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We consider dense systems consisting of ultrasoft, overlapping particles under shear and transport flow,

by employing a multiscale simulational approach that combines multiparticle-collision dynamics for

the solvent particles with standard molecular dynamics for the solute. We find that the nucleation rates

of supercooled liquids can be dramatically accelerated via the shear-induced formation of an

intermediate string pattern, which disaggregates after the cessation of shear, leading to the emergence

of three-dimensional fcc order. Furthermore we expose these cluster crystals to Poiseuille flow and we

establish the emergence of a quantized flow pattern, in which both the height and the width of the fluid

stream display well-defined plateaus as a function of the applied pressure gradient. The resulting

velocity profiles of the solvent closely resemble plug flow. We explain the emergence of the plateaus by

successive fluidization of crystalline layers adjacent to the channel walls and discuss the dependence of

the discrete flow on the cluster aggregation parameter. Cluster crystals thus emerge as novel systems

with applications on nano- and microfluidic devices, allowing the manipulation of flow in a precisely

controlled way.
I. Introduction

Colloidal dispersions and polymer solutions confront funda-

mental research with a formidable challenge due to the fact that

they are non-Newtonian fluids. Consequently, they offer a wide

spectrum of possibilities in rheological applications. Contrary to

simple liquids, their viscosity depends on the applied external

stresses, such as shear, pressure gradients or other fields. A key

role in their rheology is played by the presence of at least two

components, the solvent and the suspended particles, with vastly

disparate length- and time-scales. In the case of polymer solu-

tions, entanglements between the chains are an additional feature

with very important dynamical consequences. The flow proper-

ties of complex fluids become even more relevant in the modern

fields of micro- and nanofluidics, where the narrow geometrical

constrictions of the confining channels bring forward novel

properties and highlight the effects of the coupling to the

surrounding walls. Some of the most prominent and widely-

discussed rheological properties of non-Newtonian liquids

include shear-banding,1 thixotropy,2 shear-thinning3,4 as well as

shear-thickening.3 Such complex fluids are also relevant for

a wide variety of applications in nanotechnology and micro-

patterning,5,6 in microfluidics,7 shock absorption,8 and protective

clothing.9 In addition, they are also encountered in many bio-

logical systems, e.g. in cytoplasm and blood.
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The relation between the microscopic interactions between the

particles and the macroscopic shear-flow properties of such

liquids has been a subject of vast interest in the last decades, and

considerable research has been already devoted to colloidal

suspensions that consist of both hard10,11 and charged

colloids.12,13 Shear often acts in a way that suppresses spatial

order: shearing a crystal can gradually reduce the three-dimen-

sional periodicity of the same, bringing about a shear-induced

disorder transition to a uniform phase. On the other hand, steady

shear can have the opposite effects on thermodynamically

metastable fluids. The latter are uniform phases that are sepa-

rated by their equilibrium, crystalline phase by a sufficiently high

nucleation barrier, so that they either remain supercooled for

macroscopically long times or get trapped into a glassy state. A

characteristic example is the dynamical arrest of soft colloids,

such as star polymers or star-like micelles,14–18 which takes place

in regions of the phase diagram that correspond to an

equilibrium face centered cubic (fcc) crystal. Shear can induce

three-dimensional periodicity to such a supercooled or arrested

solution, accelerating thereby the nucleation rates in metastable

liquids after the cessation of shear. This shear-induced crystal-

lization has been demonstrated convincingly for soft colloids,

and in particular for block copolymer micelles, in the seminal

work of Mortensen, Brown, and Nord�en.19

In addition to shear, another prominent prototype of non-

equilibrium processes is transport flow along channels, driven by

a pressure gradient. Here, complex fluids are of particular tech-

nological importance because the control of their flow properties

has numerous applications. Characteristic examples are

the directed assembly of mesoscale periodic structures,20–23 the
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controlled synthesis and manipulation of monodisperse, soft

