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Abstract

A general parametrization for all three-dimensional crystal lattices is presented
in this paper which guarantees that the three primitive vectors constructed by
the parametrization are the three shortest possible, linearly independent lattice
vectors existing in the whole lattice. The parameter space of this so-called
minimum distance parametrization (MDP) can easily be confined to contain
only lattices whose shortest distance between lattice points is not smaller than
a given arbitrary length. Together with the also provided extension to general
crystal structures the MDP represents a means to parametrize all (and only
those) crystal structures allowed for hard core particles.

PACS numbers: 02.40.Dr, 61.46.Hk, 61.50.Ah, 64.70.pv

1. Introduction

To gain an understanding of processes appearing in solids, sound atomic level models for
solid structures are necessary. In order to refine existing structural models and even predict
new structures computer modelling has become increasingly important, not only in physics
but also in biological sciences [1]. Structures, energetics and dynamics of complex materials
and molecules are being investigated [2, 3] as well as surface and adsorption phenomena [4],
mineral interfaces [5] and defects [6].

There exist different ways of theoretical investigation. Molecular dynamics represents
a straightforward tool for finding equilibrium structures through amorphization and
recrystallization (see e.g. [7]). This method is also suitable to investigate glassy states [8, 9]
and even dynamic effects, like oriented aggregation [10]. Nevertheless, its main disadvantages
are the high computational cost and short simulation times (in the order of nanoseconds), which
make it inefficient in the task of determining a full phase diagram. Another, more random-
based simulation method is Monte Carlo simulation (see applications to phase detection e.g.
in [3, 11, 12]), but still the computational cost is high.
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An alternative to simulation is to use experimental results or simple point-by-point
variations to obtain the structural parameters for which the energies of the corresponding solids
are then calculated. These competing structures then yield the stable structures in the phase
diagram, e.g. for boric oxide [13]. It is also possible to select candidate structures randomly
which are then energetically refined, applied for example to scrutinize the metallization of
aluminium hydride at high pressure [14].

In an effort to obtain an efficient means to generate candidate structures for drawing phase
diagrams, evolutionary algorithms have been adopted for structural optimization recently.
Especially in hard matter investigations [15–17] it became clear that a Lamarckian genetic
algorithm (L-GA), where each individual is (locally) optimized or relaxed before reproduction,
is advantageous as compared to pure Darwinian genetic algorithms (D-GA), where relaxation
is applied only to the final candidate structure provided by the algorithm [18]. This technique
also led to the theoretical prediction of experimentally verified previously unknown phases,
especially at high pressure, e.g. phase III of solid hydrogen [19], an ionic crystal phase of
ammonia [20], metallic structures of oxygen [21], new structures for lithium, potassium and
rubidium [22], a wide bandgap dielectric of pure sodium [23] and new phases of boron [24]
and nitrogen [25]. Also, the design of new superconductors could be enabled through the
better understanding of the relations between structure and superconductivity from, on the one
hand, newly detected superconducting structures [26–28] or, on the other hand, the loss of
superconductivity under pressure [29].

Also in soft matter a promising tool to accomplish the problem of predicting equilibrium
crystal structures is a genetic-algorithm-based search strategy, although so far only the method
of a D-GA has been used [11, 12, 30–36], where all operations (mutation, cross-over) are only
performed on the genotype, none on the phenotype (for an explanation see again [18]).

Common to all theoretical tools (except molecular dynamics and investigations of glasses)
is that each candidate structure, whether proposed randomly, by experiment, intuition, or a
kind of GA, can be described by a crystal structure and the positions of basis particles in the
unit cell. Thus, the complete pool of candidate structures can be parametrized through all
possibilities for the three primitive lattice vectors together with a prescription for the positions
of the basis particles. Obviously there exist a lot of ambiguities, since the same structure
can be described in principle by infinitely many possibilities for the primitive unit cell. Even
if ambiguities represent no problem for the optimization algorithm of choice, in general the
larger the parameter space the slower will be the convergence. Hence it would be favourable to
remove as many ambiguities as possible from parameter space. In addition, when considering
hard core particles, the standard parametrization for the three primitive vectors using, e.g.,
three length and three angle parameters can severely spoil the convergence of a GA: it has
turned out [34, 35] that it is highly preferential if all configurations where the shortest particle
distance is smaller than the hard core diameter are excluded from parameter space a priori.

