Inverse Patchy Colloids:
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Typically, patchy systems are characterized by the fownatif a small number of directional, possibly
selective, bonds due to the presence of attractive reginriee surface of otherwise repulsive particles.
Here, we consider a new type of particles with patternedased and we refer to them mwerse patchy
colloids because, in this case, the patches on the repulsive pantepel each other instead of attracting.
Further, these patches attract the parts of the colloidatteatree of patches. Specifically, we consider het-
erogeneously charged colloids consisting of negativetygdd spherical particles carrying a small number
of positively charged patches. Making use of the Debyieke! theory, we derive the effective interaction
potential between a pair of inverse patchy colloids with fvadches on opposite poles. We then design a
simple coarse-grained model via a mapping with the analypair potential. The coarse-grained model
guantitatively reproduces the features of its microscopimterpart, while at the same time being character-
ized by a much higher degree of computational simplicityrébwer, the mesoscopic model is generalizable
to an arbitrary number of patches.

1 Introduction

In recent years, patchy particles, i.e., colloids with imogeneously patterned surfaces, have attracted
tremendous interest of both experimentalists and themmes (for a recent overview in experiments and
theory see Ret.and Ref?, respectively). Typical examples of patchy particles gteesically symmetric,
mutually repulsive colloids decorated on their surface bgnall number of extended, attractive regions. The
effective interaction between these particles is charaet# by a well-defined anisotropy, making patchy
particles ideal candidates as building entities, bringibgut complex self-assembly scenarios in soft matter
physics. Nowadays, experimental techniques both in the+srd micro-scale allow to position the patches
on well-defined arrangements and, possibly, to controf gpatial extent on the colloidal surface, see e.g.
Ref.3-8 On the other hand, theoreticians have succeeded to devebapallel suitable models that mimic
these highly directional interactiofisUsing theoretical methods and computer simulationsesiral and
thermodynamic properties as well as the self-assemblyasienof these model systems have been, and
still are, widely investigated.

In the present paper, we introduce a novel class of patchicles:; which we termnverse patchy col-

0« E-mail: bianchi@cmt.tuwien.ac.at; Tel: +43 1 58801136Fax: +43 1 5880113699

92 |nstitut fur Theoretische Physik, Technische Univéisivien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

Ob nstitut fur Theoretische Physik, Heinrich-Heine-UniveasiDisseldorf, UniversitstraRe 1, D-40225 Bsseldorf, Ger-
many.

0¢ Faculty of Physics, University of Vienna, Boltzmanngasse 5090 Vienna, Austria.



loids (IPCs), referring to the repulsive nature of the patches assgd to common attractive patches. Our
motivation resides in a recently presented colloidal syétmade of negatively charged, spherical colloids
onto which positively charged polyelectrolyte stars arsoglded. When the charge ratio between polyelec-
trolytes and colloids is such that only two stars adsorb timtacolloidal surface, the polyelectrolytes stars
occupy the two polar regions of the colloid, while the equataegion remains uncovered. The resulting
complex is an heterogeneously charged particle with pesfiblar patches and a negative equatorial re-
gion. Due to the repulsion between charge-like surfacesgeffective interaction between two IPCs can
be both attractive and repulsive, according to the relainentation of the two particles: polar, as well as
equatorial, regions are mutually repulsive, while poladt aguatorial regions attract each other. In contrast
to conventional patchy particles, attraction and repulgminverse patchy systems play a role on an equal
footing, allowing for even more widespread self-assembbnarios than patchy particles. We note that,
under suitable conditions of charge- and size-asymmetliss more than two polyelectrolyte stars can be
adsorbed on the colloidal sphere. The presentation in thrustaipt is restricted to the two patches case,
but we also discuss the generalization to an arbitrary nuwijeatches at the end.

In this contribution, we wish to propose a general model @loads with two positive polar patches on
their negatively charged surface, pointing out a way to ®®@rain a class of systems referred to as inverse
patchy colloids. We develop a theoretical description Far éffective interaction potential between two
IPCs carrying two patches. Based on the Debyeké| (DH) theory, we derive the fully analytic expression
for the total electrostatic potentia®(r), around one single IPC. The resulting expression, involzioth
Legendre polynomials and modified spherical Bessel funstmithe third kind, can be complex to be
used in the derivation of the effective pair interactioniesn two IPCs. Nonetheless, under high screening
conditions®(r) can be factorized in a radially symmetric Yukawa contribnfiwhich depends only an=
Ir|, and an angle dependent factor that takes into account thepteerically symmetric charge distribution.
Such a simplification allows us to analytically derive thizefive pair potential between two IPCs.

In an effort to make our model of IPCs amenable to investigataf collective behaviors of many body
systems, we develop a coarse-grained (CG) picture of thetwteinteractions between two IPCs. This
simplified model is accessible directly from the colloidabael system (cf. schematic representation in
Fig. 1), but it shows a straightforward relation with the Deisdription. Indeed, the three charges of the
microscopic DH model are replaced, in a way that fully preseithe original arrangements of the patches,
by three interaction spheres: a big sphere around the inyadahe particle and two small, out-of-center
spheres; the latter ones represent the patches and aresethtera large extent in the particle. We assume
for all three interaction ranges the same vaf,i¢he latter being set by the microscopically-determined
screening length of the electrostatic interactions, comtodoth repulsions and attractions. The effective
interaction between two coarse-grained IPCs can now be gimiiten as the sum over three contribu-
tions, which stem from the different overlap scenarios @f tlvo types of interaction spheres. Further,
each of these contributions is postulated to factorize ier@@rgetic and a purely orientational-geometric
contribution; the latter one can be suitably tabulated aridus amenable to numerical investigations.

