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Typically, patchy systems are characterized by the formation of a small number of directional, possibly
selective, bonds due to the presence of attractive regions on the surface of otherwise repulsive particles.
Here, we consider a new type of particles with patterned surfaces and we refer to them asinverse patchy
colloidsbecause, in this case, the patches on the repulsive particles repel each other instead of attracting.
Further, these patches attract the parts of the colloid thatare free of patches. Specifically, we consider het-
erogeneously charged colloids consisting of negatively charged spherical particles carrying a small number
of positively charged patches. Making use of the Debye-Hückel theory, we derive the effective interaction
potential between a pair of inverse patchy colloids with twopatches on opposite poles. We then design a
simple coarse-grained model via a mapping with the analytical pair potential. The coarse-grained model
quantitatively reproduces the features of its microscopiccounterpart, while at the same time being character-
ized by a much higher degree of computational simplicity. Moreover, the mesoscopic model is generalizable
to an arbitrary number of patches.

1 Introduction

In recent years, patchy particles, i.e., colloids with inhomogeneously patterned surfaces, have attracted
tremendous interest of both experimentalists and theoreticians (for a recent overview in experiments and
theory see Ref.1 and Ref.2, respectively). Typical examples of patchy particles are spherically symmetric,
mutually repulsive colloids decorated on their surface by asmall number of extended, attractive regions. The
effective interaction between these particles is characterized by a well-defined anisotropy, making patchy
particles ideal candidates as building entities, bringingabout complex self-assembly scenarios in soft matter
physics. Nowadays, experimental techniques both in the nano- and micro-scale allow to position the patches
on well-defined arrangements and, possibly, to control their spatial extent on the colloidal surface, see e.g.
Ref.3–8. On the other hand, theoreticians have succeeded to developin parallel suitable models that mimic
these highly directional interactions2. Using theoretical methods and computer simulations, structural and
thermodynamic properties as well as the self-assembly scenarios of these model systems have been, and
still are, widely investigated.

In the present paper, we introduce a novel class of patchy particles, which we terminverse patchy col-
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loids (IPCs), referring to the repulsive nature of the patches as opposed to common attractive patches. Our
motivation resides in a recently presented colloidal system9 made of negatively charged, spherical colloids
onto which positively charged polyelectrolyte stars are adsorbed. When the charge ratio between polyelec-
trolytes and colloids is such that only two stars adsorb ontothe colloidal surface, the polyelectrolytes stars
occupy the two polar regions of the colloid, while the equatorial region remains uncovered. The resulting
complex is an heterogeneously charged particle with positive polar patches and a negative equatorial re-
gion. Due to the repulsion between charge-like surfaces, the effective interaction between two IPCs can
be both attractive and repulsive, according to the relativeorientation of the two particles: polar, as well as
equatorial, regions are mutually repulsive, while polar and equatorial regions attract each other. In contrast
to conventional patchy particles, attraction and repulsion in inverse patchy systems play a role on an equal
footing, allowing for even more widespread self-assembly scenarios than patchy particles. We note that,
under suitable conditions of charge- and size-asymmetries, also more than two polyelectrolyte stars can be
adsorbed on the colloidal sphere. The presentation in the manuscript is restricted to the two patches case,
but we also discuss the generalization to an arbitrary number of patches at the end.

In this contribution, we wish to propose a general model for colloids with two positive polar patches on
their negatively charged surface, pointing out a way to coarse-grain a class of systems referred to as inverse
patchy colloids. We develop a theoretical description for the effective interaction potential between two
IPCs carrying two patches. Based on the Debye-Hückel (DH) theory, we derive the fully analytic expression
for the total electrostatic potential,Φ(r), around one single IPC. The resulting expression, involvingboth
Legendre polynomials and modified spherical Bessel functions of the third kind, can be complex to be
used in the derivation of the effective pair interaction between two IPCs. Nonetheless, under high screening
conditions,Φ(r) can be factorized in a radially symmetric Yukawa contribution, which depends only onr =
|r |, and an angle dependent factor that takes into account the non-spherically symmetric charge distribution.
Such a simplification allows us to analytically derive the effective pair potential between two IPCs.

In an effort to make our model of IPCs amenable to investigations of collective behaviors of many body
systems, we develop a coarse-grained (CG) picture of the effective interactions between two IPCs. This
simplified model is accessible directly from the colloidal model system (cf. schematic representation in
Fig. 1), but it shows a straightforward relation with the DH description. Indeed, the three charges of the
microscopic DH model are replaced, in a way that fully preserves the original arrangements of the patches,
by three interaction spheres: a big sphere around the impenetrable particle and two small, out-of-center
spheres; the latter ones represent the patches and are immersed to a large extent in the particle. We assume
for all three interaction ranges the same valueδ, the latter being set by the microscopically-determined
screening length of the electrostatic interactions, common to both repulsions and attractions. The effective
interaction between two coarse-grained IPCs can now be simply written as the sum over three contribu-
tions, which stem from the different overlap scenarios of the two types of interaction spheres. Further,
each of these contributions is postulated to factorize in anenergetic and a purely orientational-geometric
contribution; the latter one can be suitably tabulated and is thus amenable to numerical investigations.

The relation of our coarse-grained model to the IPC model system can take advantage of the available
analytical description at the microscopic level, strengthening thereby the link between the underlying phys-
ical system and its coarse-grained counterpart. The parameters of the coarse-grained model are chosen via a
direct mapping to the DH model (cf. schematic representation in Fig. 1): the interaction sphere distribution
of the mesoscopic model is assumed to have the same eccentricity of the discrete charge distribution within
the DH description, while the interaction range for a pair ofcoarse-grained IPCs is related to the Debye
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screening length. Further, we propose two different procedures to establish the above mentioned energetic
prefactors in the coarse-grained pair interaction energy.We then discuss in detail the results that we obtain
for the effective potentials via the different routes.

The paper is organized as follows: in Sections 2 and 3 the DH and the coarse-grained model are pre-
sented, respectively. In Section 4 we propose a mapping scheme to relate these two models and results for
the ensuing effective potentials are discussed in Section 5. The main text of the manuscript is closed with
concluding remarks. The paper is supplemented by two appendices: Appendix A deals with the lineariza-
tion scheme of the DH approach, while in Appendix B we presentthe details on how the exact expression
for the electrostatic potential generated by one IPC withinthe DH picture can be simplified under high
screening conditions.

