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Using molecular dynamics simulations we study the slow dynamics of a colloidal fluid annealed within a
matrix of obstacles quenched from an equilibrated colloidal fluid. We choose all particles to be of the same size
and to interact as hard spheres, thus retaining all features of the porous confinement while limiting the control
parameters to the packing fraction of the matrix, �m, and that of the fluid, �f. We conduct detailed investiga-
tions on several dynamic properties, including the tagged-particle and collective intermediate scattering func-
tions, the mean-squared displacement, and the van Hove function. We show the confining obstacles to pro-
foundly impact the relaxation pattern of various quantifiers pertinent to the fluid. Varying the type of quantifier
�tagged-particle or collective� as well as �m and �f, we unveil both discontinuous and continuous arrest
scenarios. Furthermore, we discover subdiffusive behavior and demonstrate its close connection to the matrix
structure. Our findings partly confirm the various predictions of a recent extension of mode-coupling theory to
the quenched-annealed protocol.
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I. INTRODUCTION

Fluids that are brought into contact with a disordered po-
rous matrix drastically change their physical properties. Over
the past two or three decades numerous experimental and
theoretical investigations have been dedicated to studying
this phenomenon �1–6�. The remarkable efforts that have
been undertaken to obtain a deeper understanding of the un-
derlying mechanisms are not only motivated by academic
interest. Fluids confined in disordered porous environments
play a key role in a wide spectrum of applied problems rang-
ing from technological applications over chemical engineer-
ing to biophysical systems. Thus, a deeper understanding of
why fluids change their properties under such external con-
ditions is of great practical relevance.

From a theoretical viewpoint, a quantitative description of
such systems is a formidable challenge for several reasons.
For one, it is difficult to reliably and realistically represent
the matrices found in experiments or technological applica-
tions �such as aerogels or vycor�. Having chosen some model
for the confinement, an even more demanding task is to for-
mulate a theoretical framework that is able to appropriately
describe the interplay of connectivity and confinement of the
pores pertinent to the matrix. Even after reducing such sys-
tem to the so-called quenched-annealed �QA� model, where
for simplicity the matrix is assumed to be an instantaneously-
frozen configuration of an equilibrated fluid, an appropriate
theory is highly intricate. Madden and Glandt �7,8�, and later
Given and Stell �9–11�, derived a formalism based on statis-
tical mechanics that considers the system to be a peculiar
mixture with the matrix being one of the components. Within
their framework, Given and Stell derived Ornstein-Zernike-
type integral equations �the so-called replica Ornstein-
Zernike equations, ROZ� that—in combination with a suit-
able closure relation—allow to determine the static
correlators and the thermodynamic properties of a QA sys-
tem �12–16�. Their formalism is based on a twofold thermo-
dynamic averaging procedure: one over all possible fluid
configurations for a fixed matrix realization, the other one

over all possible matrix configurations. This double-
averaging procedure is adapted to the letter in computer
simulation studies of fluids confined in disordered porous
materials; in terms of computing time this is a demanding
enterprise.

Until few years ago most theoretical and simulation stud-
ies focused on the static properties of QA systems such as
structure and phase behavior. In contrast, comparatively little
effort had been devoted to the dynamic properties. The main
obstacles inhibiting such investigations were, on one side,
the lack of a suitable theoretical framework that would have
allowed to reliably evaluate the dynamic correlation func-
tions of the fluid particles, and, on the other hand, limitations
in computational power for simulations when explicitly per-
forming the above-mentioned double-averaging procedure.
To the best of our knowledge, the first simulation studies
dedicated to the dynamic properties of fluids in disordered
porous confinement were performed by Gallo and Rovere
�17–19�, followed shortly after by Kim �20�. In this context it
is worth mentioning similar investigations on the Lorentz gas
model �21� and on binary mixtures in which particles are
characterized by a large disparity in size �22,23� or mass
�24�, i.e., systems that can be viewed to be closely related to
QA systems.

Over the past years, major breakthroughs have been
achieved in describing theoretically the dynamic properties
of fluids in confined in porous media. In particular, use was
made of mode-coupling theory �MCT� �25–27� and of the
self-consistent generalized Langevin equation �SCGLE�
theory �28�, both of which rely on inferring the dynamics of
a system from its static structure. MCT has played over the
last decades a central role in describing the dynamic proper-
ties of fluids �29�, including in particular the glass transition.
Krakoviack succeeded in deriving MCT-type equations for
the dynamic correlation functions, which require as an input
the static correlation functions of the annealed fluid, which in
turn are obtained from the ROZ equations. Subsequently,
Krakoviack solved these equations for the specific case of a
hard-sphere fluid confined in a disordered matrix of hard-
sphere particles of equal size and evaluated single-particle
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and collective correlation functions of the system. Based on
this knowledge, a kinetic diagram was traced out in the pa-
rameter space spanned by the packing fraction of the fluid
and that of the matrix, indicating the regions in which the
system is in an arrested or in a nonarrested state. The result-
ing kinetic diagram is very rich and quite surprising: the
regions of arrested and nonarrested states are separated by a
line along which at small matrix packing fractions type-B
transitions and at intermediate matrix packing fractions
type-A transitions occur. As a peculiar feature of this line, a
re-entrant glass transition is predicted for intermediate matrix
and small fluid packing fractions. Additionally, in the region
of nonarrested states a continuous diffusion-localization tran-
sition is observed. However, we emphasize that the com-
bined ROZ+MCT framework predicts ideal transitions,
whereas in experiment or simulation transitions will always
be smeared out. Throughout this contribution we employ the
type-A/type-B terminology that is conventionally used to
characterize the behavior of a dynamic correlator as an ideal
transition occurs. This terminology refers to the decay pat-
tern of the correlator as well as to the behavior of its long-
time limit upon crossing a dynamic transition. In a “type-A”
transition a correlator relaxes in a single step, and its long-
time limit may assume arbitrarily small nonzero values. In a
transition of “type-B,” on the other hand, a correlator decays
in a distinct two-step pattern; upon crossing the transition the
second decay step is delayed to infinity and the long-time
limit of the correlator jumps from zero to a nonzero value.
The type-B behavior is well-known from bulk glass formers
�30� and is usually attributed to a “cage effect” imposed upon
fluid particles by their neighbors.

