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We employ genetic algorithms (GA), which allow for an unbiased

search for the global minimum of energy landscapes, to identify

the ordered equilibrium configurations formed by binary dipolar

systems confined on a plane. A large variety of arrangements is

identified, the complexity of which grows with increasing asymmetry

between the two components and with growing concentration of the

small particles. The effects of the density are briefly discussed and

a comparison with results obtained via conventional lattice-sum

minimization is presented. Our results can be confirmed by experi-

ments involvingLangmuir monolayers of polystyrene dipolar spheres

or superparamagnetic colloids confined on the air–water interface

and polarized by an external, perpendicular magnetic field.
Investigations of the structural and thermodynamic properties of

colloids confined at fluid interfaces represent a very active topic of

current research. Unlike particles in the bulk, the effective interac-

tions between the colloidal particles at fluid interfaces are influenced

not only by the properties of the particles and the solvent but, in

addition, by the surface and line tensions of the interface.1 Here we

focus on the self-assembly scenarios of binary dipolar colloids, a

system for which various experimental realizations exist, and whose

interactions have been quantitatively established. Experimentally,

studies of two-dimensional ordered arrangements of colloidal parti-

cles can be fairly easily realized by investigating polystyrene particles

floating on an oil–water interface2,3 (system I). Their size, typically

lying in the micrometre domain, allows a direct observation of the

particles in light microscopes. Computer simulations for the binary

case,4 mimicking the experimental setup sketched in Fig. 1(a),

revealed a surprisingly rich spectrum of exotic ordered equilibrium

structures. Another realization of such systems is offered by the setup

of Maret and coworkers,5–9 employing superparamagnetic colloids

suspended on a pendant water droplet, as sketched in Fig. 1(b)

(system II). Here, a magnetic field B applied in the perpendicular

direction polarizes the particles and induces a repulsive interaction
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Université de Genève - Sciences II, 30, Quai Ernest-Ansermet, CH-1211
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among them that scales with interparticle separation r as �r�3, see

ref. 9 and 10.

For system I, Sun and Stirner11 have derived the following expres-

sions for the pair potentials, Fij(r), acting between the two species of

particles:
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Here, Ri and Pi are the radius and the dipolar moment of species i

and e is the dielectric constant of water. In what follows, we assume

that Pi ¼ aRi
3, with some proportionality constant12 a. Introducing

zhRB/RA < 1 and xh r/dA (dA¼ 2RA), and factoring out a prefactor

common to all three interactions Fij(r), we arrive at the following

expressions for the dimensionless interaction potentials Jij(x):

JAAðxÞ ¼
1
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Fig. 1 (a) Schematic representation of system I (inspired by ref. 4): two

particles of different size floating at an oil–water interface. The dipole

moments P1 and P2 are given by the vector sum of the dipole moments

on the particle–oil interface, since the dipole interaction is screened in

the aqueous phase. (b) Schematic representation of system II: super-

paramagnetic colloidal particles trapped on the water–air interface in

a pendant water droplet. The external magnetic field B is used to tune

the interactions between the spheres.
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The functions Jij(x) are displayed in Fig. 2(a) for two different

values of z. Expanding the logarithms for x >> 1 yields the approxi-

mate expressions Jij(x) y (zizj)
5/2/x3, where zi,j ¼ 1 or z if i, j ¼ A or

B. Fig. 2(b) shows the asymptotic, power-law form of the interac-

tions. In two dimensions, where the exponent of the power-law

exceeds the dimension of space, the subtle issues of the shape-

dependence of the thermodynamics, which arise for three-dimensional

dipoles,13 are absent.

For system II, on the other hand, where the superparamagnetic

colloids have a susceptibility ratio m < 1, the dimensionless inter-

action potentials read9,10,14 as jij(x) ¼ mimj/x
3, where mi,j ¼ 1 or m

if i, j ¼ A or B. If the overall density of system I is sufficiently low,

so that the asymptotic forms of Jij(x) above hold, systems I and II

become equivalent, with the correspondence z5/2 4 m. The ground

states of system II have been recently analyzed with conventional
Fig. 2 (a) The interaction potentials of eqn (1) for z ¼ 0.3296 (full lines)

and z ¼ 0.5 (broken lines). (b) Double logarithmic plots of Jij(x) for z ¼
0.5, demonstrating their �x�3 power-law dependence for large x-values.
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methods in the work of Assoud et al.14 for 0.08 # m # 1, being

inspired by the phase diagram of a two dimensional, binary hard-

sphere mixture.15 Here, we concentrate on system I in the domain

0.1 # z # 0.5, corresponding to much stronger asymmetries

(i.e., 3 � 10�3 < m < 0.18) but still having sufficient overlap in the

parameter range with that of ref. 14 to allow for quantitative

comparisons. Finally, the system is characterized by the number-

density h or its dimensionless counterpart, hdA
2.

