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We introduce an ultrasoft core model of interpenetrating polycations and polyanions, with continu-
ous Gaussian charge distributions, to investigate polyelectrolyte aggregation in dilute and semi-dilute
salt-free solutions. The model is studied by a combination of approximate theories (random phase
approximation and hypernetted chain theory) and numerical simulations. The calculated pair struc-
ture, thermodynamics, phase diagram, and polyion dynamics of the symmetric version of the model
(the “ultrasoft restricted primitive model” or UPRM) differ from the corresponding properties of the
widely studied “restricted primitive model” (RPM) where ions have hard cores. At sufficiently low
temperatures and densities, oppositely charged polyions form weakly interacting, polarizable neutral
pairs. The clustering probabilities, dielectric behavior, and electrical conductivity point to a line of
sharp conductor-insulator transitions in the density-temperature plane. At very low temperatures, the
conductor-insulator transition line terminates near the top of a first order coexistence curve separating
a high-density liquid phase from a low-density vapor phase. The simulation data hint at a tricritical
behavior, reminiscent of that observed for the two-dimensional Coulomb gas, which contrasts with
the Ising criticality of its three-dimensional counterpart, the RPM. © 2011 American Institute of
Physics. [doi:10.1063/1.3602469]

. INTRODUCTION asymmetric counterpart of the fluid-fluid transition of the

Ever since the pioneering work of Gouy,' Chapman,” and

Debye and Hiickel,? electrostatic interactions are known to
play a dominant role in determining the structure, dynamics,
and phase behavior of ionic liquids and solutions, as well as
in governing the colloid stability of polyelectrolyte solutions,
complex biomolecular assemblies, and related soft matter sys-
tems. In the case of solutions and melts of microscopic cations
and anions (microions), such as Na™ and CI~, a widely stud-
ied model system is the primitive model (PM) of oppositely
charged hard spheres, which is now known to undergo a
phase separation into a very dilute phase of mostly paired
ions (“Bjerrum pairs,” Ref. 4) and a more concentrated solu-
tion of non-aggregated ions, for sufficiently strong Coulomb
coupling;5 for a review of simulation work, see Ref. 6.
Moving to the mesoscopic scale, charged colloidal parti-
cles (macroions) are stabilized in aqueous dispersions by the
formation of electric double layers of microscopic co- and
counterions, leading to a screened Coulombic repulsion be-
tween equally charged, “dressed” colloids; for an overview
see Ref. 7. Despite this purely repulsive effective interac-
tion between colloids, the so-called “volume terms,” associ-
ated with the self energy of individual electric double layers,
induce a phase separation between dilute and concentrated
colloidal dispersions,® which may be regarded as the highly
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PM.>6 Recently, the experimental and theoretical attention
has shifted to the rich phase behavior of “colloidal elec-
trolytes,” where the polyanions and polycations are highly
charged, hard colloidal,” or nanometric particles,'®!! usu-
ally in the presence of added salt.'>"'* These mesoscopic
electrolytes may thus be regarded as a generalization of the
PM, where the pure Coulombic interactions are replaced by
screened repulsive and attractive electrostatic (or Yukawa)
forces.

Another important class of complex ionic systems are
synthetic or natural polyelectrolytes, i.e., solutions of charged
polymer chains,'> where overall charge neutrality is ensured
by either microscopic or mesoscopic counterions. The latter
case corresponds to a binary system of polymeric polyanions
and polycations, which have been shown to aggregate into
neutral or charged polyelectrolyte complexes (complex coac-
ervation), in the presence or absence of added salt.'®'° Since
polyions are now flexible and worm-like charged objects,
they cannot be reasonably modeled by charged hard spheres
(such as their colloidal counterparts), unless they collapse
into quasi-spherical globules like certain folded proteins (e.g.,
lysozyme). Modern theoretical descriptions of polyelectrolyte
complexation are usually based on statistical field-theoretic
formulations, 22! within a perturbative22 or a simulation?
framework.

In the present paper, we introduce and investigate a sim-
ple model of polyanion/polycation aggregation in polyelec-
trolyte solutions without added salt. Swollen polymer coils
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in good solvent are known to interpenetrate easily. In fact,
the free energy penalty for two self-avoiding polymer coils to
fully overlap, such that their centers of mass (CM’s) coincide,
is of the order of twice the thermal energy kg7, independent
of molecular weight.?*2° A convenient coarse-grained repre-
sentation of dilute and semi-dilute polymer coils in good sol-
vent reduces the coils to ultrasoft, interpenetrating particles;
the effective pair potentials between CM’s of interpenetrat-
ing coils can be extracted from full monomer Monte Carlo
(MC) simulations of the underlying microscopic model by a
systematic inversion procedure.?>2® The resulting pair poten-
tial is well represented by a Gaussian of amplitude >~ 2kgT,
and width of the order of the radius of gyration, R,, of the
polymer coils.>>?% Here, we generalize the ultrasoft core rep-
resentation to globally neutral binary solutions of polyanions
and polycations in a dielectric continuum representing the
solvent. The total charge of each polyion is assumed to be
smeared over the volume of the coil according to a quenched
Gaussian distribution of width R,, centered on the coil CM,
ensuring that the total electrostatic interaction between two
coils of equal or opposite signs remains finite, even at full
overlap. In particular, the “Coulomb collapse” of oppositely
charged ions, which is prevented by the presence of the hard
core in the PM, is bypassed in the present model of oppositely
charged polyelectrolytes by averaging over the spatial exten-
sion of the polyion charge distributions.

In Secs. II-V, we investigate the pair structure, thermo-
dynamics, dielectric behavior, and polyion dynamics of this
“ultrasoft primitive model” (UPM) by a combination of ap-
proximation schemes borrowed from the theory of ionic lig-
uids, and of Monte Carlo and molecular dynamics (MD) sim-
ulations. Special emphasis is laid on the static and dynamic
characterization of the polyion aggregation and complexation,
which are expected to induce a conductor-insulator (CI) tran-
sition at low temperatures and concentrations and eventually
to phase separation as in the case of the PM.>%27-28 The com-
plete phase diagram of the symmetric version of the UPM
(the “restricted” UPM or URPM), which differs considerably
from that of the RPM, will be presented in a subsequent pa-
per. A preliminary account of parts of this work was published
elsewhere.”

Il. THE MODEL

We consider a binary system of N polycations of charge
Q4+ = Z e and N_ polyanions of charge Q_ = Z_e (where
e is the proton charge), moving in a dielectric continuum
of dielectric permittivity €’ (the “solvent” in its “primitive”
representation) and confined to a volume V. If n, = N,/V
(¢ = +, —) are the corresponding number densities, overall
charge neutrality requires that

Ziny+Z n_=0, ()

while the total polyion number density is » = n4 4+ n_. Since
the system under consideration is supposed to be a model for
polyelectrolyte coils, the polyions are not point particles, but
their charges are smeared over a volume of the order of the
cube of their radius of gyration (R,4 or R,_), according to
a Gaussian charge distribution centered on the position r; of
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the CM of each polyion (1 <i < N =N, + N_). If r is the
distance relative to that position, the normalized charge dis-
tribution in units of e of a polyion is assumed to be Z, 0, (1),
where

1 2 2 2
pulr) = (zmz) exp[ —r?/207], @

o

with o, of the order of R,y and o = +, —; its Fourier trans-
form is

P k) = / e'¥" po(r)dr = exp[—k*c>/2]. 3)

The electrostatic potential ¢, () generated by the above
charge distribution obeys Poisson’s equation (in esu)
AdnZ e

Vipu(r) = ——

Pa(r). “
Taking Fourier transforms of both sides, and remembering
Eq. (3), one finds

A Zye
€'k?

Inverse Fourier transformation leads to

(k) = exp [ — K20;/2]. 5)

alr) = %erf(r/ﬁaa), ©6)

where erf(x) is the error function. In the point particle limit,
0y —> 0, @ (r) reduces to Zye/€'r, as expected. For finite oy,
@ (r) remains finite as r — 0.

