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Abstract. Two-component bottle-brush polymers, where flexible side chains containing N = 20, 35 and
50 effective monomers are grafted alternatingly to a rigid backbone, are studied by Molecular Dynamics
simulations, varying the grafting density σ and the solvent quality. Whereas for poor solvents and large
enough σ the molecular brush is a cylindrical object with monomers of different type occupying locally
the two different halves of the cylinder, for intermediate values of σ an axially inhomogeneous structure of
“pearl-necklace” type is formed, where microphase separation between monomers of different type within
a cluster takes place. These “pearls” have a strongly non-spherical ellipsoidal shape, due to the fact that
several side chains cluster together in one “pearl”. We discuss the resulting structures in detail and we
present a comparison with the single-component bottle-brush case.

1 Introduction

The progress in chemical synthesis allows for the de-
sign of macromolecules of complex architectures, where
the resulting structure of the synthesised molecules is
controlled with remarkable accuracy [1,2]. Comb-like ar-
chitectures have recently found particular interest, i.e.,
bottle-brush polymers, where flexible linear or branched
side chains are grafted regularly or randomly onto a back-
bone chain [1–13]. The interplay between steric repulsions
of the side chain monomers and the effective attraction
between monomers that can be tuned by the quality of
the solvent results in intricate spatial self-organisation of
these macromolecules. Built on this, many interesting ap-
plications have been envisaged [7–9] as external param-
eters may vary, i.e., an applied electric field, irradiation
by light, or simply changes in pH value of the solution,
temperature, etc. Apart from these synthetic bottle-brush
polymers, also biopolymers with a related architecture
are abundant in nature. For instance, brush-like macro-
molecules that contain a protein backbone with carbo-
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hydrate side chains known as proteoglycans [14], are held
responsible for a large variety of very interesting biological
functions (cell signalling, cell surface protection, joint lu-
brication, etc. [15–17]). Understanding the structure prop-
erty relation of such bottle-brush macromolecules remains
a challenging problem of statistical thermodynamics due
to the multitude of the involved length scales resulting
from their complex structure [18–55].

In the present work, we study the case of bottle-brush
polymers with two different types of regularly grafted lin-
ear flexible chains (A, B) of the same length (NA = NB =
N) under poor solvent conditions. The backbone is con-
sidered rigid and periodic boundary conditions are applied
at its ends as was done in previous studies [51,55–57], dis-
regarding in this way any end effects (very long backbone
chains) or effects due to the flexibility of the backbone. In
fact, the backbone gets stiffened as a natural effect of the
steric repulsions between monomers with an increase of
the grafting density or of the length of the side chains, in
addition to its intrinsic stiffness due to the interactions of
the constituent monomers [2,48,10,11,53,54]. Moreover,
it has been shown for large grafting density and good sol-
vent conditions that the local structure in a bottle-brush
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polymer with flexible backbone is almost indistinguishable
from that with a rigid backbone [52]. It was shown that
flexible side chains collapse individually on the rigid back-
bone upon decrease of the temperature when the grafting
density is low enough that neighbouring side chains do not
come into contact [51,55,56]. Increase of the grafting den-
sity gives rise to “pearl-necklace” structures [43,51,56],
where clusters containing more than one side chain are
formed and microphase separation of dumbbell-type be-
tween A and B monomers within a “pearl” is observed [55].
Further increase of the grafting density results in struc-
tures in the form of “Janus cylinders” or “Janus dumb-
bells” [8,39,41,46,47,55], i.e., the cylinder splits in two
halves, such that the A-B interface contains the cylinder
axis (taken to be along the z-axis henceforth). In an ef-
fort to understand the transitions between the different
states we analyse quantities related to the formed clus-
ters as a whole (A and B monomers within a cluster),
as well as separately considering only A-type or B-type
monomers within a cluster, exploring the statistical me-
chanics of a coarse-grained model by computer simula-
tion methods. Our data will be also discussed in the con-
text of recent molecular dynamics results for the case of
single-component bottle-brush polymers, which were al-
ready compared with scaling predictions, reported else-
where [43,56].

