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M
ass transport has attracted strong
interest since the first observation
of Brownian motion in the eigh-

teenth century. Diffusion is ubiquitous in
nature and is at work in many processes
andapplications includingbiorelatedfields,1,2

energy conversion and storage (fuel and
solar cells),3 separation membranes,4 and
microfluidics.5,6 With increasing complexity
of such novel devices involving hierarchically
structured materials, it becomes evident that
mass and analyte transport have to be under-
stood on a variety of time and length scales.
Alongside the elucidation of the diffusion
law7�9 comes the increase in interface and
geometrical constraints of themotion.10 Con-
strained macromolecular diffusion underlies
many separation methods,11,12 plays an
important role in intracellular and extracellu-
lar transport,13 and, in addition, has impor-
tant ramifications of fundamental scientific
interest.14 Therefore, extensive research
across different disciplines13,15 and diverse
materials8,9,16 was devoted to establishing
diffusion laws and relationships to geometri-
cal and topological characteristics of the dif-
fusing species and medium.
The advent of powerful experimental tech-

niquesallowing single-moleculedetection, the
fabrication of patterned nanostructures with
built-in spatial constraints, and the develop-
ment of computational tools conveyed
the exploration of diffusion dynamics in com-
plex environments.5,7,8,17,18 The earlier experi-
ments6,10 on large DNA molecules for direct
visualization indicate that switching from dis-
ordered to patterned media holds promise
for a better understanding of the diffusion
fundamentals and improved performance of
devices for the different applications. The
strategy of patterned system utilization to
obstruct diffusion has been implemented
through microfabrication of fluidic devices5,6

andcolloidal templates,10 respectively, for size-
dependent trapping and diffusion through
molecular sizeobstructions. Extension tonano-
porous systems was exemplified in surfactant-
templated mesoporous silica for diffusion and
interaction-controlled mass transport16 and
drug delivery.2,18 However, unique assignment
of the role of geometrical and topological
characteristics of periodic nanostructures on
the basic diffusion mechanisms is better per-
formedonsimple rigidprobes rather than long
biopolymerswithconfigurational freedomand
complex interactions with the walls of the
patterned media.
In this paper, we report on the tracer

diffusion of spherical quantum dot particles
(abbreviated as QDs) confined in a three-
dimensional inverse opal with well-defined
highly ordered structure and different
geometrical constraints using the single-
molecule technique of fluorescence corre-
lation spectroscopy (FCS).16,19�22 This tech-
nique has been recently utilized to probe
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ABSTRACT We performed fluorescence correlation spectroscopy measurements to assess the

long-time self-diffusion of a variety of spherical tracer particles in periodic porous nanostructures.

Inverse opal structures with variable cavity sizes and openings in the nanometer domain were

employed as the model system. We obtained both the exponent of the scaling relation between

mean-square displacement and time and the slow-down factors due to the periodic confinement for

a number of particle sizes and confining characteristics. In addition, we carried out Brownian

dynamics simulations to model the experimental conditions. Good agreement between experi-

mental and simulation results has been obtained regarding the slow-down factor. Fickian diffusion is

predicted and seen in almost all experimental systems, while apparent non-Fickian exponents that

show up for two strongly confined systems are attributed to polydispersity of the cavity openings.

The utility of confining periodic porous nanostructures holds promise toward understanding of

constrained diffusion with a wide range of applications ranging from water purification and drug

delivery to tissue engineering.

KEYWORDS: periodic structures . confined diffusion . Brownian dynamics simulation .
fluorescence correlation spectroscopy
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one-dimensional diffusion of molecular andmacromo-
lecular tracers in nanoporous alumina membranes23,24

and three-dimensional diffusion of molecular tracers in
silica inverse opals.25 The former has simply shown the
feasibility of the technique to measure the retarded
mobility inside the nanopores, while the very recent
study in large void opals reported on complex non-
Fickian diffusion. We found that the QD particles
undergo a single Fickian diffusion, and the long-time
self-diffusion coefficient D is slowed down with in-
creasing ratio of the particle radius a to the opal cavity
radius R at a constant opening hole diameter L. Brow-
nian dynamics simulation using a Yukawa-like interac-
tion potential between particle and cavity wall
quantitatively captures the slowing down as well as
the limiting value of D in the limit (a/R) f 0.
On the basis of these findings, we expect new

material and nanostructure designs to emerge, as well
as a better understanding of existing devices to be
gained. The slow-down factor paradigm is scalable and
hence can be applied to awide range of nanostructured
materials. For instance, increase in interface and con-
strained diffusion can help to design compartments of
intrinsically long reaction/detection times. Emerging
filters and membranes4 increasingly push for high sur-
face areas to interact more effectively with any type of
analytes. The large interface model system studied here
adds to our knowledge toward targeting of these needs.