The pair potential between an «-polyion and a B-polyion
at a CM-CM distance r is given by

Vap(r) = /%(F’)Zﬁepﬁ(ll‘ —r'dr’. (7

Applying the convolution theorem, the Fourier transform is

A ZyZge?

Vap(k) = Zge@o (k) pp(k) = e

exp[ — kzcrjﬂ],
®)

where 0,5 = (0, + 0)/2. Inverse Fourier transformation fi-

nally yields the set of three pair potentials between identical

or opposite polyions

Y

€'r

L erf(r /204p). ©9)

Vap(r) =

This pair potential remains finite at full overlap, i.e.,asr — 0

2 4 .
Vo) ~ Ugp |1 — — + ——— — OF°) |,
P, et 1202, 16007, v
10)
where the overlap energies are
Qot Q/S (1 1)

Upp = ————.
o JTE O4p

Atlarge distances, vqg(r) goes over to the Coulombic pair
potential between point ions:
Qa Q B

Vap(r) ~ | _ 200 -y, | (12)
r—oo €'r JIr
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In order to introduce reduced (dimensionless) physical
quantities, we define the following convenient length, energy,
and time scales:

length scale: o =o0,_, (13a)
energy scale: u = —u,_ = %, (13b)
mo? \ V2
time scale: 1 = < +_> , (13¢)
u

where m is the smaller of the polyanion and polycation
masses m_ and m . Reduced distances, densities, times, and
temperatures are defined as

3

r*=rjo, n,=nyo’, t*=t/t, T*=kgT/u,

and in the following only reduced units will be used and aster-
isks are dropped for convenience. Another, related dimension-
less parameter is the reduced Bjerrum length for monovalent
ions, /g, which is identical to the Coulomb coupling parameter
I commonly used in the characterization of strongly coupled
plasmas (see, e.g., Ref. 30):

62

=lg= : 14
B G/kBTU ( )

[ is directly related to the reduced inverse temperature 8 for
a system of polyions by

i VTl

= ﬁ = —_,
Zyz_|" " 12221 T

15)

Two relevant special cases of the UPM are the follow-
ing:

(a) The restricted model (URPM) is the symmetric version
where polyions are of the same size (0. = o0_ =o0)
and opposite charge (O, = —Q_ = Q). This is the
model introduced in our preliminary communication,?
and most of the results in Secs. III-V will be for the
URPM. Note that the set of reduced units introduced
above is different from the one we employed in Ref. 29.

(b) A fully asymmetric version of the model (UAPM) con-
sists of polyanions (Z = |Z_| > 1) and microscopic
cations (Z4 = 1), with o_ > o. This version provides
a simple representation of an anionic polyelectrolyte in
good solvent and its counterions.

At sufficiently low temperature and density, polyions and
polycations of the UPM are expected to cluster into neutral or
charged aggregates, as in the case of the PM.*?7-31:32 In the
T — 0 limit, the ground state of the symmetric version (the
URPM) is achieved by associating the N polyions into N /2
neutral, non-interacting pairs of total energy

N
Up=—u (16)

This energy is finite and extensive so that the URPM
is thermodynamically stable according to Ruelle’s stability
criterion.*?

Similar considerations are expected to apply to asymmet-
ric versions of the UPM, but the ground-state analysis is much
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less straightforward, except when |Z_| is an integer multi-
ple of Z_ (or conversely). To simplify notations, we consider
the case where Z, =1 and |Z_| = Z, corresponding to the
UAPM. One polyanion and Z counterions may then collapse
into a neutral point cluster and the corresponding ground-state
energy of N /Z neutral clusters would be

Ny Z(Z - 1)
Uy = |:Zv+ r=0+—""vi,(r= 0)]
z 2
-1
= —Nyu [1 - Tﬁ(l +3 )1/2} (17)

where ¥ =o_J/oy > 1.

For the ground state to be stable, Uy must be negative.
Assuming Z to scale like % (volume charge), Uy is negative
provided Z satisfies the inequality

VAR (z - )(1

22,

which requires Z < 22. For larger anion to cation charge ra-
tios the neutral clusters are unstable, and the ground state can
no longer be a system of neutral point clusters.

Before presenting the results of our calculations for the
UPM in Secs. [II-V, two remarks are in order. First, the UPM
is a purely Coulombic system and no other force fields are in-
volved. In particular, we do not include the ultrasoft entropic
repulsion between interpenetrating coils mentioned in Sec. I.
Apart from obvious reasons of simplicity, this is physically
justified at low temperatures (where most of the interesting
physics will be shown to occur), where Coulombic interac-
tions dominate the effective entropic interactions, which scale
like T'. Second, a model somewhat similar to the UPM was
used previously to investigate a very different Coulombic sys-
tem, namely, a semi-classical Hydrogen plasma under astro-
physical conditions of high temperatures and densities.>*

lll. PAIR STRUCTURE AND THERMODYNAMICS

The local pair structure of the UPM is characterized by
the three partial pair distribution functions g, (r), g+—(r),
and g__(r); the corresponding pair correlation functions
hep(r) = gap(r) — 1 go to zero at long distances in the disor-
dered fluid phases. Their Fourier transforms fzaﬁ (k) are related
to those of the direct correlation functions é,g(k) by the set
of three coupled Ornstein-Zernike (OZ) relations;*> solving
the latter for the ﬁalg (k), and introducing the concentrations
Xq = Ng/n, we find

hy () = gl (k) — x_ A, (18a)
R . e (k)
hy— (k)= h_i(k) = R (18b)
h__(k) = D(k)[c__<k>—x+A(k)] (18¢)

where
A(k) = eyq(k)e—_(k) — &3 _(k),
D(k) = [1 = x4 (01— x_6 ()] —xx-22_(K),
(19)
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and all Fourier transforms are dimensionless, i.e., f k)
=n [ exp(ikr) f (r)dr.

The partial structure factors S,g(k), which are measur-
able by x-ray or neutron diffraction experiments, are directly
related to the ﬁa,g (k) through®

1
aﬂ(k) <Iok p_ k) - xotsotﬂ + xaxﬁhotﬂ(k) (20)

where the Fourier components of the local density operators
are

Noz
P =D explik - rig). 21)

i=1

It is convenient to introduce the linear combinations cor-
responding to total number (N) and charge (C) densities:

PR =Py + P (22a)
Pk =208 +Zopy (22b)
and the related structure factors:
Sy (k) = pk oY) Z Z Sap(k),  (23a)
1
Snet®) = ok p5) = D2 D ZpSapk),  (23b)
a B
Scc(k) = pk P Z Z ZaZpSap(k) . (230)

The charge-charge structure factor obeys the Stillinger-
Lovett limit, valid for a conducting medium?3!