Therefore, the aim of this paper is to explain how to set up a pool of crystal structures
for particles with a hard core diameter σ that does not contain structures with overlapping
cores. The major step in achieving this is to find a parametrization of crystal structures where
the smallest possible distance between two hard sphere particles in the whole crystal is one
of the parameters and can hence be confined. It has become clear that the main issue was
to solve this problem for the underlying Bravais lattice, i.e. to find a parametrization which
provides the possibility of restricting the shortest distance between lattice points to lie above
a certain minimum value. The resulting parametrization shall be called ‘minimum distance
parametrization’ (MDP). In this parametrization also most ambiguities in parameter space
will be removed (the remaining ones represent a measure-zero set in parameter space), as is
described in more detail elsewhere [37].
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In the following section, an explanation of the MDP is given through a constructive proof
of existence for all crystal lattices. In section 3, the whole parameter space of the MDP
is constructed while in section 4 the MDP for the cubic Bravais lattices is described as an
example. Finally, the extension to general crystals is given before some concluding remarks.

2. Existence of the MDP

Considering an arbitrary crystal lattice, it is straightforward to identify the smallest distance
between lattice points: there obviously exists a length δ that is small enough to guarantee that
there lies only one lattice point inside a sphere of radius δ and centre at an arbitrary lattice point
P (the only lattice point inside the sphere), denoted by SP(δ). One can then gradually increase
the radius of this sphere until at least one other lattice point is contained in the surface of
the sphere, the corresponding radius s being then the smallest distance between lattice points.
While s is uniquely defined, there might be several vectors si from P to lattice points at the
surface of the sphere SP(s) that satisfy |si | = s.

Now choose one of the si arbitrarily and call it c. (There are at least always two possibilities,
since if c is a lattice vector so is −c.) If there exists another vector in the set of si that is
linearly independent of c, call it b. Else, further increase the diameter of the sphere, until at
least one other lattice point happens to lie on the spherical surface and the following condition
is met: the lattice vector from P to a lattice point at the surface is linearly independent of c.
Again, it is possible that several vectors of the same magnitude fulfil this requirement; one of
them shall be called b. In the same manner one can construct a third lattice vector a, which
of course must not lie in plane with b and c. It may even happen (e.g. for cubic lattices, see
section 4) that already in the first set of the si there are three linearly independent vectors, i.e.
the three primitive vectors c, b, and a are of equal length.

As has thus been demonstrated, it is always possible to construct a primitive unit cell of
a given crystal lattice where the primitive vectors c, b, and a are the three shortest possible,
linearly independent lattice vectors, satisfying

c � b � a (1)

(using |a| = a, |b| = b and |c| = c). As a consequence, it is sufficient for a general
parametrization of all lattices to find a parametrization for all possible triplets of vectors that
satisfy condition (1) and for which the quantity

L(k,m, n) = |ka + mb + nc| , (2)

fulfils for all (k,m, n) ∈ Z
3

L(k �= 0,m, n) � a, (3)

L(0,m �= 0, n) � b and (4)

L(0, 0, k) � c. (5)

It is important to note that one does not need an unambiguous parametrization; it is
satisfactory just to include all possible structures. To make the parameter space as small as
possible and hence improve the convergence e.g. of a genetic algorithm, it is nevertheless
convenient if ambiguities are most widely excluded.
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3. Construction of the parameter space of the MDP

W.l.o.g. the following representation is chosen for the three primitive vectors, automatically
satisfying conditions (1) and (5), in a Cartesian basis:

c = c

⎛
⎝1

0
0

⎞
⎠ , b = cp

⎛
⎝cos ϕ

sin ϕ

0

⎞
⎠ and a = cpq

⎛
⎝ξ

η

ζ

⎞
⎠ , (6)

with

0 < c, (7)

1 � p, q and (8)

1 =
√

ξ 2 + η2 + ζ 2. (9)

Some ambiguities (including the one of mirrored crystals, which usually have equal properties)
can be excluded by demanding

0 < ϕ � π

2
, (10)

η

{
�0 ξ � 0
>0 ξ < 0

, (11)

ζ > 0. (12)

Note that for most numerical optimization algorithms it would be beneficial to include the rim
of allowed structures, i.e. demand only η � 0 ∀ξ instead of inequalities (11). The reason for
the parametrization of a using the Cartesian components ξ , η, and ζ instead of two independent
angles will become clear at the end of the following constructive derivation of the MDP.