It is well-known that binary mixtures tend to show a broad spec-

trum of rather complex alloy phases, most of them being extremely

hard to guess. With the ambition to cover as large a variety of struc-

tures as possible and in an effort to cope with this problem in an

efficient way, we employed genetic algorithms16 (GAs) instead of

following the conventional approach to the problem of finding mini-

mum energy configurations (MECs), which relies on preselected sets

of candidate structures. GAs were invented in the 1970s by Holland

to solve high dimensional and complex problems in engineering

science.17 They are optimization techniques, modeled after the natu-

ral process of evolution, and mimic certain biological mechanisms,

such as mating and mutation, to find the optimal solution to a

proposed problem. Due to its special design, a GA is able to take

the whole search space into account at once and at the same time

to concentrate its computing efforts on promising regions. It is this

global scope that makes GAs an efficient and widespread tool in fields

like economics and engineering. In the realm of structure optimiza-

tion, a typical problem in atomic condensed matter physics, they

have found applications in determining optimal atomic clusters,18,19

and, very recently, in optimizing extended spatial structures.20–22 In

soft matter, applications of GAs to predict equilibrium crystal struc-

tures for one-component systems has already delivered remarkable

results, both in two23 and three dimensions,24–26 but binary systems

have not been looked upon with GAs so far.

Based on the approaches presented in ref. 27, we designed

a method to determine ordered MECs for binary monolayers. In

our method, lattice parameters are freely optimized with respect to

the free energy, which, at T ¼ 0, reduces to the lattice sum U of

the ordered structure. The efficiency of the GA allows us to perform

our search for equilibrium structures among all possible lattices, with-

out posing any bias on the algorithm whatsoever. The only limiting

factor constraining our search is the maximum of particles per

cell that the algorithm can handle in a reasonable time. The risk of

overlooking relevant structures at any point in the process is thus

minimized.

In general, we have to deal with non-Bravais lattices, with s (> 1)

particles per unit cell. We parametrized these lattices with nA particles

in the unit cell belonging to species A and the remaining nB ¼ s � nA

particles to the other species, B, coding the position vectors of all

particles in a binary fashion. We obtained results for particle size

ratios in the range of z ¼ 0.1 to z ¼ 0.5, including the value of z ¼
0.3296 that corresponds to the particle size ratio used in previous

Monte Carlo (MC) simulations.4 The concentration of small parti-

cles, C ¼ nB/s, was systematically varied for every size ratio. Most

of the calculations were performed with a maximum of eight particles

per unit cell, so C lay in the range 1/8 # C # 7/8. Additional calcu-

lations were performed for C ¼ 7/9, as exotic phases were to be

expected for this particular ratio.15

Before presenting the results obtained by the GA, let us discuss

some generic expected features of the MECs, arising from the func-

tional form of the potential. In sufficiently dilute one-component
Soft Matter, 2008, 4, 480–484 | 481



systems, a hexagonal lattice is formed since Jij(r) � r�3 at long

distances. This ‘‘default structure’’ is also found in two limiting cases

of the binary mixture: first, for z / 0, when the smaller B-particles

are of vanishing size compared to the larger A-particles, and second

for z / 1, when the two species become indistinguishable. In the first

case we expect the large particles to form hexagonal lattices, more or

less unperturbed by the presence of the small ones. If z is small, the

B-particles can form independent patterns in the interstitial regions of

the hexagonal lattice formed by the A-particles without paying a high
Fig. 3 Minimum energy configurations for C # 1/2, i.e. nB # n

Fig. 4 Minimum energy configurations for C > 1/2, i.e. nB > n
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penalty in energy. Thus, distinct groups of small particles should be

observed with their size fulfilling the stoichiometric requirements. In

the opposite case, as the similarity in size increases, the B-particles

require more space. Now the concentration and the dependence of

the interspecies interactions on the distance are the key quantities

that determine the ordered equilibrium structure.

In Fig. 3 and 4 we present the ordered equilibrium configurations

found with our GA-method for increasing concentration of small

particles C at an overall particle density of hdA
2 ¼ 0.6. To facilitate
A for hdA
2 ¼ 0.6. Particle diameters are not drawn to scale.

