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Abstract
Based on extensive integral-equation calculations and on complementary Monte Carlo
simulations we have investigated the phase behaviour of a class of two-dimensional model
systems where particles interact via short-range attractive and long-range repulsive potentials.
While for a particular member of this class of systems microphase formation has already been
studied in detail in the literature, we have provided evidence that—depending on the model
parameters that define this class of systems—both microphase formation and liquid–vapour
transitions can be observed. For those systems that form microphases we have focused on the
homogeneous fluid which is encountered at higher temperatures. By analysing the structure
functions we show that already in this disordered phase a precursor of the low-temperature
microphases can be identified: the wavenumber kc, which specifies those density fluctuations
against which the system becomes unstable when forming microphases at lower temperatures
also plays an important role in the homogeneous phase. For those systems that show
liquid–vapour phase separation we find clear trends in the position of the critical point and in
the location of the coexistence branches.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past few years, a remarkable number of theo-
retical contributions have been dedicated to elucidating the
spontaneous formation of pattern (or microphase formation),
induced by competing interparticle interactions operating on
different length scales [1–11]. In these potentials an attractive
component, dominant at short distances, is in concurrence with
a repulsive contribution which dominates at larger distances.
In two dimensions, the observed patterns are clusters, stripes
and bubbles (or inverse clusters). Similar morphologies are
also observed in three-dimensional systems: spherical clusters,
ordered arrangements of cylinders, or layers (lamellae). The
emergence of these patterns is the more astonishing as the
underlying interactions are spherically symmetric. In nature,
certain colloidal systems are characterized by such potentials,
where typically the attraction originates from the depletion
forces while the repulsion stems from the (weakly) screened

charge of the colloids. Experimental evidence for spontaneous
pattern formation in such systems has been given both in
two [12–16] and three [17–20] dimensions.

A profound insight into the properties of microphase
separating systems was provided in previous work of
Imperio, Reatto and co-workers, who focused mainly on two-
dimensional systems [1, 2, 4, 5, 7]. Their investigations are
based on a model that was first proposed in [22] where particles
interact via a potential �(r), given by

�(r) =

⎧
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(1)
where σ is the hard-core (HC) diameter, and εa (εr) and Ra

(Rr) represent the strength and the range of the attractive
(repulsive) contribution to the potential tail in �(r) beyond σ ,
respectively. Most of the above investigations were based on
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the following set of potential parameters: εa = εr, Ra = σ

and Rr = 2σ . The list of the sometimes quite surprising
phenomena that were studied by Imperio, Reatto and co-
workers for this system is quite exhaustive: it comprises
spontaneous and induced pattern formation [1], the transition
from the microphase formation to the homogeneous liquid [2],
the influence of confinement on the pattern formation [4],
and the rheological properties [5]. Very recently, an order
parameter theory was put forward to investigate the details of
the phase diagram of the three-dimensional counterpart [10].

To be more specific, Imperio, Reatto and co-workers
found out that, with increasing temperature, the transition
from the mesophase formation regime to the homogeneous
fluid is accompanied by a peak in the specific heat, which
arises as the mesophases break up. Detailed investigations
of the specific heat in this process provide evidence that
most likely the system undergoes neither a first-nor a second-
order transition, but rather (or possibly) a Kosterlitz–Thouless
transition [2]. Furthermore, the transformation from the cluster
to the stripe phase, which is induced by an increasing density,
is presumed to be of first order. Of particular relevance for
our work is also a density functional (DFT) approach proposed
by Archer [6], which leads to a phase diagram that is in
qualitative (but not quantitative) agreement with the simulation
data obtained in [2]. In particular in this contribution a
closed expression for a wavenumber kc was put forward, which
specifies those density fluctuations against which the system
becomes unstable, thus leading to the respective microphase
formation.