éscc(k)
—0 k2 Z2

=1, (24)

where Z2 = x+Zi +x_Z% and kp is the inverse Debye
screening length

Kb = Kkpy +kp_ = 4nny Z3ilg + dnn_Z2 1. (25)

Knowledge of the pair structure gives access to a number
of thermodynamic properties via standard relations.’ Using
the dimensionless variables defined in Sec. II, the reduced ex-
cess internal energy per polyion is given by

ﬁUeX
N

= 2nnl / {x3Z3 hoi (r)erf(r/20)
0

+2x1x_ZyZ_hy_(r)erf(r/204_)
+ xEZih__(r)erf(r/ZJ_)} rdr

U =

(26a)

r [ ~ 2 ~ 2
- _f (2 Z2 ey (e ™ o 2xx_Z4 Z_ b (ke -
T

+x2 720 (ke ¥ dk, (26b)

where the transition from Eq. (26a) to (26b) has been achieved
by using Parseval’s theorem. The wave numbers k in Eq. (26b)
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are dimensionless, i.e., expressed in units of o l= 0;1.
Similarly, the dimensionless equation of state (with P the

pressure) is given by

PP _ 1+ M;X - ZI\/_ / {x+ Ty (e
n

2 _Z.7_ 242
4 X4 X + h+_(r)e_’ [4oi
[o i
2 ZZ
+= _h__(r)e"2/4“2}i*2dr (27a)
u™ 2 [ . "y
— 1 + ? — 3—7[ A {xiZiO’ih++(k)e k 3’
+20,x 2y Z 02 hy (ke K-
+x2 2202 h__ (ke F "}k dk. (27b)

The dimensionless isothermal compressibility xr is de-
termined by the small k-limit of the number-number structure
factor:

pP\ !
nkgT x1 = (W) = klirr(l) Syn (k). (28)
T Ed

The entropy S, Helmholtz free energy F, or chemical
potentials u, and w_ cannot be expressed in terms of the
pair distribution functions alone. The dimensionless excess
Helmbholtz free energy per polyion, f* = BF® /N, along an
isochore can be obtained by standard thermodynamic integra-
tion, starting from the high temperature (8 = 0) limit, where
[ =0, according to

B = / u™(p’, n)ﬁ—ﬂ,~ (29)
Equivalently, the chemical potentials of the polyions may be
calculated by the Kirkwood charging process®® whereby a
test polycation or polyanion is gradually coupled to the N
polyions of the system by varying a coupling parameter A
from O (non-interacting test particle) to 1 (fully interacting
test particle):

1
S = / dx / 3 XV 2, (30)
0
B

where h,g(r; L) is the pair correlation function between the
test particle of species o and the bath particles of species
corresponding to a pair potential Avyg(r).

Because of the absence of strong short-range interactions
and the long-range nature of the Coulombic interactions, a
“natural” approximation for the pair correlation functions is
provided by the random phase approximation (RPA), which
is expected to be very accurate at high temperatures (T = 1)
and high densities. The RPA amounts to setting the direct
correlation functions equal to their asymptotic limit, for all
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244514-5 Ultrasoft primitive model

inter-particle distances r, namely,

r
Cap(r) = =Pvop(r) = —ZyZg—erf(r /204p), (31a)
r
. R AnZoZgl'n 2,0
Cap(k) = —Bhap(k) = —k—zﬁe Rol: o=+, —.
(31b)

Substitution of Eq. (31b) into Egs. (18a)and(19)
leads to simple analytic expressions for the ﬁaﬁ(k), while
Egs. (23a) and (23c¢) yield the following explicit expressions
for the structure factors:

47'[111]3 252 —k2o2 2 52 k252

Svnv(k)=1- kZD(k)[erZ*e P4 xtZreh
F2xyx ZyZ e Ko, (32a)

Swek) = — T8 (12 73 Kok | 2 73 kot
Ne KDk -7

FX4 X ZyZ(Zy + Z)eF], (32b)

. 4wl :

Scelk) = 22 — 22 [2 Ze Mol 4 2 70 e

k2D (k)

+2xx 7272 F, (32¢)

where according to Egs. (19) and (31b)

2

D)y =1+ ZKZ—II’CZ[Mzie—’*“i +x Z2eF) (33)
It is easily verified that lim;_.o Syn (k) = 1, so that, accord-
ing to Eq. (28) the isothermal compressibility is that of an
ideal gas, a well-known deficiency of the RPA. Similarly,
limg_.o Syc (k) = 0, so that the RPA predicts that charge and
number density fluctuations are decoupled in the long wave-
length limit. After some algebra, the charge-charge structure
factor (Eq. (32c)) may be cast in the convenient form:

Scc(k) 22 + xyx_Z3 7%}, [e K02 _ g=K02/2)

7> 722 4ucd [xp Zhe Kol 4 x_Z2e k0]

’

(34)
which clearly satisfies the Stillinger-Lovett condition
(Eq. (24)).

In the remainder of this paper, we focus on the symmet-
ric (restricted) version of the UPM, namely, the URPM (Z
=—7Z_=Z7Z; np=n_=n/2; op=0_=o04_=0). In
this case, vy (r)=v__(r) = —v4_(r), and hence g, (r)
= g__(r), so that there are only two independent pair dis-
tribution functions and structure factors. Furthermore, all the
above relations simplify considerably for the URPM. For in-

stance, Syn (k) = 1, Syc(k) = 0, and Sc¢ (k) reduces to

Scc(k) k*
72 K24 khe ko

(35)

For point ions, Scc(k) goes over to the standard Debye-
Hiickel form. Note that, within RPA, /i, (r) = —h;_(r)
= hcce(r)/2. RPA estimates of the thermodynamic proper-
ties are obtained by substituting the above expressions for the
pair correlation functions in Egs. (26b) and (27b). The exact
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Kirkwood expression (Eq. (30)) for excess chemical poten-
tials 4 = u_ = p reduces to

1
Busx = % / dx [ By(Mhce(r: M)dr
0

1
=1 : / dk/ﬂﬁ(k)fzcc(k;)»)dk, (36)
0

2 (2m)3
where v(r) = vy (r), BO(k) = ZZLe " and hee(r)
=hyy(r) — hye ().
Using the coupled OZ relations for the correlation func-
tions of a test particle partially coupled to the bath particles,
one can easily show that

Ccck; )
1= 3écch)’
where Coctk) = ¢y (k) — é4_(k) = —2nBo(k) and
Coclk; M) = =2AB9(k) = Aécc(k) within - RPA. Hence
hece(k; M) = Ahee(k), so that the integration over A in
Eq. (36) is trivial leading to

ex _ 1
Pl = 1oy

FZ2 00

= 2 | heetoe ™ dk = u™. (38)
27'[ 0

hee(k; 1) = (37

/ hec(k)BIKk)dK

The last equality follows from Eq. (26b) adapted to the sym-
metric case. The result that the excess chemical potential is
equal to the excess internal energy per ion is of course only
true within RPA.

It is easily verified from Egs. (35) and (38) that the low
temperature limit of the RPA internal energy per ion coincides
with the ground-state energy (Eq. (16))

. URPNT) N Uo
lim ——— = ——u = —.
T—0 N 2 N

In the high temperature limit, the leading contribution to the
reduced excess energy per ion reduces to the Debye-Hiickel
limiting law for point ions

(39)

RPA 3
fim AU Kb (40)
T—o00 N 8n

In the zero temperature limit, the pressure is negative

pRPA u
lim = ——. “41)
T—-0 n 12

Among the standard integral equations for the pair struc-
ture, the hypernetted chain (HNC) equation is known to be
well adapted for Coulombic fluids.*> HNC theory supple-
ments the coupled OZ relations linking the total and direct
correlation functions h,g(r) and cug(r), by the closure rela-
tions

hap(r) + 1 = gup(r) = exp {—=Pvap(r) + hap(r) — cap(r)}
= exp {hap(r) — Acap(r)}, (42)

where Acyg(r) = cop(r) + Bvapg(r) are the short-range parts
of the direct correlation functions, which are expected to
vanish rapidly for large r (within the RPA, Acqg(r) = 0).
In the symmetric case, under consideration here, A, (r)
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30 sl by by b soa o b b by aa by aag
] n=0.0035, T=0.63 (a)
] RPA —
2'07,300 h, o[
% ]
= 1.0
& 0.0
2101
-2.0
A IR T

FIG. 1. Total correlation functions /44 (r), h4_(r), and hcc(r) from MC
simulations (symbols) and RPA (full lines) for two different state points: (a)
n =0.0035,T =0.63 and (b) n = 0.35, T = 0.25.

=h__(r), c4+(r)=c__(r), and the three coupled OZ re-
lations reduce to two decoupled equations for the number-
number and charge-charge correlation functions /%y y ()
=hyy(r) +hy(r), hee(r) = hiy(r) — hy—(r); in k-space
the two relations read:

B Caa(b)

T = S
HNC theory has the advantage that the excess chemical poten-
tial can be calculated from a knowledge of the pair correlation
functions alone.>> The set of Egs. (42) and (43) is solved nu-
merically by an iterative Picard method, taking particular care
of the long-range tails of the direct correlation functions in
r- and k-space. Unfortunately, the range of thermodynamic
conditions for which the numerical procedure converges is
limited to increasingly higher temperatures as the density
is reduced. The applicability of the HNC closure is there-
fore limited to relatively high density and temperatures (see
below).