Of course, the present model is not expected to de-
scribe real bottle-brush molecules with fully flexible back-
bone chains in poor solvents at the considered interme-
diate grafting density, since such a system is expected to
collapse further into a globular, rather dense structure,
which has then a much larger number of favorable “con-
tacts” between monomers than the pearl-necklace type
structures considered in the present paper. In fact, early
simulations on a related model confirmed this predic-
tion [58]. We plan to extend our studies to this flexible
backbone limit also for our model, and then the present
work will be a very useful “benchmark” case to compare
to, and clarify precisely the conditions for which back-
bone flexibility makes a significant difference. In addition,
we want to mention that particularly in a biological con-
text many macromolecules occur which intrinsically are
very stiff. For side chains grafted to such rigid chains, the
so-called “hairy rods” [2], our model would be qualita-
tively realistic; certain neurofilaments [59–62] are an ex-
ample for this case. It is also conceivable to graft chains
to carbon nanotubes (which may be useful to avoid bun-
dle formation of nanatubes, similarly as grafting chains to
colloids [63] or nanoparticles [64] is useful to avoid aggre-
gation of such particles). Finally, we mention that inter-
esting pearl-necklace structures have in fact been observed
for core-shell bottle-brushes [65].

The remainder of this paper is organized as follows.
In sect. 2, we describe our model and sketch the anal-
ysis needed to characterise size and shape (and other
properties) of the “pearls” quantitatively, considering not
only average properties, but also fluctuations. Section 3
presents our numerical results, while sect. 4 summarises
our conclusions.

2 Model and methods to analyse the results

In this study we consider the most symmetric case of
bottle-brush polymers with two types of side chains A,
B, where the length of the side chains A equals that of B
chains (NA = NB = N). We consider only rather short
side chain lengths, namely N = 20, 35 and 50. It is clear
that the interpretation of the results for such rather short
chains in terms of scaling concepts would be a delicate
matter, however, we emphasise that our range of N corre-
sponds nicely to the range of N available in experiments
on bottle-brushes [1,2,10,11,53]. Still, as an interesting
theoretical albeit academic problem it would be nice to ex-
tend our study to side chain lengths of several hundreds of
effective monomers, but this is prohibitively difficult in the
poor solvent regime, where relaxation times of the chains
get very long. The side chains are grafted regularly and al-
ternatingly onto the rigid backbone with grafting density
σ, i.e., the distance between two neighbouring grafting
sites is 1/σ. The total number of grafted A and B chains
is typically M = 50. As discussed above, we consider the
backbone as an immobile straight line in the z-direction,
where we also apply periodic boundary conditions, thus
disregarding any end-effects. In (x, y)-directions periodic
boundary conditions were chosen as well, but the consid-
ered linear dimensions of the simulation box were large
enough, so that never any interaction of the bottle-brush
polymer with its periodic images could occur in these di-
rections.

The side chains are modelled by the standard bead-
spring model that has been extensively used in the liter-
ature for related work [24,66–71] (e.g., polymer brushes
grafted to flat walls [67–71] or cylinders [24], with most of
this work being restricted to good solvent conditions). All
beads interact with a truncated and shifted Lennard-Jones
(LJ) potential

ULJ(r) =

{

4ǫLJ[(σLJ/r)12 − (σLJ/r)6] + C, r ≤ rc,

0, r > rc,

(1)
where rc = 2.5σLJ is the cut-off of the potential, and the
constant C is defined such that ULJ(r = rc) is continu-
ous at this cut-off. Henceforth, units are chosen such that
ǫLJ = 1, σLJ = 1, kB = 1, and m = 1 (mass of the
beads) for simplicity. When we consider two types (A, B)

of side chains, we still use σAA
LJ

= σAB
LJ

= σBB
LJ

= 1 and

ǫAA
LJ

= ǫBB
LJ

= 1, but ǫAB
LJ

= 1/2 to create an un-mixing

tendency. We know that in the case of a binary system
with monomers at density ρ = 1 (e.g., a LJ mixture which
is a standard system for the study of phase separation),
macroscopic phase separation occurs below a critical tem-
perature Tc ≈ 1.5 [72]. For our bottle-brush polymers the
average densities are much smaller, especially at distances
far from the backbone, but since the critical temperature
scales proportional to the chain length, we are able to de-
tect microphase separation with our model [55,57].

The connectivity of the beads along the chain is main-
tained by the finitely extensible nonlinear elastic (FENE)
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Fig. 1. (Colour online) Snapshot pictures of bottle-brush polymers at σ = 0.76, N = 35, T = 1.5 (50 grafted chains) (a), and
σ = 1.14, N = 35, T = 1.5 (100 grafted chains) (b). A and B monomers are distinguished by different colour (or light grey vs.

dark grey, respectively).

potential

UFENE(r) = −
1

2
kr2

0
ln[1 − (r/r0)

2], 0 < r ≤ r0, (2)

where the standard choice of parameters (r0 = 1.5 and
k = 30) was adopted, and UFENE(r > r0) = ∞.

