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Two-dimensional dipolarmixtures consisting of spherical particles with unequal susceptibilities are shown to order to
an enormous variety of crystalline structures, whose geometry can be tuned by the stoichiometry of the compound, the
susceptibility ratio, as well as the density. Our results are based on the application of genetic algorithms, which allow for
an efficient and unbiased search over the parameter space. Structures that are practically degenerate energetically are
discovered at various parameter combinations. Implications on the ability to tune the phononic spectra of such
composite materials are discussed.

1. Introduction

Soft matter offers ideal and yet unprecedented possibilities to
stabilize arrangements of colloidal particles in monolayers. Con-
fined either at the interface of suitably chosen substances (such as
air, water, or oil) or between parallel glass plates that are
separated by a sufficiently small distance from each other,
colloidal particles are forced to stay confined on a single layer.
The properties of the system and thus the arrangement of the
particles can conveniently be influenced via several routes: by an
appropriate choice of the confining walls or of the properties of
the confining substances, by an application of external fields, or
by a suitably chosen architecture of the colloidal particles them-
selves. Thus we have a sheer unlimited freedom to investigate the
self-assembly scenarios of such systems at hand. In addition, the
size of typical colloidal particles (ranging from 1 nm to 1 μm)
allows for direct observation of the particles’ positions in simple
optical microscopes. These ideal experimental conditions to
investigate the properties of colloidal monolayers are in striking
contrast to the rather restricted situation encountered in hard
matter systems, where atomic monolayers have to be grown on
structured substrates, whose structural and electronic properties
are predefined and thus impose considerable influence on the
properties of the layers. Additionally, only indirect methods of
observation, such as various scattering techniques, are available
for atomic systems.

This contribution is dedicated to detailed investigations of
ordered monolayer configurations in two specific soft matter
systems. Both of them have been studied previously: In the first
system, polystyrene particles are trapped on an air/water inter-
face. Experiments have been performed for the one-component
system1,2 and computer simulations have been carried out for the
same setup, this time for both the one-component case3 and a
binary mixture with particles having different size.4 Following
arguments put forward by Sun et al.,3 there is strong evidence that
the interaction is an induced dipole-dipole interaction. The other

system has been studied in experiment;5,6 it is a binary mixture of
superparamagnetic particles, floating on a pendant water droplet
and exposed to an external magnetic field perpendicular to the
interface. The field forces the dipoles to orient parallel to the field
and thus the interaction is a pure dipole-dipole potential. Amore
detailed consideration reveals that the two systems are closely
related: the interparticle potentials derived by Sun et al.3 for the
first system display a 1/r3 behavior from intermediate distances
onward, a behavior that is characteristic for the interaction of the
latter system. Thus we expect that, up to moderate number
densities, both systems will display identical ordered particle
arrangements. Only at high densities, where the particles start
to feel the difference in the short-range behavior of the potential,
differences in the structural properties of the two systems are to
be expected.

Both experiments and simulations performed on these two
systems have provided clear indications of an overwhelmingly
rich wealth of ordered equilibrium structures. However, because
of the well-known limitations of both approaches, such as finite
ensemble size, fluctuations in the local densities, and so forth,
neither of the two approaches is able to provide a comprehensive
set of ordered equilibrium structures. It is also not possible to
explore the sequence of ordered particle arrangements as the
system parameters-i.e., density, composition, particle size ratio,
susceptibilities-vary in a systematic way. In contrast, a purely
theoretical approach is able to fill this gap, and this is the aim of
the present contribution: at a given state point, the ordered
particle arrangement for either of these two systems is obtained
byminimizing the thermodynamic potential that characterizes the
system. However, such a minimum has to be found in a highly
complex, rugged search space so that nearly all of the commonly
used optimization strategies are bound to fail. In this contribu-
tion, we use ideas of genetic algorithms (GAs),7 to identify the
configurations of minimal energy. The very general and broadly
applicable approach of GAs uses elements of natural evolution,
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such as mutation, mating, and recombination. The choice of this
search strategy is justified by the fact that it has proven to be a
highly successful, efficient, and reliable optimization tool in
a meanwhile broad variety of soft matter systems.8-14 The
strength and reliability of GAs in such problems probably lies
in the fact that GAs basically search among all possible equili-
brium structures, i.e., in the entire search space, without putting
a bias on the search.

With this powerful tool at hand, we are indeed able to
identify the ordered equilibrium structures for our two systems.
Performing investigations at zero temperature, an overwhel-
mingly rich variety of complex particle arrangements has been
obtained. Now that a systematic variation of the system para-
meters is within reach, we provide an overview of the ordered
equilibrium structures that the system can attain. Even more, the
complex sequences of structure which emerge as we vary compo-
sition and size ratio can be interpreted as a very complex
competition between the large and small particles, based on
energetic and topological arguments: in their effort to either
“squeeze” into the vacancies of the host lattice of the larger
particles, or, if these void spaces are not sufficiently large, to
modify this lattice, the smaller particles develop a remarkable
amount of originality to arrange in a host of patterns, ranging
from dimers, trimers, and over cup-like oligomeric arrangements
to ring-patterns or lanes.