Figure 1: (Color online). Top: three-dimensional representation of an inverse patchy colloid (IPC) with
two polar patches. The (yellow) polar patches and the (grey)equatorial region have positive and negative
surface charge, respectively. Bottom: the microscopic Debye-Hückel (DH) description (left side) and the
mesoscopic coarse-grained (CG) model (right side). In the DH-model, the (grey) central sphere is the center
of charge of the colloid and the two (yellow) out-of-center spheres are the centers of charge of the attached
patches. The coarse-grained model reproduces the symmetries of the heterogeneous charge distribution
of the IPC model system. The parameters of such a simple modelare chosen by taking advantage of the
underlying DH analytical description.

2 Debye-Ḧuckel microscopic description of IPCs

The statistical mechanical approach to electrolytes treats the electrolytic solution as a suspension of im-
penetrable, charged colloidal particles in a liquid dielectric solvent containing co- and counter-ions. For a
linear, homogeneous and isotropic dielectric medium, the Maxwell equations of electrostatics lead (in the
absence of external fields) to a differential equation of Poisson type, which relates the electrostatic potential
of the system with the ionic charge density distribution10. In a mean field approach, the equilibrium charge
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density obeys Boltzmann statistics; the resulting equationthat describes the electrostatic potential, known
in literature as the Poisson-Boltzmann equation, is an intrinsically non-linear differential equation11. The
linearized Poisson-Boltzmann approach is referred to as theDH description12. Although stricktly suitable
only for the dilute case, it provides surprisingly good results also for denser systems13. The extentions to
concentrated solutions often require the replacement of the bare colloidal chargeZ with a so-called effec-
tive14 DH-chargeZ∗, which takes into account the strong condensation of counter-ions on the Stern-layer
around the colloids. Further, it is possible to employ a rescaling of the inverse Debye screening lengthκ to
take into account free volume effects15 or to adjustκ with the goal of describing experimental results16. At
any rate, the functional form of the DH-potential can be preserved and it provides for a realistic description
of experimental data for a vast variety of physical situations.

According to Gauss law, the electrostatic field surroundinga spherical colloid with a homogeneously
distributed surface charge is identical to the field generated by a point charge positioned in the center of
the dielectric colloidal particle. By replacing the surfacecharge with a point charge located in the center
of the colloid, the DH approach leads to the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) pair
interaction17.

In this paper we deal withheterogeneously chargedparticles: we consider negatively charged colloids
decorated by a small number of positively charged surface regions (so-called patches). Following the ideas
presented in Ref.18, we replace the heterogeneous surface charge with a non-spherically symmetric distri-
bution of discrete charges inside the colloidal particle: the charge of the colloidal surface and of the patches
are replaced by point charges positioned at their respective centers of charge. Within the DH approach, we
derive an analytical expression of the screened electrostatic potential generated by a single IPC (Sec. 2.1).
Based on this information, we construct the effective interaction potential between a pair of IPCs (Sec. 2.2).

2.1 The electrostatic potential around one IPC

We consider a spherical, heterogeneously charged colloid of radiusσ with a negatively charged equatorial
region and two positively charged polar regions, the patches. According to the scheme outlined above, the
total surface charge of the colloid (Zcqe < 0) and the charges of the two patches (Zpqe > 0, each),qe being
the positive elementary charge, are replaced by equivalentpoint charges positioned at the corresponding
centers of charge inside the colloidal sphere. While the colloidal center of charge coincides – due to the
spherical symmetry – with the center of the colloidal sphere, the centers of charge of the two patches
are located at a distancea(≤ σ) from the center, diametrically opposite to each other;a is termed the
asymmetry of the discrete charge distribution (see Fig. 2).From the inner part of the sphere, denoted as
region I, both co- and counter-ions are excluded, while region II is the medium containing the ions of the
electrolytic solution. For sake of simplicity we assume thedielectric permittivity to have the same value in
both regions, namelyε. We note that the more general case has been treated in Ref18. Due to the cylindrical
symmetry of the charge distribution, we can assume that the three centers of charge lie on thez axis. We
introduce spherical coordinates (r,θ,φ) with the origin in the center of the colloidal particle. Dueto the
azimuthal symmetry of the charge distribution, the resulting electrostatic potential depends only onr andθ
(see Fig. 2), and thus the solutions of the electrostatic problem can be expanded in Legendre Polynomyals
Pl (cosθ). For the more general case, the latter should be replaced by the spherical harmonicsYlm(θ,φ), see
Ref.18 for details.

We now derive the total screened electrostatic potential,Φ(r,θ), that an IPC generates in space. Let
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Figure 2: (Color online). Two dimensional representation ofthe DH scheme for an inverse patchy colloid
with two positively charged poles and a negatively charged equatorial region. The spherical colloid, denoted
as region I, is surrounded by the solvent, denoted as region II. The dielectric permittivity is chosen to be the
same in both regions and it is denoted byε in the text. The colloidal sphere of radiusσ contains in its inside
three point centers of charge represented by dots (grey for the negative charge and yellow for the positive
ones) along thez axis inside the colloidal sphere. The point-like co- and counter-ions in region II are not
shown. The negative charge in the center of the colloidal sphere has valueZcqe, whereqe is the magnitude
of the elementary charge andZc < 0. The two positive charges have valueZpqe each and lie at a distancea
from the colloidal center, one opposite to the other.

ΦI(r,θ) andΦII (r,θ) be the expressions forΦ(r,θ) in the interior and the exterior of the colloidal particle,
respectively. Forr < σ, Φ(r,θ) is determined via the Poisson equation for the discrete distribution of three
charges, while forr > σ we assume that the linearized Poisson-Boltzmann equation holds (see Appendix
A); these equations read as

∇2ΦI(r,θ) = −4π
ε

Zpqe[δ(~r −aẑ)+δ(~r +aẑ)]− 4π
ε

Zcqeδ(~r) r < σ

∇2ΦII (r,θ) = κ2ΦII (r,θ) r > σ. (1)

Hereκ−1 is the Debye screening length which is determined by the bulknumber densitiesρ0
i of the mobile,

ionic species (with valencesZi) in the solution:κ2 =
4πq2

e
εkBT ∑i ρ0

i Z2
i , whereT is the temperature andkB is the

Boltzmann constant.
To solve the system of differential equations (1), we need toconsider the proper boundary conditions:

(i) Φ(r,θ) must vanish at infinity and be continuous inr = σ, and (ii) at the interface between regions I
and II, the tangential component of the electrostatic field and (in the absence of surface charges) the normal
component of the displacement field must be continuous18.