A for hdA
2 ¼ 0.6. Particle diameters are not drawn to scale.
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Fig. 5 Two sequences of MECs for z ¼ 0.5 and two different concentra-

tions C. Structural change is observed in both sequences, once between

hdA
2 ¼ 0.6 and hdA

2 ¼ 0.8 (top) and once between hdA
2 ¼ 0.4 and

hdA
2 ¼ 0.6 (bottom).
discussion we divide our results into two blocks: structures with nB #

nA (Fig. 3) and structures nB > nA (Fig. 4). We begin with the case

nB # nA. For sufficiently large values of z, i.e., z ¼ 0.3296 and z ¼
0.5, the small particles are able to perturb the (ideal) hexagonal struc-

ture formed by the large particles in their immediate surrounding,

even though they represent the minority component. In regions

where there are no small particles in the immediate neighborhood,

the hexagonal structure of the large particles prevails, whereas the

small particles are found in the center of squares formed by the large

particles [see Fig. 3(i) ,(j), (m) and (n)]. On the other hand, if z is below

a certain threshold, i.e., z ¼ 0.1 and z ¼ 0.2, the influence of the small

particles is not sufficient to cause a substantial modification of the

hexagonal pattern of the large particles. Instead, since the small

particles experience mutually a very weak repulsion, they tend to

stay close together in this z-regime, arranging in lanes which meander

through the hexagonal lattice formed by the large particles, see

Fig. 3(c), (d), (g) and (h). For very small concentrations, i.e., C ¼
1/7 and C ¼ 1/5 [cf. Fig. 3(a), (b), (e) and (f)], the ‘lanes’ of the small

particles are interrupted by intervening big ones due to the simple fact

that not sufficiently many B-particles are available in the system. It

might be possible that also in these cases pure B-particle lanes will

form but this would require a much larger unit cell, which was not

included in our study.

When the small particles become the majority component, the

found structures become much more complex, as can be seen from

Fig. 4. As expected, B-particles are observed to arrange in distinct

groups for many parameter settings. We find small particles forming

dimers, [Fig. 4(b), (c) and (d)], elongated- [Fig. 4(g)] and triangular-

trimers [Fig. 4(c) and (e)], as well as chain-like pentamers [Fig. 4(l)]

and heptamers [Fig. 4(h)]. In contrast, the A-particles form rather

simple lattices which accommodate in their interstitial regions these

sometimes rather complex groups of B-particles. For C ¼ 2/3, dimers

of small particles, observed for moderate values of z [Fig. 4(k)] are

a precursor of lane formation [Fig. 4(p)]. For small values of z, the

large particles form a hexagonal pattern and the small particles are

distributed in the interstitials. At z ¼ 0.3296 the hexagonal structure

of the large particles is distorted and the small particles are grouped

in dimers. If the particle size ratio is further increased, the dimers of

small particles change their orientation and lane formation sets in

which now strongly distorts the underlying lattice of A-particles.

The scenario repeats itself for C ¼ 5/7, [vertically from Fig. 4(b) to

Fig. 4(q)] but here the stoichiometry, which does not accommodate

a single B-particle in the interstitials of A, forces a much richer struc-

ture: for z ¼ 0.1, Fig. 4(b), the B-particles form an ordered array of

monomers and dimers, which transforms into an array of monomers

and linear trimers for z ¼ 0.2, Fig. 4(g). For z ¼ 0.3296, the aggre-

gates of B-particles become monodisperse, zig-zag-like pentamers,

Fig. 4(l); and, finally, for z ¼ 0.5, formation of two interchanging

kinds of B-lanes, thick and thin, takes place, Fig. 4(q).

Evidently, the higher the value of C, the more surprises the system

has to offer. Let us discuss the sequences for C ¼ 7/9, C ¼ 4/5, and

C ¼ 6/7 in more detail. For C ¼ 7/9 and for small z-values, the inter-

stitials of the A-lattice are occupied by three different kinds of

B-aggregates: monomers, dimers and triangular trimers, Fig. 4(c).

For z ¼ 0.2, B-particles arrange in zigzag-shaped heptamers which

distort the hexagonal pattern of the large particles, Fig. 4(h). How-

ever, in contrast to the smaller C-values a further increase of z

does not directly lead to lane formation but rather a new, exotic

structure intervenes for z ¼ 0.3296, Fig. 4(m). Here, two neighboring
This journal is ª The Royal Society of Chemistry 2008
heptamers merge, forming thereby a sequence of alternately oriented

cup-like structures, each of them hosting an A-particle. If z is

increased further, thick and thin lanes are again formed, Fig. 4(r).

In the second sequence, C ¼ 4/5, the B-dimers [Fig. 4(d)], observed

for z¼ 0.1, transform into zig-zag lanes [Fig. 4(i)], pearl-necklace-lanes

[Fig. 4(n)] and finally into rings, each of them surrounding one

A-particle, [Fig. 4(s)], as z grows. Finally, for the sequence C ¼ 6/7,

a ring-like structure is formed for z ¼ 0.1 to z ¼ 0.3296, Fig. 4(e), (j)

and (o), where every large particle is surrounded by six triangular

trimers of small particles, forming a structure resembling a Kagome

lattice [Fig. 4(e)]. The B-interparticle distance within the trimers

increases with z. Finally, for z ¼ 0.5 lane formation sets in once

more [Fig. 4(t)], but now the lanes formed by the small particles are

interconnected, due to the high concentration of B-particles.