The dipolar system at hand allows us to investigate and obtain
insight into the role played by the interactions in bringing up
nontrivial ordering on binary compounds. The dipolar interac-
tions at hand have the additional properties of being long-range,
thus local “packing rules” do not offer the way of approach for
such systems. This is in stark contrast to the well-studied case of
binary hard-disk mixtures,15 for which geometric constraints and
local packing effects dictate the stability of the resulting struc-
tures. A critical comparison between the variety of resulting
arrangements will be presented in Sec. 4. The fact that some
of the particle arrangements of dipolar mixtures are very exotic,
low-symmetry structures points out that GA-based search stra-
tegies are indeed superior to conventional approaches for this
particular problem.

The paper is organized as follows: The systems, models and
interaction potentials are presented and physically discussed in
section 2. In section 3 we present a detailed account of the search
strategy, i.e., the aforementioned GA, employed to the current
problem, whereas in section 4 we show and discuss our results. In
section 5 we summarize and draw our conclusions.

2. Model and System

Our theoretical investigations are based on two experimental
setups that, at first sight, have nothing in common. In the first
setup, labeled by a superscript I, sulfate latex particles are floating
at an oil-water interface, thus guaranteeing a two-dimensional
geometry. By the use of a Langmuir trough, the particle density is
controlled.1,2 Although the complex mechanism of the interpar-
ticle potential could not be fully revealed, the interactions are

believed to have their origin in the formation of surface charge
dipoles on the particle’s interface with the oil phase. These
considerations, which are supported by the fact that all experi-
mental findings could be reproduced in simulations based on
these effective interactions, are outlined in the following:3,16 On
contact with water, hydrophilic sulfate head groups on the
particles’ surfaces dissociate, and surface charge dipoles are
formed. Since the particles are covered by a thin water film when
poured into the setup, dipole charges are found on the entire
surface of the particle. In the aqueous phase however, the
interaction of these dipoles is shielded as a result of the small
Debye length inwater, so that the effective dipolemoment is given
as the vector sum of all the surface charge dipoles sitting at the
particles’ interface with the oil phase (see Figure 1). This complex
scenario has been cast in a theoretical model.3 For a binary
mixture of particles of different radius (RA and RB), the resulting
potentials for two particles, carrying dipole moments Pi and Pj

and separated by a distance r, thus read as4

ΦI
ijðrÞ ¼

¥ re ðRi þ RjÞ
PiPj

16πεRiRj

1

r
ln

r2 -ðRi -RjÞ2
r2 -ðRi þ RjÞ2

" #
r > ðRi þ RjÞ

8>><
>>:

i, j ¼ A,B ð1Þ

where ε denotes the dielectric constant of water. If we assume

Pi ¼ RRðnþ2Þ=2
i ð2Þ

set z = RB/RA < 1 and x = r/σA, and, in addition, extract a
suitable common prefactorEI=R2RA

n /(16πε) acting as an energy
scale, we arrive at

ΦI
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1

x
ln

x2

x2 -1

" #
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ΦI
BBðxÞ ¼ EI

zn

x
ln

x2

x2 -z2

" #
for xg z ð4Þ
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ABðxÞ ¼ EI

zn=2

x
ln

4x2 -ð1-zÞ2
4x2 -ð1 þ zÞ2

" #
for xg ð1 þ zÞ=2 ð5Þ

Figure 1. Schematic representationof systemI (inspiredbyStirner
and Sun4): Two polystyrene particles of different size float at an
oil-water interface. They interact via dipolarmomentsPA andPB,
that are the vector sum of the surface charge dipoles sitting at the
interface of the particle with the oil.
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From these formulations of the Φij
I(x), it is obvious that the two

potential parameters z and n influence the form of the interaction
potential in the following way: takingΦAA

I (x) for reference, since
it is independent of z or n, a lowering of the value of zdecreases the
range of the repulsive tails of ΦBB

I (x) and ΦAB
I (x) and weakens

their strengths, as the smaller particles have a smaller dipolar
moment (see Figure 2). The exponent n, on the other hand, makes
the potential softer with decreasing n (see Figure 3). In the other
experimental setup (denoted by the superscript II), a binary
mixture of superparamagnetic colloids is confined in a pending
water droplet, trapping the particles in a two-dimensional geo-
metry5,6,17,18 (see Figure 4). A strong magnetic field B, applied
perpendicular to the surface, induces dipolar momentsMi= χiB,
i = A,B in the particles, and thus leads to the following pair
interaction:

ΦII
ij ðxÞ ¼ EII

mimj

x3
, i, j ¼ A,B ð6Þ

with EII = μ0χA
2
B
2/(32πRA

3 ), if we use the larger susceptibility
χA as a scale andmi = χi/χAe 1, i=A,B, in the above equation.

