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ABSTRACT: We present results of monomer-resolved Monte
Carlo simulations for a system of amphiphilic dendrimers of the
second generation. Our investigations validate a coarse-grained
level description based on the zero-density limit effective pair-
interactions for low and intermediate densities, which predicted
the formation of stable, finite aggregates in the fluid phase.
Indeed, we find that these systems form a homogeneous fluid for
low densities, which, on increasing the density, spontaneously
transforms into a fluid of clusters of dendrimers. Although these
clusters are roughly spherical in nature for intermediate densities,
more complex structures are also detected for the highest densities considered.

1. INTRODUCTION

The analysis of cluster formation in complex fluids is a topic
that has attracted considerable attention in recent theoretical
studies.1-6 The possibilities and conditions of generating cluster
phases;i.e., an equilibrium state in which the centers of mass of
particles or molecules are able to lie on top of each other and thus
build stable structures;have been extensively discussed over the
last years. It has been shown that the cluster-forming ability of a
complexfluid depends decisively on the shape of the (effective) pair-
interaction between particles or molecules. Bounded interactions
provide a basis for full particle overlaps, and can therefore allow for
particle clustering; counterintuitively, this can even be the case for
fully repulsive interactions as long as the condition that the potential
is a member of the so-called Q(-class of interactions is sufficiently
fulfilled, i.e., a class of potentials with negative components in their
Fourier transform.4,7,8

Such kinds of interactions have been established for a few types
ofmacromolecules in a coarse-grained level description.9,10 In such a
treatment, the large number of internal degrees of freedom is
averaged out, resulting in a spherically symmetric effective pair-
interaction. Within these studies, it was found that dendrimers,
which represent a class of synthetic macromolecules characterized
by well described tree-like architectures,11,12 are promising candi-
dates for cluster formation.9 Due to their enormous potential and
recent advances in chemical techniques that allow for tailoring well-
characterized molecules, dendrimers already have been in the
spotlight of various branches of science in both experimental and
theoretical studies.13-15

The basic architecture of a dendrimer consists of monomeric
units that have a minimum functionality of three that enables

each unit to chemically bind to three or more other units. By
starting with a single or a pair of these units, it is possible to grow
regularly branched macromolecules in a controlled fashion,
generation after generation, by chemically attaching new units
to the available binding sites. This finally brings about the tree-
like hybrid structure of dendrimers that lies somewhere in
between polymer chains and colloidal particles. The broad range
of possible spatial conformations of dendrimers encompasses
dense-core,12,16-18 dense-shell,9,16 or core-shell structures; this
flexibility results in a large area of possible applications, which
include gene transduction,19 drug delivery,20-22 biosensors,23

contrast agents,13,24 and many more.
From a more fundamental point of view, recent theoretical

studies have shown that the possibility to approximate dendri-
mers by soft spheres9,25-27 leads to an excellent model system
that can be used for the study of the cluster formation introduced
above.1,4,7,28 For the particular case of amphiphilic dendrimers, in
which the macromolecules consist of a solvophobic core and a
solvophilic shell, the effective pair-interaction belongs to the
above-mentioned Q(-class of bounded potentials. Therefore, it
is expected that such macromolecules possess the counterintui-
tive ability to self-assemble in clusters at sufficiently high
densities. While this behavior was corroborated by computer
simulations applying a coarse-grained level description,1,5,9 it still
requires a more careful analysis on the more fundamental level of
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its monomeric units. Indeed, the guidance offered by zero-
density, pairwise-additive interactions is not always reliable: ring
polymers have also been shown to interact by means of Q(-
potentials; however, at the finite densities at which clusters are
predicted to form on the basis of pair-interactions alone, many-
body potentials come into play. The latter act in a way that is
detrimental to aggregation of ring-shaped macromolecules, an
effect that can be attributed to the shrinkage of the rings above
their overlap concentration.10

In the present work, we show with the aid of Monte Carlo
(MC) simulations29 that the coarse-grained approach using
effective interactions between amphiphilic dendrimers in the
zero-density limit forms an appropriate, semiquantitative de-
scription of the system's behavior on a monomer-resolved level.
In addition, the predicted cluster-forming ability is confirmed for
these systems, which spontaneously form stable, finite aggregates
at sufficiently high densities.