The relation of our coarse-grained model to the IPC moddkgysan take advantage of the available
analytical description at the microscopic level, streegihg thereby the link between the underlying phys-
ical system and its coarse-grained counterpart. The paeasnaf the coarse-grained model are chosen via a
direct mapping to the DH model (cf. schematic represematid-ig. 1): the interaction sphere distribution
of the mesoscopic model is assumed to have the same ecitgmiiihe discrete charge distribution within
the DH description, while the interaction range for a paico#érse-grained IPCs is related to the Debye



screening length. Further, we propose two different procesito establish the above mentioned energetic
prefactors in the coarse-grained pair interaction enafdgg/then discuss in detail the results that we obtain
for the effective potentials via the different routes.

The paper is organized as follows: in Sections 2 and 3 the DHtlae coarse-grained model are pre-
sented, respectively. In Section 4 we propose a mappingreeh®relate these two models and results for
the ensuing effective potentials are discussed in Sectidmb main text of the manuscript is closed with
concluding remarks. The paper is supplemented by two apgesidAppendix A deals with the lineariza-
tion scheme of the DH approach, while in Appendix B we prefiemtetails on how the exact expression
for the electrostatic potential generated by one IPC withan DH picture can be simplified under high
screening conditions.

IPC model system

rOn

DH maodel CG model

—

Mapping

Figure 1: (Color online). Top: three-dimensional repreagoih of an inverse patchy colloid (IPC) with
two polar patches. The (yellow) polar patches and the (geguptorial region have positive and negative
surface charge, respectively. Bottom: the microscopic Bdhiyckel (DH) description (left side) and the
mesoscopic coarse-grained (CG) model (right side). In theniidel, the (grey) central sphere is the center
of charge of the colloid and the two (yellow) out-of-centpheres are the centers of charge of the attached
patches. The coarse-grained model reproduces the syramefrthe heterogeneous charge distribution
of the IPC model system. The parameters of such a simple naodalhosen by taking advantage of the
underlying DH analytical description.

2 Debye-Hickel microscopic description of IPCs

The statistical mechanical approach to electrolytes srébad electrolytic solution as a suspension of im-
penetrable, charged colloidal particles in a liquid digiecsolvent containing co- and counter-ions. For a
linear, homogeneous and isotropic dielectric medium, tlaxwell equations of electrostatics lead (in the
absence of external fields) to a differential equation oé&an type, which relates the electrostatic potential
of the system with the ionic charge density distributfrin a mean field approach, the equilibrium charge



density obeys Boltzmann statistics; the resulting equdtiahdescribes the electrostatic potential, known
in literature as the Poisson-Boltzmann equation, is amisitally non-linear differential equatiéh The
linearized Poisson-Boltzmann approach is referred to aBkhdescriptiort2. Although stricktly suitable
only for the dilute case, it provides surprisingly good tesalso for denser systeris The extentions to
concentrated solutions often require the replacementeobéne colloidal chargg with a so-called effec-
tivel* DH-chargeZ*, which takes into account the strong condensation of counits on the Stern-layer
around the colloids. Further, it is possible to employ aaisg of the inverse Debye screening lengtto
take into account free volume effeétsor to adjusk with the goal of describing experimental resdiftsAt
any rate, the functional form of the DH-potential can be presd and it provides for a realistic description
of experimental data for a vast variety of physical situagio

According to Gauss law, the electrostatic field surroundirgpherical colloid with a homogeneously
distributed surface charge is identical to the field gemerdly a point charge positioned in the center of
the dielectric colloidal particle. By replacing the surfaderge with a point charge located in the center
of the colloid, the DH approach leads to the traditional Bgujin-Landau-Verwey-Overbeek (DLVO) pair
interactiort’.

In this paper we deal witheterogeneously chargexrticles: we consider negatively charged colloids
decorated by a small number of positively charged surfagiems (so-called patches). Following the ideas
presented in Ref, we replace the heterogeneous surface charge with a nemicglly symmetric distri-
bution of discrete charges inside the colloidal partidie: ¢tharge of the colloidal surface and of the patches
are replaced by point charges positioned at their resgectaters of charge. Within the DH approach, we
derive an analytical expression of the screened electrog@tential generated by a single IPC (Sec. 2.1).
Based on this information, we construct the effective irdtoa potential between a pair of IPCs (Sec. 2.2).

2.1 The electrostatic potential around one IPC

We consider a spherical, heterogeneously charged colfa@diuso with a negatively charged equatorial
region and two positively charged polar regions, the patcAecording to the scheme outlined above, the
total surface charge of the colloid{ge < 0) and the charges of the two patch&gde > 0, each)ge being
the positive elementary charge, are replaced by equivalgint charges positioned at the corresponding
centers of charge inside the colloidal sphere. While theowtdl center of charge coincides — due to the
spherical symmetry — with the center of the colloidal sphéine centers of charge of the two patches
are located at a distan@ < o) from the center, diametrically opposite to each otteis termed the
asymmetry of the discrete charge distribution (see Fig.F2pm the inner part of the sphere, denoted as
region I, both co- and counter-ions are excluded, whileardji is the medium containing the ions of the
electrolytic solution. For sake of simplicity we assume diedectric permittivity to have the same value in
both regions, namely. We note that the more general case has been treated i Refe to the cylindrical
symmetry of the charge distribution, we can assume thathife® tcenters of charge lie on thaxis. We
introduce spherical coordinatesq, ¢) with the origin in the center of the colloidal particle. Dteethe
azimuthal symmetry of the charge distribution, the resglglectrostatic potential depends onlyrcend©
(see Fig. 2), and thus the solutions of the electrostatiblpro can be expanded in Legendre Polynomyals
R (cosB). For the more general case, the latter should be replacdtetspherical harmonicém (6, @), see
Ref.18 for details.

We now derive the total screened electrostatic poteriiél,0), that an IPC generates in space. Let
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Figure 2: (Color online). Two dimensional representatiothef DH scheme for an inverse patchy colloid
with two positively charged poles and a negatively chargpdhworial region. The spherical colloid, denoted
as region |, is surrounded by the solvent, denoted as refidiné dielectric permittivity is chosen to be the
same in both regions and it is denotedgiy the text. The colloidal sphere of radiagontains in its inside
three point centers of charge represented by dots (grejnéonégative charge and yellow for the positive
ones) along the axis inside the colloidal sphere. The point-like co- andrdetrions in region Il are not
shown. The negative charge in the center of the colloida¢gphas valuZ.ge, wherege is the magnitude
of the elementary charge a@d < 0. The two positive charges have valfigge each and lie at a distanee
from the colloidal center, one opposite to the other.