The aim of the present contribution is to study phase
transition scenarios for systems with short-range attractive and
long-range repulsive potentials from a more general point of
view. This includes not only the phenomenon of microphase
formation but also the conventional liquid–vapour transition.
To this end we have considered the potential �(r), defined in
equation (1), as the basis of a class of systems by introducing
two parameters, E and R: the first one is the ratio between
the interaction strengths, E = εr/εa, the latter one the ratio of
the range, R = Rr/Ra, of the two contributions to the tail of
�(r) beyond σ . From our investigations of a large portion
of the (E, R) plane we are able to identify those regions
where the systems show either of the two phase behaviour
scenarios. For microphase forming systems we find evidence
that precursors of the emerging microphases can already be
identified in the structure functions of the homogeneous phase
that the system forms at higher temperatures. Further, we show
that the aforementioned wavenumber kc plays a key role in the
structural properties of microphase forming systems: for all
systems characterized by the same kc value, the static structure
factors, S(k), show a maximum at k = kc. On the other
hand, we show that systems with competing interactions are
able to display a conventional liquid–vapour transition which
only occurs as the repulsive tail is sufficiently weak and/or
sufficiently short-ranged. For those systems we have traced out
the phase diagrams and we discuss trends in the localization
of the coexistence branches and of the (extrapolated) critical
points as the system parameters vary.

Our investigations are mainly based on integral-equation
approaches (whenever convergence could be achieved): the

Ornstein–Zernike (OZ) equation is complemented by the
Percus–Yevick (PY) and the hypernetted chain (HNC) closure
relations [23]. These data are complemented for selected
systems and particular state points by Monte Carlo simulations.

This paper is organized as follows: in the subsequent
section we briefly present the model and the theoretical tools
we have used, namely integral-equation approaches and Monte
Carlo simulations; technical and numerical details have been
transferred to the appendix. In section 3 we discuss the results
obtained for the two phase transition scenarios and the paper is
closed with concluding remarks.

2. Model and theoretical approaches

2.1. Model

In our system particles interact via the spherically symmetric
potential �(r) introduced in equation (1). Further, the system
is characterized by its temperature T (with β = (kBT )−1) and
an area density ρ. Throughout we will use reduced units, i.e.
ρ� = ρσ 2, r � = r/σ and k� = kσ ; for the temperature T
we have used the arbitrary temperature scale introduced in [1],
namely that for R = 2 and E = 1, βU(σ ) = −1. For
simplicity henceforth the asterisk is omitted.

With the parameters E and R introduced above we create
a class of potentials. In our investigations we have varied E
and R over the ranges [0, 1] and [0.5, 2.5], respectively. In
an effort to demonstrate the role of E and R on the shape of
the potential, we show in figure 1 the ensuing potentials as
we vary the two parameters independently, while keeping the
other one fixed. We observe that both range and strength of the
attractive and of the repulsive components of the potentials are
influenced in a highly sensitive way by these parameters. A
more detailed and quantitative discussion of these trends will
be given in section 3.1.

2.2. Integral-equation approach

To obtain information about the structural and thermodynamic
properties of the system we use on the one side integral-
equation approaches. They are based on the OZ equation [23]:

h(r) = c(r) + ρ

∫

d�r ′ h(|�r − �r ′|)c(r ′), (2)

where c(r) and h(r) are the direct and total correlation
functions, respectively; the radial distribution function, g(r),
is given by g(r) = h(r) + 1. Furthermore, we introduce the
indirect correlation function, γ (r) = h(r) − c(r). The OZ
equation is complemented by a closure relation, establishing a
functional relation between h(r), c(r) and �(r). In this paper
we have used the PY closure:

g(r) = exp[−β�(r)][h(r) − c(r) + 1] (3)

and the HNC relation:

g(r) = exp[−β�(r) + h(r) − c(r)]. (4)

The numerical solution of the OZ equation in combination with
one of the closure relations is for two-dimensional systems a
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Figure 1. Interparticle potentials �(r) (cf equation (1)) of the class
of systems investigated in this contribution for different E and R
values; only the σ range outside the hard-core is shown. Top panel:
E = 1.0 and selected R values as indicated in the inset; bottom
panel: R = 2.0 and selected E values as indicated in the inset. The
full dots mark the maximum in �(r).

considerably more delicate task than for a three-dimensional
system; details on this technical issue are summarized in the
appendix.

