is lower than the one of the
intersection point, by a density 	�1�

� , and by an energy e�1�
� .

Thus this particle arrangement is at given pressure P�1�
� the

energetically most favorable one. e�1�
� and 	�1�

� define a new
line in the �g� , P�� plane; we determine the two intersection
points of this line with the two lines representing the limiting
configurations leading to the pressure values P�2a�

� and P�2b�
� .

At these two state points we launch new GA searches. This
procedure is repeated until at none of the intersection points
of an iteration step an energetically more favorable particle
arrangement can be identified. On one side this procedure
avoids a rather time-consuming scan of the pressure range on
a finite grid and thus brings along a considerable reduction in
the number of GA steps and, consequently, of the computa-
tional effort; on the other side this strategy avoids the risk of
simply “forgetting” MECs. Both features become more and
more important with increasing shoulder width since the dis-
tribution of MECs over the whole pressure range is highly
nonlinear, as can be seen in Figs. 3, 5, and 7.

This systematic search strategy, in combination with the
reliability of GA-based optimizations, makes us confident
that the sequences of MECs that we shall present in the fol-
lowing are complete.

1. Short shoulder width „�=1.5…

The phase diagram �i.e., g� and e� as functions of P�� for
the square-shoulder system with �=1.5 is depicted in Fig. 3;
the corresponding ordered equilibrium structures are com-
piled in Fig. 4, except for the trivial low and high pressure
structures, where particles arrange in any close-packed crys-
tal structure, which we take to be fcc �see discussion above�.

Further numerical details about the seven identified MECs
are compiled in Table II. Although we have considered in our
search strategy crystals with up to eight basis particles, only
crystals with at most two basis particles were identified. The
limiting low pressure configuration is characterized by e�

=0 and 	�=�2 /�3�0.629. Further, since �=1.5 is slightly
larger than �2, we are above the threshold value �see discus-
sion in Sec. IV A� where the hard cores of the particles form
a close-packed structure and only the coronas of nearest
neighboring particles overlap; thus e�=9 and 	�=�2.

As we start our search in the low pressure regime, the
first nontrivial structure we encounter is a body centered
orthorhombic �bco� structure �Fig. 4�1��. A more detailed
consideration identifies this particle arrangement as a colum-
nar structure: particles form lanes along which the hard cores
are in direct contact. While, of course, these lanes lead to an
intracolumnar shoulder overlap along the lanes, any other
intercolumnar overlap is avoided; consequently, e�=1.
Simple geometric considerations reveal that the edge lengths
of the conventional bco unit cell have the following values:
�, ��, and �3�2−1�.

The avoidance of intercolumnar shoulder overlap has to
be sacrificed as the pressure is further increased, leading to a
rather compact structure: we identify a face centered ortho-
rhombic lattice with an additional basis particle �color code:
blue� �see Fig. 4�2��. This particle is in direct hard core con-
tact with its four nearest neighbors: three of them are located
at the faces �color code: red� and one sits at the corner �color
code: green� of the conventional unit cell. Furthermore, this
particle is separated by a distance �� from its second nearest
neighbor �color code: green� which occupies another corner
of the conventional orthorhombic unit cell. Finally, particles
at the smallest faces of the cell �color code: red� are posi-
tioned in such a way that their shoulders touch the shoulders
of the particles located at the corners of the corresponding
face of the conventional orthorhombic unit cell �color code:
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FIG. 2. Schematic of our search strategy to identify MECs in the �g� , P��
plane. The dotted lines represent g� as a function of P� for the limiting low
and high pressure configurations: The vertical arrows represent GA runs that
identify, starting from an initial guess �dot�, an energetically more favorable
MEC �square�. For details see text.
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FIG. 3. g� and e� as functions of P� for the ordered equilibrium structures
identified for the square-shoulder system with �=1.5, as labeled. The dotted
lines indicate the low and high pressure limiting configurations �see text�.
The identified lattices are indicated by standard abbreviations �see Table I�,
including, if required, the number of basis particles; see also Fig. 4.
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green�. These considerations fix the edge lengths of the unit
cell to be �2�2−2�, �2�2+2�, and 2�4−�2�.