RESULTS AND DISCUSSION

Confined Tracer Diffusion. We fabricated three differ-
ent inverse colloidal crystals (i-opals). Table 1 sum-
marizes the characteristic dimensions, cavity radius R
and hole diameter L, obtained from the SEM images
(see Figure 8 in the Methods section) of the i-opals
along with their thickness d.

The three systems are characterized by different
constraining geometries, expressed in the ratio L/R
whose values can be varied by changing either the
hole diameter at constant void radius (in the case of
iO180-12/15 and iO180-10/15) or both in the case of
the iO130-9/11 membrane. The diffusion of several
fluorescent probes (see Table 3 in theMethods section)
in theHEPES (Sigma-Aldrich, pH 7.4, concentration 0.01
M) filled inverse opals was studied by FCS. Themethod
is based on measurement of the fluctuations of the
fluorescent light intensity caused by the excursion of
fluorescent probes through an extremely small obser-
vation volume (<1 μm3) defined by the focus of a
confocal microscope (see Methods). In the FCS experi-
ment, the fluorescent probes were excited by two
different lasers, λ = 633 nm for T1.3 and λ = 488 nm
for QDs (see Methods), leading to slightly different
probed volumes, as illustrated in Figure 1. As it has
been shown theoretically for an ensemble of identical,
freely diffusing fluorescent species, the FCS autocorre-
lation function G(t) (see Methods) has the following

analytical form:19,20

G(t) ¼ 1þ 1
N

1

1þ t

τ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

τS2

r (1)

Here, N = 1/[G(t = 0) � 1] is the average number of
species in the observation volume, S = z0/r0 is the ratio
between longitudinal and transversal dimensions of the
observation volume, and τ is the diffusion time of the
species, which is related to their diffusion coefficient, D,
through τ = r0

2/4D. Equation 1 is derived assuming that
the fluorescence properties of the diffusing species do
not change while they pass through the observation
volume. However, this assumption is often not true
because various photophysical effects may lead to
additional fluctuations in the fluorescence intensity.
Two types of photophysical effects were applied in
our study. For the molecular probe T1.3 (Table 3), the
dominating effect was the transition of the molecule to
the first excited triplet state. While staying at this rather
long-living state, the molecule appeared dark, an effect
that led to fluctuations of the fluorescent intensity,
typically at the microsecond time scale. This resulted
in an additional exponential decay in the autocorrela-
tion function G(t), which modifies to19,20

G(t) ¼

1þ 1þ fT
1 � fT

exp( � t=τT)

� �
1
N

1

1þ t

τ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

τS2

r (2)

TABLE 1. Geometrical Characteristic Dimensions (Cavity

Radius R, Hole Diameter L) for the Inverse Opals with

Thickness d

samples/sizes iO180-12/15 iO180-10/15 iO130-9/11

thickness d (μm) 7.4 4.6 5.0
R (nm) 75 75 55
L (nm) 60 50 45
L/R 12/15 10/15 9/11

Figure 1. Scanning electronmicroscopy (SEM) image of the
inverse opal (iO180-12/15) (see Table 1) along with the
observation volumes in the FCS experiment for excitation at
the wavelength λ = 488 nm (azure) and λ = 633 nm (pink),
respectively, for QD and T1.3.
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where fT and τT are the fraction and the decay time of
the triplet state. Typically, τT is in the order of a few
microseconds. Equation 2 leads to an excellent repre-
sentation of the experimental G(t) for T1.3 diffusing
either in free aqueous solution or in the i-opals, as seen
(solid lines) in Figure 2.

In the case of QDs, the photophysical effects were
different. Instead of triplet kinetics, they exhibited an
on�off emission (blinking) with dark times ranging
from nanoseconds to seconds.26 The blinking fluctua-
tions are represented by a power-law time depen-
dence, and eq 1 is now written as26,27

G(t) ¼ 1þA(1 � Bt2 � m)
1
N

1

1þ t

τ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

τS2

r (3)

where Adescribes the overall amplitude of the blinking
effect and B the strength of the power lawdependence
with the characteristic exponent m. Since N = A/
[G(0)� 1] should be invariant of the intrinsic contribu-
tion, A = 1. Further, since the blinking parameters
depend26 on the QDs' structure, environment, excita-
tion intensity, and observation time, both B > 0 andm

have to be treated as floating parameters in the fitting
procedure of eq 3 to the experimental G(t). As seen in
Figure 2, the latter is very well described by eq 3,
yielding m ≈ 1.8, which is in a good agreement with
previously reported values.26,27

The restricted environment exerted a clear slow-
down effect on the center ofmassmotion for both T1.3
and QDs as shown by the experimental G(t) in the
i-opal (with L/R = 12/15) and in the free solution in
Figure 2. Prior to the discussion of this pertinent
finding, it should be stressed that differences in the
imaging conditions in the pure water and water-filled
i-opal media do not affect the reported slow-down

effect. In our experiment, the objective's immersion
medium was water with refractive index n ≈ 1.33. For
the water-filled i-opal with a silica (n ≈ 1.45) filling
volume fraction of about 25%, the effective refractive
index was n ≈ 1.36. Due to this small n mismatch, the
estimated error of the diffusion in the i-opals was less
than 10%.28,29 Thus the strong shift of the autocorrela-
tion curves for the i-opals toward to longer times
(Figure 2) was caused by the confinement, as discussed
and theoretically rationalized below.