We are interested only in the screened electrostatic potential outside the colloid. Thus, omitting in the
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following the superscript II, the electrostatic potentialin the region of interest is

Φ(r,θ) =
(Zc +2Zp)qe

ε
exp(κσ)

1+κσ
exp(−κr)

r
(2)

+
2Zpqe

ε

∞

∑
l=2

′
(a

σ

)l (2l +1)

κσ
√

rσ
Kl+1/2(κr)

Kl+3/2(κσ)
Pl (cosθ),

where the prime indicates that the sum runs over even index valuesl only, Pl (cosθ) are the Legendre poly-
nomials of orderl , Kl+1/2(z) andKl+3/2(z) are modified spherical Bessel functions of the third kind19. In
Appendix A, we use the analytical expression ofΦ(r,θ) to confirm the reliability of the DH approximation
in the parameter space.

As explicitly derived in Appendix B, whenκσ & 1 the ratio between spherical Bessel functions of
consecutive orders is proportional to exp(−κr)/r. Hence, under high screening conditions, it is possible
reduce Eq. (2) for the total electrostatic potential of an IPC to a simpler, Yukawa-like expression, where the
angular and the radial contributions factorize, i.e.

Φ(r,θ) = Φ̄(θ)
exp(−κr)

r
, (3)

with

Φ̄(θ) =
exp(κσ)

ε(1+κσ)

[

Zcqe+2Zpqe

∞

∑
l=0

′
(a

σ

)l
(2l +1)Pl (cosθ)

]

. (4)

The effect of the approximation onΦ(r,θ) is discussed in Appendix B. We show that, in the considered
parameter space, the approximate expression for the electrostatic potential yields numerical values of the
same order of magnitude as the analytic expression, even at the colloidal surface (see Fig. 10).

2.2 The pair interaction between two IPCs

We now consider two identical IPCs, labeled with indicesi and j, and, starting from the total electrostatic
potential generated by each of them [see Eqs. (3) and (4)], wederive their effective interaction. Let~r i j be
the vector connecting the centers of two IPCs, let ˆni andn̂ j be the unit vectors that specify the orientations
of colloids i and j, respectively, and let us define the angles between the orientational unit vectors of the
colloids and their center-to-center unit vector asθi = cos−1(n̂i · r̂ i j ) andθ j = cos−1(n̂ j · r̂ i j ). Furthermore,
let us define the angle between the orientational unit vectors of the two IPCs asθi j = cos−1(n̂i · n̂ j).

The effective pair interaction potential,ψ(r i j ,θi,θ j ,θi j ), that we will derive in the following, has to be
symmetric with respect to the indicesi and j. Hence, we consider the potential energy,ψi j , due to the
presence of colloidj in the screened electrostatic field generated by colloidi and its surrounding ions;ψ ji

is similarly derived for the inverse situation. Then, we make the symmetrizationansatz: ψ = (ψi j +ψ ji )/2,
ommitting for the moment the arguments. We outline in the following the derivation forψi j . The potential
energyψi j is given by the sum over all the contributions from the three charges inside colloidj. In analogy
to the derivation of the DLVO potential, we take into accountthe fact that microscopic co- and counter-ions
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cannot penetrate the IPC by replacing the bare charges with effective charges:

Z̃m
j =











Zcqe
exp(κσ)
1+κσ if m= 0

Zpqe
exp(κσ)
1+κσ if m= 1,2,

(5)

where we have usedm= 0 for the central charge andm= 1,2 for the out-of-center charges. Hence,ψi j is
given by10,20

ψi j (r i j ,θi,θ j ,θi j ) = ψi j (r i j ,θi,θ1
i ,θ

2
i ) = ∑

m=0,1,2
Z̃m

j Φ(rm
i j ,θ

m
i ). (6)

Here, therm
i j are the lengths of the vectors joining the centre of colloidi with the three centers of charges

inside colloid j, and theθm
i j are the corresponding angles, as shown in Fig. 3. Note thatr0

i j ≡ r i j and

θ0
i j ≡ θi j . By applying the law of cosines on the triangles defined by~r1,2

i j , n̂ j and~r i j , we haver1,2
i j =

(a2 +~r i j ·~r i j ∓2ari j cosθ j)
1/2. In Eq. (6), the explicit dependence ofψi j has been expressed taking into

account thatθ1
i andθ2

i are determined onceθ j andθi j are fixed, and vice versa.
By defining the dimensionless quantitiesξ1,2 = r1,2

i j /r i j , we can now explicitly write downψi j (r i j ,θi,θ1
i ,θ2

i )
in a DLVO-like expression, i.e.

ψi j =
Qi j (r i j ,θi,θ1

i ,θ2
i )q

2
e

ε

(

exp(κσ)

1+κσ

)2 exp(−κr i j )

r i j
, (7)

whereQ(r i j ,θi,θ1
i ,θ2

i ) is an orientationally dependent factor, which takes into account all the charge va-
lences involved in the interaction:

Qi j (r i j ,θi,θ1
i ,θ

2
i ) =

[

Z2
c +2ZcZp

∞

∑
l=0

′
(2l +1)

(a
σ

)l
Pl (cosθi)

]

(8)

+

[

ZcZp +2Z2
p

∞

∑
l=0

′
(2l +1)

(a
σ

)l
Pl (cosθ1

i )

]

exp
[

−κr i j (ξ1−1)
]

ξ1

+

[

ZcZp +2Z2
p

∞

∑
l=0

′
(2l +1)

(a
σ

)l
Pl (cosθ2

i )

]

exp
[

−κr i j (ξ2−1)
]

ξ2
.

By following an analogous procedure, we obtain an expressionfor ψ ji , leading finally to the total sym-
metric pair potential between two IPCsψ(r i j ,θi,θ j ,θi j ). In the following we refer toψ(r i j ,θi,θ j ,θi j ) as the
DH pair potential between two IPCs.