As we further increase the pressure the particles arrange
in a MEC that can be identified as a lamellar structure, see
Fig. 4�3a�. It can be described as a stacking of hcp layers
which are placed exactly on top of each other. The nearest
neighbor distance is obviously �. The second nearest neigh-
bors are separated by the interlayer distance which is fixed
by the requirement that the corona of a tagged particle
touches the shoulders of its 12 third nearest neighbors, lo-
cated in the adjacent layers. Thus, this distance amounts to
��2−1��1.12�. It should be pointed out that particles in
nearest and second nearest neighbor distances form a rectan-
gular particle arrangement �emphasized in Fig. 4�3b�� that
will also be encountered in the subsequent MECs: if we con-
sider within a layer two particles in close contact, then they
form with the corresponding particles of one of the adjacent
layers a rectangle with edge lengths � and ��2−1�.

For even higher pressure values only compact structures
are identified. The next MEC can be described as a single
face centered orthorhombic lattice with two basis particles,
visualized in Fig. 4�4a�. The orthorhombic unit cell is built
up by two side faces that have exactly the aforementioned
rectangular shape �formed by particles in green, emphasized
in Fig. 4�4b��, while the two larger side faces are each deco-
rated in their center by an additional particle �color code:
red�. Finally, the additional basis particles �color code: blue�
are located in such a way that they are in direct contact both
with the four particles forming the side faces as well as with
the two red particles located in the other side faces. Simple
geometric considerations lead to the edge lengths of the
orthorhombic cell, namely: �, ��2−1�, and ��3+�4−�2��.

The last nontrivial compact structure is a bco lattice �em-
phasized in Fig. 4�5a��. Again, we can easily identify the side
faces of the conventional unit cell as the above mentioned
rectangular structure �see Fig. 4�5b��. In addition, the central
particle is in direct hard core contact with the particles form-
ing the unit cell. Based on these geometrical considerations
the edge lengths of the unit cell can easily be identified to be
�, ��2−1�, and �4−�2�.

2. Intermediate shoulder width „�=4.5…

A much larger diversity in the ordered equilibrium struc-
tures could be identified for an intermediate shoulder width
of �=4.5. The limiting low pressure MEC is of course again
a fcc structure with a nearest neighbor distance �� and,
hence, e�=0. On the other hand, the high-density limiting
particle configuration is a hcp lattice with e�=263 �see Fig. 1
and discussion in Sec. IV A�. With the help of the GA we
have obtained in total 33 different MECs over the entire
pressure regime. In our investigations unit cells with up to
ten basis particles have been considered; in the end only
configurations with up to eight basis particles were part of
the MECs.

A first look at these MECs gives evidence that within
this sequence of MECs we can easily identify the aforemen-
tioned four structural archetypes: at low pressures, the sys-
tem prefers to form cluster structures; with increasing pres-

TABLE II. Numerical details of the ordered equilibrium structures identified
for the square-shoulder system with �=1.5: the underlying lattice is charac-
terized by the according abbreviation �see Table I�. nb is the number of basis
particles required to describe the MEC. e� and 	� are the energy per particle
and particle density, respectively. Since the MECs can be interpreted on the
basis of geometric considerations, 	� can be given in closed, analytic ex-
pressions.

Lattice nb e� 	�

fcc 1 0 8�2 / 27 �0.419

bco 1 1 8 / 3�23 �0.556

fco 2 2 16 / �455 �0.750

hex 1 4 4 / �15 �1.03

sfco 2 5 16 / 2�15+�35 �1.17

bco 1 7 8 / �35 �1.35

fcc 1 9 �2�1.41

FIG. 4. �Color online� Visualization of the nontrivial ordered equilibrium
structures for the square-shoulder system with �=1.5. Structures are char-
acterized by standard abbreviations �see Table I� and their respective e�

value. Grayscale �color� code: light �green�, articles at the corner positions
of the conventional unit cell; medium �red�, particles at body or face cen-
tered positions; dark �blue�, additional basis particles.
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sure, columnar structures are formed, which then transform
into lamellar particle arrangements; finally, at high pressures,
we observe compact structures. This rule, which is disobeyed
only twice for �=4.5, can nicely be understood via a detailed
analysis of the particle arrangements, reflecting the system’s
strategy to reduce at a given pressure the number of overlap-
ping coronas as much as possible �i.e., minimizing e�� while
maximizing at the same time the particle density.