colloidal particles,24–28 the measurement of the elastic properties

of the same,29 as well as the manufacturing of specific nanofluidic

devices such as nanopumps30 or moving-wall channels.31 On the

more fundamental side, recent research activity has focused on

the transport flow of colloidal gels32–34 and of concentrated

colloidal dispersions close to their jamming point,35–40 as well as

on the related issue of flow and filtration of Brownian colloidal or

non-Brownian, wet granular matter.41–44

In this paper, we study the behavior of ultrasoft colloids under

shear and transport flow. The interaction potential of these

particles is bounded, thus allowing full and multiple particle

overlap. Though surprising and unphysical at first glance, this

condition is fully legitimate andnatural for fractal, polymer-based

colloids, such as amphiphilic dendrimers45 and unknotted ring

polymers.46 The peculiar property of this class of particles is that

they can form stable cluster crystals where each lattice site is

occupied by an accumulation ofNc particles.
47–49A necessary and

sufficient prerequisite for the emergence and stability of these

crystals is the existence of negative components in the Fourier

spectrum of the interaction potential.50,51 Furthermore, the posi-

tion of this minimum dictates the lattice constant a of the crystal,

rendering it essentially density-independent. The immediate

consequence of this fact is that Nc scales proportionally to the

density r, leading to highly unusual equilibriumdynamics, namely

a superposition of phononic oscillations52 and activated hopping

dynamics.53,54 While the equilibrium properties of these novel

structures have been studied thoroughly by now, only little was

knownabout their response to external drive untilmost recently.55

Using a simulation technique that explicitly takes into account

the solvent, we established in ref. 55 that cluster crystals respond

to shear through the formation of strings, which are arranged

hexagonally in the gradient-vorticity plane. In the present

contributionweprovide evidence that this dynamical transition to

a two-dimensional modulated state can be exploited to accelerate

the crystallization rates of supercooled liquids dramatically: after

the cessation of shear, particles arranged along a string break up in

distinct clusters, leading to the emergence of three-dimensional

order. Going further, we investigate how the cluster crystal is

affected by transport flow. To this end, we have carried out

computer simulations, where fcc cluster crystals with three

different occupation numbers Nc were placed into a channel and

exposed to Poiseuille flow along the crystallographic [100] and

[111] direction. From our simulations we find that the presence of

the crystal drastically affects the flowpattern of the dispersion, i.e.

resulting into a pronounced flattening of the usually parabolic

shape, and thus bringing about what is known in literature as plug

flow. In those regions of the channel where the velocity profile is

essentially flat, the solvent flowswith almost constant velocity and

the structural integrity of thewhole lattice is preserved (aside from

a weak distortion). Close to the walls however, where the velocity

profile is almost linear, the crystal liquefies. Moreover, we

discover that the flow becomes quantized as the pressure drop

along the channel is increased. The flow-profile vs. pressure curves

display broad plateaus with sudden jumps among them, each

corresponding to the melting of two additional layers of the

remaining cluster crystal slab which flows with constant velocity

in the center of the channel. The width of the flat part of the

velocity profile shows a similar evolution, following successive.
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Thewhole process is accompanied by a small but sizable wall-slip.

This behavior bears on one hand some similarities to the flow of

concentrated colloidal suspensions or gels but on the other hand

has also significant differences, which render the cluster crystals

unique among complex fluids in their transport flow behavior, as

it will be discussed in the following.

The rest of this paper is organized as follows. In Sec. II we

present our model and simulation method. Our results con-

cerning the shear induced crystallization are presented and dis-

cussed in Sec. III, and the ones pertaining to the transport flow in

Sec. IV. Finally, we summarize the findings and draw our

conclusions in Sec. V.
II. Model and simulation method

In this work, we studied the effects of shear on crystallization in

supercooled liquids through shear-induced ordering, as well as

the impact of transport flow on a face-centered cubic cluster

crystal consisting of soft, overlapping particles. The interaction

potential between the solute particles is given by the generalized

exponential model with exponent 8 (GEM-8) potential:

U(r) ¼ 3exp[�(r/s)8], (1)

with 3 and s setting the units of energy and length, respectively.

