
Eur. Phys. J. B (2012) 85: 349
DOI: 10.1140/epjb/e2012-30731-8

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Universality aspects of the trimodal random-field Ising model

N.G. Fytas1,a, P.E. Theodorakis2,3,4, and I. Georgiou3
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Abstract. We investigate the critical properties of the d = 3 random-field Ising model with an equal-
weight trimodal distribution at zero temperature. By implementing suitable graph-theoretical algorithms,
we compute large ensembles of ground states for several values of the disorder strength h and system sizes
up to N = 1283. Using a new approach based on the sample-to-sample fluctuations of the order parameter of
the system and proper finite-size scaling techniques we estimate the critical disorder strength hc = 2.747(3)
and the critical exponents of the correlation length ν = 1.34(6) and order parameter β = 0.016(4). These
estimates place the model into the universality class of the corresponding Gaussian random-field Ising
model.

1 Introduction

The random-field Ising model (RFIM) [1–15] has been
extensively studied due to its interest as a simple frus-
trated system, as well as its close connection to exper-
iments [16–20]. Its beauty is that the mixture of ran-
dom fields and the standard Ising model creates rich
physics and leaves many still unanswered problems. The
Hamiltonian describing the model is

H = −J
∑

〈i,j〉
σiσj −

∑

i

hiσi, (1)

where σi = ±1 are Ising spins, J > 0 is the nearest-
neighbor’s ferromagnetic interaction, and hi are indepen-
dent quenched random fields. Several field distributions
have been considered in the literature, the most common
being the Gaussian and bimodal distributions [18,21–24].
The existence of an ordered ferromagnetic phase for the
RFIM, at low temperature and weak disorder, follows
from the seminal discussion of Imry and Ma [1], when the
space dimension is greater than two (d > 2) [21–26]. This
has provided us with a general qualitative agreement on
the sketch of the phase boundary, separating the ordered
ferromagnetic phase from the high-temperature param-
agnetic one. The phase-diagram line separates the two
phases of the model and intersects the randomness axis
at the critical value of the disorder strength hc [27–35].

The criteria for determining the order of the low tem-
perature phase transition and its dependence on the form
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of the field distribution have been discussed throughout
the years [32–37]. Already from the work of Houghton and
Khurana [38], the importance of the form of the distribu-
tion function in the determination of the critical proper-
ties of the RFIM has been emphasized. In fact, different
results have been proposed for different field distributions,
like the existence of a tricritical point at the strong dis-
order regime of the system, present only in the bimodal
case [32–35,38]. Following the results of Houghton and
Khurana [38], Mattis [39] reexamined the RFIM introduc-
ing a new type of distribution, the trimodal one, given by
the form

P(hi) = pδ(hi) + (1/2)(1− p)[δ(hi − h) + δ(hi + h)], (2)

where h defines the disorder (field) strength and p ∈ (0, 1).
Clearly, for p = 1 one switches to the pure Ising model,
whereas for p = 0 the well-known bimodal distribution is
recovered. In general terms, the trimodal distribution (2)
allows a physical interpretation as a diluted bimodal dis-
tribution, in which a fraction p of the spins are not exposed
to the external field. Thus, it mimics the salient feature of
the Gaussian distribution, for which a significant fraction
of the spins are in weak external fields. Mattis suggested
that for a particular case, p = 1/3, this may be considered
as a good approximation to the Gaussian distribution [39].
This in turn indicated that the two models should be in the
same universality class. Further studies along these lines,
using mean-field and renormalization-group approaches,
provided contradicting evidence for the critical aspects of
the p = 1/3 model and also proposed several approxima-
tions of its phase diagram for a range of values of p [40–42].
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However, none of these predictions has been confirmed by
numerical simulations up to now, thus remaining ambigu-
ous, due to the approximate nature of the mean-field-type
of methods used.