From equations (6) one recognizes that c is a prefactor for all the three primitive vectors,
and hence represents just a scaling factor for the whole lattice. Therefore, the aim is now to
identify a subspace of the five parameters p, q, ϕ, ξ and η in R

5 (the positive parameter ζ

follows from equation (9)), so that conditions (3) and (4) are obeyed, too. This task will be
performed in two steps: first considering the plane spanned by c and b (i.e. condition (4));
second, taking also the third shortest vector (i.e. condition (3)) into consideration.

3.1. The c–b lattice plane

The two primitive vectors c and b define a 2D lattice, a so-called lattice plane of the 3D
lattice. To guarantee condition (4), consider a lattice line parallel to c and passing through a
lattice point P (see figure 1). The condition that out of all lattice vectors in the 2D lattice that
are linearly independent of c, b is the shortest one results in the restriction that there must not
be any lattice points having distances shorter than b from P, with the possible exception of
those at P + nc, n ∈ Z, lying on the same lattice line as P (c is allowed to be shorter than b).
This has especially to hold for all points of the adjacent lattice line, which can be constructed
by adding b to each point of the lattice line that includes P (see figure 1).

Calculation of the distances between P and the lattice points of the adjacent c-line gives√
b2 − 2cnb cos ϕ + n2c2, n ∈ Z. From condition (10) it follows that cos ϕ � 0; therefore,

only non-negative values of n have to be checked to guarantee that this distance is larger
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P c

b

Figure 1. Two adjacent lattice lines in the c direction.

than or equal to b. For convenience define a function f (n), which is the square of the above
expression, i.e. the square of the calculated distances,

f (n) = b2 − 2cnb cos ϕ + n2c2, (13)

which has to be larger than or equal to b2 for all values of n. f (n) is obviously a convex
parabola with apex at nmin = b

c
cos ϕ � 0, and of course f (0) = b2. The condition f (1) � b2

leads to1

cos ϕ � c

2b
= 1

2p
, (14)

which results in nmin � 1/2. Since the minimum of the parabola therefore lies between
0 and 1 (the two points where f (n) � b2 already holds), it immediately follows that
f (n) > b2,∀n > 1.

Lattice points residing in the next but neighbouring lattice line always have a distance
larger than b provided that inequality (14) holds, which may be shown as follows. Let the
distance between neighbouring c-lines be d; hence all distances to lattice points of the next
but neighbouring lattice line are greater than or equal to 2d. d is minimal if the equality sign
in (14) is valid, i.e.

√
d2 + c2/4 = b. Therefore,

2d � b
√

4 − c2/b2 �
√

3b > b, (15)

and analogously it follows that lattice points in the mth neighbouring lattice line (m > 2) have
a larger distance than b from P.2

Therefore, inequality (14) is the only necessary condition to guarantee that b and c are
the shortest, linearly independent 2D lattice vectors with c � b in the 2D lattice described by
these two vectors as primitive ones.

3.2. Constructing a as the third shortest lattice vector

Obviously, like for p, all values for q � 1 have to be attainable; restrictions will hence only
affect the parameters defining the direction of a. Since ζ, η � 0 and ϕ � π/2 (inversion and
mirror symmetry), (3) can be reduced to

|k · a − (mb + nc)| � a ∀ k,m, n ∈ Z : m � 0, k � 1. (16)

First consider the case k = 1. To visualize the remaining conditions construct a ‘mogul slope’,
defined by spheres of radius a with centres at the lattice points of the b–c lattice plane (see
figure 2). According to condition (16), the vector a must point above this mogul slope. Since
a has the same length as the radius of the spherical moguls, this restricts the apex of a to
the spherical, upper cap of the region enlarged in figure 3. It will become clear that of this
infinitely extended mogul slope only the four closest moguls are important, i.e. if a points
above these four, it also points above any other one. Hence the distances of the lattice point a

1 Note that
√

f (1) is the length of the shorter diagonal of the parallelogram spanned by b and c.
2 Due to inversion symmetry m � −1 need not be checked.