For the model defined by eq. (1) and (2) the Theta
temperature is known, Θ ≈ 3.0 [70]. Being interested in
T ≤ Θ, we have studied the temperature range 1.5 ≤ T ≤
3.0. Note that no explicit solvent particles are included;
solvent quality is taken into account in the simulations
only implicitly, as is standard practice [67], by varying
the temperature of the system. The temperature is con-
trolled by the Langevin thermostat, as done in previous
work [51,55–57]. The equations of motion for the coordi-
nates {ri(t)} of the beads

m
d2

ri

dt2
= −∇Ui − mγ

dri

dt
+ Γ i(t) (3)

are numerically integrated using the GROMACS pack-
age [73]. In eq. (3), t denotes time, Ui is the total potential
the i-th bead experiences, γ is the friction coefficient, and
Γ i(t) the random force. γ and Γ i(t) are related by the
fluctuation-dissipation relation

〈Γ i(t) · Γ j(t
′)〉 = 6kBTγδijδ(t − t′). (4)

As in previous work, [51,55–57,66–68] the friction coeffi-
cient was chosen as γ = 0.5. For the integration of eq. (3)
the leap frog algorithm [74] was used with a time step of
Δt = 0.006τ , where the natural time unit is defined as
τ = (mσ2

LJ
/ǫLJ)

1/2 = 1.

We emphasise that equilibration of collapsed chains via
MD methods is difficult, and thus we briefly describe here
our equilibration procedure. First the system was equili-
brated at T = 3.0 for a time range of 30×106τ . To gather

statistics, a sufficient number of statistically independent
configurations (typically 500) at this temperature was
used as initial configurations of slow cooling runs, where
the temperature T was lowered in steps of ΔT = 0.1, run-
ning the system at each T for 2×106τ . The final configura-
tion of each (higher) T was used as starting configuration
for the next (lower) T . In this way, we are able to generate
statistically independent configurations of very dense sys-
tems throughout the studied temperature range. Note that
in quasi-one-dimensional systems with short-range forces,
a spontaneous symmetry breaking in the sense of well-
defined sharp phase transitions cannot occur [75]. How-
ever, as the length of the chains increases, equilibration
becomes exceedingly difficult, which prevented us from
studying longer chains. Full thermal equilibrium would
require that a chain which is part of a cluster disengages
from this cluster and becomes part of a neighboring clus-
ter, and only if many such transitions occur, structures as
shown in fig. 1a are fully equilibrated. The time scale for
such processes is expected to increase exponentially with
the side chain length. We tried to avoid this problem by
slow cooling from high T for an ensemble of statistically
independendent configurations, as stated above.

Based on previous experience with this system [55,57]
the chosen ranges of side chain length, temperature and
grafting density can be expected to reveal the most inter-
esting structural transitions occurring in our model. One
can see already from the snapshot pictures of fig. 1 the dif-
ferent morphologies that occur at temperature T = 1.5 for
bottle-brush polymers of different grafting density. At low
grafting density, the side chains collapse onto the back-
bone forming globular objects, and this is not at all dif-
ferent from what is happening when we consider a single-
component bottle-brush. Every cluster that is formed con-
tains only one side chain. As the grafting density increases
to intermediate values, rather dense clusters along the
backbone containing several side chains occur (fig. 1a).
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Within a cluster, microphase separation between A and
B monomers is taking place and we expect in this case a
different behaviour with respect to the single-component
case. At high grafting densities (e.g., σ = 1.14 (fig. 1b))
conformations in the form of Janus-cylinder-type appear,
where the A and B monomers occupy locally the two dif-
ferent halves of the cylinder. The interface between A and
B monomers is along the backbone axes, whereas in the
case of single-component bottle-brushes a homogeneous
cylinder is formed.

When the chains collapse at low temperatures to form
microphase-separated cluster structures, there is no rea-
son a priori for the system to decide which side chains will
belong to a specific cluster of the same type of monomers,
due to the symmetry of our model. We actually observe
fluctuations where a side chain of type A or B that was
part of a cluster of similar monomers escapes from the
cluster to become part of another neighbouring cluster
with chains of the same type of monomers. In fact, these
fluctuations are the slowest relaxation process in the sys-
tem leading to complete thermodynamic equilibrium. As
discussed above, the necessity to study cooling runs stems
from the impossibility to perform simulations which are
long compared to this time scale so that many of these
exchanges of chains between clusters can be observed.