Numerical details about these ordered structures are
summarized in Table III. The phase diagram for the square-
shoulder system with �=4.5 is depicted in Fig. 5. It also
contains information to which class of the four archetypes a
particular MEC belongs to. Finally, the horizontal bar at the
bottom of the figure indicates those MECs where no direct
contact between the cores of the particles occurs.

At low pressure values �i.e., up to P��0.5� particles
prefer to arrange in ordered clusters of up to eight particles,

which populate the positions of crystal lattices. A closer
analysis of these structures reveals a strong interplay be-
tween the shape of the clusters and of the symmetry of the
unit cell: the more aspherical the clusters are, the lower is the
symmetry of the lattice. This tendency reflects the system’s
efforts to avoid to the highest possible degree a shoulder
overlap of neighboring clusters. A nice visualization of this
strategy can, for instance, be observed in the structure de-
picted in Fig. 6�5�: the rather elongated four-particle clusters
are located on a low-symmetry triclinic lattice; on the other
hand, the nearly spherically shaped eight-particle clusters of
the structure depicted in Fig. 6�8� populate the lattice posi-
tions of a bco structure, which has a considerably higher
symmetry. A systematic, quantitative analysis of all cluster
structures reveals that for most of these MECs only rarely are
shoulder overlaps of neighboring clusters observed. A nice
example that demonstrates the complexity of cluster struc-
tures is depicted in Fig. 6�4�. In this MEC we can identify
two different sorts of clusters: tetrahedral clusters occupy the
corners of a triclinic lattice, while the other four-particle
cluster species populates a central position in the body of the
triclinic cell.

As the pressure is further increased there is a drastic
change in the system’s strategy to arrange particles, namely,
the formation of columnar structures, where particles self-
organize in lanes. This leads to a considerable energetic pen-
alty, since—due to the short interparticle distance within the
columns—an appreciable number of overlapping shoulders
is induced; at the same time a rather high particle density is
guaranteed along these lanes which, in turn, contributes to a
reduction in the Gibbs free energy. Simultaneously, the sys-
tem tries to compensate for this high energetic cost within
the lanes by arranging these columns in such a way as to
minimize the intercolumnar shoulder overlap. This strategy
leads first to the formation of single-columnar structures �as

TABLE III. Numerical details of the ordered equilibrium structures identi-
fied for the square-shoulder system with �=4.5: the underlying lattice is
characterized by the according abbreviation �see Table I�. nb is the number
of basis particles required to describe the MEC. e� and 	� are the energy per
particle and particle density, respectively. The abbreviation in the third row
indicates to which of the four archetypes the MEC belongs �clu, cluster; col,
columnar; lam, lamellar; com, compact�. Closed, algebraic expressions for
	� can be derived but are not presented here due to space limitations. For
details see Ref. 41.

Lattice nb Shape e� 	�

fcc 1 clu 0 0.0155
sm 2 clu 1/2 0.0235
sfcm 3 clu 1 0.0291
tric 8 clu �4� 3/2 0.0343
tric 4 clu 7/4 0.0369
tric 6 clu 5/2 0.0454
bco 1 col 3 0.0512
bco 8 clu 35/8 0.0638
tric 2 col 13/2 0.0799
sm 2 col 8 0.0923
tric 2 col 21/2 0.104
bco 1 lam/col 15 0.135
trig 1 lam 18 0.154
tric 2 lam 20 0.168
tric 2 lam �col� 49/2 0.198
trig 2 lam 30 0.243
trig 2 lam 61/2 0.245
ct 2 lam 77/2 0.283
sfcm 2 lam 56 0.383
sm 2 lam 58 0.394
fco 2 lam 143/2 0.484
bcc 1 com 90 0.567
ct 1 com 96 0.594
tric 3 lam 337/3 0.677
trig 1 com 115 0.692
sc 1 com 128 0.763
hex 1 com 138 0.811
bcc 1 com 169 0.997
ct 1 com 180 1.05
sfcm 1 com 210 1.21
fcc 1 com 229 1.29
ct 1 com 243 1.34
hcp 2 com 263 1.41
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FIG. 5. g� and e� as functions of P� on a double logarithmic scale for the
ordered equilibrium structures identified for the square-shoulder system with
�=4.5, as labeled; note that due to the nonlinear scale, the linear dependence
between g� and P� is no longer visible. The structural archetypes to which a
given MEC belongs �cluster, columnar, lamellar, or compact structure� are
specified by a symbol �as labeled�. The black horizontal bar at the bottom of
the figure indicates those ordered particle arrangements where no direct
contact between the cores of the particles is observed.
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depicted in Fig. 6�7��, and later, as the pressure is increased,
to double-columnar particle arrangements �see Figs. 6�9�–
6�11��. We point out that within the lanes particles are only in
direct contact at sufficiently high pressures; in double-
columnar structures, particles of adjacent columns are always
in direct contact. The system’s strategy to avoid shoulder
overlap between the lanes can nicely be traced in a closer

