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We show that a distinct class of colloidal crystals, which consist of mutually overlapping particles, has a

novel and universal response to steady shear. After a shear-banding regime at low shear rates, strings

parallel to the flow direction form as shear grows, which order on a hexagonal crystal in the gradient-

vorticity plane. At even higher shear, lateral fluctuations of the strings, enhanced by hydrodynamics, lead

to a disordered, fluid state. Our results are based on appropriate simulation techniques that correctly

account for hydrodynamics. We also find that shear vastly accelerates the nucleation rates of supercooled

fluids into the cluster crystals.
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Complex, non-Newtonian fluids demonstrate an enor-
mously rich rheological behavior under steady or oscilla-
tory shear, which leads to a variety of nonequilibrium
structures. This nonlinearity makes complex fluids ex-
tremely challenging to understand from the fundamental
point of view. They show shear banding [1], thixotropy [2],
and shear thinning [3,4] as well as, in many cases, shear
thickening [3]. In addition, these materials bear high im-
portance for a wide variety of applications in, e.g., nano-
technology and micropatterning [5], microfluidics [6], or
shock absorption [7]. On one side, shear can induce order,
in the form of sliding planes, to a colloidal dispersion that
is disordered in equilibrium, bringing about thixotropy and
shear thinning. Reversely, shear can cause a shear-induced
disorder (SID) transition of a crystal to a flowing, uniform
phase.

In this Letter, we focus on steady shear of colloidal
crystals [8]. The topic has attracted a great deal of attention
also in the context of atomic systems [9], aiming at under-
standing the sequence of states that lead from an equilib-
rium crystal at zero shear to a shear-molten state at high
shear. The hitherto explored scenarios on the succession of
steady states at increasing shear are dependent on the type
of interparticle interactions, on crystal orientation in the
cell, on concentration, and, for the case of charge-
stabilized colloids, on salinity. Ackerson and Clark [10]
have performed a combination of shear and small-angle
neutron-scattering measurements on charge-stabilized col-
loids both for body-centered cubic (bcc) and for face-
centered cubic (fcc) lattices. The generic scheme under
which the SID comes about is a succession, with increasing
shear rate, proceeding from the equilibrium crystal to a
strained solid in which either twin bcc or zigzag motions of
successive close-packed planes are observed, to a sliding
layer structure with two-dimensional order, and finally to a
fluid [11]. Subsequent experiments have confirmed
the salient features of this scenario, both for charged
colloids [12,13] and for hard spheres [8,14]. A particularly

intriguing finding of the experimental investigations on
charged colloids is the emergence of short stringlike cor-
relations between the colloids close to the SID transitions
[10,13] without spatial ordering of the same. Butler and
Harrowell [15] found in their simulations of Yukawa crys-
tals that, although these strings had no particular correla-
tion in the flow-vorticity plane, they showed hexagonal
order in the gradient-vorticity plane, which was absent in
the experiments. It was subsequently argued that this order-
ing might be a simulation artifact arising either from the
absence of walls in the original simulation [15] or from the
emergence of a pseudo-oscillatory shear profile due to the
periodic boundary conditions in the flow direction [16].
The subject of this work is shear of colloidal cluster

crystals, whose equilibrium structure and dynamics have
been the subject of intensive investigations since their
discovery in computer simulations a few years ago [17].
The interaction potential of these colloids is bounded; i.e.,
it allows for full and multiple particle overlaps, a condition
fulfilled for suitable polymer-based colloids [18]. A neces-
sary and sufficient condition for the stability of cluster
crystals is the existence of negative components in the
Fourier spectrum of the effective interaction potential
[19]. The resulting cluster crystals are characterized by
an accumulation of Nc particles on each lattice site, where
Nc scales proportionally to the density, so that a cluster
crystal with a concentration-independent lattice constant
emerges [17,19,20]. Most recently, the quantum version of
such systems, termed there as droplet crystals, has been
analyzed [21]. The equilibrium dynamics of cluster crys-
tals is also highly unusual, featuring a superposition of
phononic oscillations and activated hopping dynamics
[22,23], the latter resulting in a finite long-time diffusivity
that scales as expð��=TÞ, where � is the density and T the
absolute temperature.
Though the equilibrium properties of these novel phases