Currently, despite the huge efforts recorded in the lit-
erature, a clear picture of the model’s critical behavior is
still lacking. Although the view that the phase transition
of the RFIM is of second-order, irrespective of P(hi), is
well established [43–46], the extremely small value of the
exponent β continues to cast some doubts. Moreover, a
rather strong debate exists with regards to the role of dis-
order: the available simulations are not able to settle the
question of whether the critical exponents depend on the
particular choice of the distribution for the random fields,
analogously to the mean-field theory predictions [32–35].
Thus, the whole issue of universality, in terms of different
field distributions and critical exponents, is under investi-
gation [43–62].

In the present work we shed some light towards this
direction by examining the critical features of the phase
diagram of the trimodal RFIM for the case of p = 1/3.
We provide numerical evidence that clarify the matching
between the trimodal and Gaussian models and we give
estimates for the critical exponents that compare very well
to the most accurate ones in the corresponding literature
of the RFIM. Our attempt benefits from: (i) the existence
of robust computational methods of graph theory at zero
temperature (T = 0), (ii) classical finite-size scaling (FSS)
techniques, and (iii) a new scaling approach that involves
the sample-to-sample fluctuations of the order parameter.
In particular, sample-to-sample fluctuations and the rel-
ative issue of self-averaging have attracted much interest
in the study of disordered systems [63]. Although it has
been known for many years now that for (spin and regular)
glasses there is no self-averaging in the ordered phase [64],
for random ferromagnets such a behavior was first ob-
served for the RFIM by Dayan et al. [65] and some years
later for the random versions of the Ising and Ashkin-
Teller models by Wiseman and Domany [66]. These latter
authors suggested a FSS ansatz describing the absence
of self-averaging and the universal fluctuations of random
systems near critical points that was refined on a more
rigorous basis by Aharony and Harris [67]. Ever since,
the subject of breakdown of self-averaging is an impor-
tant aspect of several theoretical and numerical investi-
gations of disordered spin systems [68–81]. In fact, Efrat
and Schwartz [82] showed that the property of lack of self-
averaging may be turned into a useful tool that can pro-
vide an independent measure to distinguish the ordered
and disordered phases of the system. In view of this in-
creasing interest, we discuss here another successful al-
ternative approach to the criticality of the RFIM via the
sample-to-sample fluctuations of the order parameter at
T = 0.

The rest of the paper is organized as follows: In the
next Section we describe briefly the T = 0 numerical ap-
proach and we provide all the necessary details of our in-
vestigation. The relevant twofold FSS analysis of the nu-
merical data, as well as the estimation procedure of the

critical disorder strength hc and the critical exponents ν
and β are given in Section 3. The paper ends with a sum-
mary of our conclusions in Section 4.

2 Simulation protocol at zero temperature

As it is well known, the random field is a relevant pertur-
bation at the pure fixed point, and the random-field fixed
point is at T = 0 [18,21–25]. We can therefore determine
the critical behavior, staying at T = 0 and crossing the
phase boundary at h = hc. This is a convenient approach
because we can determine the ground states exactly us-
ing efficient optimization algorithms [83–107] through an
existing mapping of the ground state to the maximum-
flow optimization problem [108–110]. A clear advantage
of this approach is the ability to simulate large system
sizes and disorder ensembles in rather moderate computa-
tional times. We should underline here that, typical Monte
Carlo simulations exhibit extremely slow dynamics in the
low-temperature phase of these systems, due to the ex-
istence of many meta-stable states separated by barri-
ers that grow with the system size [111,112]. Thus, even
the most efficient numerical schemes at T > 0 are upper
bounded by linear sizes of the order of Lmax ≤ 32. Further
assets in the T = 0 approach are the absence of statistical
errors and equilibration problems, which, on the contrary,
are the two major drawbacks encountered in T > 0 simu-
lations of systems with rough free-energy landscapes [18].