Once the correlation functions have been determined,
we can calculate the thermodynamic problems via standard
relations [23], suitably adapted for the two-dimensional case.
The pressure P evaluated via the virial route is given by

β

ρ
P = 1 − π

2
ρ

∫ ∞

0
dr β

d�(r)

dr
r 2g(r)

= 1 − π

2
ρ

∫ ∞

σ

dr β
d�(r)

dr
r 2g(r) + π

2
ρσ 2g(σ+) (5)

where the last term in the second line of the above relation takes
into account the hard-core contribution to the interaction �(r).
Within the HNC framework [23], a closed exact expression is
available for the excess (over ideal gas) chemical potential, μex,
namely

βμex
HNC = ρ

∫

d�r [γ (r) − h(r) + 1
2 h(r)γ (r)]. (6)

For the PY closure relations, a closed, approximate expression
has been derived by Lee for μex

HNC [24], which provides
reasonably accurate results for quite a few simple fluids.

Within this framework, the excess chemical potential is given
by

βμex
PY = ρ

∫

d�r ln[1 + γ (r)] +
[
γ (r) − h(r)

γ (r)

]

. (7)

The coexistence branches in the phase diagram are
obtained by equating, at a given temperature, the pressure and
the chemical potential of the coexisting phases (for numerical
details see, for instance, [25]).

2.3. Monte Carlo simulations

In an effort to complement the integral-equation-based results
we have performed extensive Monte Carlo (MC) simulations in
the canonical ensemble. These simulations have been carried
out with N particles in a square box of side length L, featuring
periodic boundary conditions. We have used between 400 and
4000 particles in our simulation runs. A considerable speed-
up of the simulation was achieved by performing simulations
on a discrete spatial grid, a method that has been introduced
by Panagiotopoulos [26]. To be more specific, we have sub-
divided the simulation box into 4096 × 4096 equally sized
squares, which define thus the available, discrete particle
positions. A further increase in the numerical efficiency of the
simulations was achieved by using the cell-list method [27].
Simulations extended over 2000 000–4000 000 MC sweeps,
where a sweep corresponds to N attempted particle moves.
Correlation functions were obtained as averages over at least
80 000 independent particle configurations.

From the positions of the particles we have evaluated static
and thermodynamic properties: the static structure factor, S(k),
has been evaluated directly from the positions of the particles
ri (i = 1, . . . , N) via

S(k) = 1

N
〈ρkρ−k〉 (8)

with ρk = ∑
j exp[ikr j ].

For the evaluation of the pressure we have used
expression (5). While the integral in this relation was computed
by averaging the virial over a sufficiently large number of
configurations, g(σ+) was computed by a careful extrapolation
of g(r) for r → σ+. For the evaluation of the excess chemical
potential we have used the Widom insertion method [27].

3. Results

3.1. Overview

In figure 2 we provide an overview over the investigated
systems, where the symbols mark those systems that have
been investigated both by integral-equation approaches as well
as MC simulations. By varying the parameters E and R
introduced above within the ranges [0, 1] and [0.5, 2.5],
respectively, we cover a large variety of interparticle potentials.

The systems can be classified as follows:

• for systems that are located in the dark-shaded (red)
area, microphase formation occurs: at intermediate and
high temperatures the system forms a homogeneous

3
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Figure 2. Overview over the investigated systems (• or ) specified
by parameter values E and R (cf text); the square indicates the
choice of parameters used by Imperio and Reatto [1, 2, 4, 5]. For
systems located in the medium-shaded (green) area, a liquid–vapour
phase separation is observed, while systems in the dark-shaded (red)
area show microphase formation. For systems located in the narrow,
light-shaded (yellow) region, no conclusive answer for either of the
two scenarios could be given. Furthermore, the figure contains lines
along which the wavenumber kc is constant with values as indicated
(see text and equation (9)).

fluid phase, while below a density-dependent temperature
microphase formation is observed. An estimate for this
transition line for a parameter combination E = 1 and
R = 2 has been given by Imperio and Reatto [2] (see the
discussion below);

• for states located in the green area, a liquid–vapour phase
separation scenario was found: for these states we could
identify a coexistence line well above the no-solution line
of the integral-equation approaches;

• finally, we are left with a few systems located between
the medium-shaded (green) and the dark-shaded (red)
area, populating the narrow, light-shaded (yellow) region:
here, neither integral-equation approaches nor simulations
could provide sufficient evidence for either of the two
scenarios.

