
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: kukitxu

IP Address: 128.131.48.66

This content was downloaded on 28/01/2014 at 16:48

Please note that terms and conditions apply.

On the stability of Archimedean tilings formed by patchy particles

View the table of contents for this issue, or go to the journal homepage for more

2011 J. Phys.: Condens. Matter 23 404206

(http://iopscience.iop.org/0953-8984/23/40/404206)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/23/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 23 (2011) 404206 (8pp) doi:10.1088/0953-8984/23/40/404206

On the stability of Archimedean tilings
formed by patchy particles

Moritz Antlanger1, Günther Doppelbauer1 and Gerhard Kahl

Institut für Theoretische Physik and Centre for Computational Materials Science (CMS),
Technische Universität Wien, Wien, Austria

E-mail: doppelbauer@cmt.tuwien.ac.at

Received 28 July 2011, in final form 30 August 2011
Published 19 September 2011
Online at stacks.iop.org/JPhysCM/23/404206

Abstract
We have investigated the possibility of decorating, using a bottom-up strategy, patchy particles
in such a way that they self-assemble in (two-dimensional) Archimedean tilings. Except for
the trihexagonal tiling, we have identified conditions under which this is indeed possible. The
more compact tilings, i.e., the elongated triangular and the snub square tilings (which are built
up by triangles and squares only) are found to be stable up to intermediate pressure values in
the vertex representation, i.e., where the tiling is decorated with particles at its vertices. The
other tilings, which are built up by rather large hexagons, octagons and dodecagons, are stable
over a relatively large pressure range in the centre representation where the particles occupy
the centres of the polygonal units.

S Online supplementary data available from stacks.iop.org/JPhysCM/23/404206/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Is it possible to design colloidal particles so that
they self-assemble into a desired target structure? Recent
experiments [1, 2] have impressively demonstrated that such
a bottom-up strategy can indeed be successfully realized. To
be more specific, Chen et al designed and fabricated so-called
patchy colloidal particles, carrying hydrophobic caps on the
two opposite poles, as reported in [1]. Under suitable external
conditions, the colloids did indeed self-organize in the
targeted two-dimensional kagome lattice. Simulations [3, 4]
complemented these experimental observations and provided
in addition exhaustive information about the phase behaviour
of the system in terms of a temperature versus density phase
diagram.

The term ‘patchy particles’ stands for a particular class
of colloidal particles whose surfaces have been treated with
suitable physical or chemical methods, creating thereby
regions which differ in their interaction behaviour from
the untreated, naked surface of the particle. Via those
well-defined regions (‘patches’) the particles are able to

1 Authors who contributed equally to this work.

establish bonds with other particles in a highly selective
fashion. As a consequence of their strongly anisotropic
interactions and their selectivity in the formation of bonds,
patchy particles are considered to be very promising building
blocks for larger entities on a mesoscopic scale [5].
Overviews of recent progress in experimental and theoretical
investigations on patchy particles can be found in [6] and [7],
respectively.

In the present contribution we deal with the question
of whether—via a bottom-up strategy similar to the one
mentioned above—patchy particles can be designed in such
a way as to self-assemble in even more complex ordered
two-dimensional particle arrangements. As target structures
we have chosen Archimedean tilings. The eight Archimedean
(or semiregular) tilings are presumably known and have
been used since antiquity. They are characterized by an
edge-to-edge tiling of the plane with at least two regular
polygons such that all vertices are of the same type [8]. The
polygons involved are the equilateral triangle, the square,
the regular hexagon, the regular octagon, and the regular
dodecagon. For completeness, we have also included the
three related edge-to-edge tilings of the plane formed by a
single regular polygon in our investigations; these tilings are
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Table 1. List of the three Platonic and eight Archimedean tilings
(first column) and their vertex specifications (second column). In the
two other columns parameters are collected that specify patchy
particles for the vertex representation (see the text): N stands for the
number of particles required per unit cell (cf figure 1). The last
column specifies the patch positions along the circumference via the
indicated angles. Note that in the vertex representation all particles
have the same size; only for the truncated trihexagonal tiling are two
particle species of equal size but different chirality in their
decoration required.