The application of maximum-flow algorithms to the
RFIM is nowadays well established [100]. Nevertheless,
we find useful to shortly review the algorithm. The net-
work flow algorithm generally used to solve the RFIM is,
because of its speed, the push-relabel (PR) algorithm of
Tarjan and Goldberg [113,114]. For the interested reader,
general proofs and theorems on the PR algorithm can
be found in standard textbooks [109,110]. The version of
the PR algorithm implemented in our study involves a
modification proposed by Middleton and Fisher [43] that
removes the source and sink nodes, reducing memory us-
age and also clarifying the physical connection [95–98].
The algorithm starts by assigning an excess xi to each
lattice site i, with xi = hi. Residual capacity variables rij

between neighboring sites are initially set to J . A height
variable ui is then assigned to each node via a global up-
date step. In this global update, the value of ui at each
site in the set T = {j|xj < 0} of negative excess sites is
set to zero. Sites with xi ≥ 0 have ui set to the length of
the shortest path, via edges with positive capacity, from i
to T .

The ground state is found by successively rearranging
the excesses xi, via push operations, and updating the
heights, via relabel operations. When no more pushes or
relabels are possible, a final global update determines the
ground state, so that sites which are path connected by
bonds with rij > 0 to T have σi = −1, while those which
are disconnected from T have σi = 1. A push operation
moves excess from a site i to a lower height neighbor j, if
possible, that is, whenever xi > 0, rij > 0, and uj = ui−1.
In a push, the working variables are modified according to
xi → xi − δ, xj → xj + δ, rij → rij − δ, and rji → rji + δ,
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Fig. 1. Disorder distribution of the ground-state order param-
eter of the p = 1/3 trimodal RFIM for L = 48 and h = 2.92 us-
ing the speed mode representation, i.e., several data points have
been removed to make the illustration clearer for the reader.
The running average, estimated over the complete set of dis-
order samples (5 × 104), is shown by the solid line.

with δ = min(xi, rij). Push operations tend to move the
positive excess towards sites in T . When xi > 0 and no
push is possible, the site is relabelled, with ui increased to
1 + min{j|rij>0} uj . In addition, if a set of highest sites U
become isolated, with ui > uj + 1, for all i ∈ U and all
j /∈ U , the height ui for all i ∈ U is increased to its maxi-
mum value, N , as these sites will always be isolated from
the negative excess nodes. Periodic global updates are of-
ten crucial to the practical speed of the algorithm [96–98].
Following the suggestions of Middleton et al. [43,95–98],
we have also applied global updates here every N relabels,
a practise found to be computationally optimum.

Using the above described version of the PR algo-
rithm we performed large-scale simulations of the trimodal
(p = 1/3) RFIM for a wide range of simulation parame-
ters. In the first part, preliminary runs were executed,
including also small systems sizes N ≤ 203, in order to
probe efficiently the critical h-regime of the model. In the
second part, extensive simulations have been performed
for lattice sizes L ∈ {24, 32, 48, 64, 96, 128} and disorder
strengths h ∈ [2.7 − 3.3] with a step δh = 0.02. For
each pair (L, h) an extensive disorder averaging – de-
noted hereafter as [. . .]av – has been undertaken by sam-
pling over Q = 5× 104 random-field realizations. Figure 1
presents evidence that the above number of random re-
alizations is sufficient in order to obtain the true average
behavior. In particular, we plot in this figure, for L = 48
and h = 2.92, the disorder distribution of the ground-
state absolute value order parameter per spin, defined as
Mq = {|

∑
i σi| /N}q, where q defines a particular random

realization of the external magnetic field hi and runs over
the ensemble of realizations as q = 1, . . . , Q. We have cho-
sen on purpose the random-field value h = 2.92, which
as will be seen below, corresponds to the pseudo-critical
disorder strength for the lattice size L = 48. The inter-
esting point is that, for these L-dependent pseudo-critical
values of h, one expects sample-to-sample fluctuations to

Fig. 2. Sample-to-sample fluctuations of the order parameter
of the p = 1/3 trimodal RFIM as a function of the disorder
strength for various lattice sizes. Lines are just guides to the
eye.

be maximized and this becomes clear in Figure 1 through
the large deviation of the Mq values. Figure 1 includes
also the corresponding running average over the data, il-
lustrated by the solid line. This is a series of averages of
different subsets of the full data set – each of which is
the average of the corresponding subset of a larger set of
data points, over the samples for the simulated ensemble
of 5 × 104 disorder realizations.