At this point, a few remarks on the influence of the
potential parameters E and R on the phase separation scenario
are in order. In figure 3 we show in two panels the explored
region in (E, R) space: the top panel provides information
about the position rmax of the maximum in the long-range
tail of �(r), while the bottom panel gives information about
the values of the potential at this maximum. From these
figures we learn that microphase formation occurs only if the
position of the maximum in �(r), rmax, is less than ∼5.5; in
addition, the repulsive shoulder must be sufficiently strong,
i.e. �(rmax) � 0.02. Consequently, if, on the other hand,
the repulsive tail is sufficiently long-ranged and not too strong,
then the systems displays a conventional liquid–vapour phase
transition. The trends in �(r), as we vary the parameters E and
R, independently, are displayed in figure 1: keeping E fixed,
and increasing R shifts rmax to larger r values and �(rmax)

increases monotonically, but obviously reaches saturation in
the observed R range. On the other hand, keeping R fixed and
increasing E shifts rmax to smaller r values; now �(rmax) is

Figure 3. Overview over the investigated systems (• or ) specified
by parameter values E and R. Top panel: lines specify systems for
which the position of the long-range repulsion, rmax, is constant with
a value as indicated. Bottom panel: lines specify systems for which
the maximum in the long-range repulsion, �(rmax), attains a constant
value as indicated.

monotonically increasing. For a related discussion of this issue
in three-dimensional systems we refer to [21].

3.2. Systems with microphase formation

For systems that populate the dark-shaded (red) area of
figure 2 microphase formation occurs below a certain, density-
dependent temperature. Above this temperature the system
forms a homogeneous fluid phase.

In a DFT approach for microphase forming systems
with competing interactions, Archer [6] was able to derive
a closed expression for kc, which represents the wavelength
against which the system becomes unstable, forming thereby
microphases. The explicit expression for kc is given by

kc =
√


 − 1

R2
r − 
R2

a

= 1

Ra

√

 − 1

R2 − 


with 
 =
(

εr R2
r

εa R2
a

)5/2

= (E R2)5/2; (9)

obviously kc depends only on the potential parameters and
not on the state parameters. In figure 2 we have included
lines along which kc is constant. Of course, for kc = 0 we
expect a conventional liquid–vapour transition and thus the
(kc = 0) line should coincide with the limits of the green

4



J. Phys.: Condens. Matter 22 (2010) 415103 D F Schwanzer and G Kahl

Figure 4. Investigated state points (◦) of a system characterized by
E = 1 and R = 2. The dashed and the dotted lines represent the
no-solution lines of the HNC and the PY integral-equation approach,
respectively. The full line delimits the region in phase space below
which the system shows microphase formation (estimate taken
from [1]).

area. The obvious discrepancy between these two lines reflects
the limitation of the DFT concept; on the other hand, we will
soon provide evidence that the actual value of kc, evaluated
via relation (9), fits remarkably well in the overall picture of
microphase forming systems.

We start our discussion with the ‘standard’ microphase
forming system investigated in detail by Imperio and
Reatto [1, 2, 4, 5] and specified by E = 1 and R = 2, focusing
on a few selected state points. Since essentially all aspects
related to microphase formation of this particular system have
been addressed in previous work (cited above), we focus here
on the disordered phase which is encountered for all densities
and at sufficiently high temperatures. In figure 4 we present
an estimate for the region where—according to the results

presented in [1]—the system shows microphase formation.
In addition, we have plotted the so-called no-solution lines
evaluated via the PY and HNC approximations, i.e. the line
below which the numerical solution of the respective integral-
equation approach breaks down. The discrepancy between
the boundary of microphase formation and the no-solution
lines provides evidence of the limitations of integral-equation
approaches. In our discussion we focus on four state points,
indicated in figure 4. They are chosen in close vicinity to the
no-solution line of the integral-equation approaches.