Vertex representation

Tiling Vertices N Patch angles (deg)

Triangular 36 1 {0, 60, 120, 180, 240, 300}
Square 44 1 {0, 90, 180, 270}
Hexagonal 63 2 {0, 120, 240}
Elongated triangular 33.42 2 {0, 60, 120, 180, 270}
Snub square 32.4.3.4 4 {0, 60, 120, 210, 270}
Snub hexagonal 34.6 6 {0, 60, 120, 180, 240}
Trihexagonal 3.6.3.6 3 {0, 60, 180, 240}
Rhombitrihexagonal 3.4.6.4 6 {0, 60, 150, 270}
Truncated square 4.82 4 {0, 90, 225}
Truncated hexagonal 3.122 6 {0, 60, 210}
Truncated trihexagonal 4.6.12 6 {0, 90, 240}

4.12.6 6 {0, 90, 210}

also known as regular or Platonic tilings [8]. In table 1 we
have listed the resulting 11 tilings, introducing the commonly
used nomenclature and specification via their vertices; further
information compiled in this table will be discussed below. In
figure 1 we have depicted these planar tilings; their decoration
with particles will be addressed later and can therefore be
ignored for the moment.

At this point one might argue that the formation of
Archimedean tilings by patchy particles represents a rather
academic problem. At least two examples can be put forward
to refute these objections: (i) experiments on colloids, exposed
to a force field induced by interfering laser beams, give
evidence [9] of a self-assembly scenario of those particles into
an Archimedean-like tiling; (ii) theoretical investigations [10]
indicate that deformable spheres form Archimedean tilings in
coexistence regions of the phase diagram. Finally, some of the
more open Archimedean tilings might show some interesting
features in their phonon spectra.

In an effort to demonstrate a successful bottom-up
strategy for forming the desired target structures via suitably
decorated patchy particles, Platonic and Archimedean tilings
are ideal candidates: all vertices are of the same type and all
the distances between two vertices are the same. These two
features make an appropriate ‘guess’ for the decoration of the
particles with patches rather easy.

In realizing our bottom-up strategy there are essentially
two options for positioning the particles on the tilings: either
at the vertices or at the centres of the polygons (to be
denoted as vertex and centre representations, respectively).
These two alternatives are visualized in figure 1. The former
has the advantage that only one particle species per tiling
is required (except for the truncated trihexagonal tiling,
where the two enantiomers of a chiral particle are used),
which might represent a particular advantage in a possible

experimental realization. However, this representation has
serious problems in minimizing the volume contribution to
the thermodynamic potential. In particular one encounters
problems for those tilings that are built up by polygonal
units with six vertices or more. The centre representation,
on the other hand, requires considerably more complex
unit cells and at least two particle species, characterized
by a large size disparity and a relatively large number of
patches. These issues might represent a particular challenge
in an experimental realization. This representation allows one,
however, to stabilize tilings that are built up by hexagons,
octagons, and dodecagons.

Based on these considerations we have addressed the
following two questions. (i) Can patchy particles be suitably
decorated to self-assemble in Archimedean tilings? (ii) How
stable are these self-assembly scenarios as the pressure
increases? Working in the NPT ensemble, by construction
the desired target structures are stable at vanishing pressure.
However, as the system is exposed even to a tiny pressure, the
competition between the energy and the volume contributions
to the thermodynamic potential sets in, leading possibly to
structures other than the desired target structure. As will be
discussed in detail in the body of the paper (in particular
in section 3), all tilings, except for the trihexagonal tiling,
can be stabilized at low, sometimes even at intermediate
pressure values via either of the two representations. We
emphasize at this point that we only consider the case
of vanishing temperature, T = 0. Thus from the results
presented in this contribution no conclusions can be drawn as
regards which of the structures identified will survive at finite
temperature.

The paper is organized as follows. In the next section
we briefly summarize the characteristic features of our
model for patchy particles and of our optimization strategy
(referring the reader to the literature for more details
in both cases). Section 3 is dedicated to a thorough
discussion of the results. In the final section the results are
summarized.