It is worth noting that forψi j given in Eqs. (7) and (8) the DLVO limits can easily be recovered. Trivially,
if Zp → 0, thenQi j → Z2

c and Eq. (7) reduces to the DLVO interaction between two colloids, each of them
carrying a homogeneously distributed chargeZcqe. Furthermore, ifZp 6= 0 anda→ 0, Eq. (7) reduces again
to a DLVO-like potential. Indeed, in the latter limit, only the l = 0 terms survive in Eq. (8), whileξ1,2 → 1,
so that the exponential factors inQi j goes to unity. The final expression for the pair potential is then

ψ(r i j ) =
(Z2

c +4ZcZp +2Z2
p)q

2
e

ε

(

exp(κσ)

1+κσ

)2 exp(−κr i j )

r i j
, (9)

which is the DLVO potential of a pair of colloids, each of themcarrying a total charge(Zc +2Zp)qe.
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Figure 3: (Color online). Schematic representation of a pairof IPCs at a fixed distancer i j . To calculateψi j ,
we considerj as a spherical particle carrying three discrete point charges as in Fig. 2, while we consideri
as the point source of the screened electrostatic field. Here, n̂i andn̂ j are the orientational unit vectors of
particlei and j, θi andθ j are the corresponding angles between such orientational vectors and the center-
to-center vector between the two IPCs,r1,2

i j are the vectors joining the center ofi with the two out-of-center

points in j, andθ1,2
i j are the corresponding angles between such vectors and ˆni. Please note that ˆni andn̂ j

are not generally in the same plane: the angle between them isdefined byθi j (not shown in the figure). As
a consequence, neither~r i j ,~r1

i j and~r2
i j are in the same plane.

3 The coarse-grained mescoscopic model of IPCs

As described in the Introduction, we deal with heterogeneously charged colloids having a negatively charged
equatorial region and two positively charged polar regions. The microscopic analytical description of the
model system is provided by applying the DH theory of dilute electrolytes. Nonetheless, the analytic po-
tential derived in Sec. 2 may be cumbersome for numerical simulation techniques. In order to study the
collective behaviors of inverse patchy colloidal systems,a coarse graining procedure is of great importance.
We propose a coarse-grained model of our IPCs with the goal of dealing with a more feasible pair potential
description, while keeping a close connection to the physical system. In particular, the coarse-grained model
is constrained to respect the following conditions, makingit strongly linked to the original DH-model:

(i) It preserves in full the geometrical arrangement of the patches.

(ii) As a consequence, it has exactly the same symmetries as the original system.

(iii) It maintains the “mixed”, attractive/repulsive character of the former, depending on interparticle ori-
entations.

(iv) The energy and length scales involved in the coarse-grained model are derived from their microscopic
counterparts and are closely related to them.
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At the same time, we achieve dramatic computational simplification by further introducing a factorization
of the coarse-grained model into energetic and geometricalcontributions (see below).

The basic feature of a IPC is a three-regions surface: an equator and two poles having different mutual
and crossed properties. When designing such a patterned surface, we take into account that delocalized,
soft patches better suit the nature of the electrostatic interactions. Moreover, we prefer to have a flexible
patchy model with three independent sets of parameters: theinteraction ranges, the interaction strengths,
and the patch surface coverage. Inspired by the Kern-Frenkel model21, we design a simple inverse patchy
colloid as described in the following.

3.1 Design of the patchy model

In an effort to design a simple model for IPCs, we consider a spherical, impenetrable colloidal particle
of radiusσ. The hard-core models steric constraints and guarantees the thermodynamic stability of the
system. The corresponding interaction sphere has radiusσ+δ/2, whereδ is the interaction range specified
below. Inside the hard colloid, two interaction sites are located at a distancee(≤ σ) in opposite directions
from the particle center (see Fig. 4);e is termed theeccentricityof the model. The interaction sphere of
each of these sites is an out-of-center sphere of radiusρ, submerged in the colloid to an extent that is fixed
by e. The geometrical arrangement of the interaction spheres defines three regions on the surface of the
hard core particle. In the following, we refer to the two types of interaction spheres as big spheres of radius
RB = σ+δ/2 (labeled B) and small spheres of radiusRS= ρ (labeled S). In such a description, the potentials
between the big spheres and the small spheres are repulsive,representing the interaction between equatorial
regions and patches, respectively; in contrast, the potential between big and small spheres is attractive,
representing the interaction between the equatorial regions and patches.

Since in the microscopic system the interaction range of twoIPCs is determined by the electrostatic
screening, we assume the BB, the BS and the SS interactions to have the same rangeδ. Such an assumption
implies the following relation between the parameters (seeFig 4):

δ = 2(e+ρ)−2σ, (10)

i.e., the small spheres are tangential to the big sphere, as shown in Fig. 4. Of coursee+ρ ≥ σ, sinceδ > 0.
Furthermore, we define the opening anglesγ and(π−2γ), characterizing the extension of the polar and the
equatorial regions, respectively. The following restriction holds:

cosγ =
σ2 +e2−ρ2

2σe
. (11)

Since the extension of one single patch is limited to a hemisphere,e andρ can only be varied in such a
way as to guaranteeγ < π/2. We note that, for a given value ofδ, the choice of the ratioρ/e definesγ,
i.e., we can take into account different patch extensions, while keeping fixed the interaction range. Once
e andρ, being the two independent parameters of the model, are defined, the physical parameters, i.e., the
interaction rangeδ and the patch extensionγ, are given by Eq. (10) and (11), respectively.

Defining the distance between two IPCs and their orientational unit vectors as in Sec. 2.2, the coarse-
grained pair interaction potential between two IPCs within our model is

V(r i j ,θi,θ j ,θi j ) =







∞ if r i j < 2σ
U(r i j ,θi,θ j ,θi j ) if 2σ ≤ r i j ≤ 2σ+δ.
0 if 2σ+δ < r i j

(12)
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Figure 4: (Color online). Two dimensional picture of the coarse-grained model of a IPC. The colloid’s
impenetrable volume is represented by the (grey) circle of radiusσ, the big (black) circle of radiusσ+δ/2
represents the interaction volume of the colloid, while thetwo small (yellow) circles of radiusρ represent
the interaction volumes of the two sites, positioned at distancee from the colloidal center, one opposite to
the other, on an in-line geometry. The interaction range,δ, and the surface extension,γ, of the patches are
related to the model parameterse, ρ andσ by Eq. (10) and (11), respectively.