In the analysis, we distinguish between A, respectively,
B clusters to study the microphase separation in our model
system and clusters defined by neighbouring monomers, ir-
respective of whether they are of A or B type, to monitor
the phase separation from the poor solvent at low temper-
atures. We remind the reader that we chose the solvent
quality to be the same for A and B monomers. To identify
the clusters, we have used the Stillinger [76] neighbour-
hood criterion for monomers: if two monomers are less
than a distance rn apart, they belong to the same cluster.
We followed the standard choice rn = 1.5σLJ and checked
that qualitatively very similar results were obtained if one
chooses rn slightly smaller than this choice (larger values
of rn are physically hardly significant, since then the par-
ticles are too weakly bound, due to the rapid fall-off of
the LJ potential). Due to the symmetrically chosen set of
parameters for A and B monomers, the statistical analysis
for A and B clusters should end up in the same results.
This is confirmed by our results, validating our choice of
simulation procedure.

Properties, F , depending on the fluctuating number
of clusters, should be averaged with the probability P (x)
that a number of clusters per side chain occurs, i.e.,

F̄ =
∑

x

P (x)F (x). (5)

In fig. 2 we are showing this distribution in the number
of clusters per chain P (x) for several choices of side chain
length N and for clusters of A and B monomers (fig. 2a-c)
and for clusters of only A or B monomers (fig. 2d-f). For
comparison, in the cases of (a)-(c) the corresponding data
for the one-component bottle-brush polymer are also plot-
ted. The first extreme case would be that each grafted
side chain forms a separate cluster (x = 1) with prob-
ability P (x) = 1. In this case a side chain never forms a

“contact” with a neighbouring chain, and the formation of
clusters containing many side chains does not take place.
This is shown in case (d), (e) and (f) for σ = 0.08 to hap-
pen for all chain lengths N = 20, 35 and 50. The second
extreme case would be that all chains are always forming
one cluster (x = 1/M) with probability P (x) = 1, which
is not seen for any of our cases. In case (c) this occurs for
σ = 0.76 with a probability P (x) ≈ 0.9. Of course, this
case does occur for significantly higher grafting densities,
such as σ = 1.14, see fig. 1b, but this is out of our inter-
est here, where we focus on the pearl-necklace structures.
Due to the incompatibility between A and B monomers
there is always the small probability for a cluster to be
split into several clusters, and this makes already a signif-
icant physical difference with the case of single-component
bottle-brushes. Thus, comparing the data for the two-
component bottle-brushes (fig. 2a-c, full symbols) and
the single-component brush (fig. 2a-c, open symbols), we
can clearly see at intermediate grafting densities that the
peaks for the single-component bottle-brushes are shifted
to the left. This is a clear indication that in the single-
component bottle-brushes more side chains are able to
come together and form clusters, compared with a cor-
responding (same σ and N) two-component bottle-brush
at low to intermediate grafting densities. At intermediate
to higher grafting densities (i.e., σ = 0.57 and 0.76), the
opposite effect is seen. At these grafting densities, the side
chains are close enough that the incompatibility between
A and B monomers increases the axial dimensions of the
chains (see fig. 5), increasing in this way the probability
of cluster formation. As the chain length increases, the
incompatibility between A and B chains also increases,
and the formation of clusters of A and B monomers be-
comes more probable. We also note that the analysis of
the clusters becomes insignificant as the grafting density
becomes very high since we impose in this case the neigh-
bouring grafted chains to be at a distance smaller than
1.5, which is our criterion for defining a “contact”. How-
ever, as A- and B-type chains repel each other, we stud-
ied grafting densities up to σ = 0.76 and thus distances
between grafting sites 1/σ = 1/0.76. Moreover, strong
finite-size effects are expected in the case that a single
cluster is formed with a high probability, due to the finite
size of the backbone, as periodic boundary conditions are
applied at both backbone ends. As we have grafted the
A and B chains alternatingly, the minimum distance be-
tween a chain A and a neighbouring A chain is 2/σ, while
1/σ is the distance between neighbouring A and B chains.
For this reason all the curves in cases (d), (e), and (f) of
fig. 2 are shifted correspondingly to the right compared
to the cases (a), (b), and (c). Increasing the chain length
N shifts the curves to the left, showing that the forma-
tion of the clusters is more probable. However, one should
keep in mind that increase of N eventually leads to the
increase of incompatibility between A and B chains. All
these phenomena endow the bottle-brushes with two types
of grafted side chains with interesting additional proper-
ties compared with the case of a single-component bottle-
brush.
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Fig. 2. (Colour online) Probability distribution P (x) of the number of clusters per chain plotted vs. x = Ncl/M for T = 1.5,
and three choices of N : N = 20 (a), 35 (b), and 50 (c). Grafting densities shown are σ = 0.08, 0.12, 0.206, 0.38, 0.57, and 0.76.
In cases (a), (b), and (c) the clusters are considered consisting of A and B beads both (full symbols and stars). Open symbols
(and symbol ×) correspond to results for the single-component bottle-brushes. The cases (d), (e), and (f) correspond to (a),
(b), and (c), but A and B monomers are considered to form separate clusters.