@'(r,8) andd' (r,8) be the expressions fab(r,8) in the interior and the exterior of the colloidal particle,
respectively. For < o, ®(r,0) is determined via the Poisson equation for the discretelaision of three
charges, while for > o we assume that the linearized Poisson-Boltzmann equatiois (gee Appendix
A); these equations read as

?®'(r,0) = —%[que[é(?—az)+6(f'+a2)]—%thcqeé(?) r<ao
D%e''(r,8) = k?d'(r,8) r>o. (1)

Herek 1 is the Debye screening length which is determined by the tutkber densitiepi0 of the mobile,

ionic species (with valencé) in the solution:k? = % Si piOZiZ, whereT is the temperature ang is the
Boltzmann constant.

To solve the system of differential equations (1), we neecbtwsider the proper boundary conditions:
(i) @(r,0) must vanish at infinity and be continuousria= g, and (ii) at the interface between regions |
and I, the tangential component of the electrostatic fiald @ the absence of surface charges) the normal
component of the displacement field must be contindfus

We are interested only in the screened electrostatic patenittside the colloid. Thus, omitting in the



following the superscript Il, the electrostatic potentiathe region of interest is

(Zc+2Zp)0e €XP(KO) eXP(—KT)

*r8) = € 1+Ko r (2)
2Zp0e < ray! (2 +1) Kizaja(kr)
£ ZZ <0) KO\/TO K|+3/2(K0)H<Cose)’

where the prime indicates that the sum runs over even indarsionly, B (cosB) are the Legendre poly-
nomials of ordet, K, 1,5(2) andK|, 3/5(z) are modified spherical Bessel functions of the third kthdn
Appendix A, we use the analytical expressiorfgf, 8) to confirm the reliability of the DH approximation
in the parameter space.

As explicitly derived in Appendix B, whemo 2> 1 the ratio between spherical Bessel functions of
consecutive orders is proportional to éxr)/r. Hence, under high screening conditions, it is possible
reduce Eq. (2) for the total electrostatic potential of a@ tB a simpler, Yukawa-like expression, where the
angular and the radial contributions factorize, i.e.

o(1,6) = &(6) XX 1) ®)
with
— o / I
®(0) = % ZcCIe+ZqueI; (g) (2I+1)H(cosﬂ)]. 4)

The effect of the approximation of(r,0) is discussed in Appendix B. We show that, in the considered
parameter space, the approximate expression for the @déatic potential yields numerical values of the
same order of magnitude as the analytic expression, evée abtloidal surface (see Fig. 10).

2.2 The pair interaction between two IPCs

We now consider two identical IPCs, labeled with indicesd j, and, starting from the total electrostatic
potential generated by each of them [see Egs. (3) and (4)llexige their effective interaction. L&} be
the vector connecting the centers of two IPCspletridrij be the unit vectors that specify the orientations
of colloidsi and j, respectively, and let us define the angles between thetatiemal unit vectors of the
colloids and their center-to-center unit vectorBas= cos 1(fj - fij) and®j = cos (A - fij). Furthermore,
let us define the angle between the orientational unit veatbthe two IPCs a8j; = cos 1(fi - fij).

The effective pair interaction potential(rij, 6;,8;,6;j), that we will derive in the following, has to be
symmetric with respect to the indicesand j. Hence, we consider the potential enengy,, due to the
presence of colloig in the screened electrostatic field generated by collaiad its surrounding ionsp i
is similarly derived for the inverse situation. Then, we méke symmetrizatioansatz Y = (i + Yii)/2,
ommitting for the moment the arguments. We outline in théofeing the derivation forpij. The potential
energyyj is given by the sum over all the contributions from the thriearges inside colloid. In analogy
to the derivation of the DLVO potential, we take into accotl& fact that microscopic co- and counter-ions



cannot penetrate the IPC by replacing the bare charges fietttiee charges:

2% it m=0

7= (5)

J

where we have usem = 0 for the central charge amd = 1,2 for the out-of-center charges. Hendg; is
given by!0-20 )
Wi (rij, 61,6, 6f) = Wij (i}, 6,67, 67) = Zlo(ri],om). (6)
m=0,1,2
Here, ther{}1 are the lengths of the vectors joining the centre of colloidth the three centers of charges

inside colloid j, and theE)i”j1 are the corresponding angles, as shown in Fig. 3. Noterﬁ‘nai rij and
6% = 6. By applying the law of cosines on the triangles definedrh$, f; andrij, we haver;:? =
(a2+ﬁj -Tij F 2arij cosej)l/z. In Eq. (6), the explicit dependence ¢f; has been expressed taking into
account tha6! and®? are determined ond® and®;; are fixed, and vice versa.

By defining the dimensionless quantitias = rilj’z/rij , we can now explicitly write dow;; (rij, 6;, 0t,02)

in a DLVO-like expression, i.e.

_ Qij(rij, 6,67, 67)ae (eXp(KO))Z exp(—KTij)

€ 1+ko rij

Pij , (7

WhereQ(rij,ei,eil,eiz) is an orientationally dependent factor, which takes intooaat all the charge va-
lences involved in the interaction:

’ , N
Qij(rij.6;,61,67) = _Zc2+22ch|; (2 +1) (E> H(Cosei)] (8)
[ >/ ay! ] exp[—krij (81— 1)]
+ | Zezp+222 I; (2l +1) (5> A (cose?) Ell
[ >/ ay! ] exp[—krij(§2—1)]
+ _zczp+2zg I; (2 +1) (5> H(coseiz)_ Ejz .