are by now very well understood, nothing is known about
their nonequilibrium behavior. We discover here that
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cluster crystals respond to shear through a novel scenario:
Shear banding occurs at low shear rates, followed by string
formation, in which the flow-aligned strings formed by the
interpenetrating particles order in a hexagonal lattice on
the gradient-vorticity plane. At a critical shear rate _�c /ffiffiffiffi
�

p
, the string phase melts into a disordered fluid with a

concomitant increase of the viscosity. This form of self-
organization arises from penetrability: In contrast to hard
colloids [11], no zigzag or sliding planes are necessary to
relax the stresses, since particles can go over one another.
The correspondence of our model with experimental real-
izations of cluster crystals is discussed in the Supplemental
Materials [24].

We considered a fcc cluster crystal, formed by clusters
of overlapping particles which interact via the generalized
exponential model (GEM)-8 potential UðrÞ ¼
� exp½�ðr=�Þ8�, � and � being energy and length scales,
respectively. This crystal is exposed to shear forces via
parallel shearing walls that are parallel to the z (flow)
direction, the x axis being the gradient and the y axis the
vorticity directions. The walls are separated by a distance
Lx (see Supplemental Materials for details of the simula-
tion). The system was sheared along the crystallographic
[100] or along the [111] plane at temperature kBT=� ¼ 0:2
and at three different state points with densities ��3 ¼ 2:6,
3.9, and 5.9 (corresponding to average cluster occupation
numbers Nc ¼ 4, 6, and 9, respectively). In the bulk phase,
the system forms stable fcc cluster crystals at these state
points [19,22].

As we expose the system to the shearing forces, we find
the following striking form of self-organization: Within a
certain range of shear rate _� 2 ½ _�min; _�c� (to be specified
below), the cluster crystal transforms into an arrangement
of parallel strings, which align in the flow direction and
form a two-dimensional hexagonal lattice in the gradient-
vorticity plane. Along the strings, the particles display a
disordered, liquidlike structure (see Fig. 1). In Brownian
dynamics simulations in which hydrodynamics is ignored,
this string formation occurs for arbitrarily small _�, whereas
in the multiparticle collisional dynamics (MPCD) simula-

tions, we obtain a nonlinear velocity profile and wall slip
(shear banding) for _� < _�min ffi 0:05, since the shear flow
is shielded by the outer layers of the crystals.
The formation of strings is independent of the initial

conditions, since it occurs both for ordered and for disor-
dered starting configurations. More details about the trans-
formation process are revealed by shearing with fixed _� at
the two different orientations of the crystal specified above:
For shear along the [100] direction, the cluster crystal
completely melts shortly after shear is applied. The melt-
ing process starts from the center of the crystal and then
expands gradually towards the outer layers. Eventually, the
strings form out of this transient melt. When shearing
along the [111] direction, the system takes advantage of
the fact that the ABC stacking encountered in the cluster
crystal is very similar to the final ordering of the strings
[Fig. 1(a)]. Thus, the crystal melts only along the (111)
planes which, themselves, remain well-separated from
each other during the entire process. The fact that the
transformation process is ‘‘easier’’ in the latter case is
reflected by the fact that the yield stress �0 (see Table I)

FIG. 1 (color online). (a) Vorticity-gradient and (b) flow-
gradient views of the strings formed in an cluster crystal under
shear with a shear rate _� 2 ½ _�min; _�c� (see the text). Blue spheres
(not drawn to scale) represent GEM particles. In (a), a few
centers of mass of the strings are connected by straight lines,
and the red shading of the resulting hexagonal tiles reflects the
distance from the arbitrarily chosen central string; a0 is the lattice
constant of the triangular lattice formed by the strings.

TABLE I. Simulation results from shearing of GEM-8 cluster crystals at T ¼ 0:2 for different
cluster occupation numbers Nc and crystal orientations in the shear cell, indicated in the first
column. Listed are the Bingham yield stress �0 and the shear viscosities �1 (of the string phase)
and �2 (of the molten phase at high shear). The value _�c;1 is an estimate for string melting

according to the Bingham plastic model, while _�c;2 is obtained by identifying the minimum of

d�=d _� (see the text).