This remarkably rich phase behavior has motivated simu-
lation studies which—as a consequence of the considerable
increase in available computation power—have meanwhile
come within reach. Short accounts have been given in
�31,32�. In this contribution we elaborate on our investiga-
tions on the dynamic behavior of a fluid confined in a disor-
dered porous matrix within the QA picture. For simplicity,
and for congruence with the theoretical studies �25–27�, we
consider a fluid of hard spheres confined in a disordered
matrix formed by hard spheres of the same size. Investiga-
tions are based on event-driven molecular dynamics simula-
tions. Within the two-dimensional parameter space we focus
mainly on three representative pathways to put the theoreti-
cal predictions to a thorough test: �i� a path at constant low
matrix packing fraction, probing the existence of the continu-
ous type-B transition, �ii� a path at constant intermediate ma-
trix packing fraction, probing the discontinuous type-A tran-
sition and the reentrant scenario, and �iii� a path at
intermediate, constant fluid packing fraction, probing the
diffusion-localization transition. Results are summarized in
kinetic diagrams, where we consider—complementing our
previous communication—different criteria to define dy-
namical arrest. We compare our simulation results with the
predictions of MCT, which, however, is not straightforward
due to the ideal nature of the latter.

The paper is organized as follows: in Sec. II, we present
the model and our simulation method, transferring the rather
lengthy description of the system setup to Appendix A. Re-
sults are compiled in Sec. III: we start with the static struc-

ture of the system and then discuss various methods of how
to define slowing down and the ensuing kinetic diagrams. In
the subsequent three subsections we discuss the intermediate
scattering functions and the mean-squared displacement
along the three aforementioned paths through parameter
space. The final subsection of Sec. III shall deal with the van
Hove correlation function in order to discuss trapping. In
Sec. IV, we extend the analysis of the intermediate scattering
functions to discuss the arrest scenarios in more detail. The
paper closes with concluding remarks alongside with an out-
look on future work required to settle questions yet open.
The aforementioned Appendix A is succeeded by Appendix
B in which we elaborate on the issue of the effects of system
size on the dynamical correlation functions.

II. MODEL AND METHODS

For the purpose of this work we opted for the “quenched-
annealed” �QA� protocol since it is well-defined, well-
tractable by theory, and involves only a small number of
parameters. In this protocol both the porous confinement and
the confined fluid are represented by a set of particles, con-
ventionally called “matrix” and “fluid” particles or—
borrowing from the typology of metallurgy—as “quenched”
and “annealed” component. In this, QA systems bear resem-
blance to mixtures; however, the matrix particles are pinned
at particular positions and act as obstacles for the fluid par-
ticles. In this work, we exclusively consider systems contain-
ing one matrix and one fluid species; quantities pertaining to
those species will be designated with the subscripts “m” and
“f,” respectively.

Adopting the concept of immobile obstacle particles,
there are still numerous schemes for their arrangement
�24,32–35�. The QA protocol specifies the positions of the
matrix particles to be frozen from an equilibrium one-
component fluid; the fluid particles merely move within this
matrix and do not exert influence upon it �48�. Notably, the
fluid particles may also dwell in “traps”—finite spatial do-
mains entirely bounded by infinite potential walls formed by
the confining matrix.

Since for this work we are interested in a minimal ap-
proach to the dynamics of a fluid moving in disordered con-
finement, we decided to exclusively employ hard-sphere
�HS� interactions among the particles. This deprives the sys-
tem of any inherent energy scale, rendering the only relevant
system attributes to be of geometrical nature. We further re-
duced the parameter space by requiring all particles involved
to be of the same �monodisperse� diameter �. This intro-
duces � as the unit of length used throughout this study, and
leaves the system to be governed by mere packing fractions,
namely the matrix packing fraction �m and the fluid packing
fraction �f. As mentioned before, this particular choice of
system was examined in �25–27�. A snapshot of a typical
HS-QA system at large matrix density is shown in Fig. 1.

In this work, we study QA systems utilizing molecular
simulations. Since we are primarily interested in dynamical
features, we applied molecular dynamics �MD� simulations
to track the physical time evolution of a system. All MD
computations were performed using the event-driven algo-
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rithm described in �36�; modifications to that algorithm were
essentially limited to fixing particles in space in order to
adapt to the QA protocol. �Notably, this adjustment invali-
dates the conservation of momentum and angular momen-
tum.� As is conventional, we employed periodic �toroidal�
boundary conditions and the minimum-image convention in
order to mimic an infinite system.

In addition to the usual thermodynamic averaging, �¯ �,
the QA protocol imposes another averaging procedure over
disorder, ¯, so as to restore homogeneity and isotropy. De-
pending on the state point ��m,�f� and the number of par-
ticles in the system, we averaged our data over at least ten
matrix configurations; for selected state points, we increased
that number to as much as 40.

A nontrivial task is to find an initial system configuration
given some state point. In this work, we are interested in
systems in which the Nf fluid particles comprise most of the
space that is left accessible to them by the Nm immobile
matrix particles—i.e., high-density systems. Generating in-
stances of the porous confinement is effortless, since for all
state points of interest, �m is situated well within the fluid
regime when used for a one-component system of mobile
particles. The problem rests in determining permissible ini-
tial positions for the Nf fluid particles. Creating an amor-
phous high-density configuration of bulk monodisperse hard-
sphere particles already represents an interesting task, with
various elaborate algorithms having been developed to ac-
complish this task �37,38�. However, none of these algo-
rithms are suited for adaption to the setup of HS-QA sys-
tems. This unfortunate finding prompted us to devise a
custom routine which is described in detail in Appendix A.

After successful setup of a system instance, the simulation
time was set to t=0 and an attempt to equilibrate the system
using the MD routine was made. The decision whether or not
the particular system realization was considered equilibrated

was based on the mean-squared displacement

�r2�t� = ��rt�t� − rt�0��2� , �1�

where rt�t� is the location of a tagged �superscript “t”� fluid
particle at time t. Note that the above definition is the one
used in Sec. III and hence involves an average over matrix
configurations; of course this average has to be omitted when
using �r2�t� to characterize a single system realization. Also,
note that the notion of a “tagged particle” does not imply the
presence of an additional tracer particle.

We defined a system realization to be in equilibrium if
�r2�t����r�

2=100 was fulfilled. We allowed at least t�

=30 000 time units for the system to equilibrate; for certain
state points we extended t� to as much as the tenfold value.
The conventional unit of time �=�m�2 /kBT used throughout
this work is based upon the mass m of the fluid particles,
their diameter � �see above�, and their temperature T �39�.

Data were only compiled after equilibration was at-
tempted, using the final configuration of the equilibration run
as initial configuration of the data run. Generally, the final
time for data collection, td, was chosen to be equal to the
final time of the equilibration attempt, te; in particular in
some nonequilibrated systems we also used td� te to inves-
tigate particular features of the system. For most state points,
we chose N=Nm+Nf	1000 to be the total particle number
�49�. In order to retain reasonable statistics even close to
�f=0, we increased N to as much as 12 000 for elevated �m,
such that Nf�50 for all state points.