The intimate relation between the two sets of potentials
becomes obvious if we expand the Φij

I (x) in a Taylor series,
retaining the first term:

ΦI
ijðxÞ∼

ðzizjÞðnþ2Þ=2

x3
þO ðx-5Þ ð7Þ

with zi,j = 1 or z as i,j = A or B, which represents exactly the
interactions in a binary mixture of perfect dipoles. The corre-
sponding equivalence relation between the particle size ratio z and
the susceptibility ratio m is given by

mi S z
ðnþ2Þ=2
i , i ¼ A,B

In a double-logarithmic plot of the potentials 3-5, it is clearly
visible, that the typical power-law behavior of the ideal dipole-
dipole interaction is reached for x>1.5 (see Figure 5). At low and
intermediate densities, where the particles are separated suffi-
ciently far from each other, the two sets of potentials, 3-5 and 6,
are therefore practically identical, leading to the same ordered
particle arrangements. At higher densities, however, the Taylor
expansion (eq 7) is not valid and differences in the equilibrium
structures of the two systems will occur.

Furthermore, we would like to point out that for intermediate
and large particle separations, one of the twopotential parameters
used to describe system I becomes superfluous in 7, as, e.g., a
change in the exponent, n f ~n, can always be translated to a
change in the particle size ratio,

nf ~nS zf ~z ¼ zðnþ2=~nþ2Þ ð8Þ
In what follows, we have employed an exponent of n = 3 in all
calculations.

3. Genetic Algorithms

Our strategy to find the candidate structures for the ord-
ered particle arrangements is based on ideas of GAs.7 The
general method as well as the specific implementation for a

Figure 2. Interaction potentials Φij
I(x) for two different values of

the particle size ratio z: z=0.3296 (black dashed lines) and z=0.5
(gray dashed lines).

Figure 3. Interaction potentials Φij
I (x) for two different values of

the exponent n: n=2 (black dashed lines) and n=3 (gray dashed
lines).

Figure 4. Schematic representation of system II (inspired byEbert
et al.6): Superparamagnetic, colloidal particles of two different
sizes are trapped on the interface of a pending water droplet. An
external magnetic field B induces magnetic moments in the col-
loids.

Figure 5. Double logarithmic plots of the Φij
I(x) for z = 0.5,

demonstrating their ∼x-3 power-law dependence for large and
intermediate distances.

(17) Hoffmann, N.; Likos, C. N.; L
::
owen, H. J. Phys.: Condens.Matter 2006, 18,

10193.
(18) Assoud, L.; Messina, R.; L

::
owen, H. Europhys. Lett. 2007, 80, 48001.

D
ow

nl
oa

de
d 

by
 D

U
E

SS
E

L
D

O
R

F 
L

IB
R

A
R

IE
S 

on
 J

ul
y 

20
, 2

00
9

Pu
bl

is
he

d 
on

 A
pr

il 
9,

 2
00

9 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

la
90

04
21

v



DOI: 10.1021/la900421v 7839Langmuir 2009, 25(14), 7836–7846

Fornleitner et al. Article

two-dimensional system are briefly described byGottwald et al.10

and Fornleitner andKahl.13 In this section we focus on the details
of the implementation of our GA-based approach for a binary,
two-dimensional system introduced by Fornleitner et al.19

Before starting to explain the main outline of a GA-search
strategy as we use it, two terms have to be clarified: (i) An
individual I-which is a string of genes, encoded in the chosen,
binary alphabet-represents one candidate solution to the pro-
blem at hand (i.e., a possible lattice structure) (see Figure 7 for an
example). (ii) The set of individuals at a given iteration cycle of the
algorithm is called a population or generation. We start the
algorithm with a randomly chosen generation, the individuals
ofwhich consist of completely arbitrary sequences of genes. In the
next step, all individuals are assigned a fitness value f(I ),which in
our case depends on the lattice sum of the crystal encoded in the
individual. f(I ) is a measure for the quality of the solution
represented by individual I in the sense that a higher fitness value
f(I ) characterizes a better solution. Then, pairs of individuals
(“parents”) are chosen according to their fitness for reproduction.
Using crossover mechanisms of different levels of sophistication,
new individuals (“children”) are generated, forming the next
population of the algorithm. We point out that the exact method
of selecting and reproducing individuals determines the way in
which the search space is sampled and has thus significant
influence on the performance of the algorithm. After recombina-
tion, mutation takes place. Individuals are selected for mutation
at random with a probability pm and some of the genes are
arbitrarily changed in the chosen individual(s). In this way lost
genetic material can be reintroduced, and inbreeding is avoided.
The cycle of evaluation-selection-reproduction-mutation is
repeated until a termination condition is met. The best individual
of each generation is stored and the overall best individual of all
populations then represents the result of the GA.