analysis: for the structures depicted in Figs. 6�7�, 6�9�, and
6�10�, no corona overlap between the single or double
strands is observed; only at sufficiently high pressures—see
Fig. 6�11�—do the coronas of different neighboring double
columns start to overlap.

For pressures values above P�
3, the system has to
search for new ideas of how to minimize the Gibbs free

FIG. 6. �Color online� Visualization of all 33 ordered equilibrium structures for the square-shoulder system with �=4.5. Structures are characterized by
standard abbreviations �see Table I� and their respective e� value. Grayscale �color� code: light �green�, particles at the corner positions of the conventional unit
cell; medium �red�, particles at body or face centered positions; dark �blue�, additional basis particles. The shoulders of the very light �yellow� particles in
panel �17� touch the ones of the other very light �yellow� particles, located in the neighboring layers.
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energy. Now the change to a new strategy is considerably
smoother than the preceding one: in an effort to cope with
the increasing pressure the system forms lamellar
structures—see Figs. 6�12�–6�21� and 6�24�. These MECs
emerge from columnar structures as the columns approach
each other, forming thereby lamellas; some intermediate
stages of this transition can be observed in Figs. 6�12� and
6�15�. Within the lamellar structure the system’s strategy is
obvious. First optimize the packing inside a layer, leading to
hexagonal particle arrangements inside a lamella: while at
low pressure values �Figs. 6�13� and 6�14�� particles are
more loosely packed, they are forced to form a nearly hcp
structure with a nearest neighbor distance of �1.03� at
higher pressures �Figs. 6�16� and 6�17��. Particular attention
should be dedicated to the latter structure: the three neigh-
boring, parallel planes depicted in Fig. 6�17� are not equally
spaced; the two different emerging interlamellar distances
are rather governed by the fact that the shoulders of the par-
ticles marked in yellow located in the three neighboring lay-
ers touch. If the possibility for optimizing the packing within
a single lamella has been exhausted, the system starts to form
double layers �see Figs. 6�18�–6�21�� or even triple layers
�see Fig. 6�24��. A closer analysis of the double-layer struc-
ture reveals a very complex strategy which we try to explain
as follows. We consider two pairs of neighboring double lay-
ers. On one hand we observe shoulder overlap between
single layers �belonging to different pairs� that face each
other: for instance, in Fig. 6�19�, the layer formed by blue
particles in the leftmost layer pair and the layer formed by
red particles in the central layer pair; on the other hand the
distance between pairs of layers is chosen in such a way as to
avoid shoulder overlap of single layers that do not face each
other: for example, in Fig. 6�19�, the layers formed by green
particles and the layers formed by red particles. These obser-
vations turn out to be valid for all double-layer structures
that have been identified for this particular shoulder width.

Finally, we enter for high pressure values the regime of
compact structures, characterized, in general, by a large
number of nearest neighbors. In most of these MECs direct
core contact is avoided �see horizontal bar in Fig. 5�, only in
the high pressure regime, where a centered tetragonal lattice
�see Fig. 6�32�� and, finally, a hcp structure �the limiting case
for �=4.5, see Fig. 6�33�� are the respective MECs, the cores
are in direct contact. Again, with simple geometric consider-
ations, the system’s strategy to form MECs can be traced
back to avoiding unnecessary shoulder overlap while maxi-
mizing the particle density.