III. RESULTS

A. Static structure

The most obvious properties to inspect in our systems are
simple static structural properties; this investigation was al-
ready carried out in great detail in �40�. In the present context
static properties are of use for a different reason: Since the
particles were chosen to be of monodisperse diameter �,
crystallization might take place in the case of dilute matrices.
Inspection of the radial distribution function g�r� and the
static structure factor S�k� provides a means to determine
whether or not this is the case. In fact, it is sufficient to
investigate fluid-fluid correlations, gff�r� and Sff�k�, since
only for �f��m systems are prone to crystallization. There-
fore, the index “ff” will henceforth be dropped.

We first consider the static structure factor

S�k� =
4	

Nf

�

i

Nf

�
j

Nf rij

k
sin�krij�� , �2�

where rij = �ri
f−r j

f�, and ri
f denotes the location of fluid particle

i. Figure 2 displays this function for moderate ��m=0.1� and
for low ��m=0.05� matrix packing fractions, i.e., for systems
particularly prone to crystallization. Clearly, all features of
S�k� evolve smoothly upon increasing �f, suggesting that no
phase transition takes place. Moreover, the absence of sharp
peaks for all state points indicates that no simple crystalline
long-range order is present.

Related arguments hold for the radial distribution function

FIG. 1. �Color online� Snapshot of a quenched-annealed mixture
of hard spheres at �m=0.25 and �f=0.10. Dark �blue�: matrix par-
ticles, light �gray�: fluid particles.
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g�r� =
V

Nf
2
� �

i�j

Nf

��r − rij�� , �3�

where V is the system volume. Figure 3 shows this function
for the same matrix packing fractions as above

��m� 
0.1,0.05��. As for S�k�, the features of g�r� develop
continuously, which again supports the notion that a phase
transition is absent.

Additional peaks in g�r� at specific positions would
be a hallmark of crystallization. For fcc- or bcc-like
short-range order, the most pronounced additional peaks
would be located at rfcc=
�2 or rbcc=
�3, where

= 
��m+�f� /�max�1/3 and �max=	 / �3�2� is the volume
fraction of close-packed monodisperse hard spheres. For in-
stance, for �m=0.05 and �f=0.50, crystallites would cause a
peak at rfcc	1.56 or rbcc	1.91. Clearly, peaks at these po-
sitions are absent in Fig. 3. On the other hand, in both panel
�a� and �b� an additional peak at r	1.8 emerges upon in-
creasing �f. However, this peak is a well-known feature of
glass-forming systems �41� and thus provides further evi-
dence for the absence of crystallization. We conclude that
crystallites, albeit possibly temporarily present, do not play a
major role in the systems under investigation.

B. Kinetic diagrams

Many features of the system under investigation can be
understood by means of kinetic diagrams in which the
“state” of a dynamic property is indicated in the plane
spanned by �m and �f. In an earlier work �31� we presented
a kinetic diagram based on the mean-squared displacement
�r2�t�. In order to classify the state of the system, we chose a
mean-squared displacement �r�

2=100 and a simulation time
t�=30 000; if the system obeyed �r2�t����r�

2 then it was
considered “nonarrested,” and otherwise “arrested.” The so-
constructed kinetic diagram qualitatively confirmed the be-
havior of the single-particle dynamics of the system at hand
as predicted by MCT �27,31�. The arrest line determined
from this criterion is indicated in Fig. 4.
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FIG. 2. �Color online� Fluid-fluid static structure factor S�k� for
a series of �f values at constant �m. �a� �m=0.05, �b� �m=0.10.
Error bars represent one standard deviation of the mean for different
system realizations.
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FIG. 3. �Color online� Fluid-fluid radial distribution function
g�r� for a series of �f values at constant �m. �a� �m=0.05, �b�
�m=0.10. Error bars: see Fig. 2
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FIG. 4. �Color online� Kinetic diagram based on single-particle
properties �see text�. Symbols: time ts needed for Fs�k=7.0, t� to
decay below Fs

�=0.1. Thick solid �blue� line: interpolation through
points for which ts	103. Thick dotted �green� line: arrest line based
on �r2�t� from �31� �extended to low �f values�. Thin dashed and
dotted �black� lines: MCT transition lines pertaining to single-
particle properties from �27�.
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In Fig. 4, we present a kinetic diagram of the system
under investigation based on the self-intermediate scattering
function

Fs�k,t� =
��k

t �t��−k
t �0��

��k
t �0��−k

t �0��
, �4�

where �k
t �t�=exp
ik ·rt�t�� is the density of a tagged �super-

script “t”� fluid particle in k space after some time t has
passed �50�. The symbols in the figure indicate the times ts
needed for Fs�k=7.0, t� to decay below the value Fs

�=0.1.
The value k=7.0 was chosen to be close to the main peak in
S�k� in a typical high-density QA system—for instance, for
�m=0.05 and �f=0.50 �cf. Fig. 2� the first peak in S�k� is
located at k	7.2; for �m=0.25 and �f=0.10 it is found at
k	6.6.

If we let ts
�	103, discriminating whether for a state point

ts� ts
� �arrested� or ts� ts

� �nonarrested� yields the thick solid
�blue� line in Fig. 4. Obviously, the latter is only slightly
different from the thick dotted �green� line that is obtained
from the �r2�t� criterion described above. This is not
unexpected since both Fs�k , t� and �r2�t� are single-
particle properties, and in the Gaussian limit it is even
Fs�k , t�=exp
k2�r2�t� /6� �42�. Thus, the validity of the ap-
proach chosen in �31� is confirmed.

In order to complement the kinetic diagrams based upon
single-particle properties, in Fig. 5 we present for the first
time a kinetic diagram for a collective property of the sys-
tem. For comparison with the theory developed in �25–27�
we chose to operate with the connected part of the interme-
diate scattering function

Fc�k,t� =
���k�t���−k�0��
���k�0���−k�0��

, �5�

where ��k�t�=�k�t�− ��k�0�� is the fluctuating part of
�k�t�=�iexp
ik ·ri

f�t�� �cf. Sec. IV�. Very much like for the

self-intermediate scattering function Fs�k , t�, in this figure we
display the times tc needed for Fc�k=7.0, t� to decay below
the value Fc

�=0.1. The thick dash-dotted �red� line in Fig. 5
interpolates through points for which tc	100. The shape of
this iso-tc line clearly contradicts the MCT scenario �25,26�,
which predicts a re-entrance regime �a “bending-back” of the
collective glass transition line� for large values of �m.