The remainder of this paper is organized as follows: in section
2 we highlight the main features of the dendrimer model that is
used and summarize some of the former results and motivations.
In section 3 the cluster assignment and characterization method
is outlined. The structural analysis of these systems is presented
in section 4. In section 5, the internal structure of clusters is
examined, and we finish in section 6 with a short summary and
concluding remarks.

2. MODEL AND SYSTEMS

In order to investigate the cluster-formation of dendrimers in
MC simulations, we adopt the model for second-generation,
amphiphilic dendrimers put forward by Mladek et al.9,30,31 Here,
dendrimers are considered that consist of two central units, to
whichmonomers with functionality f = 3 are attached. In total, we
have N = 14 monomers, which, according to their interactions
with the solvent, are divided into two classes, thereby generating
the amphiphilic behavior. The two central monomers and the
four monomers of the subsequent first generation form the
solvophobic core particles, labeled by subscript C. The remaining
eight exterior monomers form the solvophilic shell of the den-
drimer, labeled by subscript S.

The bonds between adjacent monomers with a relative
distance r are modeled by the finitely extensible nonlinear elastic
(FENE) potential:

βΦFENE
μν ðrÞ ¼ -KμνRμν

2 ln 1-
r- lμν
Rμν

 !2
2
4

3
5,

μν ¼ CC, CS ð1Þ

where β = 1/kBT is the inverse temperature, the Kμν are spring
constants, and the Rμν stand for the maximum deviation from the
equilibrium bond lengths lμν. All other interactions between two
monomers separated by a distance r are modeled by the Morse
potential:

βΦMorse
μν ðrÞ ¼ εμνf½e-Rμνðr- σμνÞ - 1�2 - 1g,

μν ¼ CC, CS, SS ð2Þ

which is characterized by a repulsive core at short and an
attractive tail at longer distances. The depth and range of these

potentials are parametrized by εμν and Rμν respectively, and σμν
are the monomer diameters. The set of parameters used for the
simulation corresponds to the D2-model introduced by Mladek
et al.9 For completeness, they are summarized in Table 1,
expressed in terms of the diameter of the core monomers σ �
σCC, which from now on designates the reference length scale.
An effective measure for the size of a dendrimer is its radius of
gyration Rg, which, in the case of a single, isolated dendrimer of
the type used here, is given byRg≈ 3.36σ. In contrast to the core-
monomer diameter σ, the radius of gyration, however, does not
have a fixed value, but depends on the overall density and
structure of the system.

Figure 1a shows the effective dendrimer-dendrimer interaction
potential as a function of the distance between the centers ofmass for
the chosen D2 dendrimer. This interaction is obtained by simulating
two free dendrimers with the help of umbrella sampling,9,30 repre-
senting therefore the effective pair-interaction in the infinite dilution
limit. This potential can be fitted to a superposition of two Gaussian
interactions of opposite sign,9 namely,

βΦeff ðrÞ ¼ ε1 exp½- ðr=R1Þ2�- ε2 exp½- ðr=R2Þ2� ð3Þ
with ε1 = 23.6, ε2 = 22.5, R1 = 3.75σ, and R2 = 3.56σ. The Fourier
transform of the effective interaction βΦ̂eff(q) is shown in Figure 1b
and reveals a negative range that arises from both the steepness of the
interaction and the local minimum in the effective interaction near
r = 0. According to the criteria put forward by Likos et al.,7 a system
interacting via an interaction with such negative Fourier components
is able to form clusters. In ref 4, Likos et al. further analytically
established that the inherent instability arising from the negative
Fourier components of the pair potentialΦ(r) drives the formation
of clusters in the fluid phase at finite densities and the subsequent
crystallization of the liquid into a cluster solid. It is not possible to give
a precise value of the fluid density at which clusters in the liquid phase
form (this would be the analogue of the critical micelle concentration
encountered, e.g., in block copolymer solutions), since cluster
formation is, in our case, a gradual process. However, there exists
an accurate prediction for the density F� at which the cluster fluid
undergoes a phase transition into a cluster crystal, namely,4

F�σ
3 ¼ ½1:393βjΦ̂eff ðq�Þj=σ3�- 1 ð4Þ

where q* is the value of the wavenumber q at which Φ̂eff(q) attains its
most negative value. Using the value for βΦ̂(q*)/σ