2. The model and theoretical tools

2.1. The model

In the present contribution we have used a model for patchy
particles proposed by Doye et al [11], suitably adapted to the
two-dimensional case. In this model the interaction between
two particles is given by a pair potential V(rij,piα,pjβ),
discussed below; here rij = ri − rj is the vector between
particles i and j and the patch vector, piα , specifies the patch
α of particle i. The explicit expression for V(rij,piα,pjβ)

consists of a spherically symmetric Lennard-Jones potential
modulated by an angular factor taking into account the relative
orientation of the two interacting particles. A parameter w
specifies the extent of the patch along the circumference. The
explicit expression for V(rij,piα,pjβ) can be found in [11,
12]. For our investigations the radial part of the potential
has been truncated at rc = 1.9σ (σ being the Lennard-Jones
diameter) and the patch width parameter w was chosen to be
w = 2π0.025.
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Figure 1. Representative sections of the three Platonic and the eight Archimedean tilings (as labelled)—thin lines. The left (right) panels
show the vertex (centre) representations. The grey-shaded areas delimited by thick lines represent the respective unit cells. Different particle
species (either distinguished via their patch decoration or via their size) are displayed in different colours.

2.2. Theoretical tools

The ordered equilibrium configurations into which the patchy
particles self-organize have been obtained by an optimization
tool that is based on ideas of genetic algorithms (GAs). This
approach has turned out to be a highly reliable, efficient
and robust optimization tool that copes extremely well with
rugged energy landscapes and high dimensional search spaces
in numerous applications in soft matter physics (see, for
instance, [13–17] and references therein). For the basic ideas
behind this technique we refer the reader to [18, 19].

In this contribution we have used a phenotype
algorithm [20–22] as detailed in [12]. With respect to this
implementation the following changes have been made for the
present contribution.

(i) The code has been extended to allow for multiple
different particle species, offering for each of them
an individual patch decoration with up to 12 patches,
enabling the algorithm to form rather complex unit cells,
which are necessary for realizing Archimedean tilings
(especially in the centre representation).

3
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Table 2. List of the three Platonic and eight Archimedean tilings and parameters that specify patchy particles for the centre representation
(see the text): N stands for the number of particles required per unit cell (cf figure 1). For all tilings at least two particle species with
different sizes are required; their respective sizes (in units of σ0) are given in the third column. The last column specifies the patch positions
along the circumference via the indicated angles for each tiling and each particle species.

Centre representation

Tiling N Size (σ0) Patch angles (deg)

Triangular 2 0.577 {0, 120, 240}
Square 1 1.000 {0, 90, 180, 270}
Hexagonal 1 1.732 {0, 60, 120, 180, 240, 300}
Elongated triangular 1 1.000 {0, 90, 180, 270}

2 0.577 {0, 120, 240}
Snub square 2 1.000 {0, 90, 180, 270}

4 0.577 {0, 120, 240}
Snub hexagonal 1 1.732 {0, 60, 120, 180, 240, 300}

8 0.577 {0, 120, 240}
Trihexagonal 1 1.732 {0, 60, 120, 180, 240, 300}

2 0.577 {0, 120, 240}
Rhombitrihexagonal 1 1.732 {0, 60, 120, 180, 240, 300}

3 1.000 {0, 90, 180, 270}
2 0.577 {0, 120, 240}

Truncated square 1 2.414 {0, 45, 90, 135, 180, 225, 270, 315}
1 1.000 {0, 90, 180, 270}

Truncated hexagonal 1 3.732 {0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330}
2 0.577 {0, 120, 240}

Truncated trihexagonal 1 3.732 {0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330}
2 1.732 {0, 60, 120, 180, 240, 300}
3 1.000 {0, 90, 180, 270}

(ii) An additional mutation operation was introduced which
rotates with some pre-set probability, Prot, a randomly
selected particle of the unit cell; the rotation angle is
either chosen at random or taken as one of the angles
between two neighbouring patches (or a combination of
these two options). This modification turned out to be
very supportive in forming highly complex structures.
Prot was set to 0.05.

(iii) For systems with more than one particle species, a
permutation operation was introduced: with a pre-set
probability, Pperm, the identity of two different particles
can be swapped, leaving the orientation of the particles
involved unchanged. Pperm was set to 0.02.