3. Large shoulder width „�=10…

Finally, we consider the case of a large shoulder width
for which we have chosen �=10. Now the hard core region
is relatively small with respect to the shoulder range. Thus at
low densities the core plays a minor role and the system
becomes closely related to the penetrable sphere model
�PSM�.43 The PSM belongs to a class of soft matter systems
where particles are able to solidify in so-called cluster
phases,44 i.e., where particles form stable clusters which
populate the positions of periodic lattices. Evidence for this
particular phase behavior has been given in density func-

tional based investigations and in computer simulations for
the PSM �Ref. 45� and via purely theoretical considerations,
combined with computer simulations for a closely related
model potential.27,28,46,47 As we will show below, such cluster
phases can also be observed for the square-shoulder system
at low pressure values where the hard cores of the particles
still have a negligible effect on the properties of the system.

Since the MECs are expected to be rather complex we
have considered up to 29 basis particles in our GA-based
search strategy; up to 22 appeared in the MECs. In total we
have identified as much as 47 MECs, i.e., a relatively large
number which makes detailed discussion and interpretation
of the structures impossible. The thermodynamic properties
of all these MECs are displayed in Fig. 7. We point out that
the high pressure limiting configuration is a fcc lattice with
e�=2947. For the case �=10 the rule for the sequence of
structural archetypes �cluster-columnar-lamellar-compact
structures� is strictly obeyed �see symbols in Fig. 7�.

As expected cluster structures emerge at low pressure
values. A few examples of the ten cluster structures that have
been identified are depicted in Figs. 8�1�–8�3�. The clusters
can contain as many as 22 particles �e.g., in the structure
depicted in Fig. 8�3�� and are arranged in complex structures.
An example for a typical cluster is depicted in Fig. 8�2�; in
general the intracluster arrangement of the particles turns out
to be irregular.

At P��0.76 the transition to the columnar structures
occurs. The relatively large shoulder width allows for a large
variety of columnar morphologies, including multicolumnar
arrangements or complex helical columns—see Figs. 8�4�–
8�6�. In Fig. 8�5� a side view of a single column gives evi-
dence of its complex internal structure. Ten basis particles
were required to parametrize this MEC; a single column can
be considered to be built up by a sequence of aligned clus-
ters. We point out that also in experiment helical columns
were observed for a particular class of colloidal particles.23
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FIG. 7. g� and e� as functions of P� on a double logarithmic scale for the
ordered equilibrium structures identified for the square-shoulder system with
�=10, as labeled; note that due to the nonlinear scale, the linear dependence
between g� and P� is no longer visible. The structural archetypes to which a
given MEC belongs �cluster, columnar, lamellar, or compact structure� are
specified by a symbol �as labeled�. Ordered equilibrium structures marked
by crosses are visualized in Fig. 8.
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Examples for multicolumnar arrangements are the triple col-
umns displayed in Fig. 8�4� or the MEC shown in Fig. 8�6�:
here six parallel single columns that are nearly in close con-
tact are aligned in parallel to build the sixfold column, as can
be seen from the rightmost column, where the direction of
projection has been chosen to be parallel to the columnar
axis.

Most of the MECs identified for the case �=10 have
lamellar character: in total we have identified as much as 28
lamellar MECs. Again, we observe a similar strategy as the
one identified for �=4.5: first the particle arrangement within
the single layer structures is optimized; then, if this possibil-
ity for close-packed arrangements is exhausted, multilayer
structures are formed. The large shoulder width is respon-
sible both for the large interlayer distance as well as for the
close contact within groups of lamellas: One has the impres-
sion that the large range of the shoulder compactifies adja-
cent layers, bringing them in direct contact, while maximiz-
ing at the same time the distance between these groups of
layers �see Figs. 8�8�–8�12��.

Finally, we enter the regime of compact structures. Since
they resemble very closely those MECs that have been iden-
tified for �=4.5, we do not present them here.