3 = 35 (see
Figure 1b), we obtain the estimate F�σ

3 = 0.02. Even though this
density corresponds to a system that is still very dilute on the
monomer level, it already exceeds the dendrimer overlap densityF*=
3/(4πRg

3) = 0.006. Accordingly, one should expect that the
interaction between dendrimers will significantly deviate from its
zero-density limit, and hence the result for F� thus obtained can only

Table 1. Overview of the Monomer Interaction Potential
Parameters Used between Core (C) and/or Shell (S)
Monomers

Morse εμν Rμνσ σμν/σ

CC 0.714 6.4 1

CS 0.014 19.2 1.25

SS 0.014 19.2 1.5

FENE Kμνσ
2 lμν/σ Rμν/σ

CC 40 1.875 0.375

CS 30 3.75 0.75
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be used as a rough estimate of the range of densities forwhich clusters
should exist and to orient us in our search for such phenomena in the
full, monomer-resolved simulations. Therefore, it is a priori not
known at what density our dendrimers will start to form clusters.

In our investigations we have prepared multiple, independent
randomconfigurations ofN= 250 dendrimers at various densities in
a cubic simulation box with the usual periodic boundary conditions.
These configurations have been allowed to equilibrate for suffi-
ciently long times to guarantee a structural relaxation by employing
MC simulations at constant density with local monomer displace-
ments as well as full dendrimer translations and rotations. In the
remainder of this paper we will focus on the analysis of only four
systems, labeled A, B, C, and D, spanning a range of concentrations
around the above-mentioned value F�σ3 = 0.02 for which cluster
crystals should appear (seeTable 2).4 In addition, systems at various
intermediate densities have been simulated, butwill not be discussed
in detail here.

3. CLUSTER ASSIGNMENT ALGORITHM

Although the term clustering has been mentioned several times
above, it is not immediately evident how todefine a cluster in a proper
way and under which condition particles are considered to belong to
the same cluster. In the present case, the problem is particularly
delicate: first, as the density is being increased, dendrimers approach
each other and assemble into groups, as can be found, for instance, in
the process of nucleation; in addition, dendrimers can even penetrate
each other to an extent where the centers of mass of two overlapping
particles lie on topof eachother. For this reason, a criterion is required
that allows one to sort the dendrimers into clusters.

To this end, aminimumdistance dmin is introduced, which acts
as a standard length to decide whether two dendrimers are
considered to be part of the same cluster or not. In cluster-
forming solids, e.g., the multiple occupancy crystals formed by
GEM-4 particles,5 one usually finds that the individual particles
gather within roughly spherically shaped groups. Still, even for
this case, the identification of to which cluster a particular particle
belongs is not trivial.32

Extensive visual inspection of configurations obtained from
our simulations confirm that many clusters do seem to have this
shape. However, similar to what is observed in GEM-4 fluids,
aspherical aggregates are also observed. In addition, more
extended clusters are found that are formed by two or more
groups of particles that are connected by intermediate, bridge-
like structures of dendrimers. Such bridges can be formed in the
process of exchanging particles between neighboring clusters, as
well as from the natural fluctuations and rearrangements of
dendrimers within clusters. For this reason, a simple algorithm
based only on the mutual distance between dendrimers is not
sufficient.

We have modified the usual type of cluster algorithm based on
the relative particle distances in order to separate at least themost
simple types of extended clusters in their constituting compo-
nents. Such aggregates contain bridges formed by single, almost
linear, chains of dendrimers that connect the different subclus-
ters. This separation can be achieved by filtering out isolated
dendrimers or dendrimers with a low connectivity in the follow-
ing fashion:
1 For each dendrimer, the list of NNN nearest dendrimer
neighbors is determined, for which the centers of mass lie
within the distance dmin of the center of mass of the
dendrimer that is considered.

2 If for a dendrimer NNN = 0 or if NNN = 1 and the only
neighbor is found at a distance larger than 0.5 � dmin, the
dendrimer is counted as a single dendrimer cluster.

3 If NNN = 2 and the angle R between the vectors to both
neighbors satisfies R > π/2 and both are found at a distance
larger than 0.5 � dmin, the dendrimer is also counted as a
single dendrimer cluster. These are dendrimers that are
located within an almost linear chain of dendrimers between
different clusters.