(iv) Instead of fixing the number of generations in the
evolution of the structure a priori, the search runs
are terminated if, after a given number of generations,
no further improvement in the resulting structure is
achieved.

Like in our previous contribution [12] we identify the
ordered equilibrium structures at constant pressure P and at
vanishing temperature T . In this NPT ensemble, particles
self-organize such that the Gibbs free energy, G, is minimized.
At T = 0, G reduces to the enthalpy H = U + PA, U being
the internal energy (i.e., the lattice sum) and A being the
area of the system. The following reduced, dimensionless
units are used: G? = G/Nε, U?

= U/Nε, and P? = Pσ 2
0 /ε,

where N is the number of particles, ε is the usual energy
pre-factor of the spherical Lennard-Jones potential and σ0 is
set to the Lennard-Jones diameter of a reference particle (in
our calculations we set σ0 = 1.0; cf table 2). Thus, G? =
U?
+ P?/(ησ 2

0 ), η = N/A being the area number density.

3. Results

3.1. Vertex representation

In our efforts to realize the Platonic and Archimedean tilings
in the vertex representation we have chosen patchy particles
decorated according to the parameters listed in table 1. The
patch decoration is imposed by the requirement that the
resulting bonds are realized along the edges of the tilings.
In this table we have compiled the number of required
particles per unit cell and the decoration of the particles
for each tiling, expressed via the angles that define the
positions of the patches. For all tilings, except the truncated
trihexagonal one (where the vertex configuration requires
the use of two particle types with different chirality), a
single particle species was assumed. In our investigations
we have started from pressure values close to zero and
have identified with our search algorithm the stable ordered
structures formed by the particles as the pressure is increased.
For obvious reasons at sufficiently high pressure all particles
will arrange—irrespective of their decoration—in a triangular
(i.e., close-packed) lattice.

Visualizations of some exemplary structures can be
found in this contribution; for images depicting further
configurations we refer the reader to the supplementary
material (available at stacks.iop.org/JPhysCM/23/404206/
mmedia; Archimedean tilings) and [12] (Platonic tilings).

For the three Platonic tilings our investigations confirmed
expected results: the triangular tiling represents the high
pressure structure; it is thus stable for all pressure values,
guaranteeing throughout saturation of all bonds. With the
self-evident four-patch decoration, the square tiling is stable
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Figure 2. Gibbs free energy (G?
= U?

+ P?/(ησ 2
0 ), dash–dotted

blue line), lattice sum (U?, solid red line) and area (1/(ησ 2
0 ), dashed

green line) of the energetically most favourable structures formed
by the elongated triangular system in the vertex representation, as
functions of pressure P?. Insets: low pressure configuration
(elongated triangular tiling, left) and high pressure configuration
(distorted triangular lattice, right).

with full bond saturation for pressure up to P? ' 2.9.
As the pressure increases, the system transforms into the
triangular high pressure configuration. Finally, the rather open
hexagonal honeycomb structure, induced again by an obvious
three-patch decoration, is stable for pressure values up to P? '
0.8; this rather small threshold value is due to the relatively
large area required for this tiling and to the comparably small
number of possible bonds. Beyond this value of P?, the lattice
transforms into the close-packed triangular structure.

The situation is more complex for the Archimedean
tilings. Anticipating results that will be discussed later in more
detail we have found out that in the vertex representation
only the elongated triangular and the snub square tilings can
be kept stable at low and intermediate pressure values; all
target structures resembling other Archimedean tilings are
even at low pressure unstable with respect to configurations
with similar binding energies, but smaller areas. For the
elongated triangular tiling the obviously suitable decoration
is realized with five patches (see table 1). The tiling remains
stable up to P? ' 3.5. In this pressure range the structure can
be viewed as parallel zigzag lanes, characterized internally
by a strong bonding (involving four of the five patches);
the fifth patch of each particle is used to connect to the
neighbouring zigzag lanes (cf figure 2, left inset). As one
passes the threshold value for the pressure, the fourfold
bonding is able to resist while the inter-lane bonds are broken.
In an effort to decrease the area, the now disconnected
neighbouring zigzag lanes are shifted relative to each other
(lowering thereby the thermodynamic potential), leading to a
structure which closely resembles a triangular configuration,
with a small deviation in order to retain bonds (cf figure 2,
right inset). This deviation continuously becomes smaller with
increasing pressure. For the snub square tiling the pressure
dependence of the emerging structures is even more complex
(cf figure 3). Five patch particles are used with the decoration
as specified in table 1. Again, the full saturation of all