We have compared the RPA and HNC predictions for the
pair structure of the URPM to MC results along several iso-
chores. The details of our simulations are described in Ap-
pendix A. In the following, we focus on the two isochores n
= 0.0035 and n = 0.35, which are representatives of the sys-
tem’s behavior at low and high density, respectively. Note that
we do not investigate here the regime of very low densities,
in which special simulation techniques must be employed to
ensure ergodicity.” Data along the isochores n = 0.0035 and
n = 0.35 are shown in Figs. 14, respectively. Figure 1 shows
hyy(r), hy_(r), and hee(r) for n = 0.0035; T = 0.63 and
n =0.35; T = 0.25. Since these temperatures are below the
no-solution line of HNC, we only report the predictions of
RPA. At the higher density, RPA is seen to be very accurate
for hec(r), although the RPA symmetry hﬁpf(r) = —hﬁlf(r)
is broken in the simulation data. The discrepancies between
RPA and simulation data are only slightly more pronounced
at lower density (n = 0.0035, T = 0.63), but they increase
rapidly as T is lowered due to strong Coulomb correlations
(see below).

A comparison between theoretical predictions and MC
data at even lower temperatures is made in Fig. 2 along

a=N,C. (43)
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FIG. 2. Pair distribution functions along the isochore n = 0.0035 for three
different temperatures (as specified) from MC simulations (symbols) and
RPA (full lines): (a) g4+—(r) and (b) g4++(r).

the isochore n = 0.0035, and along the isochore n = 0.35
in Fig. 3. Strong pairing is evident from inspection of the
data for g,_(r) at lower densities and temperatures as ex-
pected. Indirect evidence of pairing is also provided by the
observation that at the lowest temperatures, along the isochore
n = 0.0035, g, +(r) > 1asr — 0 despite the Coulomb repul-
sion between equal sign polyions; this apparent attraction can
be rationalized by the formation of tight anion/cation pairs:
the anion of a given pair will be preferentially situated be-
tween its cationic partner and the cation of another pair, thus
favoring the cation-cation approach and the possible forma-
tion of trimers and higher order clusters. RPA is unable to
properly account for strong ion pairing, both at high and low
density. The agreement of HNC predictions with the MC data
at high density (see Fig. 3) is good at high temperature but is
seen to deteriorate as the temperature is lowered towards the
no-solution point (corresponding to 7 = 0.044 at n = 0.35).
Also note the unphysical predictions of RPA (g44+(r) < 0) at
low density and temperature.

Figure 4(a) shows a comparison between the RPA pre-
dictions and MC data for the charge-charge structure factor
Scc (k) along the low density isochore n = 0.0035. While the

242@\\\\\\\\\\\\‘\\\\‘\\\\
1% n=035 (a) |
2074 HNC - -
14 RPA —
18- & T=0251 ©
] T=0.044 o
T=0.003

FIG. 3. Pair distribution functions along the isochore n = 0.35 for three dif-
ferent temperatures (as specified) from MC simulations (symbols), RPA (full
lines), and HNC (dashed lines): (a) g+—(r) and (b) g4+ (r).
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FIG. 4. Structure factors along the isochore n = 0.0035 for three different
temperatures (as specified) from MC simulations (symbols) and RPA (full
lines): (a) Scc (k) and (b) Sy n (k).

agreement is very good at the higher temperatures (T 2 0.2),
it deteriorates rapidly as T is lowered. At the lowest temper-
atures (T < 0.05), the MC data do not satisfy the Stillinger-
Lovett condition (Eq. (24)), while the RPA result (Eq. (34))
obeys the condition by construction. As shown in Ref. 29, a
least squares parabolic fit to the low-k MC data [Scc(k)/ A
~ k?/k?] yields an effective inverse Debye screening length
k, which is systematically larger than «p [defined in Eq. (25)].
The violation of the Stillinger-Lovett limit suggests that the
URPM no longer behaves as a purely ionic fluid at low tem-
peratures, due to ion pairing; we will return to this impor-
tant issue in Sec. IV, where clustering and dielectric response
will be analyzed. A similar analysis of S¢¢ (k) along the high
density isochore (see Fig. 5) shows excellent agreement be-
tween RPA and MC data down to T = 0.003, with the effec-
tive k consistently close to kp, confirming that the URPM re-
mains ionic throughout: at high densities, anion/cation pairs
are short-lived due to the frequent overlap of neighboring
pairs.

The results for Syy (k) are shown in Figs. 4(b) and 5(b).
The density-density structure factor Syy (k) is seen to increase

12 ‘
n=035 (a) | 1.6 b r
HNC —-—
RPA — |
T=0251 o
- T=0.044 o©
- A -
L4 A T=0.003 2
=) ‘.
[ £
wn

FIG. 5. Structure factors along the isochore n = 0.35 for three different tem-
peratures (as specified) from MC simulations (symbols), RPA (full lines), and
HNC (dashed lines): (a) Scc (k) and (b) Sy (k).
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U™/N

FIG. 6. Excess internal energy per particle U /N as a function of tempera-
ture from MC simulations (symbols) and RPA (full lines) along the isochores
n = 0.0035 (squares) and n = 0.35 (circles).

rapidly as k — 0 along the isochore n = 0.0035, signaling the
proximity of a spinodal line as 7 is lowered. At the spinodal
line associated with a phase separation, Sy (k) diverges in the
long wavelength limit. Note that, within RPA, Syy (k) = 1.
The predictions of HNC along the high density isochore indi-
cate a mild increase at small k, consistent with the simulation
data. However, the integral equation approach admits no so-
lution in the vicinity of phase coexistence—a well-known de-
fect of the theory.?®3° All these findings clearly indicate that
more sophisticated theoretical tools should be employed to
study the low temperature, low density regime of the model.
The RPA, HNC, and MC data for the pair structure
may be used to compute the excess internal energy and
the equation of state of the URPM via Eqgs. (26a) and (26b)
and (27a)and (27b), and the isothermal compressibility via
Eq. (28). The excess chemical potential follows from Eq. (36),
leading to the explicit result (Eq. (38)) within the RPA. Rep-
resentative comparisons are made for u®*(n, T) = U®*/N in
Fig. 6 along the isochores n = 0.0035 and n = 0.35, and for
the total, dimensionless chemical potential Su in Fig. 7. Sim-
ulation results for the density dependence of Su have been
obtained from grand-canonical MC simulations using biased
pair insertions.* Also included are results for Sy obtained

0 R
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104 e GeMC y
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FIG. 7. Dimensionless chemical potential Bu as a function of the density
n along several isotherms (as labeled) obtained from the Widom insertion
method in NVT MC simulations (open circles), grand canonical MC simula-
tions (full circles), and RPA (full lines).
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244514-8 Coslovich, Hansen, and Kahl

from standard NVT MC simulations using the Widom inser-
tion method.*' The agreement between RPA and simulation
results is good only at sufficiently high temperature and den-
sity. We note that for these temperatures and densities, RPA-
and HNC-data agree within symbol size. For completeness,
we note that the Helmholtz excess free energy per ion can
finally be obtained from the thermodynamic relation

fex _ ﬂFeX ﬂPeX
’ N

= B — (44)

IV. CLUSTERING AND DIELECTRIC RESPONSE

The structural data and thermodynamic properties re-
ported in Sec. III point to strong clustering of anions and
cations at low temperatures and densities. Pairing of oppo-
sitely charged ions, as well as the formation of larger ag-
gregates are well documented for the RPM,*27-28:31:32 where
clusters carry large multipole moments (dipoles in the case
of pairs) due to the ionic cores, which induce charge separa-
tion. In the case of the URPM opposite charges can overlap,
so that clusters do not carry permanent multipoles, but are po-
larizable entities. Their mutual interactions are thus expected
to be much weaker than in the case of the RPM.

