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We present a new method to determine the curvature dependence of the interface tension between

coexisting phases in a finite volume from free energies obtained by Monte Carlo simulations. For the

example of a lattice gas on a 3D fcc lattice with nearest neighbor three-body interactions, we demonstrate

how to calculate the equimolar radius Re as well as the radius Rs of the surface of tension and thus the

Tolman length �ðRsÞ ¼ Re � Rs. Within the physically relevant range of radii, �ðRsÞ shows a pronounced
Rs dependence, such that the simple Tolman parametrization for the interface tension is refutable. For the

present model, extrapolation of �ðRsÞ to Rs ! 1 by various methods clearly indicates a positive limiting

value.
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The dependence of the interface tension � between a
metastable phase coexisting with a droplet (or bubble) of
the stable phase on the radius of curvature R of the inter-
face is of central interest for the understanding of nuclea-
tion and phase separation phenomena at first order phase
transitions in fluids [1–5], a subject which is of major
importance in physics, chemistry, biology and industrial
applications. Curved interfaces also play an important role
in the study of membranes, vesicles, and fluids in porous
materials and other cavities. Since the local coordination of
particles within a curved interface changes with its curva-
ture, one expects � ¼ �ðRÞ, but a quantitative assessment
of this dependence is difficult. Typically, R is on the nano-
scale, and the interface tension differs markedly from its
macroscopic limit. This problem hampers the prediction of
nucleation rates from rain droplets in the atmosphere to
precipitates in alloys to gas bubbles in cavitation processes,
creation of foam materials, etc.

Even though it is difficult to characterize metastable
states within rigorous thermodynamics of infinite systems
[6], in finite systems a phenomenological analysis of the
stability of interfacial states is a well-defined problem
[7,8]. More than 60 years ago, Tolman [9] in a seminal
paper introduced a phenomenological parametrization

�ðRÞ ¼ �1=ð1þ 2�=RÞ; �1 ¼ �ðR ¼ 1Þ; (1)

the length scale � being the famous Tolman length.
Unfortunately, it is difficult to clarify the range of radii R
for which Eq. (1) holds and to predict � within statistical
mechanics (for a survey of the ongoing controversial dis-
cussion see Refs. [10–16] and the vast literature quoted
therein). Applications in nucleation theory often use
�ðRÞ ¼ �1 for any R (‘‘capillarity approximation’’), but
this is expected to lead to severe errors for, e.g., derived
nucleation rates. Mean-field approaches such as density
functional calculations [10–16] to study the validity of
Eq. (1) also involve considerable approximations like ne-
glecting capillary wave type fluctuations of the interface,

etc. A method that allows us to extract �ðRÞ and � directly
from Monte Carlo (MC) or molecular dynamics data
should be able to avoid all these inaccuracies, being only
subject to controllable finite size effects and statistical
errors.
An ideal model for studying �ðRÞ in such simulations

should be computationally as cheap as possible. In particu-
lar, one may resort to lattice models with short range
interactions instead of off-lattice continuum models that
usually spend orders of magnitude more CPU time on
potential and force computations. However, in cases which
may seem appealing at first glance the existence of a well-
defined nonzero � is ruled out by at least two no-go
theorems. (i) One does not expect the Tolman formula
(1) to hold in two-dimensional systems [17,18]. (ii) �
must vanish by symmetry for models with a symmetry
relation between the microstates of the coexisting phases
[19], which rules out, e.g., Ising lattice gas models built
from pair interactions.
The aim of the present Letter is twofold: (i) To devise an

efficient lattice model for studying Eq. (1); (ii) to develop a
methodology to extract information on �ðRÞ and � from
simulations.
As to point (i), consider a face-centered cubic Ising

lattice in 3 dimensions with volume L� L� L ¼ V and
periodic boundary conditions. Each of its N ¼ V=2 lattice
sites i is surrounded by 12 nearest neighbor sites and 24
different triangles hijki of mutual nearest neighbor sites. In
the decade from 1970 to 1980, the triplet spin Ising fcc
model with Hamiltonian