Modeling and Simulation. We employed a standard
Brownian dynamics (BD) simulation approach in order
to simulate the diffusive behavior of a small spherical
particle (radius a), which is embedded into an inverse
opal with cavity radius R and opening diameter L. The
angle of aperture is then defined as ϑ0 = arcsin(L/2π)
and the distance of the opening as h = [(R2 � L2)/4]1/2.
For better comprehension, we provide a schematic
representation of such a system in Figure 3.

Since the Reynolds number, Re, of such a colloidal
system is very small (Re , 1), the movement of the
particle can be considered as overdamped, and hence
the equation ofmotion reduces to a stochastic position
process:

r(tþΔt) ¼ r(t)þΔt
DS

kBT
F(r)þ rG (4)

Here,DS denotes the short-time diffusion coefficient, kB
is Boltzmann's constant, and F(r) is the deterministic
force exerted by the confining cavity, arising from the
wall-particle potential U(r) as F(r) = �3U(r). The vector
rG is a random variable drawn from a Gaussian dis-
tribution with zero mean value and variance given by
σr = (2DSΔt)

1/2. In our simulations, we model the
particle-wall interactions via a shifted Yukawa-like
potential:

βU(r) ¼ βU(x) ¼ ε
e�Kx=a

(x � a)2
(5)

where x denotes the shortest distance between the
particle's center and the inverse opal, as shown in the
left panel of Figure 3, and β = (kBT)

�1.
Let us briefly discuss the choice of the functional

form and the values of the numerical parameters
involved in the particle-wall interaction employed in
eq 5 above. The main requirement for this potential is
that it has to capture the effects of confinement. In this
sense, and in the absence of any microscopic informa-
tion on the form of the interaction, the simplest choice
would have been the hard-wall potential, which would
diverge at x= a and vanish for all values x> a. However,
such as choice is, on the one hand, impractical for BD
because it would require the performance of costly,
event-driven BD simulations and, on the other hand
rather, unrealistic because it is expected that residual
forces (dispersion, electrostatic, etc.) are indeed pre-
sent between the tracer and the confining walls. At the

Figure 2. Experimental autocorrelation functions G(t) for
the diffusion of the molecular T1.3 and QD T8.8 tracer in a
(iO180-12/15) i-opal and in the free aqueous solution.
Continuous lines denote the representation ofG(t) by either
eq 2 (for the molecular tracer) or eq 3 (for the QD), as
indicated by the shift of the corresponding G(t) and the
description in the plot.
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same time, we wish to keep the modeling as simple as
possible. We therefore resort to capturing with the
interaction potential only the salient, key characteris-
tics, namely:

1. The divergence at x = a which is guaranteed by
the denominator, (x � a)2, in eq 5.

2. A screened “electrostatic” nature, which is cap-
tured by the exponentially damped numerator,
e�κx/a.

3. The independence of the interaction on the
particle size a, which is guaranteed by eq 5 since,
when the particle-wall distance x is expressed in
units of a, the interaction takes a universal, a-
independent form. In this way, we minimize the
number of fit parameters, and the effects of
confinement are all captured in the ratio a/R,
which does not explicitly enter the form of the
interaction for distances x > a.

There are two parameters that have to be fixed, the
strength ε and the dimensionless inverse decay length
κ. For the former, we choose a value ε = 5, which
corresponds to interaction energies of the order kBT
when the particle center lies a few particle radii away
from the wall. On the other hand, κ is employed as the
only fit parameter, under the assumption that the
interaction becomes vanishingly small when x exceeds
several particle radii. Comparison with experimental
results (to follow) led us to fixing κ = 0.35, which
corresponds to a decay length of about three particle
radii, consistent with the underlying idea of putting
focus onto confinement, as was mentioned above.