3 Results and discussion

In fig. 3 we are presenting the average number of clusters
per chain x̄ plotted versus σ. Figure 3(a) represents the
case where we consider clusters containing both A and B
monomers. One can clearly recognise the trivial regime
x̄ = 1, where each cluster contains only one chain of A or
B monomers. As the grafting density increases, this ratio
takes values lower than 1 denoting the onset of the pearl-
necklace regime. This transition becomes sharper as the
length of the side chains increases and the curves for these
intermediate grafting densities are shifted to the left. For

a fixed side chain length at higher temperature (T = 2.0)
the formation of a higher number of clusters along the
backbone becomes more favourable. The transition from
the pearl-necklace regime to the case that all chains form
a single cluster (Janus type) occurs gradually for grafting
densities higher than σ ≈ 0.5. If we compare this result
with that of the single-component bottle-brushes (fig. 3c),
we see that the onset of pearl-necklace structures occurs at
a smaller grafting density and also the number of formed
clusters is smaller, showing that, due to the incompati-
bility between A and B monomers, the clusters of A and
B monomers obtain a more elongated structure, i.e., they
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Fig. 3. (Colour online) Average number of clusters per grafted
chain x̄ plotted vs. grafting density σ at T = 1.5 (full symbols)
and T = 2.0 (open symbols) for three different chain lengths as
indicated, for A and B monomers in a cluster (a) and for A or
B monomers (M corresponds to the number of A or B chains
here) in a cluster (b). In part (c) we are plotting the results
from (b) for T = 1.5 versus σ/2 (full symbols) and compare
them with the data for the single-component bottle-brushes
plotted versus σ (open symbols).

try to rearrange in such a way along the backbone that
A and B contacts become fewer. If we consider only clus-
ters of A or B monomers, then the transition from the
trivial regime to the pearl-necklace regime is considerably
shifted to the right, i.e., to higher values of σ. This shift
is about a factor of 2. Indeed, the distance between neigh-
bouring A or B chains is 2/σ, whereas between A and B
neighbouring chains is 1/σ, so this shift is expected. The
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Fig. 4. (Colour online) Similar as in fig. 3, but on the ordinate

axis the average number of chains in a cluster, i.e., 1/x, is
shown.

slope of the curves in the pearl-necklace regime becomes
considerably smaller, showing that all transitions from the
trivial to the pearl-necklace regime and from this to the
homogeneous regime (Janus-type cylinders) are becoming
smoother. Taking the trivial reduction of grafting density
for either A or B clusters into account, by plotting the
data from fig. 3b versus σ/2 and comparing them with
the results for the homopolymer brushes plotted versus σ
as we have done in fig. 3c, reveals that within the accu-
racy of our data, both data sets agree. For grafting density
σ ≈ 0.8 the transition to the Janus-cylinder-type regime
has not been completed for most of the presented cases,
except for the case N = 50, σ = 0.76. We also note here
that for high grafting densities strong finite-size effects
are expected due to the finite size of the backbone and
the applied periodic boundary conditions. These effects
are stronger in the case of longer side chains at a specific
grafting density.

The different regions of the crossover from isolated
chains to a single cluster at high grafting density are
highlighted differently when we plot 1/x as a function
of σ (fig. 4) instead of x̄ as in fig. 3. Whereas for a
single-component bottle-brush the transition to the ho-
mogeneous chain is completed for all the presented chain
lengths at grafting density σ ≈ 0.80 [56], in the case of
two-component bottle-brushes a substantially protracted
crossover is seen. This is clearly due to the strong concen-
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tration fluctuations between A and B monomers, which
result in the distortion of a single cluster formation even at
this high grafting density. Only for the longest chains the
cluster does not have any space to split in the z-direction
and all chains belong to one cluster for the highest grafting
densities. In fig. 4b, where we consider clusters only of
monomers of one type (A or B), we are basically observ-
ing the same behaviour in the regime zero-σ as on the
left side in the regime zero-σ/2. Considering the tempera-
ture variation, for N = 20 we always find more chains per
cluster at the lower temperature, whereas for N = 35 and
N = 50 we are observing strong fluctuations, both in the
case where clusters formed from both types of monomers
are considered and for the case where pure A or B clusters
are analysed. For the pure A or B clusters it seems that
for the longest chains the number of chains per cluster
is systematically smaller at the lower temperature, which
corresponds nicely with the reduced parallel extension of
the clusters shown in fig. 6.