5



J. Phys. A: Math. Theor. 42 (2009) 355204 G J Pauschenwein

x–axis0

z–axis

Figure 2. The ‘mogul slope’ defined by spheres of radius a around the lattice points of the c–b

lattice plane in the positive y-half plane. The y-axis, obtained via ŷ = ẑ × x̂, cannot be seen (hats
indicate unit vectors in the corresponding directions).

from the four lattice points ±c, b and b − c are accounted for. From basic manipulations and
usage of (9) it follows that

|a − c| � cpq ⇒ ξ � 1

2pq
, (17)

|a + c| � cpq ⇒ ξ � − 1

2pq
, (18)

|a − b| � cpq ⇒ ξ cos ϕ + η sin ϕ � 1

2q
, and (19)

|a − b + c| � cpq ⇒ ξ(p cos ϕ − 1) + ηp sin ϕ � p2 + 1 − 2p cos ϕ

2pq
. (20)

In the ξ–η parameter space, this region, obtained by projecting the allowed region for
a onto the x–y plane and scaling the resulting region by 1/(pq), describes the Wigner–
Seitz unit cell (WSC, in the positive ξ half-plane) of a 2D lattice described by n

cpq
c + m

cpq
b

(n ∈ Z,m ∈ Z
+
0), i.e. the b–c lattice plane scaled by the inverse length of a (see

figure 4). Analytically, this is described by the right-side inequalities (17)–(20). The set
of all possibilities for ξ and η is easily parametrized for these Cartesian coordinates; in terms
of p, ϕ and q one obtains

− 1

2pq
� ξ � 1

2pq
, (21)

ξ < 0 : 0<

ξ � 0 : 0�

}
η �

⎧⎪⎪⎨
⎪⎪⎩

p2 + 1 − 2p cos ϕ

2p2q sin ϕ
+ ξ

1 − p cos ϕ

p sin ϕ
, ξ � 2p cos ϕ − 1

2pq

1

2q sin ϕ
− ξ cot ϕ, ξ >

2p cos ϕ − 1

2pq
,

(22)

where ζ finally follows from (9).
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x–axis

z–axis

z–axis

y–axis

x–axis
( )a

( )b

Figure 3. The mogul slope, similar to figure 2, is drawn, but with the four relevant moguls for
the vector a, described by the left-side equations (17)–(20) (with ‘�’ replaced by ‘=’), shaded in
different grey scales in (a). The allowed regime for a is the spherical upper cap of the transparent,
pendentive like region, enlarged in (b), where also the projection onto the x–y plane is shaded in
grey.

ξ

η

− 1

2xy
0

ϕ

1

2xy

1

xy

0

1

2xy

1

xy

c
cxy

b
cxy

P

Q

R

Figure 4. The allowed pentagonal region of ξ and η for example values of p = 1.1, ϕ = 1.29,
and q = 1.2. The points P, Q and R are given in the text.

To understand that the four accounted for moguls are already sufficient to guarantee
inequality (16) for k = 1 consider again the b–c lattice plane. The projection of a lies, by
construction, inside (or at the rim of) the 2D WSC around the origin. The projection of any
other lattice point of the lattice plane shifted by a hence lies outside (or also at the rim of) this
WSC. Hence, the projected point closest to the lattice point at the origin is the one of a (or
more of equal distance, if a lies at the rim). But the shortest distance between lattice points
of neighbouring lattice planes is just the square root of the sum of the squares of the plane
distance and the distance to the closest projected lattice point.

The proof that also the distances to lattice points of non-neighbouring lattice planes are
greater than a, i.e. inequality (16) for k > 1, works similar to the one for the lattice lines in
section 3.1. The distance between neighbouring c–b lattice planes is cpqζ . On the pendentive
cap, the smallest value of ζ is obtained at the corner points labelled as P, Q, and R in figure 4
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since the rims are parts of circles with centres in the x–y plane. The ξ , η, and ζ coordinates
of these points are given by

P =
(

1

2pq
,
p − cos ϕ

2pq sin ϕ
,

√
4 sin2 ϕp2q2 − p2 + 2p cos ϕ − 1

2pq sin ϕ

)
, (23)

Q =
(

2p cos ϕ − 1

2pq
,
(1 − 2 cos2 ϕ)p + cos ϕ

2pq sin ϕ
,

√
4 sin2 ϕp2q2 − p2 + 2p cos ϕ − 1

2pq sin ϕ

)
and

(24)