Clusters can be properly defined only at sufficiently low
densities, and even then there is always some arbitrariness in
their definition. We have used a standard geometric defini-
tion of m-clusters, namely that m ions form an m-mer if each
ion lies within a given distance r,. of at least one other ion
in the cluster. The cut-off r, is taken to be typically close to
1.0 (in units of o), corresponding to a situation, where the
charge distributions of polyions touch (cf. Eq. (2)), and we
have examined the sensitivity of the cluster analysis to vari-
ations of r.. We have thus determined the cluster distribu-
tion functions, i.e., the fractions P(m) of m-mers, averaged
over all configurations generated in MC and MD simulations.
Typical examples of the resulting histograms are shown in
Fig. 8 for n = 0.0035 and two temperatures. At the higher
temperature (T = 0.125), monomers (i.e., free ions) are by
far the majority species, and P (m) is seen to decrease mono-
tonically and rapidly as m increases. At the lower tempera-

0 . . . I . I
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i n=0.0035, T=0.0125 (b) |
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m

FIG. 8. Cluster distribution function P(m) for (a) T = 0.125 and (b) T
= 0.0125 along the isochore n = 0.0035.
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P(m)

P(m)

T

FIG. 9. Fractions of selected cluster types P(m) as functions of temper-
ature along the isochore n = 0.0035: P(m = 1) (squares), P(m = 2) (cir-
cles), P(m = 3) (triangles), and P(m = 4) (reversed triangles). The three
panels show results obtained using the following values of the cut-off r:
(@yr. =14, b)r. =1.0,and (c) r. =0.7.

ture (T = 0.0035), pairs constitute the most common m-mers
(with a fraction P(2) very close to 1), and the variation with m
is alternating, with neutral m-mers (pairs, tetramers, etc.) be-
ing much more probable than charged m-mers (corresponding
to odd values of m).

The variation of P(m) as a function of temperature,
for 1 <m <4, is illustrated in Fig. 9 for three differ-
ent choices of the cut-off r.. Although there are signifi-
cant quantitative differences between the three sets of data,
the trends are the same. As expected, the fraction P(1)
of monomers is vanishingly small at the lowest tempera-
tures; it increases rapidly towards 1 for T 2 0.05. Simulta-
neously the fraction P(2) of dimers drops dramatically as
T increases; the fraction P(3) of trimers is negligibly small
throughout, while the fraction of tetramers is non-negligible
at the lowest temperatures. These trends agree with intu-
itive expectation, but our analysis provides a quantitative
estimate of the temperature range associated with the on-
set of pairing. The onset of pairing along the isochore n
= 0.0035 is seen to be rapid, but continuous. A similar clus-
ter analysis carried out along several low density isochores
shows that the temperature at which P(m =2) >~ P(m = 1)
=~ 0.5 drops as the density n increases.

Using MD simulations, we have estimated the mean clus-
ter lifetimes 7, for m-mers with 1 < m < 4 as functions of
temperature, along the isochore n = 0.0035. The lifetime is
defined as the minimum time span during which a cluster
is formed by exactly the same set of particles, and is thus
bounded from below by the typical collision time between
clusters. Results are shown in Fig. 10. The monomer life-
time is seen to increase from t; >~ 2 up to t; ~ 15 as the
temperature rises, while the opposite trend of the dimer life-
time is seen to be much faster, with 7, = 10° at the lowest
T, dropping rapidly to 7o >~ 5 at T =~ 0.05, the temperature at
which t; and 1, cross. The lifetimes 73 and 74 of trimers and
tetramers are even smaller at high T, although they tend to
increase in the low-temperature, paired regime.
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FIG. 10. Cluster lifetime t,, at n = 0.0035 as a function of temperature for
selected cluster types: m = 1 (squares), m = 2 (circles), m = 3 (triangles),
and m = 4 (reversed triangles).

At the lower temperatures, where the lifetimes 1, of pairs
are long, it makes sense to consider the systems as made up
of three “species,” namely, free polyanions, polycations, and
neutral polyanion-polycation pairs (‘“chemical picture”). Un-
der those conditions, one may determine monomer-dimer and
dimer-dimer distribution functions g; »(r) and g, »(r) between
isolated monomers and dimers that are not part of larger clus-
ters, in MC or MD simulations. Examples are compared to
the monomer-monomer pair distribution function g; () in
Fig. 11, for n = 0.0035 and T = 0.025, i.e., close to the pair-
ing transition. g; 1(r) is dominated by the strong anion-cation
attraction, leading to a pronounced peak at r = 1. g 2(r) and
g2.2(r) are seen to exhibit modest peaks at slightly larger
distances pointing to rather weak correlations. Note that all
three pair distribution functions vanish for r < r. = 1.0 by
construction, because for shorter CM-CM distances the two
monomers would be identified as a single dimer, a monomer
and a dimer would be identified as a single trimer, and two

3007““1““1““1““1““1‘“‘1““7
2005 n=0.0035T=0.025 f
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FIG. 11. Distribution functions g, ,(r) between the centers of mass of
selected cluster types for n = 0.0035, T = 0.025: (a) monomer-monomer
g1,1(r), (b) monomer-dimer g; »(r), and (c) dimer-dimer g5 2(r).
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FIG. 12. Dimensionless, effective dimer-dimer potential Bv,>(r) for n
=0.0035, T = 0.025. Inset: Effective potentials on a double-logarithmic
scale. The dashed line indicates the asymptotic behavior expected at large
r (see Appendix B).

dimers would be identified as a single tetramer, implying an
apparent infinite barrier.?'

In view of the low density, the pair distribution func-
tion data may be inverted to determine effective monomer-
monomer and monomer-dimer pair potentials, v;»(r) and
v2.2(r), by a simple Boltzmann inversion

Vn,m(r) - _kBT In gn,m(r)~ (45)

The resulting effective potentials are pictured in Figs. 12 and
13. As explained above, the short-range repulsion is an arti-
fact linked to cluster identity. Beyond r = r, the monomer-
dimer and dimer-dimer potentials are seen to be weak and
attractive. In view of the statistical uncertainties, the asymp-
totic behaviors at large distances, illustrated by the insets in
Figs. 12 and 13, are in reasonable agreement with the theoret-
ical predictions vy »(r) ~ l/r4 and vy o(r) ~ l/r6 for isolated
monomer-dimer and dimer-dimer pairs (see Appendix B).
These are of course the same asymptotic behaviors as for

3.0 : : — !
] n=0.0035, T =0.025

FIG. 13. Dimensionless, effective monomer-dimer potential v () for
n =0.0035, T = 0.025. Inset: Effective potentials on a double-logarithmic
scale. The dashed line indicates the asymptotic behavior expected at large r
(see Appendix B).
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van der Waals-London dispersion interactions between polar-
izable atoms or molecules, but the prefactors are proportional
to kgT in the present, purely classical case, while they are in-
dependent of temperature in the atomic case, since they result
from quantum averages over the electronic ground state.

Another diagnostic for clustering is provided by the di-
electric response of the URPM. We have shown in Sec. III
that at high temperatures and densities, the system behaves
as a conductor, obeying the Stillinger-Lovett perfect screen-
ing condition (Eq. (24)). However, as illustrated in Fig. 4,
the Stillinger-Lovett condition is violated at low densities and
temperatures pointing to a dielectric, rather than conducting
behavior. According to static linear response theory,® the
charge-charge structure factor is related to the k-dependent
dielectric response function by

R 1 éscc(k)
e(k) k2 oz

(46)

Taking the & — 0 limit, where Scc (k) ~ Z2k?/k?, we arrive
at the following expression for the macroscopic dielectric per-
mittivity e:

2

Kp
- 47

€ k—0e(k)
In a conducting medium, ¥ = xp and € — 0o as expected.
At sufficiently low T and n, all polyions are paired and the
MC data show that ¥ > «p, so that € takes on a finite value
characteristic of an insulating, dielectric medium
! 1 (48)
0>e=——7>—>1.
1 — B /K2

Equivalently, € may be estimated form Kirkwood’s fluc-
tuation formula*? adapted to simulations carried out under
metallic boundary conditions:*?