The basic principles outlined above have to be adapted to the
specific problem, i.e., to finding minimum energy configurations
(MECs) for two-dimensional binary mixtures: First, we have to
find a convenient way to translate the physical solutions, i.e. the
crystal structures, to strings of genes; second, a suitable fitness
function has to be chosen to evaluate the quality of the indivi-
duals; and, third, we have to determine suitable recombination
andmutation processes that guarantee a high performance of our
algorithm. Essentially, we use the same lattice parametrization as

the one presented by Gottwald et al.;10 however, since we deal
with binary mixtures, all structures are now, by definition,
nonprimitive lattices, i.e., crystal lattices with at least two basis
particles. Each structure is described via two lattice vectors a and
b, which span the unit-cell and via s vectorsB1,...,Bs indicating the
positions of the s particles that form the basis. We are free to
choose |a|= a g b =|b|, and we assume that a is parallel to the
x-axis. Thus we can parametrize a and b via

a ¼ að1, 0Þ, b ¼ aðx cos φ, x sin φÞ ð9Þ

with

x ¼ jbj
jaj

~φ ¼ 2

π
φ ð10Þ

as independent parameters; note that 0 < x e 1 and 0 < φ~ e 1.
The length scale a is uniquely determined by the particle density

ησA
2 of the system

a

σ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

ησ2x sin φ

r
ð11Þ

and thus fixes the absolute size of the lattice. The diameter of the
larger particle species σA is taken as a length scale in this
parametrization (see Figure 6).

The positions of the s basis particles are given as a linear
combination of the lattice vectors,

Bi ¼ Ria þ βib i ¼ 1, :::, s ð12Þ
withB1= (0,0) andRi,βi∈ (0,1). The first nAbasis particles belong
to species A and the remaining nB= s- nA particles to species B.
In this way, every possible lattice is characterized by
[2 + 2(s - 1)] parameters, i.e., (x, φ~, R2, β2, ..., Rs, βs), all of
them lying in the range (0,1).

With this parametrization inmind,we have to decide onhow to
encode these parameters in an individual I: Since we want to use
the binary alphabet for the genes, we have to translate the real
valuedparameters tobinarynumbers. To this endwe firstmap the
real valued parameter to an integer:

Ip ¼ pð2np -1Þ þ 1 ð13Þ

where p is the real valued parameter, and Ip its integer representa-
tion. np is the number of bits used to encode the parameter and
thus gives the numerical accuracy of the encoding process. We
then arrange the binary representations of the parameters to form
an individual I, so that the first nx bits correspond to the
parameter x and the subsequent nφ bits to parameter φ, fol-
lowed by the binary representations for the Ri and βi, i=2, ..., ns
(see Figure 7).

Individuals are evaluated using the fitness function proposed
by Gottwald et al.,10

f ðT Þ ¼ exp 1-
FðT Þ
F0

� �
ð14Þ

withF(I ) being the free energy per particle of the lattice structure
represented by the individual I. For a binary mixture at zero

Figure 6. Ordered two-dimensional lattice structure of a binary
mixture. An arbitrary choice of lattice vectors is indicated. The
diameter of the larger particle species, σA, is chosen as a length
scale.

Figure 7. Parameters (x, φ, Ri, βi) that characterize a possible
lattice structure encoded in the individual.

(19) Fornleitner, J.; Lo Verso, F.; Kahl, G.; Likos, C. N. Soft Matter 2008, 4,
480.
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temperature, this quantity is given by

FðT Þ ¼ 1

s

nA

2

X
ij

ΦAAðia þ jbÞ þ nB

2

X
ij

ΦBBðia þ jbÞþ
2
4
X

ij
Xs-1

l¼1

Xs

m¼lþ1

ΦεðlÞεðmÞðia þ jb þ Bl -BmÞ
#

ð15Þ

The summations over i and j run over all integer values such
that |ia+ jb| is smaller than a suitable chosen cutoff radius rc, to
be discussed below. F0 in eq 14 is the lattice structure of a refer-
ence system, in our case a one-component hexagonal lattice of the
large particles at the same number density as the structure
represented by I.