H ½fsig� ¼ �X
hijki

sisjsk; (2)

derived from this lattice topology, has been investigated for
possible critical behavior (see Refs. 3-8 in Ref. [20]), until
it was finally realized [20] that it actually undergoes a
clearly detectable albeit weak first order transition. Since
then, the model seems to have abruptly fallen from grace in
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the literature. However, for our present purposes it is just
perfect. Because of its obvious asymmetry with respect to a
global spin flip we can identify its ferromagnetic ground
state fsi ¼ þ1gNi¼1 of energy �8N with the zero tempera-

ture ‘‘fully condensed’’ lattice gas phase, and the high
temperature disordered phase with the ‘‘vapor.’’ Taking
the lattice gas point of view, we parametrize the system
by the number of up-spins Nþ ¼ 1

2

P
ið1þ siÞ rather than

the magnetization, such that the corresponding density
� :¼ Nþ=V is confined to values between 0 and 0.5.

Observation of a double peak in the energy probability
distribution around T � 11:4 (setting kB ¼ 1) with thermal
Metropolis MC simulation based on single spin flips con-
firms the first order character of the transition in zero
external field. By imposing equal areas under the two
well-separated Gaussian-like peaks (see, e.g., [21]) and
linear extrapolation of the resulting finite size phase coex-

istence temperatures TðLÞ
0 in 1=L ! 0 gives the estimate

T0 ¼ 11:39� 0:01 for the first order transition tempera-
ture of the model. However, since the first order character
is not very strong, we decide not to study zero field phase
coexistence right at T0, but work at a somewhat lower
temperature Tc ¼ 8:0 � 0:7T0, introducing an external
compensating field coupling �H

P
isi to reestablish

symmetry in the potential minima and thereby restore
conditions of phase coexistence. For each finite L, the
probability distribution of Nþ now shows a double peak

provided H is near the finite size coexistence value HðLÞ
c ,

which we again define by an equal area rule. At T ¼ Tc we
report the linear extrapolationH1

c � �3:495 for 1=L ! 0.
Because of the dense cubic packing of fcc sites and the
large coordination number we do not expect to see any
noticeable anisotropy in the interface tension, which is,
e.g., in the standard 3D simple cubic Ising model
lower than 1% at comparable values of the reduced tem-
perature [22].

With parameters Tc and Hc tuned for phase coexistence,
we compute the dimensionless ‘‘excess’’ free energy den-

sity f̂ð�Þ � FðTc; V�;H
1
c Þ=ðTcVÞ from Wang-Landau

[21] simulations followed by an average over 20 indepen-
dent MC production runs, considering linear system sizes

L ¼ 18; 20; 22; . . . ; 30 (cf. Fig. 1). As expected, f̂ð�Þ
shows a pronounced asymmetry. By numerical differentia-
tion with respect to � we obtain the dimensionless chemi-
cal excess potential �̂ð�Þ (see Fig. 2 below). We now
concentrate on the analysis of microstates containing a
spherical ‘‘droplet’’ or cavity (‘‘bubble’’) of up-spins.
Even though simulation snapshots [13,15] and compari-

sons of slopes of f̂ð�Þ and �̂ð�Þ [8] may give a clue about
the density regions populated mainly by phase separated
configurations of spherical symmetry, we avoid any preju-
dice in this respect by deliberately including a much larger
range of possible densities in our analysis, the only require-
ment being that this range should safely include the spheri-
cal one. If the data are analyzed imposing spherical

symmetry in the underlying formulas, deviations from
the expected behavior allow us to locate the spherical
density domains a posteriori. For a given total density �
of an inhomogeneous phase separated state with dimen-
sionless grand potential density !̂ð�̂Þ ¼ fð�Þ � �̂�, the
equation �̂ð�iÞ � �̂ ¼ �̂ð�Þ generally has two additional
solutions �i, i ¼ �, � representing the homogeneous den-
sities of the coexisting condensed and disordered phases
with !̂ið�̂Þ ¼ fð�iÞ � �̂�i, i ¼ �,�. We impose a spheri-
cal dividing surface AðRÞ of radius R, which splits the total
volume into V ¼ V�ðRÞ þ V�ðRÞ, and assume the smaller

one to be spherical with radius R. This gives rise to an
excess grand potential density