4 (IM]?) — (M)

-1 , 49
=1t LT % “49)

where M = ) . O;r; is the total dipole moment of the system.

From the permittivities estimated using Eq. (49), it is
possible to calculate a “dielectric order parameter,” defined
as (e — 1)/e, which equals 1 in the conducting phase and is
close to 0 in the insulating phase. The values of (¢ — 1)/¢ ob-
tained from MC simulations along the isochore n = 0.0035
are shown in Fig. 14 together with the corresponding percent-
age of monomers P(m = 1). The dielectric order parameter
signals a sharp transition around 7 = 0.04, which correlates
with the rapid increase of the fraction of free ions. In the in-
set of Fig. 14, we can see that € remains nearly constant up
to T =~ 0.025, beyond which € increases sharply towards a
high temperature limit close to € ~ 10> (cf. Ref. 29), typi-
cal of a finite conducting medium (for an infinite conductor,
€ — 00). The correlation between (¢ — 1)/€ and P(m = 1)
is striking and validates the picture of a transition from a low
temperature dielectric (insulator) state to a high temperature
ionic (conductor) state driven by the break up of ion pairs. The
“conductor-insulator” transition is seen to be fast, but contin-
uous, which may well be a finite size effect. Simulations on
larger systems and a finite size scaling analysis will be re-

J. Chem. Phys. 134, 244514 (2011)

R R E I A RS S U B
1.0 Miadads J= 2 200 2o & peaneee oo Lo .-
] X —————————
0.9 , ,xx‘x’** F
] / X Pm=1) - [
084 ¥ X R
] 7 o
0.7 ll /X I I 1 3
= ] 22—ty
L 0.6 [’ 1 irF
vl 1 [ 1 I
0.54 |/ ] [
Q 1 |/ 1‘8— | E
= = X 1 | 3
i O4j [‘/ “ ] //O E
~ ] ! . -
0.34 ;/ 147 /// E
] ] - E
024 ¢/ o —o—o0-———— g
1 ! 10+——T—7—7————7——7— E
0.1 i’ 0 0.01 0.02 0.03 0.04 F
[ ad T s
0.0 ¥ -
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T

FIG. 14. Dielectric order parameter (¢ — 1)/e (filled circles) obtained from
Eq. (49) and fraction of free ions P(m = 1) (crosses) at n = 0.0035 as func-
tions of temperature. Inset: enlarged view of the low-temperature behavior
of €.

quired to find out if the transition becomes discontinuous in
the thermodynamic limit.

The above analysis has been repeated along several low
density isochores, and the locus of points in the (n, T') plane,
where P(m = 1) = 0.5, yields an estimate of pairing (or CI)
transition line, which is shown in Fig. 18. In the portion of
the phase diagram studied herein, the transition is seen to take
place at lower temperatures as the density increases, contrary
to what could be expected from a simple “chemical equilib-
rium” picture?’ and to what is found in the RPM.?

V. POLYION DYNAMICS

Time-dependent correlation functions are readily calcu-
lated by MD simulations, and provide a quantitative char-
acterization of single-particle and collective ion dynamics as
well as giving access to linear transport coefficients, such as
ion mobility and electrical conductivity. The latter provides
an unambiguous diagnostic of a CI transition. We note that
Brownian dynamics simulations would be more appropriate
for the system at hand, since they account for solvent effects.
However, since we are interested in qualitative, rather than
quantitative aspects of the dynamics, we prefer to employ here
the more efficient MD simulations, which are capable of ex-
ploring longer time windows.

Let r(¢#) and v(¢) denote the position and the velocity of
any given polyion at time ¢; the normalized velocity autocor-
relation functions of the anions and cations are identical for
the symmetric URPM and defined by

w2

where v(0) denotes the initial velocity, (v2) = 3kgT /m, and
statistical averages are taken along the trajectories of individ-
ual ions, and over all N ions. Examples of MD-generated
correlation functions Z(t), for n = 0.0035 and several tem-
peratures, are shown in Fig. 15. At the higher temperatures,
Z(t) is seen to decay essentially exponentially. However, the
relaxation time of Z(¢) increases with increasing 7. This

Z,()=2Z_(t)=Z2(1)= (50)
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FIG. 15. Velocity auto-correlation function Z(¢), as defined in Eq. (50), at
n = 0.0035 for different temperatures (as labeled). Inset: self diffusion con-
stant D evaluated via Eq. (52) as a function of temperature.

counter-intuitive result can be explained in terms of the ultra-
soft nature of the potential: at higher T', collisions become less
and less effective in decorrelating the ion velocities, since par-
ticles barely feel each other’s influence. Thus, the “effective”
collision time increases with increasing 7. The relaxation
changes dramatically at the lower temperatures, where Z(¢)
decays much more slowly after an initially strong oscillatory
regime. This striking behavior may be rationalized in terms
of anion-cation pair formation. The oscillations correspond to
the vibrations of the ions relative to the CM of a “bound” pair.
The measured reduced angular frequency, w >~ 0.6 is close to
the frequency of the relative motion of two oppositely charged
ions within the harmonic potential (see Eq. (10))

2

v+,(r)=—u+um, (629
ie., wy_ = +/1/3 ~ 0.58, independent of temperature. The
slow decay of Z(¢) at long times may be associated with the
motion of the long-lived pair within which the ion is bound.
Due to the weakness of the interaction between pairs (cf.
Fig. 12), the motion of neutral pairs is nearly ballistic, result-
ing in the very slow relaxation shown in Fig. 15. The self-
diffusion constant of the ions, D, = D_ = D may be cal-
culated by integrating the velocity auto-correlation function
(Eq. (50)),% or, more accurately, from the asymptotic slope
of the mean square displacement of an ion from its initial po-

sition, according to Einstein’s relation:

2
D — lim Jr@® —rOF
t—00 6t
The corresponding ion mobility is u = D /kgT .
The variation of D with temperature is shown in the in-
set of Fig. 15. D is seen to first drop as T decreases, which
is the usual behavior observed in “normal” liquids before in-
creasing sharply for T < 0.08 and go through a pronounced
maximum around 7 =~ 0.03 below which D decreases again
towards zero. This unusual non-monotonic behavior is obvi-
ously a direct consequence of pairing: as argued earlier, pair-
ing leads to a system of nearly non-interacting entities which
move almost freely, thus explaining the sharp rise in mobility.

(52)

J. Chem. Phys. 134, 244514 (2011)

<M(H)-M(0)>

FIG. 16. Mean square displacement (|M(t) — M(0)|?) of the total electric
dipole M(z) as a function of time at n = 0.0035 for several temperatures (as
labeled). The dashed line indicates the asymptotic behavior expected for a
conducting system.

Once pairing is complete and no free ions are left, the diffu-
sion constant will drop again with temperature.

We now turn to the electrical conductivity o, per unit vol-
ume of the URPM. o, is determined by the asymptotic slope
of the mean square displacement of the total electric dipole
M, according to the generalized Einstein relation,

_ b M) — M(0)I*)
= im ,
VkgT t—o0 6t

which is equivalent to the familiar Green-Kubo relation link-
ing o, to the electric current autocorrelation function;* in
view of the large statistical uncertainties of the latter, as gen-
erated in MD simulations, the Einstein relation (Eq. (53))
is preferable to estimate o,. Data for the diffusion c(¢)
= (IM(t) — M(0)|?) of the total dipole along the isochore
n = 0.0035 are shown in Fig. 16. Note that ions must be al-
lowed to leak out of the periodically repeated simulations cell
when calculating M(t), to allow for diffusion in an unbounded
volume. The long-time slopes of the c(¢)-curves yield o.