By following an analogous procedure, we obtain an expredsiof;;, leading finally to the total sym-
metric pair potential between two IP@grij,6;,0;,6;;). In the following we refer tap(rij, 6;,8;,6;j) as the
DH pair potential between two IPCs.

Itis worth noting that forpjj givenin Egs. (7) and (8) the DLVO limits can easily be recederTrivially,
if Zy — 0, thenQi; — Z2 and Eq. (7) reduces to the DLVO interaction between two @sloeach of them
carrying a homogeneously distributed chazgg.. Furthermore, iZ, # 0 anda— 0, Eq. (7) reduces again
to a DLVO-like potential. Indeed, in the latter limit, onlgetl = O terms survive in Eq. (8), whilg, > — 1,
so that the exponential factors@; goes to unity. The final expression for the pair potentiahest

(Z2+4Z:.Zp+ ZZS)qé exp(Ko) 2 exp(—Krij)
£ 1+ko Tij

) (9)

W(rij) =
which is the DLVO potential of a pair of colloids, each of thearrying a total charg€Z 4+ 2Z;) 0.
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Figure 3: (Color online). Schematic representation of a@iaiPCs at a fixed distanag;. To calculata;j,
we considerj as a spherical particle carrying three discrete point dsaes in Fig. 2, while we consider
as the point source of the screened electrostatic field. ,ieednij are the orientational unit vectors of
particlei and j, 6; and®; are the corresponding angles between such orientationtdrgeand the center-

to-center vector between the two IPG#,2 are the vectors joining the centeriafith the two out-of-center

points inj, andeil-’2 are the corresponding angles between such vectorsariti€ase note that, andnj
are not generally in the same plane: the angle between theefireed byd;; (not shown in the figure). As
a consequence, neithigy, ?ilj andF’izj are in the same plane.

3 The coarse-grained mescoscopic model of IPCs

As described in the Introduction, we deal with heterogesBaotharged colloids having a negatively charged
equatorial region and two positively charged polar regioftise microscopic analytical description of the
model system is provided by applying the DH theory of dilutctolytes. Nonetheless, the analytic po-
tential derived in Sec. 2 may be cumbersome for numericallsition techniques. In order to study the
collective behaviors of inverse patchy colloidal systeaxsparse graining procedure is of great importance.
We propose a coarse-grained model of our IPCs with the goaalfrdy with a more feasible pair potential
description, while keeping a close connection to the playsigstem. In particular, the coarse-grained model
is constrained to respect the following conditions, makirsgrongly linked to the original DH-model:

() 1t preserves in full the geometrical arrangement of th&ches.
(i) As a consequence, it has exactly the same symmetriggeawiginal system.

(i) It maintains the “mixed”, attractive/repulsive claater of the former, depending on interparticle ori-
entations.

(iv) The energy and length scales involved in the coarsexgdamodel are derived from their microscopic
counterparts and are closely related to them.



At the same time, we achieve dramatic computational sinoptifon by further introducing a factorization
of the coarse-grained model into energetic and geometiadtibutions (see below).

The basic feature of a IPC is a three-regions surface: arn@oarad two poles having different mutual
and crossed properties. When designing such a patternextsuvie take into account that delocalized,
soft patches better suit the nature of the electrostatgractions. Moreover, we prefer to have a flexible
patchy model with three independent sets of parametersantheaction ranges, the interaction strengths,
and the patch surface coverage. Inspired by the Kern-Fremt@el’!, we design a simple inverse patchy
colloid as described in the following.

3.1 Design of the patchy model

In an effort to design a simple model for IPCs, we consider a&sgpél, impenetrable colloidal particle
of radiuso. The hard-core models steric constraints and guaranteethénmodynamic stability of the
system. The corresponding interaction sphere has radiud/2, whered is the interaction range specified
below. Inside the hard colloid, two interaction sites aated at a distana& < o) in opposite directions
from the particle center (see Fig. 8js termed theeccentricityof the model. The interaction sphere of
each of these sites is an out-of-center sphere of rggisgbmerged in the colloid to an extent that is fixed
by e. The geometrical arrangement of the interaction spherisedethree regions on the surface of the
hard core particle. In the following, we refer to the two tgjé interaction spheres as big spheres of radius
Rs = 0+0/2 (labeled B) and small spheres of radRgs= p (labeled S). In such a description, the potentials
between the big spheres and the small spheres are reputfivesenting the interaction between equatorial
regions and patches, respectively; in contrast, the patdmtween big and small spheres is attractive,
representing the interaction between the equatorial nsgaod patches.

Since in the microscopic system the interaction range of [fM@s is determined by the electrostatic
screening, we assume the BB, the BS and the SS interactionsdahgasame rang® Such an assumption
implies the following relation between the parameters (&get):

5= 2(e+p)— 20, (10)

i.e., the small spheres are tangential to the big spheréoaasin Fig. 4. Of course+ p > g, sinced > 0.
Furthermore, we define the opening anglesd (11— 2y), characterizing the extension of the polar and the
equatorial regions, respectively. The following restaotholds:
B 02 + & — p?
ON="%6e

Since the extension of one single patch is limited to a helngisge andp can only be varied in such a
way as to guaranteg< 11/2. We note that, for a given value &f the choice of the ratip/e definesy,
l.e., we can take into account different patch extensiorglevkeeping fixed the interaction range. Once
e andp, being the two independent parameters of the model, areedgfine physical parameters, i.e., the
interaction rang® and the patch extensignare given by Eqg. (10) and (11), respectively.

Defining the distance between two IPCs and their orientaltioni& vectors as in Sec. 2.2, the coarse-
grained pair interaction potential between two IPCs withinmodel is

(11)

o0 if rij<?2o
V(rij,6,0,8ij) = U(rij,6,0;,6ij) if 20<rjj <20+0. (12)
0 if 20+0 <rjj



Figure 4: (Color online). Two dimensional picture of the magrained model of a IPC. The colloid’s
impenetrable volume is represented by the (grey) circladiuso, the big (black) circle of radius + 6/2
represents the interaction volume of the colloid, whiletitke small (yellow) circles of radiup represent
the interaction volumes of the two sites, positioned atatiste from the colloidal center, one opposite to
the other, on an in-line geometry. The interaction radg@nd the surface extensiop,of the patches are
related to the model parametexp ando by Eq. (10) and (11), respectively.