In our modeling, we have not taken hydrodynamic
interactions (HI) explicitly into account and focused
instead on a combination of overdamped dynamics
with the effects of the confining cavities. Nevertheless,
the influence of HI are implicitly included in the simula-
tions through the fitting of κ. Indeed, the fact that βU(r)
decays over roughly three particle radii, which is typical
for the HI between a sphere and plane, indicates that,
additionally to the short-ranged steric and electrostatic
interactions, hydrodynamics does play an important

role. However, this simplified approach is clearly justi-
fied in two distinct limits. For a/R, 1, the physical size
of the particle is so small that explicit HI are indeed
negligible. For a f L/2, the dominant effect bringing
about the delay in the particle diffusion is the bottle-
neck caused by the hindrance of the tracer to pass
through the connecting pores between two spherical
cavities of the inverse opal. To keep the modeling as
simple as possible and to bring forward the effects of
the confining walls, we have thus chosen not to model
HI explicitly for all intermediate sizes of the tracer
particle, as well. The remarkable agreement between
experimental and simulation results offers a posteriori

justification for our approximations. We emphasize
that the same interaction and numerical parameters
were used to model all experimental results.

We make use of the Einstein�Stokes equation to
relate the short-time diffusion coefficient DS to the
drag coefficient ξ = 6πηa (η being the viscosity of the
solvent), which leads to the relation

DS ¼ kBT

ξ
(6)

We verified the correct implementation of the algo-
rithms bymeasuring themean-square displacement of
a free particle (vanishing deterministic force on the
particle, F(r) = 0), calculating the long-time diffusion
coefficientDfree via the relation ÆΔr2(t)æ� Æ[r(t)� r(0)]2æ
= 6Dfreet, and checking that Dfree = DS. In other words,
for free particles, long- and short-time diffusion coeffi-
cients coincide.

The coincidence of the long- and short-time diffu-
sion coefficients does not hold up anymore in the
confined case. Instead, the long-time diffusion coeffi-
cient D strongly depends on the ratio L/R, which
together with the number of openings per void (12
for our i-opals) determines the size of the permeable
surface. In addition, the tracer-to-cavity size ratio, a/R, is
expected to have a clear influence on diffusivity, as
well, so that we end up with a long-time diffusion
coefficient D = D(L/R,a/L). This coefficient is highly

Figure 3. Schematic representation of a confining capped sphere with one opening (left) and actual inverse opal cavity
employed in the simulations (right).
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correlated to the escape probability, and we can
distinguish between two extreme cases: if the pene-
trable area approaches the surface area of the void
(that is, the theoretical limit in which no solid surface
would exist anymore), then we would end up with D =
DS. The opposite extreme case would be an escape
volume that is vanishingly small, that is, if there were
no openings in the cavity. In such a situation, the
diffusing particle would never be able to escape its
confining volume. Additionally, the factor plays also a
significant role concerning the diffusion process: first, it
directly influences the short time diffusion coefficient
in eq 6 and thus the velocity of the diffusing tracer;
second, the larger a is chosen, the smaller one can
consider the escape area to become at fixed L and R

until it vanishes completely at a = L/2.
Following the present information from the experi-

ments, we have chosen values of the particle radius
belonging in the interval a/R ∈ [0.01,0.30], which
approach the aforementioned case a f L/2 at the
upper limit. In order to analyze this transitional regime,
we measured the mean escape time Æτescæ of the
embedded particle from the cavity of the inverse opal,
where the brackets Æ...æ denote an ensemble average
over different realizations of the thermal fluctuations.
The diffusion through the inverse opal can then be
seen in a coarse-grained fashion in time, as a random
walk on a lattice of step ∼R and waiting time Æτescæ on
each lattice site, leading to an expression for the long-
time diffusion coefficient D, which is well-known from
the theory of random walks, namely, 6D = R2/Æτescæ.

In the case of a free particle of radius a, the expected
escape time from a cavity of radius R can be written as
Æτescæ = τfree, where

τfree ¼ R2πηa

kBT
(7)

Equation 7 immediately results in Dfree ∼ a�1, as
experimentally found for the tracer diffusivities in the
free solution; note that the sphere of radius R in eq 7 is
fictitious. Moreover, we define a time scale τ0 that is
independent of the particle size, and it corresponds to
the time needed for a free particle of radius R to escape
from a “cavity” of the same size, viz.

τ0 ¼ R3πη

kBT
(8)

The advantage of setting τ0 as the unit of time in our
simulations is that we can directly compare the ex-
pectation values of the escape times Æτescæ for arbitrary
combinations of the parameters a/L and L/R and im-
mediately translate ratios of the same into the slow-
down factor, which is the quantity measured in the
experiments. Note also that, in this way, we can rewrite
eq 7 as τfree = aτ0/R, which is exact for a free particle. To
gain a feeling about orders of magnitude, we quote a
typical value for a setup in which R ≈ 100 nm in

aqueous solvent and at room temperature. Finally,
we note that the above considerations hold only if
the long-timemotion of the particle is indeed diffusive,
that is, if the mean-square displacement scales linearly
with time, an assumption that will be shown to hold in
what follows.