For these four state points, the radial distribution
functions, g(r), and the static structure factors, S(k), are
displayed in figures 5 and 6. For all states we observe
a surprisingly good agreement between the data obtained
from the simulations and the integral-equation approaches.
For these four state points we have verified from ‘visual
inspection’ of the simulation data that microphase formation
has not set in, yet. Even more surprising is the fact that
PY and HNC provide data that are essentially identical.
This is a rather unconventional observation, since for most
(simple) liquids PY and HNC show distinct differences for
the structure functions [23]. The radial distribution functions
display in particular for small and intermediate densities a
rather unconventional behaviour: a small side peak close to
the pronounced main peak is followed at intermediate and
large distances by extremely long-range oscillations. Only
for the highest densities we recover the ‘usual’ oscillatory
behaviour around unity, expected for a radial distribution
function. These features, in combination with the pronounced
main peak in g(r), can be interpreted as precursors of the
microphases that the system is expected to form at lower
temperatures. Also the structure factors, shown in figure 6,
display a rather unconventional behaviour: for all state points
investigated we observe extremely long-range oscillations in

Figure 5. Radial distribution functions, g(r), of the systems defined by E = 1 and R = 2 and by the state points specified in figure 4 by the
symbols; the (T, ρ) values are given by: top line—(0.7, 0.1), (0.25, 0.8), bottom line—(0.7, 0.4), (0.7, 0.55). Symbols: full line—MC
simulation data, dotted line—PY results, dashed–dotted line—HNC results.
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Figure 6. Static structure factors, S(k), of the systems defined by E = 1 and R = 2 and by the state points specified in figure 4 by the
symbols; the (T, ρ) values are given by: top line—(0.7, 0.1), (0.25, 0.8), bottom line—(0.7, 0.4), (0.7, 0.55). Symbols: full line—MC
simulation data, dotted line—PY results, dashed–dotted line—HNC results. The vertical arrows indicate the value of kc for this particular
system.

Figure 7. Static structure factors, S(k), of a system specified by E = 1 and R = 1.2. Densities: ρ = 0.2 (left panel) and ρ = 0.4 (right
panel). Temperatures: T = 0.10 (dashed line), T = 0.15 (dotted line) and T = 0.20 (dashed–dotted line). The vertical arrow indicates the
value of kc for this particular system.

k. The height of the main peak in S(k) shows a strongly
non-monotonic behaviour as the density increases, attaining
sometimes remarkably high values; note that, at the highest
density investigated, the second peak is even higher than
the first peak. In addition we have indicated by a vertical
arrow the value of kc that characterizes the system—cf
equation (9). Although kc was originally derived for the
ordered microphases encountered at lower temperatures, its
value agrees even for the disordered, homogeneous phase
remarkably well with the position of the main peak of S(k)

for all systems investigated. Again, this observation can be
interpreted as a precursor of the microphases expected to occur
at lower temperatures.

The relevance of kc for microphase forming systems and
its state independence—cf equation (9)—are visualized in
figures 7 and 8 via simulation data. In figure 7 we display the
static structure factor S(k), evaluated via (8), of a microphase-

forming system. We have fixed two values for the density
(i.e. ρ = 0.2 and 0.4) and vary T ; the chosen temperature
values are sufficiently low so that the system spontaneously
forms patterns. We observe that—while the height of the main
peak in S(k) strongly changes with temperature—its position
remains essentially fixed at the value of the wavenumber kc.
Alternatively we keep in figure 8 the temperature fixed (at
sufficiently low values) and vary the density: the chosen ρ

values correspond to the formation of clusters (ρ = 0.2),
lamellae (ρ = 0.4) and bubbles (ρ = 0.6). Again, the position
of the main peak in S(k) does not vary with increasing density
and perfectly coincides with kc. We point out that remarkable
differences in the peak heights of the inverted microphase
(i.e. bubbles) with respect to the clusters and lamellae can be
observed.

To highlight the central role of kc for the structural
properties of microphase-forming systems even more, we

6
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Figure 8. Static structure factors, S(k), of a system specified by E = 1 and R = 1.2. Temperatures: T = 0.15 (left panel) and T = 0.2 (right
panel). Densities: ρ = 0.2 (dashed line), ρ = 0.4 (dotted line) and ρ = 0.6 (dashed–dotted line). The vertical arrow indicates the value of kc

for this particular system.