3 Finite-size scaling analysis and critical
exponents

We start our analysis of the p = 1/3 trimodal RFIM
with Figure 2, where we plot the sample-to-sample fluctu-
ations of the disorder-averaged order parameter V[M ]av =
√

([M2]av − [M ]2av)/(Q − 1), where [M ]av =
[∑

q Mq

]
/Q

as usual, as a function of the disorder strength h for
L = 24–128. It is clear that for every lattice size L, these
fluctuations appear to have a maximum value at a certain
value of h, denoted hereafter as h∗

L, that may be consid-
ered in the following as a suitable pseudo-critical disorder
strength. By fitting the data points around the maximum
first to a Gaussian, and subsequently to a fourth-order
polynomial, we have extracted the values of the peak-
locations (h∗

L) by taking the mean value via the two fitting
functions, as well as the corresponding error bars. Using
now these values for h∗

L we consider in the main panel of
Figure 3 a power-law fitting attempt of the form

h∗
L = h(eff)

c + bL−1/ν(eff)
. (3)

This fitting produces effective estimates for the critical
disorder strength and the correlation length’s exponent.
In Figure 3 we show the fitting for the lattice range
L = Lmin − 128, where Lmin = 24. By applying the
same procedure for Lmin = 32 and 48, we obtained a
set of three effective estimates for both quantities and

http://www.epj.org


Page 4 of 7 Eur. Phys. J. B (2012) 85: 349

Fig. 3. FSS of the pseudo-critical disorder strengths h∗
L for

L ≥ Lmin = 24 (main panel). Infinite-limit size extrapolation

of the effective estimates ν(eff) and h
(eff)
c obtained via the fitting

procedure of the main panel in the range Lmin − 128, where
Lmin = 24, 32, and 48 (inset).

we plot their infinite lattice-size extrapolation in the in-
set of Figure 3. The final values of the critical disorder
strength and the correlation length’s exponent, as given
by a simple linear fitting to L → ∞, are hc = 2.747(3)
and ν = 1.33(8). This latter value for the critical expo-
nent of the correlation length ν is within errors inside the
range ν = 1.32(7) − 1.37(9) proposed for the Gaussian
RFIM by Middleton and Fisher (MF) [43] and Hartmann
and Young (HY) [90].

We note here that our suggestion of choosing these
newly defined pseudo-critical disorder strengths h∗

L as
a proper measure for performing FSS closely follows
the analogous considerations of HY for the case of the
Gaussian RFIM [90]. These authors considered pseudo-
critical disorder strengths at the values of h at which a
specific-heat-like quantity obtained by numerically differ-
entiating the bond energy with respect to h attains its
maximum. It appears that, this method is capable of pro-
ducing very accurate estimates for both the critical dis-
order strength and also the correlation length’s exponent,
assuming that its behavior follows the observed shift be-
havior of our pseudo-critical disorder strengths h∗

L. It is
well known from the general scaling theory that, even
for simple models, the equality between the correlation
length’s exponent and the shift exponent is not a neces-
sary consequence of scaling [115]. Of course, it is a general
practice to assume that the correlation length’s behav-
ior can be deduced by the shift of appropriate thermo-
dynamic functions. Moreover, MF using similar reasoning
on the Gaussian RFIM, characterized the distribution of
the order parameter by the average over samples of the
square of the magnetization per spin and the root-mean-
square sample-to-sample variations of the square of the
magnetization [43]. They identified a similar behavior to
that of Figure 2, i.e., with increasing L, the peak mag-
nitude of this quantity moved its location to smaller val-

Fig. 4. Scaling plot of the disorder-averaged magnetization
using the data-collapse approach described in the text.

ues of h, defining another relevant pseudo-critical disorder
strength. However, MF were interested on the scaling be-
havior of the height of these peaks [43].