Since the arrest line obtained from ts is situated at consid-
erably larger �m than the diffusion-localization line predicted
by MCT, it is reasonable to expect a similar shift for the
glass transition line. Unfortunately, an estimate for such shift
suggests that the reentrant scenario may take place at com-
binations of �m and �f at which systems cannot be set up
due to geometric constraints �cf. Appendix A�. However, one
should also bear in mind that the available MCT calculations
are based on structure factors obtained from integral equa-
tions �25–27� as it is still difficult to extract reliable blocked
correlations from simulations �43,44�. Thus, it remains hard
to disentangle the inherent deficiencies of MCT from those
related to the input structural data, especially at high matrix
densities.

Based on simple arguments, in �27� it is concluded that
the glass transition line has to coincide with the diffusion-
localization line in the limit of vanishing fluid density. The
data presented in Figs. 4 and 5 are ostensibly inconsistent
with this expectation. We remark, however, that our simula-
tions do not provide for this special case since we decided to
retain a nonvanishing number of fluid particles in every sys-
tem realization so as to always have finite fluid-fluid corre-
lations. More importantly, in Sec. IV we will provide evi-
dence that using the present definition of the decay times tc
and ts, the two quantities are not quite comparable to one
another.

C. Path I: constant low matrix density

In this subsection, as well as in Secs. III D and III E, we
refine our findings from �31� concerning Fs�k , t�, Fc�k , t�, and
�r2�t�. Additionally, we computed the logarithmic derivative

z�t� =
d�log �r2�t��

d�log t�
, �6�

which facilitates the discussion of �r2�t� since in an assumed
subdiffusive law of the form �r2�t�
 tz it represents the mo-
mentary value of the power z. The first set of data we present
for state points at various �f at a common �m=0.05, which
corresponds to a vertical line in the kinetic diagrams Figs. 4
and 5 that shall henceforth be referred to as “path I.”

In Fig. 6, the time dependence of Fc�k , t� and Fs�k , t� is
depicted. For both observables, the wave vector was chosen
to be k=7.0, which is close to the first peak in the static
structure factor �cf. Fig. 2�. For elevated �f an intermediate-
time plateau can be identified in both Fs�k , t� and Fc�k , t�; as
�f is increased, this plateau extends to longer and longer
times but does not change in height. Moreover, Fs�k , t� and
Fc�k , t� decay on the same time scale as they approach this
type-B transition. This is a well-known phenomenon in bulk
glass formers �30�, where the collective glass transition
drives the arrest of the individual particles.
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FIG. 5. �Color online� Kinetic diagram based on collective prop-
erties �see text�. Symbols: time tc needed for Fc�k=7.0, t� to decay
below Fc

�=0.1. Thick dash-dotted �red� line: interpolation through
points for which tc	100. Thin dashed and solid �black� lines: MCT
transition lines pertaining to collective properties from �27�.
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The bulk-like behavior is also prevalent in �r2�t�, as is
evident from Fig. 7. For the lowest value of �f depicted,
�r2�t� crosses over directly from ballistic �z=2� to diffusive
�z=1� behavior. Upon increasing �f the ballistic range is
followed by a distinct regime in which �r2�t� grows only
very slowly, which is reflected by a drop of z�t� below unity
and as low as 0.15 for the highest �f considered. This is
another manifestation of the cage effect �cf. Sec. I�. For all
such �f, ensuingly diffusive behavior is recovered in the

long-time limit, with the time to approach z=1 increasing
enormously with �f.

D. Path II: Constant intermediate matrix density

In this subsection we present data for state points at vari-
ous �f at a common �m=0.20, i.e., along another vertical
line in the kinetic diagrams presented in Sec. III B. In the
following we will refer to this line as “path II.”

In Fig. 8, the time dependence of Fc�k=7.0, t� and
Fs�k=7.0, t� is depicted. As can easily be seen, the decay
pattern of both correlators is quite unlike that in Sec. III C
and Fig. 6 therein. Moreover, Fc�k , t� and Fs�k , t� deviate
substantially from one another. Most strikingly, the time
scales on which the correlators decay to their long-time value
are vastly disparate, and increasingly so for larger values of
�f. At �f=0.22, for instance, the decay times read
tc=7.9�100 and ts=5.4�103. This represents a difference of
almost three decades in time, with the collective correlator
decaying faster.

Fc�k=7.0, t� seems to approach a transition since the time
it needs to decay to its long-time value increases substan-
tially as �f is increased. However, it is difficult to pinpoint
for sure whether Fc�k , t� exhibits a transition of type-A
�single-step decay� or type-B �two-step decay, cf. Sec. III C�.
For one, in simulations a type-A transition may show fea-
tures that differ from the theoretical predictions �26�. Further,
it is possible that an intermediate-time plateau would emerge
upon increasing �f above 0.27 �the largest value of �f de-
picted in Fig. 8�. Note, however, that beyond �f=0.27 geom-
etry strongly inhibits to realize system instances �see Appen-
dix A�. We conclude that using the current scheme of
simulation and analysis, no definite statement can be made
about the type of transition in Fc�k , t� in this part of the
kinetic diagram.
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FIG. 6. �Color online� Intermediate scattering functions for a
series of �f values at fixed �m=0.05 and k=7.0. �a� connected
correlator Fc�k , t�, �b� single-particle correlator Fs�k , t�. Error bars:
see Fig. 2.
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Fs�k=7.0, t� shows an intermediate-time plateau for large
values of �f, just as in Fig. 6. The times at which such
plateau may be identified range from 100� t�101 for
�f=0.15 up to 100� t�104 for �f=0.27. In contrast to Fig.
6, Fs�k , t� attains an additional nonzero long-time value that
increases with �f. A tail can be identified even at the lowest
fluid packing fraction considered ��f=0.05�, whereas in this
case no intermediate-time plateau is present. Therefore, for
the sequence of state points at hand, two superposing decay
behaviors exist in Fs�k , t�: a type-A transition responsible for
the long-time value, and another relaxation mechanism at
higher �f that leads to the intermediate-time plateau and is
likely to be caused by a weak collective cage effect. The
type-A transition is probably connected to the continuous
diffusion-localization transition predicted by MCT �27� and
is discussed in more detail in Secs. III E and III F.

Although not as obvious, Fig. 9 evidences that the mean-
squared displacement �r2�t� differs from bulklike behavior as
well. As is the case for �m=0.05, for �m=0.20 ballistic be-
havior is followed by a regime for which z drops well below
unity. Contrary to the bulklike case, this observation holds
also for very low �f, suggesting that caging by fluid particles
is not the only mechanism effective in this regime. Most
likely, at low �f the drop in z is entirely due to the porous
matrix, while at larger �f both the pores and caging play a
role.