The functionU (rij, 6, 6j,6;) is the sum over three contributions stemming from the BB, the B5the

SS interactions. We postulate that each of these contitsitan be factorized into an energy strength and
a geometrical weight factor. The former ones are suitablieeie (see Sec. 4) energy contributiang,
while the latter ones are dimensionless weight factgys which take into account the dependence of the
pair potential on both the distancg and the relative orientation of the two IPCs via the three @ @hith

op3 = BB, SS, or BS). Hence we have

U (rij,6i,0j,8ij) = WegUgg + WgsUps + Wsglss (13)

In order to simplify the notation, we have suppressed in ieva equation the explicit dependence of the

Wqg Onrij, 6;, 0 and6;;. We choose each weight factor to be proportional to the tatailap vqumngE
of all interaction spheres contributing to the speaiginteraction, i.e.,

Wop = QF /Qr. (14)

HereQr is a normalizing reference volume, which is chosen to bemelof the colloidal hard sphere, i.e.,
Qr= %T[O'S. ThngE for the three possible interaction types are given by

Q% — g (15)
1 2 2

QBS — Qgs o0 QBiS L B (16)
Sls 21 322

Q2 = QO ’+Q '+Q4 '+Q , (17)
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wherei andj (i # j) denote the indices of two interacting IPCs. Again, the ddpane on distances and
orientational angles has not been explicitly expressed.

Let us now consider two different spheres of rdgljiandRg, respectively, and separated by a distance
rqg, Wherea andf = B or S. Then, the overlap volume between these two sphegageis by

( O |f rmaxg raB
RG—RZ+r2 RG—RZ+r2 2
[Ty,
QY (rep) = (18)
o \lap nl (5 Re—Re—1as Ri-Ri—Tap e e <
3 Rg — T 2 Rg + 2 IT F'min < Fap < 'max
( %T[R:i if rog < Imin.

Here,R. =min(Ry, Rg), 'max = Ra + Rg is the distance above which the two spheres do not overlap any
more, and min = |Ra — Rg| is the distance below which the two spheres completely ageth our particular
casefmin plays a role only for the BS interaction: due to the hard copeilsgon, spheres of the same size
are prevented from completely overlap, while a small spheag happen to be totally included inside a big
sphere.

Once the general expressions ofﬁt@e(ras) are known, it is important to bear in mind that the distance
rqp does not necessarily coincide with the distance betweetwbdPCs. Indeedr,g = rij only when
ap = BB, while foray = BS and= SS,rqg is in general a function afij and such a function depends on
the relative orientation of the two IPCs. Consequently, tieddence of the total overlap volume is given
bngE = Q%E(rij,ei,ej,eij).

We thus have an expression for the effective interactiowéen two IPCs, that can be evaluated in a fast
and efficient way and that can readily be used in numericaiogmbes: for two interacting IPCs (separated
by a distance and characterized by their orientation inejphe weight factorsw,g are directly calculated
via (at most) nine distances between the interaction sphevelved. The evaluation of the pair interaction
between two IPCs does not require additional information.

4 Mapping between the DH and the CG model

As described in the previous section, our coarse grainecehiodIPCs is characterized by the following
parameters: the interaction range between pair of pastitl¢he patch extension, and the set of the three
interaction strengthsugg, between patch-free regionggs between patch-free regions and patches, and
uss between patches.

In the microscopic DH-model, the interaction range of tHective pair potential is determined by the
screening conditions in the electrolytic solution. We assd of the coarse-grained interactions to be pro-
porational to the Debye screening length according to theving relation:d=nk 1, withn=1,2,3, ---;
for simplicity we take integen. Since in our approach we focus on rather lakgealues (high screening
conditions), we only consider smailvalues. The impact of different choices foon the potential will be
discussed in Sec. 5.

As mentioned above, in our coarse grained model, the patehs®ny is defined by the choice efand
p. We fix the eccentricity parameter of the coarse-grainedatindhave the same value of the asymmetry
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parameter of the DH description, i.e.=a. Thus, in our coarse-grained modeldepends only o8, i.e.,
on the choice oh and on the screening conditions. Of course, the influencbextvalue on the patch
size has a physical background. Let us consider the possblation of an IPC via the complexation
of polyelectrolyte stars on the surface of an oppositelygda colloidal particle: a change in the salinity
of the solution affects the degree of adsorption of the dotyayte star? and, hence, its coverage of the
colloidal surface (i.e., the extent of the patch).

We estimate the interaction strengthgg, ugs, anduss, by considering three characteristic reference
configurations (index “rc”) of two interacting IPCs, namedge¢ Fig. 5):

¢ the equatorial-equatorial (ke EE) configuration: the two equators face each other and thatual
repulsion dominates the pair interaction;

¢ the equatorial-polar (re- EP) configuration: a pole (patch) of one particle faces thetgial region
of the other particle, leading to a mutual attraction;

¢ the polar-polar configuration (re PP): a patch of one particle faces a patch of the other particl
leading to a repulsive interaction.