Figure 3. Gibbs free energy, lattice sum and area of the
energetically most favourable structures formed by the snub square
system in the vertex representation, as functions of the pressure.
Insets: low pressure configuration (snub square tiling, left) and high
pressure configuration (distorted triangular lattice, right). The line
styles are as in figure 2.

bonds of this tiling combined with a comparatively small
area guarantees that the configuration is able to resist up to
relatively high pressure values (i.e., P? ' 6.5). Only then is
a more close-packed arrangement with approximately half of
the maximum binding energy energetically more favourable.
This configuration resembles the triangular high pressure
arrangement, like in the elongated triangular case, but has a
more complicated bonding scheme.

Using the self-evident patch decorations (which are
suggested by the lines forming the vertices of the respective
tilings), the desired structure cannot be stabilized for the
remaining six Archimedean tilings even at P? ' 0. The
snub hexagonal and the trihexagonal tilings arrange at the
lowest accessible pressure values in a distorted triangular
lattice due to the large area required for these tilings. The
particles designed for the rhombitrihexagonal lattice arrange
at vanishingly small pressure values in a snub square lattice,
which remains stable for pressure values up to P? ' 5.3 and
then collapses into a triangular-like structure. Note that the
particles have one patch less than the particles designed for
the snub square lattice, which explains the lower threshold
value in the pressure. Particles designed to self-assemble in a
truncated square tiling assemble, instead, at vanishingly small
pressure in a distorted hexagonal lattice: again, the full bond
saturation combined with a smaller area than the tiling makes
this structure energetically more attractive. This structure
transforms at a relatively low pressure value (P? ' 0.5) into a
configuration consisting of square four-particle arrangements.
From P? ' 2.8, we identified a double-lane structure, where
particles arrange in a zigzag pattern, stabilized by strong
internal bonds as the most favourable one; the double
lanes themselves are connected via single bonds: a loss in
bond saturation is compensated by a relatively close-packed
structure. Eventually, at P? ' 5.0 the system collapses to the
triangular structure. Patchy particles designed to form the
truncated hexagonal tiling form at low pressure a distorted
hexagonal lattice, where the distortion is induced by the patch
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decoration (this configuration can also be seen as an elongated
triangular tiling with a smaller number of bonds). At P? ' 4.4
the system transforms into a triangular structure. Finally, the
vertex structure of the truncated trihexagonal tiling suggests
using the two different enantiomers of a chiral patchy particle
(six of each in the unit cell) to realize this ordered particle
arrangement. Due to the large number of parameters that have
to be optimized, it is difficult to give conclusive results on this
system. However, we found evidence that the desired tiling
is disfavoured against competing structures at all pressure
values.

3.2. Centre representation

The parameters that specify the size and the decoration of
the patchy particles designed to self-assemble in the Platonic
and Archimedean tilings within the centre representation
are summarized in table 2. Here, the particles are defined
as inscribed circles of the polygonal building units of the
respective tiling; their obvious patch decoration is imposed by
the requirement that the bond between two patches bisects the
edge of the polygonal units (cf table 1). Additional parameters
listed in table 2 provide information about the number of
particles required for the unit cells and the size ratio of the
particles involved. Attempting to realize the desired target
structures in the centre representation, at least two particle
species of different size and decoration have to be introduced;
we point out that, compared to the vertex representation, a
relatively large number of patches is required. Again, we start
our investigation at pressure values close to zero; we then
gradually increase the pressure up to P? = 10. Note that due
to the fact that at least two particle species are involved, the
high pressure phase is no longer the (monodisperse) triangular
lattice.

Again we point out that only a few exemplary structures
are displayed in the following; the remaining configurations
are summarized in the supplementary material (available at
stacks.iop.org/JPhysCM/23/404206/mmedia).