For low �f, the range of decreasing z is followed by an
almost straight increase to z=1, i.e., a direct approach of the
diffusive regime. Upon increasing �f, a distinct intermediate-
time plateau with z�1 emerges in z�t�, which corresponds to
a subdiffusive regime in �r2�t�. The estimated value
z	0.78 in the subdiffusive regime is only weakly dependent
on �f; merely for �f�0.26 the value of z seems to system-

atically decrease. This decline, however, may be due to in-
sufficient equilibration of the respective systems.

E. Path III: Constant fluid density

Lastly we turn to a selection of state points at varying �m
for a relatively low fixed �f=0.10, i.e., along a horizontal
straight line in the kinetic diagrams, perpendicular to paths I
and II. This line will henceforth be called “path III.”

In Fig. 10, we present Fc�k=7.0, t� and Fs�k=7.0, t� for
these state points. The correlators differ substantially from
each other and from their bulk-like counterparts—even more
than was the case in Sec. III D. Most notably, Fs�k , t� attains
a sizeable nonzero value as time approaches infinity, and
does so more pronouncedly as �m increases. By contrast, for
all �m represented in Fig. 10 Fc�k , t� decays strictly to zero.
On the other hand the actual pattern of the decay to the
long-time value is quite similar in Fc�k , t� and Fs�k , t�: unlike
in Fig. 8, both correlators decay in a single step, suggesting
only type-A transitions to be involved.

Comparison of Fig. 11 with Figs. 9 and 7 reveals the
functional form of �r2�t� to be more sensitive to �m than to
�f. As observed in Sec. III C, at low matrix densities the
initial ballistic behavior is directly followed by diffusive be-
havior. For intermediate �m�0.25 �cf. Sec. III D� a region
of very slowly increasing particle displacement �z�1� suc-
ceeds the ballistic range. The value of the exponent z in this
region decreases as �m increases. Subsequently, diffusive be-
havior is recovered as z raises in an almost linear fashion.

Upon further increasing �m, at some �m
� a geometric per-

colation transition takes place in the space accessible to the
fluid particles �“voids”�, with a void stretching through the
whole system at �m��m

� . This transition is intimately con-
nected with the diffusion-localization transition predicted by
MCT �27� and observed in our simulations. As a hallmark of
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this transition, �r2�t� does not approach diffusive behavior
for �m	0.25 but instead remains at an approximately con-
stant z	0.5 for a window covering about three decades in
time. Since for that matrix density z�t� ultimately increases
beyond 0.5, one can expect the diffusion-localization transi-
tion to take place at slightly higher �m. An upper bound to
that value is �m=0.2625, the smallest value presented that is
larger than 0.25. At this packing fraction of obstacles the
window of constant z extends over roughly two decades in
time, with z ultimately decreasing below that plateau.

Judging from these observations, the subdiffusion expo-
nent z at the diffusion-localization transition might be
slightly lower than 0.5. Nevertheless, the observed value of z
is in striking agreement with MCT, which predicts that
z=0.5 �27�. An additional agreement of numbers calls for
investigation: it has long been known in theory �45� and also
verified in experiment �46� that in a one-dimensional random
walk—so-called “single-file diffusion”—the mean-squared
displacement of the particles grows with precisely the same
exponent as in our case. However, it remains an open ques-
tion whether in QA systems the main effect in single-file
diffusion—nonovertaking particles—is prevalent, or if other
�possibly compensating� reasons lead to a coincidental agree-
ment in z.

F. Trapping

In this subsection we will elucidate some aspects of the
geometrical structure imposed by the quenched matrix upon
the fluid immersed therein. The key concept involved is that
of “voids,” i.e., domains of space that may be fully explored
by a fluid particle if placed within. In HS-QA systems dis-
tinct voids are separated by infinite potential walls, and there
exist voids of finite volume. Particles located in such finite

void cannot travel infinitely far away from their initial loca-
tion; such particles will henceforth be denoted as “trapped
particles,” and the corresponding void as a “trap.” Due to the
statistical nature of the matrix structure, at any nonzero ma-
trix density there exist traps. Likewise, for any nonzero den-
sity of traps there will be trapped particles since the initial
locations of the fluid particles are randomly distributed.

Two types of nontrivial questions remain to be assessed.
First of all, there exists the aforementioned distinct �m

� above
which all fluid particles are trapped. Differently phrased �cf.
Sec. III E�, upon varying �m, a percolation transition of the
space accessible to the fluid particles takes place: for
�m��m

� , there exists an infinitely large void, whereas for
�m��m

� any void is of finite size. Naturally, the question
arises what the precise value of �m

� is. In the following we
will investigate the behavior of fluid particles that explore
the voids by studying the distribution of their displacements,
as was done before for other types of confinement �21�.

Our quantity of choice for the desired analysis is the self-
part of the direction-averaged van Hove correlation function

Gs�r,t� = ���r − �r�t��� , �7�

where �r�t�= �rt�t�−rt�0�� and by construction
�0

�Gs�r , t�dr=1. Strictly speaking, to assess the void structure
only knowledge about the infinite-time limit Gs�r , t→�� is
required. However, since data are readily available, in the
following we will also discuss some features of the time
evolution of Gs�r , t� in order to corroborate and extend our
findings from the previous sections.

Using the self-part of the van Hove function a number of
quantities of interest can be assessed at least qualitatively.
For instance, the matrix density at percolation, �m

� , can be
estimated by exploiting the fact that as the system control
parameter �here �m� is varied the average size of the “aggre-
gates” �in this case the traps� diverges at the transition. For
sufficiently small r, the distribution of trap sizes is reflected
in Gs�r , t→�� since in the infinite-time limit the nontrapped
fluid particles have diffused far away. Concentrating on a
particular distance r̃��, the function Gs�r̃ , t→� ;�m�
will exhibit two maxima as �m is varied, one for �m��m

�

and one for �m��m
� . The corresponding integral

�0
r̃Gs�r , t→��dr represents an estimate for the fraction of

fluid particles located in traps. Of course, in simulations
t→� has to be approximated by some finite time t̃ greater
than the structural relaxation time of the system.

In Figs. 12 and 13 the van Hove function is displayed at
various t as a function of r. For visual guidance, curves are
highlighted for selected times. The times of successive light
�gray� lines differ by ��610, i.e., there are about six curves
per time decade. In Fig. 12�a� Gs�r , t� is shown for
�m=0.05 and �f=0.50, a bulk-like state point like those dis-
cussed in Sec. III C. At short times Gs�r , t� exhibits a single,
approximately Gaussian peak. As t increases, the maximum
value of this peak decreases, but notably its r position re-
mains nearly constant even for large t. This is another mani-
festation of the cage effect prevalent in glassy systems �41�.
Further support for this picture arises from the second peak
in Gs�r , t� that emerges at r	1.1 for t�102, which indicates
the presence of hopping processes. For very long times even
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a moderate third peak appears at r	2 as Gs�r , t� recovers a
Gaussian-like shape centered at r�3.