Comparison between Experiment and Simulation. The
comparison between the experimental diffusion times
is visualized in Figure 4 in the reduced plot of the slow-
down factor ζ plotted against the ratio a/R, which is a
measure of the confinement, and for the three differ-
ent L/R values. The delay factor is calculated as ζ �
Æτescæ/τfree in the BD simulations and ζ � τ(in i-opals)/
τ(in free solution) in the FCS experiment. The twomain
experimental findings are discussed in what follows.

First, even in the limiting case a, R, the value ζ0 of
the slow-down factor remains strictly larger than 1,
implying that even in the ideal, point-particle case (a/R
f 0), a confined probe is slower than a free one.
Though the strict case is problematic from a mathe-
matical point of view, since the particle would formally
experience vanishing friction with the solvent (see
eq 6), the finding is physically intuitive: a free and a
confined point particle needs the same time to reach
diffusively a distance R, but whereas the free particle
then immediately “escapes”, the confined one will only
do so if it happens to hit the cavity at the opening;
otherwise, it will remain confined and will attempt to
escape with subsequent diffusive motion. In this re-
spect, we expect the quantity ζ0 to become insensitive
to the particle size and to dependmainly on the ratio L/
R, albeit in some weak fashion. From the simulation,
and if wewere indeed in the limit in which the ratio a/R
was so small as to be irrelevant, wewould expect ζ≈ ζ0
to drop monotonically with the ratio L/R, which is not
yet the case for the smallest values, a/R = 0.01 con-
sidered there. Therefore, the particle size is still rele-
vant, and so we can conclude by extrapolation that the
limiting value ζ0 should depend rather weakly on the

Figure 4. Slow-down factor ζ for the i-opals as a function of
the reduced radius a/R: symbols denote experimental data;
continuous lines are simulation data. The right vertical axis
shows the value of the exponent χ in the time dependence
of the tracer mean-square displacement.
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opening-to-cavity ratio L/R. In fact, the simulated ζ0 =
1.7 (iO180-12/15) and ζ0 = 1.9 (iO180-10/15) follow this
anticipated trend.

These values capture well the experimental ζ0 = 1.80
( 0.06 for the smallest T1.3 tracer. In the caseof the third
i-opal (iO130-9/11), for which an anomalous diffusion is
observed (see below), the simulations overestimate the
experimental value by about 20% (Figure 4). This devia-
tion, though still within fairly good limits of agreement,
could easily be taken care of by employing slightly
different parameters for the diffusant�wall interaction.
However, for reasons of consistency and parsimony, we
refrained from doing so in the modeling at hand. In this
context, wenote that the translationalmotion for all four
tracers in i-opals with a/R < 0.14, realized with the same
cavity radius R = 75 nm (Table 1), is well described by a
normal Fickian diffusion as in the free solution. The
simulated results for the structural characteristics of
these two i-opals denoted by the continuous solid lines
in Figure 4 provide a good description of experimental
data. For stronger confinement realized with the iO130-
9/11 i-opal, the experimental G(t) for the QD deviates
from a single Fickian diffusion which, however, nicely
holds for themolecular T1.3 tracer. For this i-opal,G(t) for
the QDs can be best fitted by a single non-Fickian
process30 taking into account the blinking effect:

G(t) ¼
1þ (1 � Bt2 � m)

1
N

1

1þ t

τ

� �χ
" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t

τ

� �χ 1
S2

s (9)

The exponent χ < 1 denotes a subdiffusional behav-
ior for the mean-square displacement, ÆΔr2(t)æ∼ tχ. This
situation is illustrated in Figure 5 for the translational
motion of T9.8 in free solution and in two i-opals. The
shape of G(t) is clearly broader for the motion of T9.8 in
the stronger confining environment of iO130-9/11 with
a/R≈ 0.18 than in iO180-10/15 and is well described by

eq9withχ<1; the values of χ areplotted in Figure 4. The
deviation from the simple Fickian diffusion increases
with a/R, and the dynamic frustration is manifested in
theenhanced reductionof the particle diffusivity as seen
in Figure 4. The simulations can capture this strong
slowing down using the same particle-wall interactions
but adjusting the geometrical confinement, that is,
decreasing the ratio L/R by about 10% from 9/11 to
8/11. As amatter of fact, the simulations can also capture
this strong slowing downat the experimentally assessed
value of L/R = 9/11, but allowing for a stronger repulsion
with the wall of T9.8 than for the other two i-opals.