As a reproduction mechanism, we have decided to use instead
of a simple one-point crossover process,10,11 the so-called random
crossover technique, which is schematically presented in Figure 8.
Here individuals of a given generation (“children”) are created
from selected pairs of individuals of the preceding generation
(“parents”) with the help of a random assembly vector A: the
reproduction process starts by filling the vector with an arbitrary
sequence of bits. Then, two parent individuals, P0 and P1, are
selected according to their fitness values. The first child, C0, is
constructed bit by bit in the following way: the bit at position ν is
taken from parentP0 (orP1) if the value of the bit at position ν in
the assembly vectorA is 0 (or 1). ChildC1 is generated from child
C0 via simple bit-inversion.

Because of the finite number of bits used in the encoding of the
parameters, the GA is not able to converge fully to the final
solution. Additional refining mechanisms, for which we use a
simple hill-climbing search,20 are needed to relax the structure
proposed by the GA. The result of this hill-climbing optimization
represents the final solution of our search, i.e., the final MEC.

In order to guarantee a high reliability of our method, each
state point (characterized by particle density ησA

2 , concentration
C, and particle size ratio z) is considered in a two-step process:
First, several independent GA runs are performed with a cutoff
radius rc of considerable size (see below). These obtained struc-
tures and their respective energies are compared. The lattice with
the overall lowest free energy is reconsidered in the second step,
but now with an even larger cutoff radius. The structure that
emerges from this search is then taken as the MEC for this
particular state point. This rather high numerical effort might
seem exaggerated at first sight, but we have good reasons for this
strategy: the large number of parameters that characterizes a two-
dimensional lattice leads to a rough energy landscape and the
slowly decaying potential is responsible that the fitness function
depends in a very sensitive way on the numerical parameters.
Thus, GA runs carried out for one state point using a moderate
cutoff radius do not necessarily converge to the same energetic
minimum, which forces us to suitably adapt the numerical
parameters (i.e., the mutation rate, the number of individuals
per generation, etc.). Furthermore, performing identical runs
provides additional information on the roughness of the energy
landscape in the immediate surrounding of the found energy
minimum and makes degenerate structures accessible.

We conclude this section by presenting explicit values for the
numerical parameters that we have used: In every run we have
generated 200 generations, consisting of 1000 individuals each.
The mutation rate was set to pm=0.01. For the encoding step we

use np=12 forx, theRi, and the βi and nφ=6;our numerical tests
have given evidence that a larger number of genes does not
increase the efficiency of the GA. Because of the slow decay in
the interparticle potentials, we have used in the first search step
outlined above a cutoff radius, rc = 200σA for the evaluation of
the lattice sum. This value for rc guarantees even at high densities
that an increase of rc by 10% leads to a relative change of the
lattice sum of less than 0.01%. For the second step in our search
strategy, i.e., for the overall best structure, a cutoff rc = 1500σA
was used.

For practical reasons, we have limited the number of particles
per unit-cell to s=8, as the computational cost increases with the
number of particles, and the GA search shows insufficient
convergence if too many parameters are to be optimized. Thus
we can investigate values for the concentrations of the smaller
particles, C = nB/(nA + nB), in the range of C = 1/8, ..., 7/8. In
this way, for particular C values, we could perform independent
GA runs for a given state point using unit-cells of different size:
for instance, a systemwithC=1/2 could be realized using 2, 4, 6,
or 8 particles per cell. Finally, we have also included the case
C = 2/9 (i.e., s = 9) in our investigations, since this partic-
ular ratio is known to give rise to special, highly asymmetric
structures.15

4. Results and Discussion

In Figures 9-12 we present the MECs obtained with the
GA-based search strategy described above by systematically
varying the particle size ratio z and the concentration of small
particlesC= nB/(nA+ nB) in ourmixture of dipolar colloids. For
clarity we show our results on four different panels: Figure 9
shows the structures for concentrations of small particlesCe 1/2
and particle size ratios z ranging from 0.1 to 0.41. Figure 10
contains the structures for the missing size ratios up to z=0.9 at
the same concentrations of small particles. Figures 11 and 12
show the structures obtained for C > 1/2. All shown configura-
tions are of a particle area density of ησ2 = 0.6.

The main general trend to be observed for all investigated
concentration rates is the system’s tendency to form lanes at large
particle size ratios (z g 0.5; for examples, see especially
Figure 12a-o). This inclination to stripe-like structures might
indicate a region of phase separation, a phenomenon not directly
accessible because of our search algorithm’s inherent restriction to
periodic structures. At z=0.8 and above, the difference between
the two particle species is no longer pronounced enough to
produce distinctive deviations from a uniform hexagonal lattice
(seeFigure 10m-t andFigure 12p-y; the different coloring of the
particles can be misleading to the eye in this respect). Addition-
ally, the GA experiences difficulties in finding the global energy
minimum as the energy-landscape flattens out as a result of the
potentials becoming increasingly alike. We will therefore exclude
the results obtained for particle size ratios larger than z = 0.7
from the following discussion.
Results forCe 1/2.We start amore detailed discussionwith

the lattices obtained for C e 1/2, as their common features are
easily visible. Changing the concentration of small particles

Figure 8. Schematic representation for a random crossover pro-
cess.