The validity of these arguments becomes clear when con-
sidering Fig. 12�b� which depicts Gs�r , t� for �m=0.20 and
�f=0.22. For this state point, representing intermediate ma-
trix density, similar features can be observed for short and
intermediate times, only with the first peak decreasing slower

in height, the second peak being less pronounced, and the
third peak missing. However, for large t and small r the
shape of Gs�r , t� is markedly different from that in Fig. 12�a�:
even for t̃=7.1�104 �the largest time considered� we find
Gs�r , t̃� to be nonzero for small r. Since curves of Gs�r , t�
very much resemble each other for t� t̃ and r�0.5, it is
reasonable to assume that in this range Gs�r , t̃� represents a
reliable approximation to Gs�r , t→��. Hence we can infer
the presence of trapped particles, with their fraction being
x	�0

r̃Gs�r , t̃�dr=8% using r̃=0.5. Moreover, since Gs�r , t̃� is
close to zero for r� r̃, there likely exist only few traps with
a spatial extent exceeding r̃.

The trend seen from Figs. 12�a� and 12�b� is continued by
the systems represented in Fig. 13. Panel �c� of that figure
shows the state point at �m=0.25 and �f=0.10, that is, close
to the diffusion-localization transition �discussed in Sec.
III E�; the state point in panel �d� is situated well in the
localized phase at �m=0.30 and �f=0.05. The change in
shape over time becomes less pronounced as �m increases,
turning the second peak into a mere shoulder.

The largest times depicted in Fig. 13 again represent a
sound approximation of Gs�r , t→��. For the state point in
panel �d� we numerically obtain x	�0

r̃Gs�r , t̃�dr=98% using
r̃=3 and t̃=7.8�104, which is in excellent agreement with
the figure x=100% that would be expected in an infinitely
large system residing beyond the percolation transition. For
the state point in �c�, using the same r̃ and t̃ we obtain
x�58%, which, however, is rather imprecise since Gs�r̃ , t̃� is
considerably greater than zero.

In Figs. 13�c� and 13�d� the correlator Gs�r , t� differs
markedly from that in Figs. 12�a� and 12�b�. For one, in both
�c� and �d� a second peak is present even for t→�, suggest-
ing that on average traps are large enough to allow for hop-
ping. Another feature is less obvious but more important to
the percolation transition: for large distances Gs�r , t→�� is
greater in �c� than in �d� for the same r. This implies that the
mean trap size is larger in �c� than in �d�, which is not
unexpected—in fact this confirms the transition to take place
between �b� and �d�. Thus, using Gs�r , t� we find
0.22��m

� �0.30 as an estimate for the matrix packing frac-
tion at the percolation transition, which is in accordance with
our findings in the previous sections.

IV. DISCUSSION

In our presentation of the global aspects of the system’s
dynamics, as well as of its behavior along selected paths in
the 
�m,�f� plane, we have focused our attention on self and
connected density correlators as indicators of the single-
particle and collective dynamics. This choice is motivated by
the key role played by these dynamic correlation functions
within the MCT framework for confined fluids, which pro-
vides detailed predictions for Fs�k , t� and Fc�k , t�. Before dis-
cussing in more detail the comparison between the theoreti-
cal scenario of MCT and our simulations, it is instructive to
study correlation functions related to Fs�k , t� and Fc�k , t�.
Namely, we will investigate here the total intermediate scat-
tering function
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F�k,t� =
��k�t��−k�0��

S�k�
�8�

as well as a modification of the self-intermediate scattering
function in which the long-time plateau �as observable, for
instance, along paths II and III� is subtracted out. This will
allow to clarify aspects related to the kinetic diagram of the
system and to facilitate the interpretation of the numerical
results in the light of the MCT predictions.

By construction, fluids confined in porous media possess
nonzero average density fluctuations, ��k��0, induced by
the matrix structure. This purely static background becomes
visible in the long-time limit of the total intermediate scat-
tering function F�k , t�. Collective relaxation phenomena in
confined fluids are therefore more conveniently described by
the connected correlator, Eq. �5�, in which only the fluctua-
tions of the microscopic density are considered. Nevertheless
it is interesting to also inspect the shape of F�k , t� as a func-
tion of the state parameters. In Fig. 14 we show F�k , t� for
some selected densities along path I ��m=0.05� for the same
value of k considered in Fig. 6. Except for the lowest fluid
density, �f=0.05, the F�k , t� correlator attains a finite, size-
able plateau at long times. To check whether this long-time
plateau is due to the purely-static background mentioned
above or actually reflects a nonergodic behavior of the sys-
tem, we also include in this figure the function
�Sc�k�Fc�k , t�+Sb�k�� /S�k�, where

Sb�k� = ��k���−k� �9�

is the so-called blocked structure factor, and
Sc�k�=S�k�−Sb�k� is the connected structure factor. It is easy
to show that, if the system is ergodic, the blocked structure
factor is the infinite-time limit of the un-normalized total
intermediate scattering function �26� and that

F�k,t� =
Sc�k�Fc�k,t� + Sb�k�

S�k�
�10�

holds as an equality.
From Fig. 14, we see that this equality is indeed fulfilled

for �f�0.48, while slight deviations occur at the largest fluid
packing fractions. Note, however, that the calculation of
Sb�k� is also affected by statistical noise �see error bars in

Fig. 14� and systematic effects �44�. Nonetheless Eq. �10�
provides an effective criterion to discriminate nonequili-
brated samples as far as the collective relaxation is con-
cerned. We also note that if we employ the criterion
F�k=7.0, tt�=0.1 to define the relaxation time tt, the latter
strongly overestimates the slowness of the collective relax-
ations compared to tc due to the emergence of the finite pla-
teau in F�k , t� upon increasing �f. This should be born in
mind when discussing decoupling phenomena between
single-particle and collective properties.

A similar, yet physically different long-time plateau is ob-
served in the self-intermediate scattering functions along
path II and III �see Figs. 8 and 10�. As discussed in Sec. III F,
the finite value of Fs�k , t→�� reflects the trapping of par-
ticles in disconnected voids of the matrix structure. Since the
existence of a rising plateau affects the evaluation of the
relaxation times ts, it is sensible to define a modified cor-

relator F̃s�k , t�=Fs�k , t�−Fs�k , t→��, where the long-time
limit Fs�k , t→�� is identified by some construction �51�.
The results of this procedure are collected in Fig. 15 for
selected state points at �f=0.10 �path III� and compared to
the corresponding Fs�k , t�. At the two largest �m the relax-
ation to the finite plateau is not complete within the time
range considered, and the correlators are left unshifted.
Evaluation of the single-particle relaxation time t̃s, defined

by F̃s�k=7.0, t̃s�=0.1 as for the other correlators, allows to
filter out the contribution to the single-particle dynamics due
to trapping.