Evaluated from the analytic potentidlri;, 6; rc, 6; rc,e?rc) the energy scale of each reference configu-
ration is related to the three unknown parameiass, Ugs anduss In the following we pursue two possible
mapping schemes from the microscopic DH-model to the megoscoarse-grained model:

1. We evaluate the overall strengths of the potential tatdsained by integrating(rij, 6; rc, 6; rc,e,ZrC)
over the range @ < r < o, and we impose that they are equal to the correspondlng E(pres
obtained by integratiny (r, 6 rc, 8j rc, 6ij rc) Over the same range, i.e.,

uﬁ?:t o / W(r, 6 rc, 6; rc:elzrc)dr =3 Zo'v(r 8irc, 0j.rc, Bij, re)dr. (19)

2. Alternatively, we relate the contact values of the twaoepditl tails, i.e., we match

e w(z@ei,rc’ eil,rc, eﬁrc) = V(ZG, ei,rC7 ej,rc; 9ij,rc)~ (20)

The superscripts “tot” and “max” specify the two differeppés of mapping.
SinceV (rij, 6;,8j, 6;j) is different from zero only when®< rj; <20+ d and since, on such interparticle
distances, the interaction energy is given by Eq. (13), weeslicitly write the mapping scheme as

Mrguag (21)

Here “m” indicates one of the two the mapping schemes (‘tot"max”). Further,ult = (U, utp, usp),
Ugp = (Ugg, Ugs, Udg), and the coefficients of thex33 matrix, M3, depend on the geometric weightgg
of the three reference configurations.
Once the parameters of the DH-model are fixgg s, €, a andkao), the parameters of the coarse-
grained modelg, e andp) are chosen accordingly; choosing either mapping schetradlinced abovey[
is evaluated and thﬂigb are evaluated from inversion of Egs. (21).
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Figure 5: (Color online). Two dimensional representatiothefthree orientational configurations used as
reference in the mapping between the analytic pair poteottiggs. (7)-(8) and the coarse-grained model
potential of Eq. (12). From left to right: equatorial-equiél (EE), equatorial-polar (EP), and polar-polar
(PP) configuration. The two IPCs are shown in contact,lije= 20.

5 Comparison between the DH and the CG model

Here, we consider the inverse patchy complexes describ@ddn2 and we compare their microscopic pair
interactiony(rji, 6;,8;,86j) with the pair potentiaV (rij,6;,0;,6;;) of the corresponding coarse-grained
model described in Sec. 3 and 4. Concerning the microscoptersy we consider the dielectric medium
to be water, in which case= 80 under normal conditions. We choose to deal with overaltna¢particles
and we se?. = —180 andZ, = 90°16, Besides being the simplest order case, this choice may &tedel
to the fact thatZ. — 2Zp| is small for IPCs with two patches, that result from the comal®n of two
polyelectrolyte stars onto an oppositely charged cofloithdeed, a big difference between the colloidal
charge and the sum of charges of the two polyelectrolyte stauld lead to the adsorption of more than
two polyelectrolyte stars onto the colloidal surface. Weade the asymmetry parameter of the charge
distribution to bea = 0.60. The Debye screening length is a free parameter to be vaiiththvthe high
screening range, i.exo > 1. As far as the coarse-grained model is concerned, we clibeseteraction
range to be determined by the Debye screening length, asloegm Sec. 3. Since= a, thenp is fixed
onced is chosen. The energy strengths of the three types of irienaare determined via both the above
mentioned mappings, i.e., “tot” and “max”. We compapji,6;,6;,6i;) andV(rij,6;,8;,6;;), and we
study how their agreement depends on the different mappogedures (both for energies and interaction
ranges) and on varying the screening conditions.

The Debye screening length sets the characteristic irtena@nge of the DLVO potential. Hence, we
fix 8= 1/k and we explore the screening range Ro < 10. We consider three characteristic configurations
of the two IPCs at contact (namely, EE, EP and PP) and we ttahsitte one colloid with respect to the
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other. The comparison between the analytic and the coaeseeg potential is shown in Fig. 6. The
radial and the angular behaviors of the pair interactiorsamvn for both the energy mappings (“tot” and
“max”): the procedure “max” allows a better quantitativeegment between our simple model and the DH
description. Nonetheless, regardless of the chosen engagping, the main features and the symmetries
of the analytic pair interaction are very well reproducedtty coarse-grained model, within the chosen
screening range.

As explained in Sec. 3, we have the freedom of varying somethlegparameted, by generalizing the
relationd = 1/k into d = n/k. The choicen = 1 is satisfactory for a wide range of screening conditions,
but a closer agreement between the microscopic DH-systdrtharcoarse-grained model may be achieved
by tuningn. By fixing the screening length to an intermediate value withe previously studied screening
range, i.e.ko =5, we focus on the effect of the interaction range. Wensetl, 2, and 3 and we consistently
choosep. Fig. 7 and Fig. 8 show the radial and the angular dependdrtbe mteraction energy between
a pair of IPCs. We observe that the choite= 3 brings a better agreement between the microscopic
potential and the coarse-grained one in both energy majppotgdures. As we learn from the case= 5,
the interaction range, and consequently the patch extensan be tuned with respect to the screening
conditions: largen values guarantee a more quantitative agreement for lameBpecifically, wherko
ranges from 2 to 10, thamspans monotonically the range between 1 and 4. The corrdsgpchange op
with nis found to show a trend towards smaller patchasascreases. When considering IPCs as coming
out of the adsorption of polyelectrolyte stars onto opm@hgitharged colloids, the correlation between the
patch size and the screening conditions may be relatedfevelit degrees of adsorption. Indeed, on adding
salt (i.e., increasingo) the adsorbed polyelectrolyte stars change conformatma, hence, their surface
coverage onto the colloid shrinks.
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Figure 6: (Color online). Three top panels: interaction gpdyetween two IPCs as a function of their
distancerij for three fixed orientations of the two IPCs: PP (green), EEgpland EP (red), as shown
schematically in panelc) for particles at contact. Three bottom panels: interacéinargy between the
two IPCs at distancgj = 20 as a function of the rotation angbearound a chosen axes. We consider two
IPCs in a reference configuration, namely PP (magenta), E&hjcynd EP (orange), and we rotate one
of the two IPCs around the axgsas shown in pandlf). Two different screening conditions are chosen:
Ko =2 in panelga) and(d), andko = 10 in panelgb) and(e). Continuous lines correspond to the analytic
pair potential of Egs. (7) and (8), where the microscopi@paters aré. = —180,Z, = 90, & = 80, and