(20) Schwefel, H. P.; Evolution and Optimum Seeking; John Wiley and Sons:
New York, 1995.
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C results in changes of the size of the area occupied by a
hexagonal lattice formed only by the large particles. The parti-
cle size ratio z, on the other hand, influences the form of the
cage, the large particles build around the small ones: If z is
small, the small particles are incorporated into the hexagonal
lattice of the large ones without disturbing their immediate
surrounding (z = 0.1-0.2, see Figure 9a,b,e,f,i,j) so that they
populate the centers of equilateral triangles of large particles.
As z increases, the influence of the small particles on their

surrounding becomes more pronounced, and the triangles of
large particles around the small ones are distorted; first to a
rhomboid (z=0.28, Figure 9m,n) and then to a square with the
small particle sitting at the center (z=0.3296-0.5, Figure 9q-x
and Figure 10a-d). Finally, the square cage of the large particles
then deforms to a rectangle until it finally meets the require-
ments to fit into a hexagonal lattice, and, for zg 0.8, we arrive at
the uniform case (see Figure 10, the rectangle is clearly visible in
panels m, n, and q). In the case ofC=1/3 and 1/2, an additional

Figure 9. Found MECs for C e 1/2 and z e 0.41. The particles are not drawn to scale.
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phase appears for small values of z (z e 0.28). The triangular
cages arrange next to each other, and stripes of small particles,
meandering through a slightly deformed hexagonal lattice of
large ones, emerge. We believe that a similar ground-state for
C = 1/7 and 1/5 was inaccessible to our survey because of the
limitation to a maximum of eight particles per cell.

It is pertinent to point out that all the various structures
displayed in Figure 9 and Figure 10 consist of only a small
number of different lattice elements or “tiles”: an equilateral
triangle of large particles, with or without a small one in its
center (see Figure 9a or b for example), a lozenge of large
particles containing a pair of small ones, which is aligned along
the longer diagonal (e.g., Figure 9d), a large rectangle or square
around a small particle (e.g., Figure 10i or c), and an elon-
gated hexagon with two small particles inside (Figure 10h,k,l).
We believe that this occurrence of tiled phases might be an

indicator of so-called random tiling phases15 or even quasi-
periodic structures; both scenarios are inaccessible to our search
strategy.
Results for C > 1/2. General trends for mixtures with

an abundance of small particles in the unit cell (C > 1/2) are
harder to make out as the structures get more complex with
increasing C, although common features can be identified: at
the very low value of z = 0.1, the small particles tend to group
into small clusters of various shapes, populating the interstitials
of an ideal hexagonal lattice of the large particles. As z increases,
the formerly distinct groups of small particles merge (0.1 <
z e 0.41), until finally stripe-like structures emerge (0.41 <
z e 0.7). We want to pay close attention to how these complex
structures form by discussing the obtained sequences in more
detail. Because of the small unit cell involved, the sequence at
C = 2/3 clearly reflects the general trend: We start out with

Figure 10. Found MECs for C e 1/2 and z> 0.41. The particles are not drawn to scale.
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isolated single particles at the interstitials of the large particles’
hexagonal lattice (z= 0.1-0.2, Figure 11a,f,k). If they increase
in size, two of them approach each other, first forming a distinct
pair (z = 0.28 and 0.3296, Figure 11p,u), and then, by a small
change in the relative orientation of the originally parallel
aligned dimers, pairs from adjacent cells combine to lanes
(z = 0.41-0.6, Figure 11z and Figure 12a,f). In the next case
(C=5/7), the obtained sequence is muchmore complex. At very
small particle size ratios, we find dimers in addition to single
small particles at the interstitials of the hexagonal lattice of large
particles (z = 0.1, Figure 11b). Increasing their size lets one
single particle join the adjacent dimer, and elongated trimers
emerge for z = 0.16 and z = 0.2 (Figure 11g,l). With further
increase of size, every trimer is joined by two more single
particles to form zigzag-shaped pentamers (z = 0.28 and
0.3296, Figure 11q,v), which, in turn, merge to form lanes
(z g 0.4). As soon as neighboring pentamers are close enough
to merge, they share the particles at their respective ends, and an
additional, less populated lane of small particles springs up