V. CONCLUSIONS

In this contribution we have thoroughly investigated the
phase diagram of the square-shoulder system at T=0, taking

into account a short, an intermediate, and a large shoulder
width. Measuring the range of the corona in terms of ��
�where � is the hard core diameter� we have assumed the
following specific values for the three cases: �=1.5, �=4.5,
and �=10. Investigating the system in the NPT ensemble we
have searched for ordered particle configurations that mini-
mize the Gibbs free energy; this means that the internal en-
ergy is minimized while the particle density is simulta-
neously maximized. These particle arrangements have been
identified by means of a search strategy that is based on ideas
of GAs. With this reliable, flexible, and efficient optimization
tool at hand and taking benefit of the simple functional form
of the interparticle potential, which considerably facilitates
both numerical calculations as well as geometrical interpre-
tations, we give evidence that the sequences of emerging
particle configurations of minimum energy are complete.

A first look on the total of configurations gives clear
indications that the formation of the particle arrangements
follows well-defined rules as the pressure is increased: while
at low pressure values the system prefers to form clusters,
which populate the positions of low-symmetry lattices, we
encounter at medium pressure values columnar and then
lamellar structures. As a rule of the thumb we found that the
distances between clusters, columns, and lamellas are always
roughly equal to the shoulder width. Finally, at high pressure
values, rather compact particle configurations are identified,
which are in general characterized by a large number of near-

FIG. 8. �Color online� Visualization of a selection of the 47 ordered equilibrium structures for the square-shoulder system with �=10. Structures are
characterized by standard abbreviations �see Table I� and their respective e� value. Grayscale �color� code: light �green�, particles at the corner positions of the
conventional unit cell; medium �red�, particles at body or face centered positions; dark �blue�, additional basis particles.
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est neighbors. While this rule for the structural ordering
might be still less obvious for small values of �, it becomes
more apparent with increasing range of the corona: at the
intermediate � value of 4.5, it is disobeyed only at two oc-
casions, and for �=10 the ordered particle configurations
fully match this rule.

The large variety of ordered equilibrium configurations
that have been identified is overwhelming. It represents an
impressive example of the capacity and propensity of soft
matter particles to self-organize in highly nontrivial struc-
tures. For demonstration we pick out two particular ex-
amples: first a cluster structure, where the clusters are com-
posed of 22 particles, which, in turn, populate the positions
of a triclinic lattice; second a columnar structure, where the
particles align in a complex, helical column.

The particular shape of the repulsive shoulder, i.e., its
flat energetic plateau in combination with the well-defined
range of the corona, provides in addition the unique possi-
bility to understand the system’s strategy to form these com-
plex structures. A detailed structural and energetical analysis
of the emerging configurations reveals that the shoulder
width plays the dominant role in this process; however, also
the hard core can have considerable influence on the struc-
ture formation since it represents a lower boundary to inter-
particle distances. Thus, this study can be viewed as a peda-
gogical example which provides a deeper insight why
particles arrange at a given state point in a particular struc-
ture, a knowledge that might be helpful in the investigations
of self-assembly processes of systems with more complex
interparticle potentials.

What are the next steps? The most obvious extension
should be directed toward the investigations of the phase
diagram at finite temperatures, i.e., one should address the
question which of these configurations will “survive” at T
�0. The theoretical route to this answer is quite straightfor-
ward: one has to “simply” merge the proposed search strat-
egy with a suitable method to evaluate the thermodynamic
properties of the system at a finite temperature. The obvious
candidate to evaluate the thermodynamic properties of the
system is of course classical density functional theory.48

However, we have to raise immediately two serious con-
cerns. First, no reliable density functional format for the
square-shoulder system is available at present; treating, alter-
natively, the hard core within a suitable fundamental measure
theory format �as, e.g., the one proposed in Ref. 49� and
considering the shoulder by a mean-field-type perturbative
approach risks providing data that are not sufficiently accu-
rate to reliably distinguish between energetically competitive
structures. Second, in search strategies based on ideas of
GAs, the evaluation of the fitness function for an individual
represents the numerical bottleneck in this approach. Accord-
ing to our experience, a combination of classical density
functional theory with this particular search strategy might
still be too time consuming for present-day computers. Al-
ternatively to the theoretical route one might of course per-
form computer simulations and we point out that recently
investigations in this direction have been performed on a
related system.50
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