Figure 9. Structure factors, S(k), of systems A, B and C (as defined in the text), at T = 0.50 and ρ = 0.20 (left panel) and T = 0.7 and
ρ = 0.2 (right panel). The vertical arrow indicates the value of kc for this particular system. Symbols: dashed line—system A, dotted
line—system B, and dashed–dotted line—system C.

finally chose our potential parameters in such a way as
to yield a particular value of kc. We define systems A,
B and C, characterized by the following parameter pairs
(E, R): system A—(0.750, 1.60), system B—(0.750, 1.80)

and system C—(0.905, 2.50); these parameters lead for all
systems to essentially the same value of kc, namely kc ≈
0.485. In figure 9 we present results for the static structure
factors of the three systems for two different temperatures and
densities. Again, we see that the height of the main peak in
S(k) varies strongly with temperature and density as well as
with the values of E and R; however, its position is essentially
unchanged at k = kc.

3.3. Systems with liquid–vapour phase separation

Systems that populate the medium-shaded (green) area
depicted in figure 2 show a conventional liquid–vapour phase
separation. For this class of systems we start our discussion
with an overview over the phase diagrams: in each of the
panels depicted in figure 10 we have kept the value of E fixed,
varying R systematically over a representative range. The
coexistence lines have been determined by equating, at fixed
temperature, the pressure and the chemical potential of the
coexisting phases. Thermodynamic properties were calculated
via the PY integral-equation approach.

In an effort to discuss the ensuing trends of the localization
of the coexistence lines in the (T, ρ) diagram on a more
quantitative level, we have estimated the critical point (in terms

of a critical temperature and a critical density), by assuming
the usual power law for the density difference between the
coexisting phases as a function of temperature. As E increases
from 0 to 1, we observe that the critical temperature decreases
and that the coexistence lines flatten. Keeping E fixed and
increasing R, both the critical temperature as well as the critical
density decrease monotonically. As the value of R approaches
the boundaries of the medium-shaded (green) area depicted
in figure 2, ρc tends to zero; thus the liquid–vapour phase
transition converts into microphase formation.

We conclude our discussion of the liquid–vapour phase
separating systems with the presentation of a few structure
functions, choosing a representative system (E = 0.50 and
R = 1.40) for which we display the structure functions in
figure 11. The state points are located both on the vapour and
on the liquid side close to the phase boundaries. Even in the
very dilute vapour phase, g(r) shows a rather pronounced main
peak, which is reproduced in excellent agreement between the
simulation and the integral-equation data. On the liquid side of
the phase diagrams, g(r) shows again a pronounced main peak
and an asymmetric side peak. In contrast to the microphase-
forming systems (cf figure 5) we observe a worse agreement
between the simulation data and the integral-equation results.

4. Conclusions

We have investigated the two scenarios of phase behaviour that
emerge for a class of two-dimensional systems with competing

7
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Figure 10. Liquid–vapour coexistence lines in the (T, ρ) plane for selected systems investigated in this contribution. In each panel we keep E
fixed, varying R over a representative range (as indicated). Critical points, represented by isolated symbols, are estimated via a power law.

Figure 11. Radial distribution function, g(r), of a liquid–vapour phase-separating system (E = 9.50 and R = 1.4) for a vapour (T = 0.85
and ρ = 0.0095) and a liquid state (T = 0.85 and ρ = 0.70). Symbols: full line—MC simulation data, dashed line—PY results, dotted
line—HNC results.

interactions, operating on different length scales, namely
microphase formation and liquid–vapour phase separation.
In our model the two contributions to the interactions are
parametrized via two exponential tails of opposite sign and
different decay lengths. Investigations have been carried
out with integral-equation approaches (using the PY and the
HNC closure relations) and with Monte Carlo simulations.
By systematically varying the potential parameters we could
identify those regions in parameter space where the systems

show either microphase formation or a conventional liquid–
vapour phase transition.