(z = 0.41, Figure 11aa). At size ratios from z = 0.5 to z = 0.7,
rearrangements occur within the lanes, but the overall, stripe-
like structure remains. For C = 7/9, we encounter cup-like
structures, where every large particle is surrounded by a ring
segment of small particles (see Figure 11r,w,bb for examples).
The “cups” have their origin in the deformation of zigzag-
shaped heptamers, formed at low particle size ratios (z = 0.2,
Figure 11m): increasing z leads first to a deformation of the
heptamers to arcs of small particles around a large one (z=0.28,
Figure 11r) and then to stripes of joint heptamers (z = 0.3296
and z=0.41, Figure 11w,bb). At z=0.5 and above, the cup-like
features are no longer prominent, and we arrive at a normal,
lane-like lattice. This occurrence of cups can be interpreted as a
precursor of the formation of rings, encountered for the con-
centrationsC=4/5 andC=6/7. ForC=6/7, the rings of small
particles surrounding the positions of the large ones in amore or
less ideal hexagonal lattice are already recognizable at very low
values of z and remain stable over a long range of particle size
ratios (z=0.1-0.3296, Figure 11e,j,o,t,y). The transition to the

Figure 11. Found MECs for C> 1/2 and z e 0.41. The particles are not drawn to scale.
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stripe-like phases takes place via a deformation of the underlying
hexagonal lattice of the large particles (z = 0.41, Figure 11dd),
to a nearly ideal square lattice at z = 0.5 (Figure 12e). This
transformation is accompanied by a reduction of the number of
small particles surrounding a large one from 12 (z e 0.3296), to
10 (z = 0.41), and finally to 9 at z = 0.5. At particle size ratios
larger than z = 0.5, the system exhibits distinct stripes of large
and small particles (see Figure 12j,o). In the other case, at C =
4/5, we also observe the formation of small particle rings (z =
0.41-0.6, Figure 11dd and Figure 12d,i), but this time they are
not visible from small particle size ratios on, but are preceded by
a sequence of zigzag-shaped or pearl-necklace lanes (z= 0.16-
0.3296). Like atC=6/7, the number of small particles forming a
ring also shrinks at this concentration as z increases, starting
with nine particles at z = 0.41 and z = 0.5 and diminishing to
eight particles per ring at z=0.6. For even higher values of z, the
stripe scenario is realized once more.
Comparison to a Hard-Disk Mixture. In an effort to

understand the mechanisms leading to the observed MECs, we
compare our findings to a phase diagram of hard discs.15 All of
the ordered, periodic structures found to be stable for hard discs
are also present in our current survey on dipolar colloids (see
Figure 13). Almost all of these lattices were found at z-values
around the structures’magic values z*, for which all neighboring

particles are in direct contact in the high-density, close packed
unit cell. For the parameter sets made available by Likos and
Henley15 and using the terms coined therein for the different
lattices, we observe the following for the dipolar colloids: At
C = 1/2, the S1-structure is obtained for z = 0.3296, 0.41, and
0.5, and the H2-structure is obtained for z = 0.6 and 0.7.
At C = 2/3, the dipolar mixture forms T1-like structures at

Figure 12. Found MECs for C> 1/2 and z> 0.41. The particles are not drawn to scale.

Figure 13. Equilibrium structures of the binary mixture (large
pictures) with the corresponding stable lattices of the hard-disc
system (small pictures). A possible choice of the unit cell is marked
in both cases.
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z=0.1-0.3296 andH1-lattices at z=0.41-0.6. An example of
anH3-structure is found at C=7/9, z=0.8. S2 occurs for C=
4/5, z=0.6, and, forC=6/7, we encounter T2-structures in the
range of z = 0.1-0.3296. (See Table 1 for a summary).

Most differences in regard to z occur because our method of
investigation does not allow for nonperiodic lattices like lattice
gas phases, where the small species can distribute randomly on
the interstitial sites of the hexagonal lattice formed by the large
particles, or random tiling phases, or the possibility of a phase
separation; all phenomena that were included in the survey of
Likos and Henley.15 Nonetheless, there are also cases in which
the mixture of dipolar colloids shows behavior undiscovered in
the hard-disk system: For low and intermediate values of z, the
H3-structure (C = 7/9) is stable in the case of hard discs.15 The
dipolar mixture shows distinctly different lattices throughout
the whole range of particle size ratios (see Figure 11c,h,m,r,bb),
all of which were explicitly checked against theH3-structure and
proved to be of lower energy. At C = 4/5, instead of the S2

structure occurring for hard discs, the dipolar mixture shows
two different structures at low z, both unique to the system: A
hexagonal lattice of large particles with small dimers sitting at
the interstitials (Figure 11d) and zigzag-shaped lanes of small
particles running through a hexagonal lattice of large particles
(Figure 11i).
Degenerate Structures. The method of investigation as

introduced at the end of section 3 allows us to identify degen-
erate structures, i.e., configurations that differ in the arrange-
ment of particles while corresponding to the same (minimal)
value of the free energy. As the numerical accuracy of our
investigation procedure is mainly determined by the chosen
cutoff radius in the calculation of the free energy, we define
two structures to be energetically degenerate if the difference in
their free energies per particle, ΔF, is of the same order of
magnitude as the error due to the employment of a finite cutoff,
i.e., if ΔF j 10 - 6EI, with A referring to the energy scale of the
system (cf. eqs 3-5).