The functionU(r i j ,θi,θ j ,θi j ) is the sum over three contributions stemming from the BB, the BS and the
SS interactions. We postulate that each of these contributions can be factorized into an energy strength and
a geometrical weight factor. The former ones are suitable defined (see Sec. 4) energy contributionsuαβ,
while the latter ones are dimensionless weight factorswαβ, which take into account the dependence of the
pair potential on both the distancer i j and the relative orientation of the two IPCs via the three angles (with
αβ = BB, SS, or BS). Hence we have

U(r i j ,θi,θ j ,θi j ) = wBBuBB +wBSuBS+wSSuSS. (13)

In order to simplify the notation, we have suppressed in the above equation the explicit dependence of the
wαβ on r i j , θi , θ j andθi j . We choose each weight factor to be proportional to the totaloverlap volume,Ωαβ

OT
,

of all interaction spheres contributing to the specificαβ interaction, i.e.,

wαβ = Ωαβ
OT

/ΩR. (14)

HereΩR is a normalizing reference volume, which is chosen to be volume of the colloidal hard sphere, i.e.,
ΩR = 4

3πσ3. TheΩαβ
OT

for the three possible interaction types are given by

ΩBB
OT

= ΩBiB j
O (15)

ΩBS
OT

= Ω
BiS1

j
O +Ω

BiS2
j

O +ΩB jS1
i

O +ΩB jS2
i

O (16)

ΩSS
OT

= Ω
S1

i S1
j

O +Ω
S1

i S2
j

O +Ω
S2

i S1
j

O +Ω
S2

i S2
j

O , (17)
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wherei and j (i 6= j) denote the indices of two interacting IPCs. Again, the dependence on distances and
orientational angles has not been explicitly expressed.

Let us now consider two different spheres of radiiRα andRβ, respectively, and separated by a distance
rαβ, whereα andβ = B or S. Then, the overlap volume between these two spheres isgiven by

Ωαβ
O (rαβ) =
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+
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3
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Rβ +
R2

α−R2
β−r2

αβ
2rαβ

)2
]

if rmin ≤ rαβ ≤ rmax

4
3πR3

< if rαβ ≤ rmin.

(18)

Here,R< =min(Rα,Rβ), rmax≡ Rα + Rβ is the distance above which the two spheres do not overlap any-
more, andrmin≡ |Rα−Rβ| is the distance below which the two spheres completely overlap. In our particular
case,rmin plays a role only for the BS interaction: due to the hard core repulsion, spheres of the same size
are prevented from completely overlap, while a small spheremay happen to be totally included inside a big
sphere.

Once the general expressions of theΩαβ
O (rαβ) are known, it is important to bear in mind that the distance

rαβ does not necessarily coincide with the distance between thetwo IPCs. Indeed,rαβ = r i j only when
αβ = BB, while for αβ = BS and= SS,rαβ is in general a function ofr i j and such a function depends on
the relative orientation of the two IPCs. Consequently, the dependence of the total overlap volume is given
by Ωαβ

OT
= Ωαβ

OT
(r i j ,θi,θ j ,θi j ).

We thus have an expression for the effective interaction between two IPCs, that can be evaluated in a fast
and efficient way and that can readily be used in numerical approaches: for two interacting IPCs (separated
by a distance and characterized by their orientation in space) the weight factors,wαβ are directly calculated
via (at most) nine distances between the interaction spheres involved. The evaluation of the pair interaction
between two IPCs does not require additional information.

4 Mapping between the DH and the CG model

As described in the previous section, our coarse grained model for IPCs is characterized by the following
parameters: the interaction range between pair of particles,δ, the patch extension,γ, and the set of the three
interaction strengths:uBB, between patch-free regions,uBS between patch-free regions and patches, and
uSS between patches.

In the microscopic DH-model, the interaction range of the effective pair potential is determined by the
screening conditions in the electrolytic solution. We assumeδ of the coarse-grained interactions to be pro-
porational to the Debye screening length according to the following relation:δ = nκ−1, with n= 1,2,3, · · · ;
for simplicity we take integern. Since in our approach we focus on rather largeκ-values (high screening
conditions), we only consider smalln-values. The impact of different choices forn on the potential will be
discussed in Sec. 5.

As mentioned above, in our coarse grained model, the patch extensionγ is defined by the choice ofeand
ρ. We fix the eccentricity parameter of the coarse-grained model to have the same value of the asymmetry
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parameter of the DH description, i.e.,e= a. Thus, in our coarse-grained model,ρ depends only onδ, i.e.,
on the choice ofn and on the screening conditions. Of course, the influence of the κ-value on the patch
size has a physical background. Let us consider the possiblerealization of an IPC via the complexation
of polyelectrolyte stars on the surface of an oppositely charged colloidal particle: a change in the salinity
of the solution affects the degree of adsorption of the polyelctrolyte star22 and, hence, its coverage of the
colloidal surface (i.e., the extent of the patch).

We estimate the interaction strengths,uBB, uBS, anduSS, by considering three characteristic reference
configurations (index “rc”) of two interacting IPCs, namely (see Fig. 5):

• the equatorial-equatorial (rc= EE) configuration: the two equators face each other and theirmutual
repulsion dominates the pair interaction;

• the equatorial-polar (rc= EP) configuration: a pole (patch) of one particle faces the equatorial region
of the other particle, leading to a mutual attraction;

• the polar-polar configuration (rc= PP): a patch of one particle faces a patch of the other particle,
leading to a repulsive interaction.