A further verification of the above estimates, together
with an independent calculation of the magnetic exponent
ratio β/ν, comes from a rather more common scaling pro-
cedure. In Figure 4 we show a collapse of the magnetiza-
tion data, via the scaling relation

[M ]av = L−β/ν[M̃ ]av
[
(h − hc)L1/ν

]
, (4)

where the function M̃ is a universal function of the scal-
ing variable (h − hc)L1/ν which is, according to the the-
ory of FSS, independent of the microscopic parameters of
the system [115,116]. For the fitting procedure we have
used autoScale, a program that performs a FSS analy-
sis for given sets of simulated data [116]. The program
implements a general scaling assumption and optimizes
an initial set of scaling parameters that enforce a data
collapse of the different sets. The optimum data col-
lapse, found by the minimization procedure of the scal-
ing parameters via the downhill simplex algorithm [117],
emerged for h = 2.7–3.2 and L = 48–128, and is shown in
Figure 4. The resulting values of the scaling parameters,
hc = 2.748(2) and ν = 1.35(3), are in excellent agree-
ment with those of Figure 3, obtained via the FSS of the
proposed pseudo-critical disorder strengths h∗

L. Moreover,
the value of the magnetic exponent ratio β/ν = 0.012(5)
indicates, through ν = 1.35(3), that β = 0.016(4), which
compares very well to the most accurate estimation in the
literature of the Gaussian RFIM, i.e., β = 0.017(5) [43].

Closing, we provide in Figure 5 a schematic represen-
tation of some random ground-state spin configurations of
the system. In particular, we consider a system with linear
size L = 24 and 3 values of the disorder strength around
the critical hc-point, namely h = 2.6, 3.02, and 3.2. In
Figure 5 blue cones refer to (↓) spins, whereas red cones
to (↑) spins. According to the standard picture, when
h < hc, the ferromagnetic interaction between nearest
neighbors dominates and the spins take on a mean value

http://www.epj.org


Eur. Phys. J. B (2012) 85: 349 Page 5 of 7

Fig. 5. (Color online) Ground-state configurations of a lattice
size L = 24 for 3 values of h, as indicated.

∣∣ 1
N

∑
i σi

∣∣ 	= 0, as N → ∞. With increasing field strength
and as we approach the paramagnetic regime, h > hc,
randomness dominates through the formation of domains
of different spin orientations, leading to

∣∣ 1
N

∑
i σi

∣∣ = 0,
as N → ∞. Let us note here that, for the lattice size
L = 24 used in the illustration of Figure 5, the corre-
sponding value of the pseudo-critical disorder strength is
h∗

24
∼= 3.02.

4 Conclusions

To summarize, we have investigated the ground-state crit-
icality of the d = 3 trimodal RFIM for a particular value
of p, namely p = 1/3, for which a matching to the corre-
sponding Gaussian model has been proposed [39]. In par-
ticular, we have estimated the critical disorder strength
hc = 2.747(3) and the critical exponents ν = 1.34(6) and
β = 0.016(4) of the correlation length and order param-
eter, respectively. These values, obtained through differ-
ent scaling techniques, compare well enough to the most
accurate estimates of the literature, placing the current
model into the universality class of the Gaussian RFIM.
Our effort became feasible through the implementation of
a modified version of the PR algorithm [43] that enabled
us to simulate very large system sizes, up to 1283 spins,
and disorder ensembles of the order of 5 × 104, for sev-
eral values of the random-field strength. Clearly, such a
computational task goes beyond the limits of any kind
of T > 0 Monte Carlo scheme. An interesting aspect of
our analysis has been the illustration that quantities re-
lated to the sample-to-sample fluctuations of the order
parameter of the system constitute a useful alternative to
criticality.
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