R =
(

− 1

2pq
,
p − cos ϕ

2pq sin ϕ
,

√
4 sin2 ϕp2q2 − p2 + 2p cos ϕ − 1

2pq sin ϕ

)
, (25)

i.e. they have equal ζ components. The distance to lattice points in non-neighbouring (and
different) lattice planes is always greater than or equal to 2cpqζ . Inserting the smallest
possible ζ from above and demanding 2cpqζ � a = cpq leads to

3p2q2 sin2 ϕ − p2 + 2p cos ϕ − 1 � 0. (26)

The left-hand side (l.h.s.) of this inequality is smallest (w.r.t. q) if q = 1, and expressing all
ϕ dependences in terms of cos ϕ, one obtains

−3p2 cos2 ϕ + 2p cos ϕ + 2p2 − 1 � 0. (27)

This l.h.s. is a concave parabola in cos ϕ, the minimum value w.r.t. cos ϕ is hence reached at
one (or both) of the boundaries of this variable, i.e. cos ϕ = 0 and cos ϕ = 1/(2p). In both
cases inequality (27) is true because of p � 1.

3.3. Summary

To summarize, the whole parameter space to describe all crystal lattices through the primitive
vectors defined by equations (6) is given by

c, p, q, ϕ, ξ, η, ζ ∈ R (28)

with

c > 0, (29)

p � 1, (30)

0 � cos ϕ � 1

2p
, (31)

q � 1, (32)

− 1

2pq
� ξ � 1

2pq
, (33)

0 < η � p2 + 1 − 2p cos ϕ

2p2q sin ϕ
+ ξ

1 − p cos ϕ

p sin ϕ
if ξ � 2p cos ϕ − 1

2pq
, (34)

0 < η � 1

2q sin ϕ
− ξ cot ϕ if

2p cos ϕ − 1

2pq
< ξ < 0, (35)

0 � η � 1

2q sin ϕ
− ξ cot ϕ if ξ � 0 and (36)

ζ =
√

1 − ξ 2 − η2. (37)
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BCC FCC( )a ( )b

Figure 5. (a) The conventional BCC cell with edge length 	. The distances from the white particle
to the grey ones (the eight nearest neighbours) are all the same and equal to 	

√
3/2. (b) Two

adjacent conventional FCC cells with edge length 	. The distances from the white particle to the
grey ones (the 12 nearest neighbours) are all the same and equal to 	/

√
2.

4. A simple example: the cubic Bravais lattices in the MDP

Let the side length of the conventional cubic unit cell be 	. To find out the MDP parameters
for the cubic lattices start with the simplest case, which is the simple cubic (SC) lattice. It is
easy to recognize that all the three MDP vectors have equal lengths: the nearest neighbour
distance 	. The correspondence between the MDP parameters and the conventional parameter
	 for the SC lattice is hence given by

c = 	 ∧ p = q = 1 ∧ ϕ = π

2
∧ ξ = η = 0 ∧ ζ = 1. (38)

It is usually very helpful for an understanding of the MDP parametrization to visualize the
actual situation in the ξ–η plane. The very simple SC case is depicted in figure 6(a).

The case of the body centred cubic (BCC) lattice is visualized in figure 5(a), where
the conventional BCC unit cell is drawn. It is again possible to select three linearly
independent primitive vectors pointing to nearest neighbours. Due to the restrictions of
the MDP (inequalities (31), (33)–(36)) there remains only one possibility:

c = 	
√

3/2 ∧ p = q = 1 ∧ ϕ = arccos

(
1

3

)
∧

(39)

ξ = −1

3
∧ η =

√
2

3
∧ ζ =

√
2

3
,

shown in the ξ–η plane in figure 6(b).
In the case of the face centred cubic (FCC) lattice, visualized in figure 5(b), the ambiguities

are not completely reduced by conditions (31), (33)–(36). After choosing the vector c as one
arbitrary vector out of the 12 pointing to the nearest neighbours of one lattice point, there
remain two possibilities for the choice of b: one enclosing an angle of π/3 with c and another
one perpendicular to c. For the third vector, a, also of the same length as c and b, there are
again multiple possibilities in each case, which can be summarized as follows:

c = 	/
√

2 ∧ p = q = 1 ∧⎧⎪⎪⎨
⎪⎪⎩

ϕ = π
2 ∧ ζ = 1√

2
∧ η = 1

2 ∧ ξ = ± 1
2

ϕ = π
3 ∧ ζ =

√
2
3 ∧

{
η = 1

2
√

3
∧ ξ = ± 1

2

η = 1√
3

∧ ξ = 0,

(40)
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ξ

η

SC (square)