Summarizing results that will be discussed later in more
detail we find that now—and in striking contrast to the vertex
representation case—all Archimedean tilings except for the
elongated triangular, the snub square and the trihexagonal
tiling are found to be stable at least for low pressure values.
A discussion of possible reasons for these two different
scenarios will be given in the subsequent subsection. All
Platonic tilings are found to be stable for low and intermediate
pressure values within the centre representation and therefore
will not be discussed in the following.

Particles designed for the elongated triangular tiling
show a size disparity of 0.577. Even at vanishingly low
pressure values the target structure is not realized; instead,
lanes form: the larger particles populate a square lattice,
while the smaller ones self-assemble in hexagons. As the
pressure becomes greater, the remaining particles form lanes
as well, positioning themselves, however, in increasingly
more compact arrangements. Since these lanes (consisting
of alternating particle types) get broader as the number of
particles in the unit cell is increased, we suspect that this

Figure 4. Top: Gibbs free energy, lattice sum and area of the
energetically most favourable structures formed by the snub
hexagonal system in the centre representation, as functions of the
pressure. Insets: low pressure configuration (snub hexagonal tiling,
left) and high pressure configuration (right). Bottom: intermediate
pressure configurations, with increasing pressure from left to right
and from top to bottom. The line styles are as in figure 2.

behaviour corresponds to a phase separation scenario (which
our optimization algorithm could only detect in the limit of
infinitely large unit cells). For the snub square system we
observe exactly the same phase behaviour, since its unit cell
in the centre representation consists of particle types and
ratios identical to those of the elongated triangular one (cf
table 2). Finally, particles designed for the trihexagonal tiling
rather arrange at very low pressure values in a rectangular
sublattice, formed by the larger particles, while the smaller
particles (which are, by a factor of 3, smaller than the former
ones) arrange in lanes of dimers between the larger particles.
Increasing the pressure leads—via a double-lane structure—to
the high pressure arrangement, which is now characterized by
single lanes.

In an effort to realize the snub hexagonal lattice we
require one large and eight small particles per unit cell,
with a size disparity characterized by a factor of 3. The
desired target structure is indeed stable for pressure values
up to P? ' 2.0. Then, upon increasing the pressure, lane
structures emerge with increasing complexity (cf figure 4).
Finally, the large particles form a highly compact square
lattice, hosting the eight small particles in the interstitial
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Figure 5. Gibbs free energy, lattice sum and area of the
energetically most favourable structures formed by the
rhombitrihexagonal system in the centre representation, as functions
of pressure. Insets: low pressure configuration (rhombitrihexagonal
tiling, left) and high pressure configuration (lane configuration,
right). The line styles are as in figure 2.

regions. In the construction of the rhombitrihexagonal lattice,
three particle species are involved, the size disparity between
the largest and the smallest species being characterized by
a factor of 3. Indeed, the desired target structure remains
stable over a relatively large pressure range, i.e., up to
P? ' 3.8, then transforming into a complex lane structure
(cf figure 5). Particles designed for the truncated square tiling
arrange in the desired target structure, two superposed square
lattices decorated with the two particle species. This tiling
is the only one that these particles form: as the pressure
is increased, the system is homogeneously compressed until
a close-packed configuration is reached, maintaining the
desired lattice structure. In order to build up the truncated
hexagonal tiling, two particle species with a size disparity
factor of 6.46 are required. Particles arrange in the desired
target structure, which is compressed for higher pressure
values. Finally, we require three particle species to realize the
truncated trihexagonal tiling; the largest and the smallest of
these particles differ in their size by a factor of 3.732. Like for
the truncated square lattice, particles arrange for all pressure
values investigated in one single structure, which represents
the desired particle arrangement (cf figure 6). An increase in
pressure only reduces the lattice constants.