We constructed two alternative kinetic diagrams for the
system at hand using the relaxation times tt and t̃s obtained

from F�k , t� and F̃s�k , t�. As in Sec. III B, lines drawn in Figs.
16 and 17 correspond to a fixed, constant value of the relax-
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ation times �isorelaxation times lines�. Let us first focus on
Fig. 16, displaying the kinetic diagram based on tt. In this
case, the range of state points available to determine the
isorelaxation times lines is more limited due to the incipient
growth of the plateau in the region of large �f and large �m.
Nevertheless it is clear that the shape of the estimated arrest
line is non-re-entrant, confirming the analysis based on the
connected correlators �see Fig. 5�.

A more interesting effect is observed in Fig. 17 where we
show the kinetic diagram based on t̃s. For better comparison
with the analysis in Sec. III B we also include the isorelax-
ation times lines obtained from the self and the connected
correlators. Interestingly, the shape of the kinetic diagram for
t̃s strongly resembles that obtained from the connected cor-
relator. In particular, the iso-t̃s lines do not bend rapidly to-

ward �f=0 as �m is increased but rather stretch to larger �m
values, following the trend of the iso-tc line. This effect can
be understood as follows: after subtracting the long-time pla-
teau, which is due to trapping, the residual relaxation of
Fs�k , t� is governed by a weak, collective caging effect. The
relaxation of Fs�k , t� toward the long-time limit occurs, in
fact, on a similar time scale as the relaxation of Fc�k , t�. This
supports our interpretation of the complex relaxation pattern
of Fs�k , t� for large matrix packing fractions �see Fig. 8� as a
superposition of trapping and caging effects, and confirms
the connection between the diffusion-localization transition
and the appearance of a nontrivial decoupling between
single-particle and collective properties �31�.

V. CONCLUSION

In this contribution we have investigated the dynamic
properties of a fluid confined in a disordered porous matrix.
In our investigations we have reduced such system to a
simple QA model where the matrix is a quenched configura-
tion of a liquid and the fluid particles equilibrate within that
matrix. Both matrix and fluid particles are chosen to be hard
spheres of equal size. Thus, the parameter space characteriz-
ing the system reduces to a two-dimensional plane spanned
by the packing fraction of the matrix particles and that of the
fluid particles. Investigations have been carried out via
event-driven molecular dynamics simulations, observables
were evaluated using the double-averaging recipe character-
istic for QA systems. Specifically, we have evaluated the
connected and the single-particle intermediate scattering
functions, the mean-squared displacement, and the self-part
of the van Hove function.

The data and conclusions summarized here represent a
counterpart to the recently presented results obtained from a
theoretical framework �25–27�. The latter approach—an ex-
tension of MCT to the QA protocol—had predicted a number
of intriguing features in the kinetic diagram. Our investiga-
tions have complemented this scenario of ideal transitions,
unveiling the properties of the real transitions: �i� at low
matrix packing fractions we have undoubtedly confirmed the
predicted type-B glass transition scenario. �ii� For intermedi-
ate matrix packing fractions we have found at least two arrest
mechanisms of different nature, with the self-intermediate
scattering function displaying a more complex behavior than
its connected counterpart. This scenario can be rationalized
as a superpositioning of the effect of trapping in discon-
nected voids and of a weak caging mechanism collective in
nature. �iii� Varying at low fluid packing fractions the density
of the matrix we found evidence for a diffusion-localization
transition, reflected in the self-intermediate scattering func-
tion as well as in the mean-squared displacement and in the
self-part of the van Hove function. �iv� Despite considerable
effort we were unable to support the predicted reentrant tran-
sition scenario.

In order to obtain deeper insights into the open questions
we have additionally considered along path II the total inter-
mediate scattering function, and along path III we have sub-
tracted from the self-intermediate scattering functions the
long-time plateau as there is evidence that the latter is due to
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trapping. Our analysis of these data supports the previously
established notion of an interplay between the two phenom-
ena dominating the arrest transition at intermediate matrix
packing fractions, namely, trapping and caging. Work to dis-
entangle the effects of the latter on the dynamic correlation
functions is currently underway.
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APPENDIX A: SYSTEM SETUP DETAILS

As mentioned in Sec. II the initial setup of a HS-QA
system represents a formidable challenge. In this appendix,
we will point out algorithms known to succeed in setting up
disordered one-component HS systems at high density, com-
ment on problems in extending those algorithms to the QA
protocol, and report on our custom solution to the problem.

The challenge is the following: given the positions of the
Nm immobile obstacle particles, permissible positions are
sought for the Nf particles that during MD will be allowed to
move. Unfortunately, to this respect multiple complications
arise in HS-QA systems, the three most important of which
are: �1� particle overlaps are strictly forbidden, �2� in the
resulting configuration the matrix particles have to occupy
precisely specified locations, and �3� all voids—notably also
the disconnected ones—have to be considered as locations
for the fluid particles.

The simplest method—trial-and-error insertion of the
fluid particles—is useless already for setting up bulk high-
density systems of hard spheres. For the latter task a useful
straight-forward method �although prone to crystallization� is
compressing a low-density system, for instance by coordi-
nate rescaling combined with random particle displacements,
or by applying a unidirectional force in a bounded system.
However, there also exist elaborate algorithms to maximize
the density in disordered HS systems; they employ for in-
stance serial deposition �37� or overlap elimination �38�.

Unfortunately, the complications mentioned before render
these methods difficult to adapt and/or ineffective. Therefore,
in order to efficiently achieve high densities in HS-QA sys-
tems we devised a custom algorithm, which consists of the
following three steps:

�1� Upon insertion of a fluid particle its “real” diameter
�the diameter to be used during MD simulations� is reduced
to some minute value �“deflated”� so that the probability of
an insertion via trial-and-error is greatly increased. This way,
throughout the search of an allowed configuration all par-
ticles can be present in the system simultaneously.

�2� In order to find such allowed configuration a simple
Metropolis Monte-Carlo algorithm �47� is employed using
the HS potential. Since using this algorithm with the minute
diameters is meaningless, at the beginning of each sweep
�one displacement attempt for each fluid particle� the diam-
eter of each deflated particle is increased �“inflated”� to the

maximum value possible without overlapping another par-
ticle. If for a particle the latter value is greater than its real
diameter then inflating is done for this particular particle and
it is assigned its real diameter �“fully inflated”�.