(53)
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FIG. 17. Electrical conductivity o,, evaluated via Eq. (53), as a function of
temperature along different isochores (as labeled). T, indicates the estimated
temperature where o, vanishes, according to power-law fits o, ~ (T — T,)"
with v = 1.2 (full lines). The estimated uncertainty on v is 0.02.
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FIG. 18. Current estimate of the phase diagram of the URPM in the (T, n)-
plane. Empty circles: coexistence points obtained via GCMC simulations
(from Ref. 29). Full line: fit to the coexistence line, assuming a critical ex-
ponent 8 = 1. Rotated empty square: Estimate of the critical point assum-
ing a critical exponent 8 = 1. Filled circles: Spinodal line estimated from
the condition Syy(k = 0) ~ 50. Open triangles: Pairing transition points

estimated from the condition P(m = 1) = 0.3 with r. = 1.4 (as in Ref.
29). Filled triangles: Pairing transition points estimated from the condition
P(m =1)= P(m =2)=0.5 with r., = 1.0. Stars: CI transition points esti-

mated from the vanishing of the electrical conductivity (see text for defini-
tion).

Figure 16 shows that the asymptotic linear regime is rapidly
reached at the higher temperatures, while at the lower temper-
atures the regime is only reached after reduced times ¢ > 10°.
At the lowest temperature investigated, c(¢) appears to tend to
a constant, i.e., its slope and hence o,, are zero, corresponding
to an insulating state. Note that c(¢) exhibits oscillations at the
lower temperatures reminiscent of those observed in Z () (cf.
Fig. 15), of comparable frequency, which are once again as-
cribable to pairing. We have repeated the electrical conductiv-
ity analysis along several low density isochores. The data for
the temperature dependence of o, are shown in Fig. 17. The
conductivity is seen to drop to zero at increasingly low tem-
peratures as the density increases. Assuming a power-law de-
pendence o, ~ (T — T,)" with a fixed value of v >~ 1.2, least
squares fits provide a set of “critical” temperatures T, at which
0.(T) appear to vanish (indicated by the labels in Fig. 17).
These results provide an estimate of a CI transition line in the
(n, T) plane. This line is compared in Fig. 18 to the pairing
transition line which provides another estimate of the location
of the CI transition. The two lines are seen to be roughly paral-
lel and reasonably close. We also include in Fig. 18 the pairing
transition line reported in Ref. 29, in which different values
of r. and of the “critical” fraction of free ions P(m = 1) were
used. As suggested by Fig. 14, different choices of P(m = 1)
would correspond to different values of a “critical” dielectric
permittivity €.

VL. DISCUSSION AND CONCLUSIONS

We have introduced a model of interpenetrating polyan-
ions and polycations, carrying extended, continuous charge
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distributions. We expect this ultrasoft primitive model to be
relevant for the study of the aggregation of oppositely charged
polyelectrolytes in good solvent. Most of the results presented
in this paper are restricted to the symmetric version of the
model, the URPM. Interactions between polyions are purely
Coulombic; in particular, contrary to the familiar restricted
primitive model of electrolytes, no hard cores are involved.
We have reported extensive simulation results and theoret-
ical predictions characterizing the pair structure, clustering,
thermodynamic, and dynamical properties of the URPM over
a wide range of temperatures and densities. Concerning the
static (structural and thermodynamic) properties, the RPA
proves to be a quantitatively reliable approximation at high
densities, corresponding to the fully ionic, conducting regime.
At low temperature and density, however, the RPA and even
the HNC theory fail completely, due to the formation of long-
lived anion/cation pairs and some larger, mostly neutral clus-
ters.

The low density, low temperature data for pairing di-
electric permittivity € and electrical conductivity o, provide
strong evidence of a transition between an insulating phase,
characterized by finite values of € and a vanishing o, (signal-
ing a vanishing concentration of unpaired ions), and a fully
ionic, conducting state at higher n and T, where o, takes on
non-zero values and € is very large. Further, indirect evidence
for a CI transition is provided by the unusual variation of the
polyion mobility with temperature at low density.

At sufficiently low T the CI transition gives way to a
first order phase separation between a low density insulat-
ing phase and a high density conducting phase. The analy-
sis of simulation data for relatively small system sizes pro-
vides some preliminary evidence for the existence of an up-
per tricritical point terminating the phase coexistence line
near the junction with the CI line.?” The exact nature of the
CI transition above the putative tricritical point is not en-
tirely clear. The simulation results presented herein and in
Ref. 29 point to a continuous transition, possibly broadened
by finite size effects. The tentative phase diagram seems to
differ qualitatively from that of the RPM, where criticality
belongs almost certainly to the Ising universality class,***+
and there is no strong evidence for a CI line above T,. The
qualitatively different behaviors of the hard core and penetra-
ble electrolytes are most probably linked to the very differ-
ent nature of the anion/cation pairs which dominate the in-
sulating phase: they are weakly interacting, polarizable enti-
ties in the case of the URPM, while they are strongly inter-
acting dipolar “molecules” in the RPM.*¢ Interestingly, the
phase diagram of the URPM is more reminiscent of that of
the two-dimensional Coulomb gas involving logarithmic in-
teractions between ions (oppositely charged hard disks). In
the low density limit, this model is known to undergo an in-
finite order, Kosterlitz-Thouless (KT) (Ref. 47) transition be-
tween a dielectric phase of bound ion pairs and a conducting
phase of free ions. In the zero density limit, the KT transi-
tion is characterized by a discontinuous jump of the dielec-
tric permittivity from a finite value to infinity as the transi-
tion temperature is approached from below. MC simulations
on finite systems show that the KT (or CI) transition is con-
tinuous (rounded), and that the transition temperature drops
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with increasing density; the CI line terminates close to the
critical point of a first order vapor-liquid coexistence
curve.*®%% Within statistical uncertainties, the simulations
show some evidence of a cusp at the top of the vapor-liquid
coexistence curve, suggesting a tricritical point (rather than
the regular critical point observed in the three-dimensional
equivalent of the Coulomb gas, namely, the RPM). These
findings are confirmed by mean field calculations within the
chemical representation of a mixture of free ions and bound
(Bjerrum) pairs.>

In order to confirm a similar scenario in the three-
dimensional URPM, it will be crucial to investigate finite size
effects within a full finite size scaling analysis, requiring ex-
tensive further simulations for several system sizes (for a ped-
agogical review of finite size scaling techniques, see Ref. 51).
The natural order parameters for such an analysis are An, i.e.,
the difference in density of the two coexisting phases, and
the fluctuation of the total dipole moment per unit volume,
which is intimately related to the dielectric permittivity (see
Eq. (49)); such an investigation is under way and will be the
main object of a forthcoming publication.

Future developments of our work include an extension
of the URPM to non-symmetric versions of the UPM, which
will involve less straightforward aggregation patterns, and the
generalization of the model to oppositely charged polyions in
the presence of microscopic co- and counterions (e.g., from
added salt) which will lead to screened effective interactions
between the polyions as opposed to the bare Coulombic inter-
actions considered in the present work. The objective of this
generalization will be to investigate the influence of screening
by microions on the CI transition and phase separation.
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APPENDIX A: SIMULATION METHODS

Numerical simulations of the URPM have been per-
formed for systems composed of N = 1000 polyions in a cu-
bic cell with periodic boundary conditions using the Ewald
summation scheme to account for the long range of the inter-
actions. In the following, we briefly summarize the key equa-
tions and the parameters employed in our simulations. Fol-
lowing a standard procedure,’” we introduce screening charge
distributions of shape

, 1 \"? r?
p0)=(52:) o] -5z |

such that the screening charge distribution around a particle
of species « is —Z,0'(r — r;) [cf. Eq. (2)]. Note that, in gen-
eral, the width o’ of the screening distribution need not coin-
cide with the one of the actual Gaussian distribution. Using
the standard Ewald summation scheme, the total interaction
energy U can then be expressed as

(A)

U=Ur+U —U, (A2)
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where U; and U, are the Fourier and real space contributions,
respectively, and Uy is a self-term correcting for the inter-
action between the screening distribution and its equal and
opposite compensating distribution. For the URPM, the three
terms read

1 47 k252 5
UF;Z,;exp[— 2 }kal , (A3)
{k}
U, = liNZ,ZiZ_,- erf(r/20) 3 erf(r /v/25) ’
20D € r r

(A4)

| N
Us=—==) 2, (AS)

2n 6 ;

where px =) ; Z; exp (ik - r;) and we have introduced the

notation & = /o2 + ¢’>. Note that the familiar expression
for Uy in the case of purely Coulombic interaction is recov-
ered by substituting & — o in Eq. (A3). Expressions for the
forces between charge distributions (needed in MD simula-
tions) are derived in a similar manner.