The nature of the diffusive process is, as mentioned
above, characterized by the exponent χ in ÆΔr2(t)æ∼ tχ,
whereas χ = 1 characterizes the usual Fickian diffusion,
the cases χ < 1 (χ > 1) correspond to subdiffusive
(superdiffusive) behavior.31,32 The key in determining
the value of the exponent χ above lies in the form of
the probability distribution function p(τesc) of the
escape time τesc from a cavity of size R. Indeed, the
total time t is the sum of a large number of indepen-
dent and identically distributed random variables τesc,
the asymptotic behavior of p(τesc) for large values of its
argument determines, then, the stable distribution of
their sum. In particular, subdiffusive behavior will result
if p(τesc) has a power-law tail of the form33,34

p(τesc) ¼ tR0
τ1�R
esc

(10)

with an arbitrary time constant t0 and R ∈ (0,1). On the
contrary, any probability distribution that decays to
zero faster than that of eq 10 above as τescf¥will lead
to normal diffusion (i.e., χ = 1).

Computer simulations offer thepossibility tomeasure
the probability distribution p(τesc) by performing statis-
tics on the escape time from the cavity.We have done so
for all parameter combinations studied in our system,
andwe show representative results in Figure 6. As can be
seen there, the distribution is exponentially decaying and
can be very well fitted with the functional form

p(τesc) ¼ 1
τc

exp �τesc
τc

� �
(11)

with a characteristic time constant τc that depends on
the parameters L/R and a/L and thus sets the character-
istic escape time from the cavity. This form can be
understood when the escape processes are considered
as a sequence of independent yes/no (i.e., escape/no
escape) random trials, each of which yields success with
probability p*. Due to the high symmetry of our system,
the probability p* is approximately proportional to the
ratio between the penetrable area and the surface area
of the void. Hence,p* becomes very small asaf L/2, and
the diffusion through the i-opals can be regarded as a
Poisson process, reflected in the form of 11eq 11.

In Table 2, we summarize the results for three
representative systems, and we show in particular the

Figure 5. Experimental G(t) for T9.8 in two confining i-opals
as opposed to its diffusion in free solution. The solid lines
denote the representation of G(t) by eq 3 (in free solution
and in iO180-12/15) and eq 9 (in iO130-9/11).
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numerical values obtained for the expectation value of
the escape time, Æτescæ, obtained directly from the
simulations and for the time constant, τc, obtained from
the representation of the data by eq 11, to an exponen-
tial; due to uncertainties in the numerical experiment,
both quantities carry error bars. For a random variable
τesc following thedistribution of eq 11, the equality Æτescæ
= τc should hold. A comparison between the values in
the second and third columns of Table 2 shows that,
within error bars, this equality is indeed well-satisfied.
There is thus overwhelming evidence from simulation
that the distribution of escape times is indeed decaying
to zero much faster than the family of distributions of
eq 10 (which imply χ< 1), and thus the diffusion process
in the regular periodic i-opal should be normal Fickian
diffusion with an exponent χ = 1.

Though this is in agreement with experiment for all
other cases of tracer particles and confining structures,
there is a discrepancy with the observed anomalous
diffusion experiment for themost confined case of QDs
in the iO130-9/11 i-opal. We believe that the subdiffu-
sive exponentmeasured in the experiments for the last
case is only an apparent one and that the process is
strictly diffusive. The reason for the appearance of an
exponent χ < 1 (which, in addition, seems also to
depend on the tracer size) probably lies in the presence
of at least two simultaneous diffusion processes, a
faster and a slower one, caused by inevitable polydis-
persity in the opening size L. Indeed, as long as the
particle radius is much smaller than the opening,
through which escape from the cavity takes place,
polydispersity should not have any measurable effect.
However, as the limit a f L/2 is approached from
below, any polydispersity in the opening size can have
drastic effects because the escape time grows very
fast (see Figure 4) and eventually diverges at a = L/2.
Tight confinement and tracer-wall interactions realized
in mesoporous silica channel systems render the

structure of the molecule trajectories very heteroge-
neous as was recently revealed by wide-field fluores-
cence microscopy.2 The assumption, therefore, of the
existence of two subprocesses, a fast and a slow one,
caused by polydispersity, which gives rise to an appar-
ent subdiffusive behavior at intermediate times, is
supported by the fact that the phenomenon becomes
visible only for large values of the tracer size. Evidently,
normal diffusion should settle in at sufficiently long
observation times. An alternative explanation would
be the existence of attractive patches (“trapping sites”)
within the cavities of the i-opal, inwhich tracer particles
occasionally reside for long times. However, such an
effect should also be visible in the diffusive behavior for
small radii, which is not the case. Therefore, the poly-
dispersity scenario is the most realistic assumption for
the explanation of the apparent χ < 1 exponent.