Next we discuss the linear dimensions of the pearls
and their dependence on the grafting density σ, readily
obtained by computing the mean square gyration radius
components 〈R2

g,z〉 of the clusters in axial direction, as

well as in radial direction 〈R2
g,xy〉 (angular brackets denote

thermal averaging). Figure 5 shows plots of 〈R2
g,xy〉 versus

σ. The horizontal part at low grafting densities shows the
region where the clusters just contain individual collapsed
chains, and there clearly cannot be a dependence on σ,
of course. Then the pearl-necklace structure appears, and
the size of the clusters in x-y directions increases almost
linearly, with the slope being higher when the length of the
side chains N is higher. Of course, when the temperature
is higher, also the size of the chains is larger, but the slopes
corresponding to the pearl-necklace structures for different
temperatures are similar, underlining the importance of
the grafting density in the behaviour of our system.

At some point (σ ≈ 0.5), the size of the clusters in ra-
dial direction reaches a plateau regime the value of which
depends on temperature. In the case where we consider
clusters of only A or B chains, the size increases with a
smaller slope and also the clusters are smaller in radial
direction since in the other half of the plane a cluster of
B chains occupies a part even in a pearl-necklace struc-
ture, as can naively visually be seen from the snapshots
of fig. 1. Therefore, the result depicted in fig. 5b looks like
a magnified picture of what is happening at low grafting
densities in fig. 5a. If we compare with the results of the
single-component bottle-brush shown in fig. 5c, we can say
that the latter is the intermediate case between (a) and
(b). The plateau at high grafting densities is not very pro-
nounced and appears for higher grafting densities than in
the case of two-component bottle-brushes.

The size of the cluster axial direction, i.e., along the
rigid backbone, has a very interesting behaviour. Looking
at graphs (fig. 6a and b), we clearly see that the size of
the clusters in this directions is much larger compared to
that in axial direction as in the case of a single-component
bottle-brush (fig. 6c). Our clusters in both cases are elon-
gated objects as the grafting density increases. However,
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Fig. 5. (Colour online) The radial mean square gyration radii

〈R2

g,xy〉 (the angular brackets denote thermal averaging) are

plotted versus grafting density at T = 1.5 (full symbols) and
T = 2.0 (open symbols) for three different chain lengths, as
indicated. Case (a) refers to clusters formed from both types
(A and B) of monomers, while case (b) refers to clusters formed
from only one kind of monomers (A or B). (c) presents the
corresponding results for the single-component bottle-brushes.

for the single-component bottle-brush the slope is higher
compared to cases (a) and (b), since the side chains are of
the same type and have a higher tendency to form clus-
ters. As we have seen from fig. 2, a higher number of side
chains participates in the formation of a cluster in the case
of single-component bottle-brushes. The opposite effect is
seen at intermediate to high grafting densities (σ > 0.4)
for reasons which are already described. We should note
here the appearance of pronounced finite-size effects in
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Fig. 6. (Colour online) Same as fig. 5, but the axial mean
square gyration radii 〈R2

g,z〉 are shown.

the case of two-component bottle-brush polymers when
one defines clusters of A and B monomers already at the
grafting density σ ≈ 0.4. In fig. 6a, we can clearly see that
in the region where the clusters contain a single chain the
size of the clusters in the axial direction is the same as
in the radial direction. The formation of pearl-necklace
structure results in an extreme increase of the size of the
clusters in the axial direction reaching the point where the
size of the clusters is strictly dictated by the length of the
backbone, that is half the length of the backbone, due to
the applied periodic boundary conditions at the backbone
ends. In fig. 6b it is shown clearly that the size of the
clusters is small, which is expected as a smaller number of
chains of the same type participate in the formation of the

cluster. Such clusters are, however, still elongated objects
as a chain of type A stretches in the axial direction in order
to cluster together with another A chain under poor sol-
vent conditions. The increase of side chain length favours
the increase of the size of the clusters in the axial direction,
since grafted chains at higher distances are able to partic-
ipate in the formation of a cluster. In fig. 6a, we observe
that an increase of temperature results in the decrease of
〈R2

g,z〉 at intermediate grafting densities (pearl-necklace

regime), since the chains stretch in the radial direction.
Of course, in the trivial regime, where the chains collapse
individually, an increase of temperature increases the val-

ues for 〈R2
g,z〉. However, in fig. 6b, we observe that at in-

termediate to high grafting densities a different tendency
with the increase of temperature occurs: 〈R2

g,z〉 becomes

higher at higher temperatures. In fact, the A chains which
are far apart are able to form clusters much easier when
the side chain length is high. The latter description also
applies in the case of single-component bottle-brushes.