�3� A disconnected void may be filled with �almost� any
number of deflated particles; however, the particular void
may be too small to accommodate all of these particles if
they were fully inflated. To remedy this problem, before cer-
tain sweeps all particles that are not yet fully inflated are
removed from the simulation box and then re-deflated and
re-inserted according to step 1. The number of sweeps sepa-
rating two such removal-and-reinsertion procedures is gradu-
ally increased so as to allow for any number of sweeps to
fully inflate a particle while still quickly “draining” crammed
voids.

Obviously, as soon as all particles are fully inflated the
setup routine is completed and a configuration fulfilling the
QA requirements has been found. In step 2 the fluid particles
are inflated serially. This leads to the distribution of diam-
eters covering a wide range at all times during iteration, ex-
cept when close to the approach of an allowed configuration.
Since this introduces a “fluctuating polydispersity,” we found
the generation of ordered states at high densities to be
strongly suppressed even for bulk monodisperse systems.

Figure 18 gives an overview over the state points at
which, according to the above-described steps, a system in-
stance with N=Nm+Nf	1000 particles may be set up with
probability P�N ,��	50% within �=10 CPU minutes �Intel
Core 2 Duo E8400�. Comparing the so-found line of dis-
crimination �red solid line in Fig. 18� with the �r2�t� dynamic
arrest criterion �green dotted line in Fig. 18; see Sec. III B
and �31�� and other features of the kinetic diagrams, one can
see that even using our custom routine the system setup rep-
resents a challenge to access the state points of interest.

Note that in practice a probability of 50% is unsatisfac-
tory. Ideally, none of the setup attempts should be rejected
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since as little bias as possible should be exerted on the sta-
tistics. However, already at relatively low �m achieving
P=100% is strictly impossible, the reason being that there
exist peculiar matrix configurations that prohibit all fluid par-
ticles to be inserted. Nonetheless, by prolonging the CPU
time � it is possible to increase P since more theoretically
possible system configurations can actually be realized.
Throughout this paper only state points have been considered
for which P�90% was achieved.

APPENDIX B: FINITE-SIZE EFFECTS

As mentioned in Sec. II, throughout this work we chose to
assign the same constant total number of particles
N=Nm+Nf=1000 to most systems simulated. The purpose of
this appendix is to determine for which state points this num-
ber is not sufficient to rule out the presence of finite-size
effects, and to describe our pertinent solution.

Strictly adhering to the approach of constant N, state
points with a large disparity of �m and �f attain low values
of either Nm or Nf. Neither is desirable since it will render the
calculation of properties pertaining to either the matrix or the
fluid inaccurate. In this work, the most extreme case for low
Nm is the state point ��m=0.050, �f=0.505�, with N=1000
entailing Nm=90. The corresponding extremal case for Nf is
the state point ��m=0.3000, �f=0.0025�, leaving only eight
fluid particles to move in a matrix of 992 particles. Hence, in
the present work the much more severe problem lies in low
values of Nf.

To remedy this problem we chose to adjust N such that
neither Nm nor Nf assume a value below a lower limit of
N�=50. The previous brief analysis shows that in none of our
systems Nm�N�, which limits the discussion to state points

with low Nf. In the following, we assess whether or not the
choice of N� is reasonable.

In order to limit the effort, we consider a single state point
representative of the problem of low Nf. Specifically, we in-
spect various observables at �m=0.2500 and �f=0.0125, i.e.,
at a state point close to both �f=0 and the percolation tran-
sition in the voids �cf. Secs. III E and III F�. Using
N=1000 this system attains Nf=48 which is reasonably close
to N�. To investigate finite-size effects we computed Fc�k , t�,
Fs�k , t�, �r2�t�, and z�t� for N=1000, 4000, and 10 000 while
in each case averaging over ten matrix configurations.

In Fig. 19, the dependence of Fc�k , t ;N� and Fs�k , t ;N�
upon N is visualized. The intermediate scattering functions
are shown for selected wave vectors, where any finite-size
effects should be most prominent at small k. Indeed, for
k=1.0 and t�101 there are noticeable discrepancies between
Fc�k , t ;N=1000�, Fc�k , t ;N=4000�, and Fc�k , t ;N=10 000�;
however, this is hardly surprising considering that even for
N=10 000 the corresponding length scale 2	 /k=2	 is only
slightly smaller than half the edge length of the simulation
cell. In fact, already for k=2, there is no distinguishable dif-
ference between Fc�k , t ;N=1000�, Fc�k , t ;N=4000�, and
Fc�k , t ;N=10000�. On the other hand, Fs�k , t ;N� displays
small consistent discrepancies between N=1000, 4000, and
10 000; however, the worst deviation between
Fs�k , t ;N=1000� and Fs�k , t ;N=10 000� �which is at k=8.0
and t= tmax=2.25�104� is no more than �12%. It is not
surprising that the Fs�k , t ;N� curves in this case exhibit
larger deviations from one another than the Fc�k , t ;N� curves
considering that the latter approach zero rather quickly
whereas Fs�k , t ;N� does not completely relax. Also, we point
out that any discrepancies in Fs�k , t ;N� for different N values
are well within the range of the error bars.
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Similarly, Fig. 20 illustrates the dependence of �r2�t ;N�
and z�t ;N� upon N. The mean-squared displacement displays
only minor differences for N=1000, 4000, and 10 000:
the discrepancy between �r2�t ;1000� and �r2�t ;10 000� at
t= tmax amounts to �24%; however, since throughout this
work we are interested in �r2�t ;N� on logarithmic scales, the
above deviation can be considered sufficiently accurate.
z�t ;N�, on the other hand, is clearly more susceptible to sto-
chastic errors than �r2�t ;N�, leading those errors to dominate

finite-size effects in z�t�3.6�103;N=1000�. For
t=3.6�103, we find a difference of mere 17% between
z�t ;N=1000� and z�t ;N=10 000�, which permits almost
quantitative interpretation.

We conclude that Nf=N� is sufficient to yield reliable re-
sults for all observables considered. None of the latter exhib-
ited a deviation of more than 20% between N=1000 and the
tenfold value for N, which validates all conclusions pre-
sented in this work.
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time ranges 
tmin, tmax�, keeping the upper bound tmax of the
range fixed at the maximum time available while progressively
increasing the lower bound tmin. If S / �1−M� is below some
preset tolerance threshold then Fs�k , t� is considered to be con-

stant in the corresponding time range. If this condition is met

while tmax / tmin�10 then F̃s�k , t�= �Fs�k , t�−M� / �1−M�. Oth-
erwise, Fs�k , t� has not reached its long-time plateau within the
time range considered.
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