CONCLUSIONS

Periodic porous nanostructures are excellent plat-
forms for the study of particle diffusion under
controlled confinement conditions. Three relevant
scales;particle radius a, hole diameter L, and cavity
radius R (see Figure 3);along with particle-wall inter-
actions can be tuned. In this work, we have first
examined the diffusion law and the particle diffusion
slowing down as a function of a/R at the confining
environment of three i-opals characterized by the ratio
L/R while keeping the same particle-wall interaction
potential. Brownian dynamics simulations predicted a
normal Fickian diffusion for all examined particles and
i-opals with different geometrical confinements. The
translational diffusion dropped almost exponentially
with the “frustration ratio” a/R at a constant confine-
ment environment L/R. Relaxing the geometrical con-
straint (increase of L/R) the slow-downwas reduceddue
to the increasing particle escape rate from the cavity
through the opening, L. At vanishing a/Rf 0, there was
a residual slowing down (ζ0 ∼ 1.8) as the particle
remained confined when L/R < 1. The predicted con-
fined dynamics in i-opals was confirmed by the present
experiment. Only for the strongest confining medium
(lowest L/R) and highly frustrated particle (large a/R) an
anomalous diffusion was observed. Under these severe
conditions, the low but finite size polydispersity can
impact the diffusion mechanism.

Figure 6. Probability distribution p(τesc) of the escape times
τesc as obtained in the Brownian dynamics simulations for
three different combinations of system parameter (points).
Also shown are the fits by decaying, single exponentials,
eq 11 (lines). Inset: semilogarithmic plot, emphasizing the
quality of the fit for large values of the abscissa.

TABLE 2. Waiting Times for a Confined Tracer Particlea

i-opals and tracer particles Æτescæ/τ0 τc/τ0

iO130-8/11, a/L = 0.4 573.2( 32.9 568.4( 20.7
iO180-10/15, a/L = 0.4 182.3( 9.0 188.0( 5.3
iO180-12/15, a/L = 0.4 130.2( 7.6 124.6( 2.4

a The first column shows the characteristic parameters of the i-opal (physical system),
the second the expectation value of the escape time τesc as obtained from the
simulation, and the third the value of the corresponding time constant τc, obtained
by fitting the distribution p(τesc) with an exponential, eq 11 of the main text.

A
RTIC

LE



RACCIS ET AL. VOL. 5 ’ NO. 6 ’ 4607–4616 ’ 2011

www.acsnano.org

4614

The theoretical modeling and simulation revealed
that the long-time motion of the tracer particles in this
highly ordered, porous nanostructure is strictly diffusive.
In particular, the diffusion of the quantum dots can be
visualized as a succession of “bounces” against the
cavity walls, which delay the escape from the interior
of the same, until a successful event takes place in the
cavity and the particle translocates to the interior of the
adjacent one. There, the process repeats itself, and a
random walk with a characteristic step length R and
characteristic time τesc results. Thus, the “bouncing-and-
escape” succession within a cavity is the mechanism

responsible for the overall, measured and calculated,
delay factors. Naturally, the number of bouncing events
preceding escape grows as the ratio a/L increases, a fact
that is schematically depicted in Figure 7.
This work is the first clear step toward a systematic

elucidation of the key parameters of diffusion in con-
tinuous porous networks, namely, probe size (a), con-
necting pores (L), and confining void (R). Variation of
the particle asphericity (from spheres to rods) and
tuning of the interactions (charged particles, soft inter-
facing of the walls) are two examples in the rich
parameter space to be still explored. Yet, diffusion is
ubiquitous in diverse systems andplays a pivotal role in
cellular mass transport. Identification, characterization,
and design of the diffusion mechanisms can have
important technical and scientific ramifications on
separation techniques, drug delivery, cellular trans-
port, and energy storage in microfluidic systems,
spongy matter, and hierarchically structured materials.
A detailed understanding of the confinement and
interaction effects is a precondition to access funda-
mental concepts such as mass transport management
in such interconnected porous networks. Further, spe-
cifically targeted membranes and porous system can,
in the light of our modeling, be engineered and
tailored for specific real-world uses with great predic-
tive ease and finely tuned properties.

METHODS
Materials. Onemolecular dye (Alexa647) and three quantum

dots (QD-X) with spherical shape and different sizes were
purchased from Invitrogen. Their hydrodynamic radii were
measured by fluorescence correlation spectroscopy (FCS) in
ultradilute (nM) aqueous solutions at ambient temperature. The
structural characteristics of themolecular (T1.3) and particle-like
(T8.8, T9.2 and T9.8) probes are listed in Table 3.