In fig. 7 the dependence of the number of clusters per
side chain is presented as a function of temperature for
different grafting densities and side chain lengths, always
choosing the parameter combinations to be within the
pearl-necklace regime. For the clusters formed from both
A and B monomers (part a) in all cases the number of
clusters per chain is an increasing function of tempera-
ture. This increase is stronger in the case of lower grafting
densities. The same effect is seen when one considers pa-
rameter combinations in the case of clusters of A or B
monomers where neither N nor σ are too large. However,
for the combinations N = 35, σ = 0.76, N = 50, σ = 0.57
and N = 50, σ = 0.76 a minimum in the number of clus-
ters as a function of temperature occurs. The position of
this minimum moves to larger temperatures with increas-
ing chain length or grafting density. This effect is not re-
stricted to the copolymer bottle-brush as a look at fig. 7c
shows, where we have plotted the behaviour of homopoly-
mer brushes at a grafting density σ = 0, 38 corresponding
to the σ = 0.76 data from fig. 7b. For N = 20 there
is a monotonous increase in the number of clusters as a
function of temperature, but for N = 35 and N = 50
we observe minima and the position again shifts to larger
temperature for larger side chain length.

To understand this behaviour we have to examine in
more detail how the formation of clusters induced by the
collapse of the side chains below T = 3 occurs. When
we look at figs. 8 and 9 we observe that the clusters are
formed in a rather asymmetric way. Regarding the size
of the clusters in the radial direction (fig. 9), we observe

that 〈R2
g,xy〉 decreases with decrease of the temperature as

expected. The variation with temperature is larger when
the grafting density and the length of the side chains are
higher. The same behaviour is observed in case (b) for
clusters of only one type of monomer, with smaller abso-
lute variation of course, as the clusters are smaller in the
axial direction compared with the case (a), but with about
the same amount of relative variation. The dependence of
〈R2

g,z〉 on temperature is more interesting, and mirrors the
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Fig. 7. (Colour online) The dependence of x̄ on temperature
for various bottle-brush cases as indicated. In part (a) the case
of clusters of A and B beads is shown, whereas in (b) only the
case of clusters of only A or B monomers is shown. Part (c)
shows results for an intermediate grafting density for the case
of single-component bottle-brushes.

variation in x̄. For the case of clusters made up of A and
B monomers (fig. 9a) we observe relatively little variation
as a function of temperature when the grafting density is
rather small (σ = 0.206) or large (σ ≥ 0.57). In the latter
case the variation is larger for smaller side chain length.
We observe a very strong variation (more than an order of
magnitude) for the intermediate grafting density σ = 0.38.
The axial extension of the clusters is monotonously de-
creasing as a function of temperature in the observed tem-
perature window for small side chain length. For larger
side chain length and higher grafting density a shallow
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Fig. 8. (Colour online) Dependence of the radial mean square
gyration radii on temperature for various cases as indicated in
the legend.

maximum of the axial extension as a function of temper-
ature develops. This behaviour is much more pronounced
when we look at the axial size of pure A or pure B clusters
in fig. 9b. In the extreme case, N = 50, σ = 0.57, the radial
size first increases by a factor of 5, reaching a maximum
around T = 2, then decreases by the same factor again.

There seem to be two physical contributions to the oc-
currence of this maximum in the radial extension. When
the solvent quality gets poor (below T = 3) the chains col-
lapse but they do it in an asymmetric fashion to come into
contact with neighbouring chains, which results in rather
elongated clusters along the backbone of the brush (see
also the snapshots in fig. 1). This elongated shape reduces
the bulk free energy but has a rather large surface free en-
ergy contribution. With decreasing temperature (solvent
quality) the free-energy penalty from the large surface of
the elongated clusters increases and they reach a maxi-
mum size at some temperature. This explains the minima
in fig. 7c and the maxima in fig. 9a. The much more pro-
nounced maxima in fig. 9b indicate a second physical con-
tribution. The copolymer bottle-brush exhibits local mi-
crophase separation [57] which starts to compete with the
de-mixing from the solvent (collapse of the side chains).
This segregation between A and B monomers breaks up
the pure A or pure B clusters very effectively as the chains
are grafted alternatingly leading to the much stronger
variation in the radial extension of the pure A and B clus-
ters observed in fig. 9b.
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Fig. 9. (Colour online) Dependence of the axial mean square
gyration radii on temperature for various cases as indicated in
the legend.