Evaluated from the analytic potentialψ(r i j ,θi,rc,θ1
i,rc,θ2

i,rc), the energy scale of each reference configu-
ration is related to the three unknown parameters,uBB, uBS anduSS. In the following we pursue two possible
mapping schemes from the microscopic DH-model to the mesoscopic coarse-grained model:

1. We evaluate the overall strengths of the potential tails,obtained by integratingψ(r i j ,θi,rc,θ1
i,rc,θ2

i,rc)
over the range 2σ ≤ r < ∞, and we impose that they are equal to the corresponding expressions
obtained by integratingV(r,θi,rc,θ j,rc,θi j ,rc) over the same range, i.e.,

utot
rc = δ−1

Z ∞

2σ
ψ(r,θi,rc,θ1

i,rc,θ
2
i,rc)dr ≡ δ−1

Z ∞

2σ
V(r,θi,rc,θ j,rc,θi j ,rc)dr. (19)

2. Alternatively, we relate the contact values of the two potential tails, i.e., we match

umax
rc = ψ(2σ,θi,rc,θ1

i,rc,θ
2
i,rc) ≡V(2σ,θi,rc,θ j,rc,θi j ,rc). (20)

The superscripts “tot” and “max” specify the two different types of mapping.
SinceV(r i j ,θi,θ j ,θi j ) is different from zero only when 2σ≤ r i j ≤ 2σ+δ and since, on such interparticle

distances, the interaction energy is given by Eq. (13), we can explicitly write the mapping scheme as

um
rc =M

rc
αβum

αβ. (21)

Here, “m” indicates one of the two the mapping schemes (“tot”or “max”). Further,um
rc = (um

EE,u
m
EP,u

m
PP),

um
αβ = (um

BB,um
BS,u

m
SS), and the coefficients of the 3×3 matrix,M rc

αβ, depend on the geometric weightswαβ
of the three reference configurations.

Once the parameters of the DH-model are fixed (Zc, Zs, ε, a andκσ), the parameters of the coarse-
grained model (δ, e andρ) are chosen accordingly; choosing either mapping scheme introduced above,um

rc
is evaluated and theum

αβ are evaluated from inversion of Eqs. (21).
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Figure 5: (Color online). Two dimensional representation ofthe three orientational configurations used as
reference in the mapping between the analytic pair potential of Eqs. (7)-(8) and the coarse-grained model
potential of Eq. (12). From left to right: equatorial-equatorial (EE), equatorial-polar (EP), and polar-polar
(PP) configuration. The two IPCs are shown in contact, i.e.,r i j = 2σ.

5 Comparison between the DH and the CG model

Here, we consider the inverse patchy complexes described inSec. 2 and we compare their microscopic pair
interactionψ(r ji ,θi,θ j ,θi j ) with the pair potentialV(r i j ,θi,θ j ,θi j ) of the corresponding coarse-grained
model described in Sec. 3 and 4. Concerning the microscopic system, we consider the dielectric medium
to be water, in which caseε = 80 under normal conditions. We choose to deal with overall neutral particles
and we setZc = −180 andZp = 909,16. Besides being the simplest order case, this choice may be related
to the fact that|Zc− 2Zp| is small for IPCs with two patches, that result from the complexation of two
polyelectrolyte stars onto an oppositely charged colloid9. Indeed, a big difference between the colloidal
charge and the sum of charges of the two polyelectrolyte stars would lead to the adsorption of more than
two polyelectrolyte stars onto the colloidal surface. We choose the asymmetry parameter of the charge
distribution to bea = 0.6σ. The Debye screening length is a free parameter to be varied within the high
screening range, i.e.,κσ > 1. As far as the coarse-grained model is concerned, we choosethe interaction
range to be determined by the Debye screening length, as described in Sec. 3. Sincee≡ a, thenρ is fixed
onceδ is chosen. The energy strengths of the three types of interaction are determined via both the above
mentioned mappings, i.e., “tot” and “max”. We compareψ(r ji ,θi,θ j ,θi j ) andV(r i j ,θi,θ j ,θi j ), and we
study how their agreement depends on the different mapping procedures (both for energies and interaction
ranges) and on varying the screening conditions.

The Debye screening length sets the characteristic interaction range of the DLVO potential. Hence, we
fix δ = 1/κ and we explore the screening range 2< κσ < 10. We consider three characteristic configurations
of the two IPCs at contact (namely, EE, EP and PP) and we translate/rotate one colloid with respect to the
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other. The comparison between the analytic and the coarse-grained potential is shown in Fig. 6. The
radial and the angular behaviors of the pair interaction areshown for both the energy mappings (“tot” and
“max”): the procedure “max” allows a better quantitative agreement between our simple model and the DH
description. Nonetheless, regardless of the chosen energymapping, the main features and the symmetries
of the analytic pair interaction are very well reproduced bythe coarse-grained model, within the chosen
screening range.