For the microphase-forming systems we have focused
in particular on the homogeneous fluid phase which occurs
at sufficiently high temperatures and at any densities. For
the structure functions we have found an astonishingly good
agreement between the simulation data and integral-equation
results. Even more surprisingly, the data obtained via the
two closure relations essentially coincide. This observation
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is very surprising since for simple liquids different closures
lead in general to distinctively different results for the structure
functions. Although the chosen temperatures are sufficiently
high, we can identify in the structure functions even in the
homogeneous fluid phase precursors of those microphases that
the system will form at lower temperatures: in particular, the
main peak of the structure factor is located at the wavenumber
kc, which specifies those density fluctuations against which the
system becomes unstable. Results of MC simulations confirm
that the peak position in S(k) is located at kc and that it does not
change neither with density nor with temperature, as predicted
by DFT.

For the liquid–vapour phase-separating systems we have
traced out the coexistence lines and have provided estimates
for the location of the critical point. A systematic variation of
the potential parameters gives evidence of clear trends in the
location of the phase boundaries. Agreement of the structural
data between integral-equation data and computer simulation
results is good, but of less quality than the one observed in the
microphase-forming systems.
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Appendix

The OZ equation (2) was solved in combination with a closure
relation, using a standard Picard algorithm. In this iterative
scheme, Fourier transforms from r to k space, and vice versa,
are frequently used. In contrast to the three-dimensional
case, numerical Fourier transforms in two-dimensional space
cannot take direct advantage of fast Fourier transform (FFT)
techniques and routines.

According to the formalism presented in detail in [28–30],
a function f (r) and its two-dimensional Fourier transform,
f̃ (k), are related via the following expressions [31]:

f̃ (k) = 2π

∫ ∞

0
dr r f (r)J0(kr)

f (r) = 1

2π

∫ ∞

0
dk k f̃ (k)J0(kr),

(10)

where J0(kr) is the zeroth-order Bessel function. Following
steps that are explained in detail in [30], the integrals in
equation (10) can be transformed into a convolution-type
integral which, after being transformed into k space, decouples
into a product of two integrals. While one of these integrals
can be calculated analytically, the other one can be evaluated
efficiently using an FFT routine. In these manipulations a
substitution of variables takes place, substituting r by R and
k by K via the following relations:

r = exp(R) k = exp(K ). (11)

The grid in R and K space is equally spaced, with �R and
�K satisfying the usual relation, �R�K = π/2M , imposed

Figure A.1. Left-hand side: radial distribution function, g(r), of a
typical system investigated in this contribution as a function of r .
Right-hand side: �r as a function of r , as used in the
two-dimensional Fourier transform for various values of M and �R
(for details, cf appendix).

Figure A.2. Liquid–vapour coexistence branches in the (T, ρ) plane
of a representative system investigated in this study (E = 0.10 and
R = 1.40), evaluated for different choices of M and R; for details, cf
appendix. Note that for M = 11 the numerical algorithm breaks
down at substantially lower temperatures than for M = 12 and 13.

by the FFT formalism, where M is a suitably chosen integer.
As a consequence of relations (11), the grid in r and k space is
no longer equally spaced. Furthermore, a lower bound for the
R grid, Rm = ln rm , has to be chosen.

In the following, we provide information on how the
actual values of �R, M and Rm influence the structural
and thermodynamic properties of the system. For all our
investigations a value of Rm = −7 (corresponding to rm ∼
0.0009σ ) has turned out to be suitable. In figure A.1 we
display the radial distribution function, g(r), of one of the
systems investigated and the spacing in r space, �r , for
different choices of �R and M . Throughout, we have
used in our investigations �R = 0.002 and M = 13.
This choice represents a reasonable compromise between
computational costs and sufficient accuracy to grasp the full
details of the long-range behaviour of the radial distribution
functions, guaranteeing thereby a reliable evaluation of the
thermodynamic properties via the expressions presented in
section 2.2.
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Of course, the actual values of �R and M also have
influence on the location of the branches of the coexistence
lines. In figure A.2 we show the influence of �R and M on the
coexistence curve for a typical liquid–vapour phase-separating
system.
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