a = 0.60. Dotted lines correspond to the coarse-grained potertiddeomapping procedure “tot” for the
energy strengths, and dashed lines correspond to the precédax” (see text). For both types of energy
mapping, the interaction range of the coarse-grained medided tod = 1/k on changing the screening
lengths.
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Figure 7: (Color online). Interaction energy between two IRE€s function of their distanag;. Three
fixed orientations of the two IPCs are chosen: PP (green), Eie)and EP (red), as shown schematically
in panel(c) of Fig. 6. Continuous lines correspond to the analytic paieptial of Egs. (7) and (8), where
the microscopic parameters afg= —180,Z, = 90,¢ = 80,a= 0.60 andko = 5. Dotted lines correspond
to the coarse-grained potential of the mapping procedwt® for the energy strengths, and dashed lines
correspond to the procedure “max” (see text). For both nmgspithe choice of the interaction range is
determined by the Debye screening length, de- n/k. From left to right:n=1,2, and 3, i.e.d = 0.20

in panel @), 8 = 0.40 in panel ), andd = 0.60 in panel €). The insets in the three panels show an
enlargement around small energy values, in order to bateakze the EE pair interaction.
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Figure 8: (Color online). Interaction energy between two IRCa fixed distance;; = 20 as a function

of the rotation angl® around a chosen axes. We consider two IPCs in a reference waitian, namely
EE (cyan), EP (orange), and PP (magenta), and we rotate dhe tfo IPCs around the axesas shown

in panel (f) of Fig. 6. Continuous lines correspond to the analytic pateptial of Egs. (7) and (8),
dotted lines correspond to the coarse-grained potentisdeofnapping procedure “tot”, and dashed lines
correspond to mapping procedure “max” (see text). All theapeeters are the same as in Fig. 7, hence in
panel(a) p = 0.50 andy~ 11/8, in panel(b) p = 0.60 andy ~ 11/6, and in pane(c) p = 0.70 andy ~ T1/4.

6 Conclusions

In the present paper, we consider negatively charged dsliwith two positively charged regions located on
opposite poles. Such heterogeneously charged colloidbeaiewed as spherical particles with patterned
surfaces: a patch-free equatorial region and two extendid patches (see Fig. 1). For two interacting
IPCs, the equatorial regions and the poles are mutually seguvhile the patch and equatorial regions
attract each other. We refer to this class of systems asseytchy colloids in order to stress the mutual
repulsive nature of the charged-like patches, in conteaatttactive patches on typical patchy colloids.

Based on the Debyeiltkel approach, we derive an analytical description of Hieipteraction between
two IPCs with two polar patches. In parallel, we propose asmgrained patchy model which reproduces
the symmetries of the charge pattern on the colloidal sarfd@king advantage of a mapping procedure
from the microscopic DH description, we establish a well mdi connection between the mesoscopic
coarse grained model and the IPC model system we refer to.

A possible realization of the studied IPCs is provided by a maviety of complex particles coming
out of the absorption of soft polyelectrolyte stars on theame of oppositely charged colloidls It has
been shown that the equilibrium features and self-asseoflduch systems can be externally tuned; for
instance, the extent and strength of the patch can be cleateather by using different stars or by changing
the salinity of the solution, resulting in a number of distindsorption configuratioR8. The present model
is most suited for tight adsorption of the polyelectrolytars onto the colloids and becomes increasingly
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more approximate for systems in which the salt concentratidhe charge ratio of the two components are
such that the detachment of the polyelectrolytes from thieidal surface is significant. An indispensable
prerequisite of the applicability of our model is that thenteg of charge of the polyelectrolyte stars do
not lie outside the surface of the colloid, so that the mgjasf chains are expected to be attached on the
surface. In such cases our model maintains the salientrésatii the microscopic system. It is possible
to argue that, by varying the ratio between the colloid- aolyglectrolyte stars- charges and the relative
sizes of the two components, more than two polyelectrolgtass will adsorb onto the colloidal surface.
The resulting complex will have a number bigger than two dSifiee patches attached onto the negative
colloidal surface. In these cases, the advantage of thesegmaining procedure is of great importance
and provides great advantages in comparison with the ntopss model. Fig. 9 illustrates the situation:
whereas in the microscopic description for a case of, engeetadsorbed polyelectrolyte stars, we would
end up with a complicated interaction involving series dfiesjical harmonics, the coarse-grained model
allows us to place patches at selected points and procebdew., a simulation of the system in which
only the calculation of overlapping volumes is needed: #ttet task is computationally straightforward.
In this sense, our model bears the simplicity of previouslyedoped Kern-Frenkel types of models but at
the same time it retains the salient quantitative charasties of the underlying microscopic details in a
guantitative manner.

We introduced inverse patchy colloids as a novel class ahyatarticles, using the general mechanism
of charge heterogenei§?3-2°as a means of producing the effect of repulsive patches hadtithe same
time are attracted to the parts of the colloidal surface #natnot covered by the patch. Evidently, the
same goal can also be achieved by appropriate chemicaheaabf the respective colloidal surfaces. The
salient physical property of IPC’s is a combination betwesis@ropy and competing interactions, which
are expected to bring about quite unusual kinds of new phenamFor instance, even the simplest form
of IPCs, the two-patch polar/equatorial model, frustratb@tween the various, anisotropic contributions
emerges, which is expected to lead to the formation of noatrordered structures. In the case of standard
patchy colloids, the varieties of crystalline structuresttemerge have started to be investigated and they
include a number of ordered configuratiéfg® including the recently discovered stability region of the
Kagome latticé®3C. Inverse patchy colloids offer a new paradigm to be inveséid, in which both the
competition between attractions and steric constraindstiaa transition from two to three dimensions are
factors of crucial importance. Order can alsolbeal, in the sense that templated self-assembly of well-
defined, small clusters can be drivéri?or that larger, more amorphous clusters can gt It remains
to be seen which of these scenarios materialize for IPCs ashek wvhich conditions of patchiness, energy
and length scales involved.