ξ

η

BCC (special cen-
tred rectangular with
cosϕ = 1

3 )

ξ

η

FCC (squared)

ξ

η

FCC (hexagonal)( )a ( )b ( )c (  )d

Figure 6. Projection of the pendentive cap like in figure 4 and the points for a (white) to describe
the corresponding lattices as labelled in the subcaptions. The 2D symmetry of the b–c lattice plane
is given in parenthesis. (a) SC (square), (b) BCC (special centred rectangular with cos ϕ = 1

3 ),
(c) FCC (squared), (d) FCC (hexagonal).

where the curly bracket stands for an ‘or’ composition of the enclosed lines. All sets of
parameters are again visualized in the ξ–η plane in figures 6(c) and (d).

In the panels for the FCC cases in figure 5 it is also observable that if only one of the
allowed points for a was provided (for given p, q and ϕ), the symmetry operations of the
underlying 2D lattice would generate all remaining ones. This fact turns out to be the case
also for all other Bravais lattices, as is shown elsewhere [37]. However, except for highly
symmetric lattices (e.g. the FCC lattice), there can be different points in such a ξ–η plot that
represent the MDP for the same lattice and are not linked by a simple 2D symmetry operation.

5. More than one basis particle

The main concern is of course to find the smallest distance occurring in a complete crystal,
i.e. when the lattice and the positions of the basis particles are considered. The discussion
here only includes structures of equally sized hard sphere particles, but the extension to basis
particles of different diameters should be straightforward.

For one additional basis particle (one is always positioned at the lattice points) one only
has to check which distance in the unit cell is the shortest one. The position vector for the
additional basis particle is

v2 = v2aa + v2bb + v2cc (41)

with vX ∈ [0, 1). One of the distances

|c| ,
|v2|, |v2 − c| ,
|v2 − a| , |v2 − a − c| , (42)

|v2 − b| , |v2 − b − c| ,
|v2 − a − b| or |v2 − a − b − c|

is the shortest one.
For more than one additional basis particle their positions are given by

vi = viaa + vibb + vicc, i = 2, 3, . . . (43)

and, in addition to (42), for each i one has to check the distances between the additional basis
particles themselves. For this also the 3 × 3 × 3 − 1 adjacent unit cells have to be considered.
One finally arrives at the shortest distance dmin as a function of the crystal parameters p, ϕ, q,
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ξ , η, {viX} and c as an overall scaling factor, i.e. dmin = cd

min (p, ϕ, q, ξ, η, {viX}). Hence it

is possible to delimit the c-values in terms of the other crystal parameters in a way that the
shortest distance cannot obtain lengths below a chosen minimum, e.g. the diameter σ of the
spherical hard core particles. Defining

cmin = σ

d

min (p, ϕ, q, ξ, η, {viX}) (44)

inequality (29) can be replaced by

c � cmin, (45)

and together with the restrictions (30)–(37) the parametrization of all crystal structures for
equally sized hard sphere particles is complete.

Note however that, although strong evidence exists [34–36] through billions of randomly
generated crystals with up to 29 basis particles, which were subsequently ‘evolved’ through
hundreds of ‘generations’ using a genetic algorithm and finally optimized for lowest enthalpy
using Powell’s method [38], that the presented parametrization indeed provides the shortest
occurring distance between particles of the parametrized crystal, an exact proof for the
possibility of this limitation to 27 unit cells has still to be done.

6. Conclusion

The MDP provided by equations (29)–(37) parametrizes all crystal lattices through the three
primitive lattice vectors given by (6). These vectors always represent the three shortest
possible, linearly independent lattice vectors, and they are ordered by magnitude according to
a � b � c. Both assertions have been proven in section 3. The extension of the MDP from
lattices to whole crystals is also given completely (without proof), i.e. all crystal structures are
incorporated.

Thus, the MDP can be easily used to exclude crystal structure configurations with overlaps
of hard core particles from parameter space. The remaining parameter region can, for given
number of basis particles n, be mapped to a (3n + 3)-dimensional hypercube, if the shortest
particle distance in the crystal is confined to be at longest equal to the cutoff distance of the
interaction potential, see [37] for further details.
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