As explained in Sec. 3, we have the freedom of varying somewhat the parameterδ, by generalizing the
relationδ = 1/κ into δ = n/κ. The choicen = 1 is satisfactory for a wide range of screening conditions,
but a closer agreement between the microscopic DH-system and the coarse-grained model may be achieved
by tuningn. By fixing the screening length to an intermediate value within the previously studied screening
range, i.e.,κσ = 5, we focus on the effect of the interaction range. We setn= 1,2, and 3 and we consistently
chooseρ. Fig. 7 and Fig. 8 show the radial and the angular dependence of the interaction energy between
a pair of IPCs. We observe that the choicen = 3 brings a better agreement between the microscopic
potential and the coarse-grained one in both energy mappingprocedures. As we learn from the caseκσ = 5,
the interaction range, and consequently the patch extension, can be tuned with respect to the screening
conditions: largern values guarantee a more quantitative agreement for largerκσ. Specifically, whenκσ
ranges from 2 to 10, thenn spans monotonically the range between 1 and 4. The corresponding change ofρ
with n is found to show a trend towards smaller patches asκσ increases. When considering IPCs as coming
out of the adsorption of polyelectrolyte stars onto oppositely charged colloids, the correlation between the
patch size and the screening conditions may be related to different degrees of adsorption. Indeed, on adding
salt (i.e., increasingκσ) the adsorbed polyelectrolyte stars change conformation9 and, hence, their surface
coverage onto the colloid shrinks.
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Figure 6: (Color online). Three top panels: interaction energy between two IPCs as a function of their
distancer i j for three fixed orientations of the two IPCs: PP (green), EE (blue), and EP (red), as shown
schematically in panel(c) for particles at contact. Three bottom panels: interactionenergy between the
two IPCs at distancer i j = 2σ as a function of the rotation angleθ around a chosen axes. We consider two
IPCs in a reference configuration, namely PP (magenta), EE (cyan), and EP (orange), and we rotate one
of the two IPCs around the axes ˆv, as shown in panel( f ). Two different screening conditions are chosen:
κσ = 2 in panels(a) and(d), andκσ = 10 in panels(b) and(e). Continuous lines correspond to the analytic
pair potential of Eqs. (7) and (8), where the microscopic parameters areZc = −180,Zp = 90, ε = 80, and
a = 0.6σ. Dotted lines correspond to the coarse-grained potential of the mapping procedure “tot” for the
energy strengths, and dashed lines correspond to the procedure “max” (see text). For both types of energy
mapping, the interaction range of the coarse-grained modelis fixed toδ = 1/κ on changing the screening
lengths.
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Figure 7: (Color online). Interaction energy between two IPCsas a function of their distancer i j . Three
fixed orientations of the two IPCs are chosen: PP (green), EE (blue), and EP (red), as shown schematically
in panel(c) of Fig. 6. Continuous lines correspond to the analytic pair potential of Eqs. (7) and (8), where
the microscopic parameters areZc =−180,Zp = 90,ε = 80,a= 0.6σ andκσ = 5. Dotted lines correspond
to the coarse-grained potential of the mapping procedure “tot” for the energy strengths, and dashed lines
correspond to the procedure “max” (see text). For both mappings, the choice of the interaction range is
determined by the Debye screening length, i.e.,δ = n/κ. From left to right:n = 1,2, and 3, i.e.δ = 0.2σ
in panel (a), δ = 0.4σ in panel (b), andδ = 0.6σ in panel (c). The insets in the three panels show an
enlargement around small energy values, in order to better visualize the EE pair interaction.
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Figure 8: (Color online). Interaction energy between two IPCsat a fixed distancer i j = 2σ as a function
of the rotation angleθ around a chosen axes. We consider two IPCs in a reference configuration, namely
EE (cyan), EP (orange), and PP (magenta), and we rotate one ofthe two IPCs around the axes ˆv, as shown
in panel( f ) of Fig. 6. Continuous lines correspond to the analytic pair potential of Eqs. (7) and (8),
dotted lines correspond to the coarse-grained potential ofthe mapping procedure “tot”, and dashed lines
correspond to mapping procedure “max” (see text). All the parameters are the same as in Fig. 7, hence in
panel(a) ρ = 0.5σ andγ ≈ π/8, in panel(b) ρ = 0.6σ andγ ≈ π/6, and in panel(c) ρ = 0.7σ andγ ≈ π/4.

6 Conclusions

In the present paper, we consider negatively charged colloids with two positively charged regions located on
opposite poles. Such heterogeneously charged colloids canbe viewed as spherical particles with patterned
surfaces: a patch-free equatorial region and two extended polar patches (see Fig. 1). For two interacting
IPCs, the equatorial regions and the poles are mutually repulsive while the patch and equatorial regions
attract each other. We refer to this class of systems as inverse patchy colloids in order to stress the mutual
repulsive nature of the charged-like patches, in contrast to attractive patches on typical patchy colloids.

Based on the Debye-Ḧuckel approach, we derive an analytical description of the pair interaction between
two IPCs with two polar patches. In parallel, we propose a coarse-grained patchy model which reproduces
the symmetries of the charge pattern on the colloidal surface. Taking advantage of a mapping procedure
from the microscopic DH description, we establish a well defined connection between the mesoscopic
coarse grained model and the IPC model system we refer to.

A possible realization of the studied IPCs is provided by a newvariety of complex particles coming
out of the absorption of soft polyelectrolyte stars on the surface of oppositely charged colloids9. It has
been shown that the equilibrium features and self-assemblyof such systems can be externally tuned; for
instance, the extent and strength of the patch can be controlled either by using different stars or by changing
the salinity of the solution, resulting in a number of distinct adsorption configurations22. The present model
is most suited for tight adsorption of the polyelectrolyte stars onto the colloids and becomes increasingly

17



more approximate for systems in which the salt concentration or the charge ratio of the two components are
such that the detachment of the polyelectrolytes from the colloidal surface is significant. An indispensable
prerequisite of the applicability of our model is that the center of charge of the polyelectrolyte stars do
not lie outside the surface of the colloid, so that the majority of chains are expected to be attached on the
surface. In such cases our model maintains the salient features of the microscopic system. It is possible
to argue that, by varying the ratio between the colloid- and polyelectrolyte stars- charges and the relative
sizes of the two components, more than two polyelectrolytesstars will adsorb onto the colloidal surface.
The resulting complex will have a number bigger than two of positive patches attached onto the negative
colloidal surface. In these cases, the advantage of the coarse-graining procedure is of great importance
and provides great advantages in comparison with the microscopic model. Fig. 9 illustrates the situation:
whereas in the microscopic description for a case of, e.g., three adsorbed polyelectrolyte stars, we would
end up with a complicated interaction involving series of spherical harmonics, the coarse-grained model
allows us to place patches at selected points and proceed with, e.g., a simulation of the system in which
only the calculation of overlapping volumes is needed: the latter task is computationally straightforward.
In this sense, our model bears the simplicity of previously developed Kern-Frenkel types of models but at
the same time it retains the salient quantitative characteristics of the underlying microscopic details in a
quantitative manner.

We introduced inverse patchy colloids as a novel class of patchy particles, using the general mechanism
of charge heterogeneity18,23–25as a means of producing the effect of repulsive patches, which at the same
time are attracted to the parts of the colloidal surface thatare not covered by the patch. Evidently, the
same goal can also be achieved by appropriate chemical treatment of the respective colloidal surfaces. The
salient physical property of IPC’s is a combination between anisotropy and competing interactions, which
are expected to bring about quite unusual kinds of new phenomena. For instance, even the simplest form
of IPCs, the two-patch polar/equatorial model, frustrationbetween the various, anisotropic contributions
emerges, which is expected to lead to the formation of nontrivial ordered structures. In the case of standard
patchy colloids, the varieties of crystalline structures that emerge have started to be investigated and they
include a number of ordered configurations26–28, including the recently discovered stability region of the
Kagome lattice29,30. Inverse patchy colloids offer a new paradigm to be investigated, in which both the
competition between attractions and steric constraints and the transition from two to three dimensions are
factors of crucial importance. Order can also belocal, in the sense that templated self-assembly of well-
defined, small clusters can be driven31,32or that larger, more amorphous clusters can grow33,34. It remains
to be seen which of these scenarios materialize for IPCs and under which conditions of patchiness, energy
and length scales involved.