4. Conclusions

In this contribution we have addressed the question of
whether—via a bottom-up strategy—patchy particles can
be designed in such a way as to self-assemble in
well-defined two-dimensional target structures. For these
particle arrangements we have chosen the Platonic and
the Archimedean tilings, which are characterized by an
edge-to-edge tiling of the plane with polygons such that all
their vertices are of the same type. Due to these characteristic
features, which are of particular use in practical tiling
problems, these tilings have been studied ever since antiquity.
For the particular purpose of this contribution these ordered

Figure 6. Gibbs free energy, lattice sum and area of the
energetically most favourable structures formed by the truncated
trihexagonal system in the centre representation, as functions of
pressure. Insets: low pressure configuration (truncated trihexagonal
tiling, left) and high pressure configuration (same configuration,
with bond lengths optimized for close packing, right). The line
styles are as in figure 2.

structures are ideally suited, since for a particular tiling
all vertices are identical and all distances between two
vertices are the same. In an effort to realize these tilings via
suitably decorated patchy particles, two obvious alternatives
are possible: either to place the particles on the vertices or in
the centres of the regular polygonal building units of the tiling.

In order to parametrize the interactions between
the patchy particles we have used a model that is
meanwhile well established in literature [11, 12]. The
ordered equilibrium structures have been identified with an
optimization technique based on ideas of genetic algorithms.
Working for convenience in the NPT ensemble and at zero
temperature, the particle arrangements have been determined
by minimizing the Gibbs free energy, which reduces at T =
0 to a sum over the lattice sum and a volume term. The
competition between these two terms finally decides the
resulting equilibrium structure.

We anticipate that the rather trivial Platonic tilings can
be realized via both the vertex and the centre representation:
the rather compact square tiling is able to survive up to
intermediate pressure values, while the rather open hexagonal
tiling is stable only at relatively low pressure values. Both then
transform into the stable triangular high pressure arrangement.

In the vertex representation one requires—with one
exception—only one particle species. We find that only two
tilings are stable at intermediate or even elevated pressure
values, namely the elongated triangular and the snub square
tilings; both are characterized by rather compact structures,
involving only triangles and squares as building polygonal
units. This fact provides an explanation of why these two
tilings are stable in the vertex representation: while at low
pressure full bond saturation is guaranteed by definition,
these two tilings are characterized by a rather small area
compared to the other, more open tilings. Furthermore we
have found that both tilings emerge as intermediate structures
of other particle arrangements formed by differently decorated
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particles; this provides an indication of the central role of the
elongated triangular and the snub square tilings in the vertex
representation. Obviously, these ordered structures represent
an excellent compromise between the two competing factors
that determine the equilibrium configuration, namely patch
saturation and area minimization. The fact that the elongated
triangular tiling is ‘relatively close’ to a quasicrystalline
particle arrangement [9] might be an indication that such
systems could form (meta)stable quasicrystalline structures.
However, a definite answer can only be given by investigations
carried out at finite temperatures.

With all these conclusions in mind it is obvious that
the rather open tilings (involving hexagons, octagons and
dodecagons as building polygonal units) can be stabilized
via the centre representation. Indeed, the elongated triangular
and the snub square tilings are now unstable even at
vanishingly low pressure values, while the snub hexagonal,
the rhombitrihexagonal, the truncated square, the truncated
hexagonal and the truncated trihexagonal tilings can be
stabilized at least at low, sometimes even at intermediate,
pressure values by patchy particles suitably designed in our
bottom-up strategy. The reasons for this stability are again
obvious: the large areas required by the hexagons, octagons
and dodecagons that could not be stabilized in the vertex
representation are now stabilized by the particles which are
located in the centres of the building units.

Only the trihexagonal tiling could not—despite consider-
able effort—be realized, either using the vertex or the centre
representation.

We have thus given evidence that it is possible to
decorate patchy particles in a bottom-up strategy in a suitable
way such that they self-assemble even in complex particle
arrangements, represented by Archimedean tilings. These
findings provide hope that patchy particles represent a suitable
building unit for self-assembly processes of even larger units,
including—possibly—three-dimensional structures.

Finally, we point out that all calculations presented in this
contribution have been carried out at vanishing temperature.
The question of which of these identified, ordered equilibrium
structures will survive at finite temperatures can only
be answered either via suitable theoretical concepts that
can be used to evaluate the entropic contribution to the

thermodynamic potential in a reliable and efficient way or
via thermodynamic integration, based on suitably adapted
computer simulations [23].
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