�xðR; �̂Þ ¼ V!̂ið�̂Þ � V�ðRÞ!̂�ð�̂Þ � V�ðRÞ!̂�ð�̂Þ; (3)

from which we obtain the R-dependent dimensionless
interface tension

�ðRÞ ¼ �xðR; �̂Þ=AðRÞ: (4)

The dimensionless interface tension �s � �ðRsÞ at the
radius Rs of the so-called surface of tension is found
numerically by locating the minimum of �ðRÞ with respect
to R in accordance with the universal d ¼ 3 formula [23]
�ðRÞ=�ðRsÞ ¼ 1þ ð1=3Þð1� Rs=RÞ2ð1þ 2R=RsÞ. The
equimolar interface tension �e � �ðReÞ at the equimolar
radius Re is determined by the lever rule

V�ðReÞ
V

¼ �� � �

�� � ��

;
V�ðReÞ

V
¼ �� ��

�� � ��

: (5)

The difference �ðRsÞ :¼ Re � Rs is the famous Tolman
length. The simple Tolman formula (1) can be derived
[23,24] only under the crucial assumption of constant �.
To detect a nontrivial Rs-dependence of �, we assemble
our resulting data for �ðRsÞ (droplets) and ��ðRsÞ (bub-
bles) in Fig. 3. And indeed, �ðRsÞ appears to be far from
constant in the observed range of radii. Plotted against
1=Rs, Fig. 3 shows three ranges of different characteristics.
In particular, roughly in the interval of inverse radii be-
tween 0.1 and 0.2 we notice a certain tendency of the
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FIG. 1 (color online). Dimensionless excess free energy
density f̂.
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data to populate a common ‘‘master curve’’ with linear
slope, such that for large L a convergence towards an
L-independent function �ðRsÞ takes place for both droplets
and bubbles. Quantitatively, the corresponding radial
ranges can be pinned down by determining the start and
end points where a linear fit to �ðRsÞ starts to break down
by visual inspection (Fig. 4. Interestingly, as shown in
Fig. 2, the corresponding total density ranges calculated
form these radii are in excellent correspondence with those
densities for which one may indeed observe spherical
droplets and bubbles as the abundant microscopic configu-
rations in simulation snapshots. Consistency checks of the
spherical density and radial ranges determined by the
above procedure are provided by monitoring various ob-
servables computed under presupposed spherical symme-
try. As an example, Fig. 5 shows the excess free energy
Fx
e ¼ Vfxe at Re as a function of �̂. Again we see that the

common part where all curves collapse onto a ‘‘master
curve’’ yields well-defined functions Fx

eð�̂Þ for both bub-
bles and droplets. Isolating these deviations from the
spherical regime would have been difficult based exclu-
sively on interface tension data (Fig. 6). Interestingly, these
data reveal a striking ‘‘overshooting’’ of the bubble data
for 1=Rs ! 0, and applying formula (1) would hint at a

positive limit � > 0 for droplets. However, such conclu-
sions are premature; as emphasized above, �ðRsÞ is not
constant and the use of (1) is questionable. Rather, an
extrapolation of the straight sections for �ðRsÞ in Fig. 4
to Rs ! 1 is needed, i.e., monitoring the intersection
points of the corresponding fitted lines with the axis
1=Rs ¼ 0. And indeed, Fig. 4 clearly reveals a tendency
of these intersection points to converge towards a positive
limit � :¼ limRs!1�ðRsÞ estimated as � � 0:3.