4 Conclusions

In the present paper we have presented a detailed sim-
ulation study of the pearl-necklace structure that occurs
for bottle-brush polymers with rigid backbones and two
types of grafted side chains and moderately high grafting
densities under poor solvent conditions. The combination
of high local densities and large side chain lengths renders
the generation of equilibrated structures in this poor sol-
vent regime extremely difficult. We therefore chose to gen-
erate an ensemble of 500 starting structures at an elevated
temperature which were then slowly cooled down to sam-
ple the properties of this system in the regime where the
solvent quality becomes poor and the chains collapse onto
the backbone and where simultaneously the microphase
separation between A and B monomers sets in. In spite of
this large simulation effort, some of our data still reveal
significant statistical scatter, and it is clear from this find-
ing that the study of even longer side chains, which might
reach into the regime where scaling concepts are applica-
ble, is out of question. We would like to stress, however,
that the side chain lengths we were able to study agree
nicely with the experimentally relevant range.

Since microphase separation within a “pearl” is tak-
ing place, in our analysis, we considered the clusters as a
whole with A and B monomers being part of the same clus-
ter when our neighbouring criterion between monomers is
met, and we also considered clusters of only A or B beads.

Particular emphasis has been put on describing the differ-
ence between these two cases. Comparing these cases with
the single-component bottle-brush, we observed that the
three different cases share some similarity. The average
number of clusters per chain for the clusters of A or B
beads only at grafting density σ is the same as that of the
single-component bottle-brush with grafting density 2/σ
at low temperatures.

The incompatibility between A and B monomers, how-
ever, also introduces additional effects into the geometry
of the clusters as a function of temperature and grafting
density. Whereas the axial extension of A and B clusters
and of homopolymer clusters is rather similar, the radial
extension behaves differently. For the homopolymer brush,
the radial size is a monotonously increasing function of
grafting density, whereas for the copolymer brush, the A
and B clusters display a maximum radial extension around
σ = 0.5 for long enough side chains and low temperatures,
induced by the tendency for microphase separation for
large densities and side chain lengths. Similarly, the maxi-
mum in the radial extension of the pure A or pure B clus-
ters as a function of temperature is much more pronounced
than for the homopolymer case or the A and B clusters,
since here microphase separation tendency and reduction
in surface free energy both contribute to this effect.

Our results give some first overview of the intricate
interplay between de-mixing from a poor solvent and mi-
crophase separation occurring in copolymer bottle-brush-
es and on the effects of these phase changes on the pearl-
necklace structure of a bottle-brush polymer at interme-
diate grafting densities. It is also interesting to compare
the microphase separations occurring in our quasi-one-
dimensional system, where due to the low dimensionality
sharp phase transitions in a strict thermodynamic sense
are impossible, as discussed in more detail elsewhere [47],
to the corresponding system of polymers grafted to flat
planar substrates under poor solvent conditions at inter-
mediate grafting densities. Simulations have revealed a
corresponding microphase separation where several chains
aggregate together into clusters also in this case [77,78]
and phenomenological mean-field-type theories have pre-
dicted the resulting phase diagram [79–81]. For binary
(A, B) brushes self-consistent field theories predict a vari-
ety of long-range ordered structures, similar to the meso-
phases of block copolymers [82]. However, it was noted [83]
that the randomness in the local density of grafting sites
precludes the occurrence of true long-range order. Thus,
we expect that qualitatively the behavior of mixed planar
brushes in poor solvents and comparable chain lengths and
grafting densities would actually be rather similar to the
present system.
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Supercomputing Centre. We thank the John von Neumann In-
stitute for Computing for the allocation of computing time.



P.E. Theodorakis et al.: Clusters in two-component bottle-brushes Page 11 of 12

References

1. M. Zhang, A.H.E. Müller, Polym. Sci. Part. A: Polym.
Chem. 43, 3461 (2005).

2. S.S. Sheiko, B.S. Sumerlin, K. Matyjaszewski, Progr.
Polym. Sci. 33, 759 (2008).

3. M. Wintermantel, M. Schmidt, Y. Tsukahara, K. Kaji-
wara, S. Kahijiya, Makromol. Chem., Rapid Commun. 15,
279 (1994).

4. M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt, I.
Wataoka, H. Urakawa, K. Kajiware, Y. Tsukahara, Macro-
molecules 29, 978 (1996).

5. K.L. Beers, S.G. Gaynor, K. Matyaszewski, S.S. Sheiko,
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