We find degenerate structures at about a tenth of all the state
points investigated. As long as z is small, the encountered
degenerate phases exhibit the behavior of a lattice gas:15 the
energetically equivalent structures differ only in the positioning
of the small particles in the otherwise unchanged, hexagonal

host lattice formed by the larger species. Figure 14a shows a 3-
fold degenerate structure found at C= 1/2, z= 0.2, displaying
thementioned characteristics. In addition to the lattice gas phase
observed only at small values of the particle size ratio, we also
encounter degenerate structures that consist of the same set of
tiles, thus indicating the occurrence of random tilings. In
Figure 14b, we present an example of degenerate tilings encoun-
tered for C = 1/3, z = 0.41, where squares of large particles
hosting a small one at its center and empty rhombic unit cells of
large particles arrange in two different patterns: in the first case,
the rhombic cells align parallel to each other, establishing a
distinct pattern of alternating lanes. In the other case, the
orientation of the tiles changes along each lane, obscuring the
pattern. Square and rhombic unit cells have been highlighted in
Figure 14b, to enhance the visibility of the lane-like arrange-
ment.

5. Conclusions

We have demonstrated that binary, isotropic, dipolar mono-
layers can order in an enormous variety of structures, which can
be influenced by the mixture composition as well as the polariz-
ability ratio between the particles. High asymmetries between the
latter lead to intricate and highly nontrivial structures, unantici-
pated by conventional methods, a fact that underlines the power
of GAs to perform efficient searches of the parameter space.

Our results should be readily verifiable in the appropriate
experimental systems. However, it must be stressed that most
likely the dynamics of crystal growth will come in the way of the
development of sufficiently extended crystals in real systems.
Indeed, as crystallites with randomorientations will start growing
at uncorrelated nucleation centers in the system, further growth is
likely to be arrested either because of the mismatch between the
grain boundaries or because of the intervention of glassy states.
These problems are exacerbated by the highly nontrivial structure
of the resulting alloys, which requires well-coordinated particle
rearrangements even within a single, periodically repeating cell.
One possibility to circumvent this difficulty experimentally is to
employ external fields that are tilted with respect to the confining
plane. This strategy induces a preferred direction along which
crystallites grow, namely the one dictated by the in-plane projec-
tion of the external field, which reduces the repulsions or even

Table 1. Summary of Comparison between Dipolar Colloids and the Hard-Disc System

C structure z-values (dipolar colloids) z-interval (hard discs)a z*a

1/2 S1 0.3296, 0.41, 0.5 [0.392, 0.414] 0.414
1/2 H2 0.6, 0.7 (0.414, 0.438] ∪ [0.627, 0.646] 0.637
2/3 T1 0.1, 0.16, 0.2, 0.28, 0.3296 [0, 0.312] 0.155, 0.281
2/3 H1 0.41, 0.5, 0.6 [0.517, 0.546] 0.533
7/9 H3 0.8 (0.101, 0.110] ∪ [(0.378, 0.408] 0.386
4/5 S2 0.3296, 0.6 (0.101, 0.123] ∪ [0.193, 0.245] 0.216,0.62
6/7 T2 0.1, 0.16, 0.2, 0.28, 0.3296 [0, 0.157] ∪ [0.315, 0.354] 0.101, 0.349

aReference 15.

Figure 14. Two examples of degenerate structures (see text).
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induces attractions for sufficiently high tilt angles.Admittedly, the
alloys resulting in such anisotropic situations will be different than
the ones discovered here, as confirmed by ongoing research on this
topic.21However, itmight prove advantageous to first tilt the field,
so as to grow a sufficiently extended crystal and then slowly reduce
the tilt angle back to zero, allowing for the now periodically
ordered particles to reach their new equilibrium positions.

Finally, we point out that considerable interest has been raised
recently on the possibility to tune the phononic spectra of soft
materials through tuning of their interactions and the resulting
crystal structures,22,23 including the possibility of employing
confining laser-fields.24 Binary compounds, such as those de-
scribed in our work, open up another way to this goal, since the
complex geometry and high number of basis particles in a unit cell

will give rise to a number of corresponding optical branches in the
phonon spectra.Tuningof the composition andmass ratio readily
allows us then to steer the width and number of associated
phononic gaps in the material. Results on this topic will be the
subject of a future publication.25
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