A complementary set of questions pertains also to the disordered phases of IPCs, for which phase sep-
aration for patchy systems35–39and its dependence on the patch characteristics has occupied the literature
on standard patchy colloids quite extensively. Associatedwith it is the existence of possible glassy or gel
phases, which has been amply investigated for patchy colloids40–43 but not for IPCs; see, however, very
recent work on the somewhat similar system of Laponite44, in which T-like configurations of the particles
are preferred.

The next question to be addressed, therefore, ishow do inverse patchy colloiss differ from standard
patchy colloids in their macroscopic behavior?In this context, it is worth noting that a correspondence
between the patch number/geometrical arrangement and the bonding pattern is an important feature de-
termining the properties and the structure of systems with attractive patches. Such a feature is no longer
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present when considering patchiness as emerging from heterogeneously charged particles. The main feature
of such patchy systems is not anymore the limited valence in bonding, but rather a competitive interplay be-
tween attractive and repulsive anisotropic interactions.We believe that the class of inverse patchy colloids
introduced here constitutes a broad new open field, and the work at hand could offer a foundation for its
further development.

Figure 9: (Color online). Top: three-dimensional representation of an inverse patchy colloidal particle with
three patches arranged on an equilateral triangle lying on the equatorial plane. The (yellow) patches and the
(grey) patch-free region have different surface charges. Bottom: the Debye-Ḧuckel scheme (left side) and
the mesoscopic coarse-grained model (right side). The DH model is shown as “forbidden”: even though
possible in principle, the analytical treatment for the effective pair interaction is of prohibitive complexity.
The connection from the microscopic to the mesoscopic modelis thus not shown because the mapping
might be hardly feasible. On the other hand, the coarse-grained model of an IPC with three patches is still
available, once a reasonable choice of the parameters is made.
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A The Debye-Hückel approximation

In this Appendix, we investigate the ranges of the model parameters for which the Debye-Ḧuckel approxi-
mation is appropriate. To this end we start from thenon-linearPoisson-Boltzmann differential equation11
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describing the electrostatic potentials in the ionic solution, valid for r > σ:

∇2ΦII (r,θ) = −4π
ε ∑

i
Ziqeρ0

i exp

(

−ZiqeΦII (r,θ)

kBT

)

, (22)

where the parameters have been specified in Sec. 2.1. In the Debye-Hückel approximation, the right-hand-
side of above equation is linearized under the assumption oflow ion concentrations. Indeed, expanding the
exponential and truncating it at the first order, one obtains

exp

(

−ZiqeΦII (r,θ)

kBT

)

≈ 1− ZiqeΦII (r,θ)

kBT
. (23)

Summing over the indexi and taking into account electroneutrality of the solution,the right hand side of the
Poisson-Bolzmann equation becomesκ2ΦII (r,θ), whereκ has been defined in Sec. 2.1. The Debye-Hückel
approximation is meaningful only ifqeΦII (r,θ) . kBT; this implies that, assuming ambient conditions,
qeΦII (σ,θ) has to be at least smaller than 26 meV.

Let us definex = qeΦ(r,θ)/kBT, whereΦ(r,θ) is given by Eq. (2). We setZc = −180,Zp = 90 (neutral
particles), andε = 80 (dielectric permittivity of water under normal conditions). By considering differenta
parameters and screening conditions, we determine the range of particle sizes for whichx . 1. We estimate
the size of the particle for which the Debye-Hückel approximation is valid to range from a few tens of
nanometers to some microns, on changing the asymmetry parameters between 0.2σ and 0.8σ, in different
screening conditions (1< κσ < 100).

We note that for colloidal sizes and chargesσ andZc fulfilling the condition

σ/nm& 0.1Zc (24)

no charge renormalization is needed45,46.

B Treatment of the analytic electrostatic potential

In this Appendix, we explicitly show that, in high screeningconditions, a Yukawa-like expression represents
a good approximation for the total electrostatic potentialgiven in Eq. (2). In particular we focus on the ratio
between Bessel functions of consecutive orders, occurring in Eq. (2), i.e.

Rl (κr) ≡ 1
κσ

√
rσ

Kl+1/2(κr)

Kl+3/2(κσ)
. (25)

The first three modified spherical Bessel functions of the third kind (i.e.,l = 0,1,2) read19

K1/2(z) =

√

π
2

exp(−z)√
z

K3/2(z) =

√

π
2

exp(−z)√
z

(1+z−1) (26)

K5/2(z) =

√

π
2

exp(−z)√
z

(1+3z−1 +3z−2).
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For l = 0

R0(κr) =
exp(κσ)

1+κσ
exp(−κr)

r
, (27)

while for l = 1

R1(κr) =
exp(κσ)

1+κσ
exp(−κr)

r
κr +1

κr
(κσ)2 +κσ

(κσ)2 +3κσ+3
. (28)

For high screening conditions(κσ ≫ 1), R1(κr) simplifies and reduces toR0(κr), i.e.

R1(κr) ≃ exp(κσ)

1+κσ
exp(−κr)

r
= R0(κr). (29)

The general structure of the algebraic expressions in Eq. (26) leads to the conclusion thatRi(κr) ≈ R0(κr)
for i ≥ 2. Therefore, under assuming high screening conditions, the analytic potentialΦ(r,θ), given in
Eq. (2), can be written in the Yukawa-like form, given in Eqs.(3) and (4).

In Fig. 10 we present numerical results for the comparison between the analytic electrostatic potential
and the Yukawa-like, simplified form. In the explored parameter range, the approximate expression for
the electrostatic potential is found to be reasonably closeto the analytic potential, even right at the particle
surface.

Figure 10: (Color online). Comparison between the analytic electrostatic potential of Eq. (2) and the
Yukawa-like simplified potential of Eqs. (3) and (4) for the following set of parameters:Zc = −180 and
Zp = 90, a = 0.6σ andκσ = 5. Panel(a): comparison of the surface potentialΦ(σ,θ) as a function ofθ.
Panel(b): comparison between the two potential forms as a function ofθ at a distancer/σ = 1+4/(κσ)
from the field source.
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Figure 11: (Color online)Table of contents Figure. Charged colloids with adsorbed patches of opposite
charge form a new class of inverse patch colloidal particles, which are analyzed and coarse-grained in this
paper.
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