Nc �0 [�=�3] �1 [��=�3] �2 [��=�3] _�c;1 [��1] _�c;2 [��1]

4 [100] 7:60� 0:13 32:12� 0:41 39:81� 0:44 0.33 0.34

4 [111] 7:51� 0:12 30:94� 0:42 40:32� 0:34 0.30 0.35

6 [100] 10:81� 0:27 40:32� 0:68 50:97� 0:56 0.36 0.42

6 [111] 8:49� 0:31 39:86� 0:53 50:67� 0:51 0.35 0.42

9 [100] 16:30� 0:26 50:13� 0:68 69:70� 0:77 0.40 0.47

9 [111] 11:04� 0:14 49:60� 0:73 66:98� 0:93 0.42 0.47
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is lower when shearing in the [111] direction. We invite the
reader to watch short videos (see [24]) which we produced
from our simulations. They provide an impression of the
dynamical process of the string formation in the two differ-
ent crystal orientations.

The formation of the strings, i.e., the loss of ordering
parallel to the flow direction and the subsequent triangular
ordering perpendicular to the flow direction, can be under-
stood as follows. The physical mechanism that stabilizes
the GEM particles in a three-dimensional crystal is self-
sustaining: The restoring force for any particle towards a
lattice site is provided by the neighboring clusters [19]. An
applied shear distorts the clusters in the flow direction,
reducing thereby the magnitude of the restoring force.
Since this process is self-amplifying, a higher shear rate
distorts the clusters even more and reduces the restoring
force concomitantly, leading to melting along the flow
direction, and clusters start to flow. This process is unique
to penetrable colloids, since the presence of a hard core
prohibits particle overlap. In the string phase, each particle
separated from a string of line density � by a distance R
experiences a repulsive potentialU2dðRÞ ¼ �

R1
�1 UðrÞdz.

The string-string interaction potential per unit length is
then given by �U2dðRÞ, which is a bounded repulsion in
two dimensions. Applying the analysis of Ref. [19], we
find that, under their mutual repulsion, these strings now
form a triangular crystal. For the case of the GEM-8
potential at hand, the interstring potential has a Fourier
transform with a negative minimum located at
Kmin=kmin ffi 1:28, where kmin and Kmin are the locations
of the minima of the Fourier transforms of UðrÞ and
U2dðRÞ, respectively. This implies that the lattice constant
of the ensuing triangular crystal is smaller than that of the
original fcc crystal, a fact confirmed in our simulations by
the emergence of additional layers of strings for shear in
the [100] direction.

If the shear rate then exceeds the density-dependent
critical value of _�c, the system melts and its shear viscosity
� increases significantly (shear thickening). Again, melt-
ing starts in the center of the simulation box. The under-
lying mechanism that is responsible for this melting
process becomes evident from the MPCD simulations:
For sufficiently high _� values, particles are able to overtake
each other as they move along the strings, a phenomenon
that is strongly supported by hydrodynamic interactions
since a tagged particle can move in the wake of its preced-
ing particle [25]. In conjunction with the two-dimensional
particle-string interaction U2dðRÞ / �, this allows us to
estimate the critical shear rate _�c as follows. The typical
time scale t? for any particle to deviate from the string in
the perpendicular direction by a distance a is t? ffi 2�=!,
where ! is the oscillation frequency due to the superposi-
tion of the potentials

P
iU2dðjR�RijÞ, fRig being the

vectors of the (nearest) neighbors in the hexagonal lattice
and a being the amplitude of the oscillations [19]. The

corresponding time tk for it to move along the same

distance parallel to the string, once it has been displaced
from it laterally by a, is given by tk ffi a=ða _�Þ ¼ _��1. As

long as the shear rate is sufficiently small and tk � t?
holds, shear does not destroy the strings. However, when
tk ffi t?, particles start overtaking and string correlations

are destroyed. Taking the above expressions for t? and tk,
the estimate _�c ¼ !=ð2�Þ is obtained. Since!2 / � / Nc