4 Since some dendrimers are counted as individual clusters,
the number of neighbors of the remaining dendrimers
might have changed. Therefore, steps 2 and 3 need to be
iterated until no more single-particle clusters are found.

5 The remaining list of dendrimers is sorted into clusters
according to the neighboring particles.

For all results presented here, dmin = 3σ has been used, a value
that is somewhat smaller than the zero-density radius of gyration
of the dendrimers,1 and also smaller than the typical distance 4σ
that corresponds to the first minimum in the radial distribution
function of the centers of mass of the dendrimers (see Figure 6).
This ensures that dendrimers that are sorted into the same cluster
are close in terms of the size of an individual dendrimer as well as
with respect to the length scale of their global structure.

Figure 1. (a) The effective pair-potentialΦeff(r) for amphiphilic dendrimers as obtained fromMC simulations (red circles) and a fit to the difference of two
Gaussian potentials (black line); and (b) its Fourier transform Φ̂eff(q), with the inset showing a zoom of the region around its most negative value,-|Φ̂eff(q*)|.

Table 2. Parameters for the Four Systems Considered in This
Study, with Fσ3 Being the Dendrimer Number Density and L
Being the Size of the Simulation Box

system Fσ3 L/σ

A 0.010 29.24

B 0.015 25.54

C 0.020 23.20

D 0.025 21.54
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A typical example of a cluster of dendrimers with an occupancy
number Nocc = 6 and taken from system C is shown in Figure 2a.
The core particles are found to be closely grouped together in the
central region, whereas the shell monomers are more loosely
distributed outside. It should be noted that the simple cluster
algorithm described above can easily deal with this type of
roughly spherical clusters, but that it is not capable of resolving
the problem of some of the more complex aggregates. For
instance, strongly elongated structures or dumbbell-shaped
aggregates will be still classified as single clusters. The same is
true when two spherical clusters are connected by a more
complex type of bridge, e.g. a double chain of dendrimers. An
example of a group of dendrimers that is erroneously identified
by the cluster algorithm to be a single cluster is shown in
Figure 2b. It was observed in system D, consists of 37 dendri-
mers, and shows how one of the subclusters is connected by a
narrow bridge or neck to the remaining units.

4. SPONTANEOUSLY ASSEMBLED CLUSTERS

To give an impression of the four systems investigated in this
study, a snapshot of equilibrated configurations for each of the
densities is shown in Figure 3. Whereas in the lowest density
(system A) no clear structure can be observed, the higher density
systems indicate an increasingly evident presence of clusters.
Since in all cases the simulations were started from independent,
randomly distributed dendrimers at the given density, the
formation of clusters occurs spontaneously. This confirms that
the prediction of this behavior by theoretical works and simula-
tions of coarse-grained, effective particles is correct.9

The cluster-participating dendrimers in these systems are not
arrested within their clusters; to the contrary, they are mobile.
Within the equilibrated simulation runs, dendrimers travel over
distances of several box-lengths and clusters are continuously
formed, merged and broken up into smaller ones. The latter
processes can easily be verified by measuring the density of
clusters, i.e. the amount of clusters existing at any given moment
divided by the volume of the simulation box, as obtained by using
the cluster algorithm outlined above. Figure 4 shows the average
density of clusters, using only the number of clusters consisting of
two or more dendrimers, as a function of the overall dendrimer

density for equilibrated systems. Also the spread in this number is
indicated, which was obtained by using the minimum and
maximum number of clusters at every given density within each
of those simulation runs to determine the density of clusters. For
low densities, the system is fluid-like and has a low cluster density,
since only few clusters are detected, which are basically due to
local fluctuations and which lack a strong cohesion. On increas-
ing the dendrimer density, the cluster density grows and appears
to reach a maximum at about Fσ3 = 0.015, after which it starts to
decrease again. The latter decrease is a consequence of the fixed
number of total dendrimers and their tendency to form bigger
clusters at higher densities. In addition, it should be kept in mind
that the characterization of an aggregate as a cluster does depend
on the specifics of the cluster-assignment algorithm.