Preparation of the Inverse Opals. Inverse colloidal crystals
(i-opals) were prepared35 by co-deposition of monodisperse
colloidal polystyrene (PS) and silica (SiO2) nanoparticles (LUDOX
SM, Sigma Aldrich) on plasma-treated glass slides (150 μm
thickness). We used PS particles with a diameter of 180 and
130 nm in aqueous suspension at a concentration of 1wt%, and
the concentration of the silica nanoparticles (radius 7 nm) was
adjusted to be 0.3 wt %. Vertical lifting deposition (VLD) was
conducted at 20 �C, 50% RH at a lifting speed of 400 nm/s. We
deposited the samples on plasma-treated glass slides (150 μm
thickness). After VLD, the PS particles were removed by calcina-
tion for a few hours in a tube oven at 450 �C in air (heating rate
∼10 K/min). Three different i-opals were fabricated (Table 1) for
the purpose of the present study: one (iO130-9/11) with nom-
inal cavity diameter of 130 nm and two with 180 nm using
different methods (co-deposition and SolGel) for SiO2 nanopar-
ticle infiltration into the PS colloidal crystals (iO180-12/15 and
iO180-10/15, respectively). Intentionally, we designed the sys-
tems iO180-12/15 and iO130-9/11 to provide periodic struc-
tures for diffusion through comparable holes but different
cavity sizes. Conversely, the samples iO180-12/15 and iO180-
10/15 i-opals allow for the study of diffusion in confining
periodic structures with the same voids but different hole sizes;
the latter sample was prepared by filling the interstitial spaces
between the PS particles with SolGel prior to calcination. The
SolGel filling led to a reduction of the pore diameter in the
iO180-10/15 sample. The i-opal structures were characterized

by SEM on a LEO Gemini 1530 microscope (Carl Zeiss AG,
Oberkochen, Germany) with acceleration voltage of 1 kV in
secondary electrons InLens detection mode. We obtained the
actual cavity radius R and the hole diameter L from the SEM
images as seen in Figure 8a for iO130-9/11 system. As seen in
this figure, cracks exist between blocks of ordered structure.
These can be categorized in large cracks between monoliths of
i-opals and smaller internal cracks including point and line
defects. Whereas the micrometer sized cracks between mono-
liths can be assessed by SEM, smaller cracks in the interior of an
i-opal cannot be characterized directly.

Fluorescence Correlation Spectroscopy. All measurements were
performed on a commercial FCS setup36 (Carl Zeiss, Jena,
Germany) consisting of the module, ConfoCor 2, and an in-
verted microscope, Axiovert 200 model. A 40� Plan Neofluar
objective (numerical aperture 1.2; working distance 0.29 mm)
and ultrapure water (filtered through a Milli-Q purifaction
system, resistivity 18.2 MOhm � cm) as immersion liquid were
used. The FCS experiment was concurrently performed with
two tracers using excitation at 488 and 633 nm. The emission
was collected after splitting the signal by means of a NFT635
dichroic mirror and filtering with a long-pass LP655 filter for the
fluorescence light from the λ = 633 nm excitation (channel 1)
and with a band-pass filter (BP560-615) for the fluorescence
light at λ = 488 nm excitation (channel 2). Avalanche photo-
diodes capable of single-photon counting were used for detec-
tion. Reusable Attofluor chambers were employed for the
measurements. All experiments were conducted at 21 ( 1 �C.

Prior to observation, the samples were rinsed with ethanol,
dried at room temperature, and mounted in the Attofluor
chambers. Then, we added 600 μL of HEPES buffer, followed
by 150 μL of T1.3 and 150 μL of the QD, both at 120 nM, in order
to achieve comparable concentration for both tracers. It took
about 30 min to reach constant fluorescence signal from a
homogeneous system. The time-dependent fluctuations of the

Figure 7. Sketch of the process of multiple collisions that a
tracer particle undergoes against the cavity walls before it
escapes to the neighboring cavity. For small ratios a/L
between particle size and cavity openings (a), a small
number of bounces suffices, but for large ones (b), a large
number of collisions with the walls takes place before the
particle escapes.
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fluorescent intensity δI(t) were recorded and analyzed by an
autocorrelation function G(t) = 1 þ ÆδI(t0)δI(t0 þ t)æ/ÆI(t0)æ2. The
accumulation time was varied from about 3 min, for diffusion in
free solutions, and up to about 10 min, for diffusion in the
i-opals. The necessary total accumulation duration was subdi-
vided in 30 s intervals in order to enable removal of occasionally
spurious signals due to aggregates.

The big cracks mentioned in the previous section regarding
the SEM images of Figure 8 had no effect on the FCS experiment
since theyweremuch larger than the focal volume and could be
easily recognized and hence avoided. The small internal cracks
with typical size ranging from a cavity length scale (completely
open cage) up to the observation volume would have caused
detectable signal disturbances and would have been detected
by scanning different regions in the films. All recorded auto-
correlation functions, which had been systematically verified,
represent structurally coherent regions at least over the lateral
dimension (∼300 nm) of the observation volume. Furthermore,
autocorrelation functions from various spots within the mono-
lithic i-opal regions featured identical decay curves, which
exemplifies the homogeneity of the internal i-opal structure.
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