A complementary set of questions pertains also to the desecdphases of IPCs, for which phase sep-
aration for patchy syster@$3°and its dependence on the patch characteristics has oddhgiditerature
on standard patchy colloids quite extensively. Associat#hd it is the existence of possible glassy or gel
phases, which has been amply investigated for patchy deffbi*® but not for IPCs; see, however, very
recent work on the somewhat similar system of LapdHijtan which T-like configurations of the particles
are preferred.

The next question to be addressed, thereforépois do inverse patchy colloiss differ from standard
patchy colloids in their macroscopic behaviolf this context, it is worth noting that a correspondence
between the patch number/geometrical arrangement andotidirty pattern is an important feature de-
termining the properties and the structure of systems withaive patches. Such a feature is no longer
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present when considering patchiness as emerging fromogeteeously charged particles. The main feature
of such patchy systems is not anymore the limited valencemding, but rather a competitive interplay be-
tween attractive and repulsive anisotropic interactiodis.believe that the class of inverse patchy colloids
introduced here constitutes a broad new open field, and thke atdrand could offer a foundation for its
further development.

IPC model system

S

Figure 9: (Color online). Top: three-dimensional repreagoi of an inverse patchy colloidal particle with
three patches arranged on an equilateral triangle lyinp®@eduatorial plane. The (yellow) patches and the
(grey) patch-free region have different surface chargestoBo the Debye-ldckel scheme (left side) and
the mesoscopic coarse-grained model (right side). The DHeinie shown as “forbidden”: even though
possible in principle, the analytical treatment for thesefive pair interaction is of prohibitive complexity.
The connection from the microscopic to the mesoscopic mizdélus not shown because the mapping
might be hardly feasible. On the other hand, the coarsevggainodel of an IPC with three patches is still
available, once a reasonable choice of the parameters is.mad
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A The Debye-Hickel approximation

In this Appendix, we investigate the ranges of the modelipatars for which the Debyeitd¢kel approxi-
mation is appropriate. To this end we start from tiom-linearPoisson-Boltzmann differential equatitn
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describing the electrostatic potentials in the ionic sohjtvalid forr > o:

4m Zige®" (,6)

24l _ : 0 _ HMe )

0" (r,8) = . IzZ.qep, exp( T , (22)
where the parameters have been specified in Sec. 2.1. In theeB€ickel approximation, the right-hand-

side of above equation is linearized under the assumptitowoion concentrations. Indeed, expanding the

exponential and truncating it at the first order, one obtains

Zige®" (r,0)\ . Ziged"(r,0)
oo ZAPI0) ,_ Zc) =

Summing over the indeixand taking into account electroneutrality of the solutibe, right hand side of the
Poisson-Bolzmann equation becorré®'' (r,8), wherex has been defined in Sec. 2.1. The Debyiecke!
approximation is meaningful only ife®' (r,8) < kgT; this implies that, assuming ambient conditions,
ge®'" (0,0) has to be at least smaller than 26 meV.

Let us definex = ge®(r,0) /ks T, whered(r,8) is given by Eq. (2). We set; = —180,Z, = 90 (neutral
particles), and = 80 (dielectric permittivity of water under normal condig). By considering differera
parameters and screening conditions, we determine the @rgarticle sizes for whick < 1. We estimate
the size of the particle for which the Debyeaitkel approximation is valid to range from a few tens of
nanometers to some microns, on changing the asymmetry ptgesbetween.Qo and 08o, in different
screening conditions (& ko < 100).

We note that for colloidal sizes and chargeandZ fulfilling the condition

o/nm> 0.1Z (24)

no charge renormalization is needed®

B Treatment of the analytic electrostatic potential

In this Appendix, we explicitly show that, in high screenoanditions, a Yukawa-like expression represents
a good approximation for the total electrostatic potergiadén in Eq. (2). In particular we focus on the ratio
between Bessel functions of consecutive orders, occumiigi (2), i.e.

1 Kypao(kr)
K = 6 iK1 Lg/2(k0) (29)

The first three modified spherical Bessel functions of theltkind (i.e.,| = 0, 1, 2) read-®

Kuo(d) — \/gexp\gz)

Kaja(d) = @exp;2><1+z—l> (26)
Ksja(2) = @eXp;Z><1+sz—l+sz-2>.
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Forl =0

Ro(Kr) = efff(? oKD, 27)

while forl =1 () Expl k) (ko)?
exp(ko) exp(—Kr)kr+1 (Ko)“+Ko
Ra(kr) = 1+Ko r Kr (k0)?2+3ko+3’ (28)
For high screening conditior{&o > 1), Ry(kr) simplifies and reduces &y (kr), i.e.

Ru (Kr) ~ eﬁ(‘;‘;) eXp(r_Kr) — Ro(KF). (29)

The general structure of the algebraic expressions in E).I¢2ds to the conclusion thRi(kr) ~ Rp(Kr)
for i > 2. Therefore, under assuming high screening conditioresattalytic potentiatp(r,8), given in
Eq. (2), can be written in the Yukawa-like form, given in E(®.and (4).

In Fig. 10 we present numerical results for the comparisdawéen the analytic electrostatic potential
and the Yukawa-like, simplified form. In the explored paréeneange, the approximate expression for

the electrostatic potential is found to be reasonably dodke analytic potential, even right at the particle
surface.
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Figure 10: (Color online). Comparison between the analy@ctebstatic potential of Eq. (2) and the
Yukawa-like simplified potential of Egs. (3) and (4) for th@léwing set of parametersZ. = —180 and
Zp=90,a=0.60 andko = 5. Panel(a): comparison of the surface potent(a, 6) as a function ob.

Panel(b): comparison between the two potential forms as a functioh atfa distance /o = 1+ 4/(ko)
from the field source.
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Figure 11: (Color onlineYable of contents Figure Charged colloids with adsorbed patches of opposite
charge form a new class of inverse patch colloidal partjclésch are analyzed and coarse-grained in this
paper.
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