When ¢’ = o, the real space contribution is identically
zero and the calculation of the potential energy and the forces
can be carried out entirely in Fourier space. Note that this
is possible only because the effective potential v,g(r) [see
Eq. (9)] is bounded. The sum in Eq. (A3) is carried out for
all wave vectors Kk such that |Kk| is smaller than some cut-off
value k.. The error in the evaluation of U can then be roughly
estimated as>?

2.2
e (-ke) o
€ k2

In our simulations, we used indeed ¢’ = o and adjusted
k. so as to keep the nominal error & constant at 1073, As
a consequence, the actual number N; of wave vectors used
for the evaluation of U, varied as a function of the den-
sity (as Ny ~ V~1/3), ranging from 2.5 x 10 at n = 0.35 to
4.2 x 10* at n = 0.0035. We found that the chosen value of
¢ was sufficient to converge structural and dynamic proper-
ties below the noise level. To illustrate this, in Fig. 19 we
compare results for the structure factors Syy (k) and Scc (k)
at n = 0.0035 obtained using ¢ = 1072, 1073, and 10~*. We
note that the effect of reducing ¢ becomes slightly more pro-
nounced at low T. We remark that these small discrepancies
are, however, irrelevant for the purposes of this work.

At even lower densities (n < 0.001), the number of wave
vectors required to keep ¢ constant becomes too large for an
efficient computation of Eq. (A3). In this regime, a simple
decimation strategy could be used to reduce the number of
wave vectors in each spherical shell k£ &= §k. Alternatively, one
could use screening charge distributions with width ¢’ # o,
so as to move part of the computational effort into real space.
In practice, however, we hardly obtained any benefit from us-
ing an optimized o’, at least in the range of state parameters
investigated in the current study. In must be noted, in fact,
that the range of the pair potential entering Eq. (A4) is rel-
atively long compared to the complementary error function,
normally encountered for pure Coulombic interactions. As

Downloaded 30 Jun 2011 to 162.38.150.128. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



244514-14  Coslovich, Hansen, and Kahl

FIG. 19. (a) Concentration-concentration structure factors Sc¢ (k) and (b)
number-number structure factors Sy y (k) at n = 0.0035 and different temper-
atures (as labeled), obtained using different values of the Ewald sum preci-
sion &: & = 107* (full lines), ¢ = 1073 (dashed lines), and & = 1072 (dotted
lines).

a consequence, a large cutoff must be employed to evaluate
the real space contribution U,.. Therefore, complete splitting
of the interaction into real space and Fourier space contribu-
tions does not appear particularly convenient for the system at
hand.

MD simulations were carried out in the microcanon-
ical ensemble (NVE) using the velocity Verlet algorithm
with a time step 6¢ = 0.08. Equilibration at the temperature
of interest was achieved by coupling the system to a mas-
sively stochastic heat bath.>* Monte Carlo simulations have
been performed in the canonical (NVT) and grand-canonical
(uVT) ensemble. To accelerate equilibration at low density
and temperature, we also implemented cluster moves to dis-
place and insert/delete pairs of ions, as described in Ref. 40.
In NVT simulations, the maximal displacements of standard
displacement moves and cluster moves were adjusted dur-
ing equilibration so as to keep the acceptance ratio around
30%. In VT simulations, both random and biased insertions/
deletions of pairs were attempted, together with standard dis-
placement and cluster moves. Analysis of the acceptance
ratios of Monte Carlo moves as a function of state param-
eters showed that biased insertions/deletions become favor-
able close to the estimated critical region, as expected. Proper
equilibration of the system at low density was checked by
comparing results of different thermal histories and different
simulation methods. We remark that equilibration may be-
come a serious issue at densities and temperatures lower than
the ones considered in this work. In that case, more efficient
simulation methods should be used.?’

APPENDIX B: EFFECTIVE INTERACTIONS

In this Appendix, a brief derivation is provided for the
effective interaction between two anion/cation pairs, and be-
tween a free ion and a pair, in the limit of large separations.
Consider first the case of two pairs. Let r; and r, denote
the distances between the two oppositely charged polyions in
the two pairs, and let R be the vector joining the CM’s of the
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pairs. For sufficiently low temperatures 7', the classical rela-
tive vibrations of the two ions in a pair are of small amplitude,
so that their interaction potential v_(r) may be replaced by
its small r limit (Eq. (10)), i.e., Bv4_(r) = —Bu + %1‘2 with
u=Q?%/(J/re'oc)and y = Bu/60>. The configurational part
of the internal partition function of an isolated pair is hence

. 277)3/2
q = eﬁ“/e*”’z/zdr = eﬁ“(yT)/z. (B1)

The configurational part of the partition function of two inter-
acting pairs separated by R is

¢»(R) = /dn /drzexp{—ﬂ[v+_(r|)
+vi(r) +viaR, 1, )]} (B2)

If R > o, one may adopt the point dipole approximation
for the pair/pair interaction, each carrying a dipole m; = Qr;

BO? [1'1 ‘o 3(R'l’1)(R'F2)}
€ R3 R> '

BvioR, 11, 12) =

(B3)
Substituting Eq. (B3) into Eq. (B2), and choosing R to be the
polar axis, g, may be cast in the form

o0 o0
qz(R)=2nezﬂ”/0 e”’"lz/zrlzdrlfo e’V"f/zrzzdrz

2 b4 b4
X / d(p/ sin ®1d@1 / sin @2d®2
0 0 0

2.
X exp —&ﬂ[sinG)l sin ®, cos ¢
e R3
—2cos O cos @2]}, (B4)

where ¢ = ¢; — @,. For sufficiently large R, the last expo-
nential in the integrand of Eq. (B4) may be Taylor expanded.
Elementary calculations show that all odd power terms in the
expansion vanish upon carrying out the angular integrations.
Retaining the zeroth and second order terms in the Taylor ex-
pansion, one arrives at

Q)3 o\6
— o2fu = e
¢2(R)=¢e )3 [1 + 1087 <R> i| . (BS)

The effective pair-pair potential is then given by the free
energy of the interacting pairs minus the sum of the internal
free energies of each pair, i.e.,

R
pest =it =[5
= —1In |:1 + 1087 (%)6i| ~ _1087 <%>6 ’
(B6)

valid for R > o. The “van der Waals” exponent 6 agrees with
the asymptotic form of the effective potential extracted from
MC simulations (Fig. 12). The next contribution would be
O(1/R").
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The effective ion/pair potential v »(R) may be calculated
along similar lines, starting from the coupling between a sin-
gle ion and a pair of instantaneous dipole moment Qr:

2
Bv(R,r) = gR -T. (B7)
€
The resulting effective pair potential is found to be
priaR) =~ (2 (B8)
V12 = T R .

Note that, contrary to v, 2(R) in Eq. (B6), v, 2(R) depends
on temperature. The same calculation leads to the following
expression for the reduced polarizability of an anion/cation
pair:

% = 6/7¢€. (B9)
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