The structures found by the GA for z ¼ 0.5 correspond to m ¼
0.177 in the terminology of Assoud et al.14 For those stoichiometries

that have been considered both in the present work and in ref. 14, the

same structures were found by both the conventional approach and

by the GAs. The GAs offer a higher predictive power and flexibility

to identify structures in the regime of large size-disparity and high

C-values, where the unit cells become increasingly complex and

conventional methods reach their limitations.14,15

If the interaction potentials of eqn (1) were pure power-laws, as

those employed in ref. 14, the overall density hdA
2 would be an irre-

levant parameter, in view of the absence of any length scale in the

interactions. Since the logarithmic dependence, as well as the hard

cores of the present interactions, eqn (1), set in at very small separa-

tions [cf. Fig. 2(b)], we expect that the structures reported in Fig. 3

and 4 will be stable for a broad range of small to intermediate

densities. To check this assumption, we have investigated the ordered

equilibrium configurations of our system varying the density hdA
2

from 0.2 to 0.8. We report selected results in Fig. 5. For concentration

C ¼ 1/3, upper row, the lane-like structure remains unchanged up to

a density at least as high as hdA
2 ¼ 0.6, only the distances are scaled

as h increases. As the density is further increased to hdA
2 ¼ 0.8, the

following structural transition takes place: every second B-lane is

dissolved by merging one of the neighboring ones; consequently,

the inter-lane distance and the density in each of these lanes is

increased by a factor of two. For C ¼ 5/6, a structural change

induced by density sets in earlier, namely between hdA
2 ¼ 0.4 and

hdA
2 ¼ 0.6. Here, the original pattern shows rings of B-particles

while, again, at high densities lane formation is observed. Moreover,
Soft Matter, 2008, 4, 480–484 | 483



all structures shown here have the lowest energy values found by the

GA but, at the same time, other ones with very small energy differ-

ences have been discovered in some GA runs. Both the effects of the

density and the discussion of ‘quasi-degenerate’ ground states will be

the subject of a future publication.

We have applied genetic algorithms to examine ordered equili-

brium configurations for binary, two-dimensional dipolar mixtures.

Despite the simplicity of the interactions involved, the system shows

a tremendous variety and complexity of the resulting structures. This

convincingly demonstrates the power of this novel optimization tech-

nique to deal with the problem of finding the global minimum of

a rugged potential energy surface, which becomes increasingly

involved as the number of components of the mixture increases.

We have demonstrated that GAs are an effective and reliable new

tool which merits a more widespread appreciation in the soft matter

community, on equal footing with complementary tools, such as

Monte Carlo simulated annealing and molecular dynamics simula-

tions. The variety of the encountered structures can easily be verified

experimentally considering either a binary mixture of two-dimen-

sional superparamagnetic colloidal particles9,10 or a binary mixture

of polystyrene spheres floating on an oil–water interface.2

Acknowledgements

The authors thank Dieter Gottwald for helpful discussions. This

work has been supported by the Austrian Research Foundation

(FWF), project numbers P17823-N08 and P19890-N16, and the

European Science Foundation short-visit-grant ‘‘SimBioMa 1730’’

(J.F.), by the Marie Curie program of the European Union, contract

number MRTN-CT2003-504712 and the Foundation Blanceflor

Boncompagni-Ludovisi, née Bildt (F.L.V.), as well as by the DFG

within the SFB-TR6, Project Section C3. C.N.L. wishes to thank

the Erwin Schrödinger Institute (Vienna), where parts of this work

have been carried out, for a Senior Research Fellowship and for its

hospitality.

Notes and references

1 F. Bresme and M. Oettel, J. Phys.: Condens. Matter, 2007, 19, 413101.
2 R. Aveyard, J. Clint, D. Nees and V. Paunov, Langmuir, 2000, 16,

1969.
484 | Soft Matter, 2008, 4, 480–484
3 R. Aveyard, J. Clint, D. Nees and N. Quirke, Langmuir, 2000, 16,
8820.

4 T. Stirner and J. Sun, Langmuir, 2005, 21, 6636.
5 K. Zahn, J. M. Méndez-Alcaraz and G. Maret, Phys. Rev. Lett., 1997,
79, 175.

6 K. Zahn, R. Lenke and G. Maret, Phys. Rev. Lett., 1999, 82,
2721.

7 K. Zahn and G. Maret, Phys. Rev. Lett., 2000, 85, 3656.
8 K. Zahn, A. Wille, G. Maret, S. Sengupta and P. Nielaba, Phys. Rev.

Lett., 2003, 90, 155506.
9 N. Hoffmann, F. Ebert, C. N. Likos, H. Löwen and G. Maret,
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