To analyze the process of dendrimers hopping between
clusters in more detail, the cluster size distributions have been
calculated. The results for systems A-D are shown in Figure 5,
where the normalized probability size-distributions P(Nocc) are
shown as a function of the cluster size Nocc. For the low density
Fσ3 = 0.01 of system A, only a few, relatively small, clusters are
found. At the higher density Fσ3 = 0.015 of system B, one can
already observe that an increasing number of clusters are formed
of up to 12 dendrimers. Apart from the single particle clusters, the
most frequently found clusters are still small with an Nocc in the
range of 3-5.

On increasing the density to Fσ3 = 0.02 (system C), the
number of larger clusters increases, and their preferred size shifts
to the range 7-10. At the same time, the number of smaller
clusters with 2-6 dendrimers diminishes. For the highest density
considered here, this trend progresses. The most frequently
found clusters now contain about 10 dendrimers. The probability
to find clusters of twice that size is almost as high, and even
clusters 3 times as large are found. This considerable tail in the
distribution of much larger cluster sizes, of which the onset could
already be seen in system C, is caused by extended clusters, i.e.,
two or three clusters of average size, but connected by a string of
dendrimers that cannot be resolved by the simple algorithm
outlined above. In addition, the system contains only 250
dendrimers and is therefore on the level of clusters rather small,
hence finite size effects might play a role.

It is clear that a coarse-graining of the system by approximating
the dendrimers by spheres interacting according to the zero-
density limit effective interaction cannot be perfect. By using the
pair-interaction only, we neglect all many-body effects, and hence
some deviations from monomer-resolved simulations should be
expected. Such corrections are necessary even at the lowest
density considered in system A (Fσ3=0.01) since it is already
quite higher than the overlap concentration of F*= 3/(4πRg

3)=
0.006.

To this end, we discuss below the comparison between key
results obtained by two different approaches: one is the mono-
mer-resolved simulation and the other is a simulation of point
particles interacting by means of the infinite-dilution effective
pair potential Φ(r) only. In particular, we consider the radial
distribution function of the centers of mass of the dendrimers,
g(r), as is illustrated in Figure 6. In either approach, the local
maxima found at g(0) indicate that dendrimers can get arbitrarily
close and have the propensity to cluster. It is in this limit of close
approach between dendrimers that the coarse-grained results
deviate somewhat from the monomer-resolved results and
underestimate the strength of clustering. This is hardly surprising
since the increasing density will affect the effective pair-interaction,

Figure 2. (a) A typical cluster of dendrimers, having an occupancy
numberNocc = 6 as found in simulations of system C. (b) An example of
a cluster, consisting of 37 dendrimers found in system D, for which the
cluster algorithm fails to separate the subclusters. Core monomers are
black (central monomers) and blue (first generation), respectively, and
shell monomers are red. For clarity, bonds are not shown, and the size of
the shell monomers is reduced in b.
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especially in this range. The first correction term, i.e., the three-body
interaction, is evidently attractive, since the monomer-based ap-
proach yields a higher value of g(0) than the effective one does.
However, upon increasing the concentration further, the trends
reverts itself. At the highest density considered, there is a significant
discrepancy between the two approaches. Although cluster forma-
tion survives in the monomer-resolved approach, it is much less
pronounced than in the effective one, based on pair potentials. For
this density, which is already higher than the one predicted for the
instability of the fluid and the freezing into cluster solids,4 the
monomer-resolved simulations hint toward a zone around a given
cluster, which is depleted from other dendrimers. This fact, in itself,
is at least an indication that the system attempts a structural
relaxation and possibly tends to form an ordered structure on the
level of clusters. It should be noted, however, that the system of 250
dendrimers with a mean cluster-size ofNocc≈ 10 is relatively small,
and that a full structural relaxation will hardly be possible due to the
periodic boundary conditions.

The radial distribution function of the centers of mass of the
clusters, gcl(r), is shown for system B in Figure 7. The two peaks
at r≈ 1.5σ and r≈ 3σ are due to single dendrimers that approach
either each other or a larger cluster, and which are assigned by the
algorithm to different clusters. This can be seen from the right
panel in the same figure, where we show the radial distribution
function as obtained when those single particle clusters are
excluded from the analysis. Now, the first two peaks, which are
a signature of the processes described above, disappear. The
remaining cluster correlation turns out to be more or less
independent of the choice of dmin.