To back up this observation, we have also tested alter-
native ways to obtain the limiting value � from our data. In
d ¼ 3, �ðRsÞ is related to the adsorption �s ¼ �ðRsÞ at the
surface of tension by the exact cubic equation [25]

�s

��
¼ �ðRsÞ

�
1þ �ðRsÞ

Rs

þ 1

3

�
�ðRsÞ
Rs

�
2
�
; (6)

where �� ¼ �� � �� denotes the density difference of

both coexisting phases. In �s, we also observe linear
sections in 1=Rs which allow extrapolation to Rs ! 1
(not shown). Together with the limiting planar interface
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FIG. 5 (color online). Equimolar excess free energy Fx
eð�̂Þ as

function of �̂. Gray curves correspond to unbiased density
ranges, their colored sections to the spherical regime (cf. Fig. 2).
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FIG. 3 (color online). Raw data for Tolman length �ðRsÞ
computed under the assumption of spherical interface geometry.
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value j��1j ¼ 0:3055� 0:0001, these data confirm the
trends observed in Fig. 4. In the spherical regime, there is a
one-to-one correspondence Rs ¼ Rsð�̂Þ with Rs ! 1 for
�̂ ! 0 and vice versa. Investigating the limiting behavior
of �½Rsð�̂Þ� � �ð�̂Þ for �̂ ! 0, a linear relation between
�ð�̂Þ and �̂ has recently been reported in [26], which is
quite reminiscent of our present approach. Indeed, upon
performing the above reparametrization we also observe a
roughly linear behavior in the spherical data regime.
Fitting straight lines to these sections once again produces
another set of extrapolated limiting values for � with
similar visual appearance and convergence tendencies as
the ones we obtained using our previous methods. All
our attempts to extrapolate �ðRsÞ to Rs ! 1 indicate a
nonzero limiting value, which we roughly estimate as
� � 0:33 (cf. Fig. 7).

Summarizing, we have presented several related
approaches to extract the Tolman length �ðRsÞ of a
three-spin interacting Ising lattice gas on an fcc lattice
from free energies obtained by MC simulations. Within
the considered system sizes, �ðRsÞ shows a strong depen-
dence on Rs. Unlike in the vapor-to-liquid transition of
Lennard-Jones fluids, where the limiting value � ¼
limRs!1�ðRsÞ seems to be slightly negative, for the present

model we observe a clear tendency of �ðRsÞ to saturate at a
positive limit � > 0. To demonstrate this in a completely
stringent way and give a numerically reliable estimate
would require going to much larger system sizes.
However, as will be shown for a Lennard-Jones fluid in a
forthcoming paper, this extrapolation is rather academic, at
least as far as nucleation theory is concerned. In fact, one
can show that at the radii for which �ðRsÞ has saturated
sufficiently, the corresponding nucleation barriers already
exceed some 100kBTc or more (cf. also Fig. 6). Thus,
neither the capillarity approximation nor the Tolman pa-
rametrization Eq. (1) should be employed in any serious
quantitative work. In contrast, results such as those shown
in Figs. 5 and 6 yield precisely the information needed in
predicting nucleation rates. Of course, further work will be
needed to generalize our approach to more specific models
of materials.
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edited by S. Flügge (Springer, Berlin, 1960), Vol. 10,
p. 134.

[25] K. Koga et al., J. Chem. Phys. 109, 4063 (1998).
[26] J. Julin et al., J. Chem. Phys. 133, 044704 (2010).

PRL 107, 265701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 DECEMBER 2011

265701-5

http://dx.doi.org/10.1103/PhysRevB.29.6252
http://dx.doi.org/10.1103/PhysRevB.23.976
http://dx.doi.org/10.1103/PhysRevB.23.976
http://dx.doi.org/10.1016/j.nuclphysb.2009.05.009
http://dx.doi.org/10.1063/1.477006
http://dx.doi.org/10.1063/1.3456184