[19], we obtain _�c ¼ b
ffiffiffiffiffiffi
Nc

p
, where b is a numerical coef-

ficient that depends on UðrÞ (here b ¼ 0:18� 0:04).
From the simulations, the value of _�c can be estimated

via two different routes: First, we employ a macroscopic
Bingham plastic model describing a viscoplastic material
that behaves as a rigid body at low stress but flows as a
viscous fluid at high stress. Here, the shear stress �xz is
given by �xzð _�Þ ¼ � _�þ �0, � being the shear viscosity
and �0 being the yield stress. Fitting these results to this
model leads to the values for �0 and � summarized in
Table I. Furthermore, from the intersection of the fitted
curves in the two different regimes (see Fig. 2), we obtain
results for _�c. The approximate character of the model is
reflected in the fact that the identified values for _�c differ
markedly for different crystal orientations at the same Nc;
nevertheless, the model serves as a good indicator.
Second, we consider the free volume fraction �ð _�Þ,

which decreases as the system melts out of the strings.
During this transition, more particles are suddenly exposed
to the flow, leading to a dramatic increase in the fluid
resistance. This is a unique property of this cluster crystal,
since usually the shear viscosity drops at shear melting.
Here, we considered each GEM particle as a sphere of

0

FIG. 2 (color online). Shear stress �xzð _�Þ, reduced by the yield
stress �0, as obtained from the MPCD simulations, for shear at
the [100] orientation. The full lines (string state) and the dashed
lines (molten state) are fits according to the Bingham plastic. The
inset shows the flux �ð _�Þ of particles across the simulation box,
as obtained from full MPCD (lines) and from Brownian dynam-
ics without hydrodynamics (symbols).
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diameter � and calculated the free volume � in each state
by straightforward counting. Results are shown in Fig. 3.
By identifying the minimum of d�=d _�, we obtain an
additional estimate for _�c (see Table I). We find remark-
able agreement with the theoretical estimate _�c ¼ b

ffiffiffiffiffiffi
Nc

p
above; e.g., for Nc ¼ 4 we obtain _�c ¼ 0:36 (0.34) from
theory (simulations), and the latter are consistent with the
_�c �

ffiffiffiffiffiffi
Nc

p
scaling for the remainingNc values. In the string

phase, the �ð _�Þ curves exhibit almost no Nc dependence,
similarly to the equilibrium case, where the free volume is
also density-independent (at a given temperature) due to
the fixed lattice constant [19]. As _� exceeds _�c, the strings
fluidize, which manifests itself in the rapid, Nc-dependent
decrease of �ð _�Þ. The curves decay faster for higher Nc,
and the inflection points shift, as predicted by the theory, to
higher shear rates.

Finally, we note that the formation of a cluster crystal
out of a melt is dramatically accelerated via shearing.
Without shear, disordered metastable systems remain fluid
in the simulation. Shearing the same with _� < _�c leads to
string formation: When switching off the shear flow, the
strings immediately split into distinct clusters, located at
the positions of an fcc cluster crystal, with its (111) planes
being parallel to the shearing walls.

We have put forward a novel scenario for the shear
response of cluster crystals, which is unique to this novel
class of systems and universal for all of them, i.e., inde-
pendent of the details of their interparticle interactions.
The salient features are the formation and ordering of
long strings oriented parallel to the flow and a subsequent
shear-induced fluidization of the same at high shear rates.
The phenomena found are robust with respect to the inter-
wall separation and offer a new paradigm for structure
formation out of equilibrium. Our findings are free of
any artifacts associated with the simulation technique
[15,16], since we consider explicit walls and our steady

shear rates do not cause pseudo-oscillations. The formation
of strings is rather reminiscent of findings in simulations of
sheared colloidal fluids, in which flow-aligned strings that
order hexagonally on the gradient-vorticity plane have
been found [26–28], though these have not been seen in
experiments; see, e.g., Ref. [29] and the discussion in
Ref. [13]. Cluster crystals emerge thereby as novel mate-
rials that show unique and universal characteristics not
only in equilibrium but also under external drive. The
formation of triangularly ordered strings bears striking
similarities to the Abrikosov lattice of superconductors.
Further, the emergence of long, connected ‘‘wires’’ under
shear can be seen as a type of a transition from an isolating
(clusters) to a shear-induced conducting material (strings).
Finally, the enormous acceleration of the crystal nucleation
rates can be associated with a particular transition pathway,
in which three-dimensional order emerges, after cessation
of shear, out of disorder via the intervening formation of
two-dimensionally ordered patterns.
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