5. INTERNAL CLUSTER STRUCTURE

Measurements of the internal dendrimer structure by means
of the density profiles of core and shell monomers with respect to
the center of mass of the dendrimer reveal that these functions
are hardly affected by the increased overall density of the system.
They remain very similar to those of the infinite dilution regime
by Mladek et al.9 and are therefore not presented here. Also the
mean radius of gyration in the observed systems remains close to
the value Rg ≈ 3.36σ of an isolated dendrimer. This, however,
does not necessarily exclude the possibility of other deforma-
tions, such as the stretching of internal (coarse-grained) bonds
due to crowding of the core monomers, or shrinking of den-
drimers caused by the external pressure exerted by other clusters.

In order to probe the internal structure of the clusters, density
profiles of both types of monomers (core and shell) and of the
centers of mass of the dendrimers are measured with respect to
the center of the cluster under study. Hereby the contributions
are separated into the monomers and dendrimers that belong to
the cluster (“member''), as well as those stemming from neigh-
boring clusters (“other''). Figure 8 shows the results for systems
A-D for the most frequent cluster sizes Nocc of the particular
systems.

Figure 4. The average density of clusters as a function of the dendrimer
density (triangles). The minimum and maximum value of the cluster
density within each simulation run are also indicated. Single particles
clusters were not considered for the determination of the cluster density.

Figure 3. Snapshots of systems A-D. Colors are as in Figure 2, and bonds are indicated in gray.
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The profiles of the monomers belonging to the cluster, i.e., the
member ones, are qualitatively very similar to those of the
monomers inside a dendrimer. This can be understood from
the fact that the amphiphilicity causes a spatial segregation be-
tween core and shell monomers. Hence, the core monomers are
essentially building the core of the clusters, whereas the shell
monomers form a surrounding cloud, as is also illustrated by the
snapshots in Figures 2 and 3. In addition, the shape of these
profiles depends only weakly on the number of dendrimers
within the cluster.

Surprisingly, numerous isolated monomers of dendrimers that
do not belong to the cluster under study can also be found in the
central region of this cluster. To understand this behavior, we

additionally plot the density profile of the centers of mass of the
nonmember dendrimers in Figure 8 and consider the first peak in
this distribution. This peak mostly stems from dendrimers that
are still close to the cluster under study, but have been sorted out
by the cluster algorithm and are therefore either single dendrimer
clusters or dendrimers that are part of a simple chain-like bridge.
Their core monomers, which on average are evenly distributed
around the center of mass of the dendrimer to which they belong,
extend into the core of the cluster under study, which acts as an
attractive basin due to the amphiphilic interactions. For the same
reason, the shell monomers of the nonmember dendrimers are
expelled from that region, even though this area, in principle, lies
within their reach. The second, much larger peak in the density

Figure 5. The normalized probability distribution of cluster sizes, P(Nocc), for systems A-D.

Figure 6. Radial distribution function of the centers of mass of the dendrimers for systems A-D. Red line: monomer-resolved; black dashes: coarse-
grained.
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distribution of the centers of mass of nonmember dendrimers
corresponds to the average distance between neighboring clus-
ters. The corresponding core monomers generally remain out-
side the cluster under study. By contrast, the clouds of the shell
monomers of neighboring clusters have a substantial overlap.
Increasing the density as we go from system A to D enhances the
cohesion in the clusters and results in less and less isolated
dendrimers. Consequently, the nonmembermonomers get more
and more expelled from the central cluster in systems B and C.
For the highest density of system D, the compactness of the
cluster core and its surrounding cloud prevent almost all non-
member core monomers from penetrating the central region.

The profiles of the internal structure of the clusters just shown
in Figure 8 correspond to the most frequent cluster-size for each
of the system densities. Consequently, the occupation numbers

Nocc are different, which makes it difficult to compare the
functions. To this end, Figure 9 shows the same profiles, now
normalized by the occupation numberNocc. This reveals that the
central peak in the core distributions decreases with increasing
density and at the same time becomes somewhat wider. These
trends can easily be explained by the crowding of the core
monomers taking place in the center of the cluster by the
increased number of dendrimers. Consequently, the core region
needs to expand resulting in a broader monomer distribution.
Since the monomer density distributions per dendrimer are
considered here, the normalization leads to a reduction in the
central area. By contrast, the shell-monomers, which have a much
weaker mutual interaction, are hardly affected by the increase in
density and are more evenly distributed in space. The fact that
not only the height of the peak in the shell monomer distributions,

Figure 7. Radial distribution function for the centers of mass of clusters for system B. Single particle clusters are (a) included and (b) excluded.

Figure 8. Internal radial density profiles of monomers and center of mass (c.o.m) of dendrimers for both cluster members and nonmembers (“other'').
The number of dendrimers per cluster are as follows: system (A)Nocc = 3, (B)Nocc = 5, (C)Nocc = 9, and (D)Nocc = 10. The insets show zooms within
regions of the density profiles, in which the latter feature considerable substructure.
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but also its distance from the center of the cluster remains
unchanged can be understood from the fact that the radius of
gyration of the dendrimers is almost constant in the density range
considered here. The core monomers of the nonmember den-
drimers are also found at nearly the same distance for all densities
considered, which indicates a preferential distance between
clusters that is almost independent of the density. A closer
examination of the monomer density profiles for clusters con-
sisting of the same number of dendrimers Nocc = 5 as shown in
Figure 10 reveals that the increasing density of the system
compactifies the cluster. Both the core and monomer profiles
are somewhat more concentrated. It should be realized, however,
that for both systems A and D, this occupation number has a
rather low probability.

By contrast, if one examines the profiles at the same density for
different cluster sizes as can be seen in Figure 11, an increased occupa-
tion numberNocc results in a spatially more extended cluster. This is
not unexpected, since the increase in the number of dendrimers sitt-
ing on top of each other in a cluster results in an increase of the
internal repulsive forces of the cluster. This effect is probably
enhanced even more by the fact that in the case of the largest
occupation numbers, the cluster size already exceeds the most
frequent size, and hence the spherical shape of the cluster becomes
distorted as dendrimers try to diffuse to other, less occupied clusters.

6. CONCLUSIONS

With the aid of MC simulations, we have investigated the
behavior of complex liquids of amphiphilic dendrimers, in

Figure 9. Cluster internal density profile normalized by the number of dendrimers per cluster for (a) core monomers and (b) shell monomers.

Figure 10. Cluster internal density profile of (a) member core monomers and (b) member shell monomers for fixed occupation number Nocc = 5 of
systems A-D. The curves are normalized by the occupation number.

Figure 11. Cluster internal density profile for (a) member cores and (b) member shells, respectively, for different cluster occupation numbers in system
C. Data normalized by the respective occupation number.
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particular their potential for cluster formation, as was predicted
theoretically. This prediction was made on a coarse-grained level,
for which the dendrimers are approximated by soft spheres that
interact with the effective pair-interaction of two isolated den-
drimers. Here, we have shown that this behavior to form clusters
is confirmed by a description on the monomer level. To this end,
random configurations of dendrimers at various densities have
been generated and allowed to equilibrate. During this process,
the systems spontaneously create clusters, which can already be
visually observed from snapshots, and which can more rigorously
be identified by a relatively simple cluster algorithm. While these
clusters are found to be roughly spherical for low densities, it
should be noted that at higher densities they can be connected by
bridges of intermediate dendrimers. These bridges are a signature
of an active exchange of dendrimers between different clusters,
which can also be seen from the fact that individual dendrimers
travel over multiple box-lengths within the duration of the
simulation.

The radial distribution functions of the centers of mass of the
dendrimers corroborate that the coarse-grained level description
is qualitatively correct and confirms that these systems form a
cluster fluid. However, for densities around the one for which the
freezing into cluster crystals has been predicted, a significant
quantitative discrepancy in the radial distribution functions is
observed. Consequently, monomer-resolved simulations are
probably required for a quantitative analysis of dendrimer
systems at such high densities. Furthermore, we have presented
a detailed analysis of the monomer as well as dendrimer
distributions within spontaneously formed cluster structures,
which gives interesting new insights into the complex behavior
of thus assembledmacromolecules andmight pave the way for an
advanced analysis of such kind of complex fluids up to freezing.
With this, the presented work delivers a confirmation that
amphiphilic dendrimers are eligible molecules for further theo-
retical and computational studies as well as a possible direct
experimental realization of the fascinating novel phenomenon of
macromolecular clustering.
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