Based on general arguments we expect, however, our results to be

valid for all potentials in theQ�-class.47,50,55 The sheared systems,

employed to analyze the effects of shear on crystal nucleation,

were supercooled uniform fluids. Stable, initially ordered

systems, on the other hand, were placed inside a microscopic

solvent which, in the absence of the solutes, was flowing under

Poiseuille flow. The GEM-8 crystals were oriented along either

the crystallographic [100] or the [111] plane at temperature

kBT/3 ¼ 0.2. Thereby, the (100) surface is obtained by cutting the

crystal parallel to the front surface of the fcc cubic unit cell,

leading to an arrangement of four-fold symmetry; the (111)

surface is obtained by slicing the crystal in such a way that the

surface plane intersects the x-, y- and z-axes at the same value,

resulting in a particle arrangement of six-fold symmetry. All

simulations have been carried out in a cubic simulation box at

three different state points with rs3 ¼ 2.6, 3.9, and 5.9 (corre-

sponding to average cluster occupation numbers Nc ¼ 4, 6, and 9

of the equilibrium crystals, respectively). As shown in Fig. 1, the

system forms stable fcc cluster crystals in the (constrained) bulk

phase at these state points.56

The walls were separated by a distance Lx ¼ 11s along the

gradient (x) direction, and the interaction between the solute

particle and the wall was chosen to be given by the soft and steep

potential:57

UwallðxÞ ¼
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Thereby, the total external potential caused by both walls is

given by Uext(x) ¼ Uwall(x) + Uwall(Lx � x). Additionally, we

have employed no-slip boundary conditions for the solvent

particles along this direction, and periodic boundary conditions
This journal is ª The Royal Society of Chemistry 2012



Fig. 1 The (constrained) bulk phase diagram for the GEM-8 particles in

(r, T)-plane.56 Lines show the phase boundaries for the liquid (solid

black) and the fcc phase (dashed red). The gap in-between denotes the

coexistence region. Symbols show the investigated state points.
in the vorticity (y) and flow (z) direction for both the solvent and

the solute. The geometry of this setup and the different flow

patterns generated for the pure solvent (see below) are sche-

matically illustrated in Fig. 2.

In order to incorporate hydrodynamic interactions (HI) as

faithfully as computationally feasible, we have opted to employ

a hybrid simulation approach, in which standard molecular

dynamics (MD) algorithms are combined with the Multi-Particle

Collision Dynamics (MPCD) simulation technique.58,59 This

choice is motivated by the large disparities in the length and time

scales, characteristic for the solvent molecules and the embedded

particles, which makes atomistic simulation studies prohibitively

time-consuming. Hydrodynamics play not only an important

role for the non-equilibrium behavior of the cluster crystal, but

also for the equilibrium dynamics, as the solvent significantly

affects the particle hopping.60

MPCD is a mesoscopic, particle-based simulation method,

consisting of alternating streaming and collision steps, where the

solvent particles are assumed to be non-interacting. Instead, the

coupling between the solvent and solute particles is realized

through momentum exchange during the collision step.61 During

the streaming step, the solvent particles of unit mass m0 propa-
gate ballistically over a period of Dt:

r
0
i(t + Dt) ¼ r

0
i(t) + Dtv

0
i (t), (3)
Fig. 2 Schematic representation of the simulation setup, demonstrating

the flow (z), gradient (x), and vorticity (y) directions. The left panel shows

the shear flow, while the right panel shows the Poiseuille flow for the pure

solvent.
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where r
0
i(t) is the position and v

0
i(t) the velocity of this solvent

particle at time t. In the collision step, the solvent and solute

particles, grouped into cells, undergo stochastic collisions with

particles within the same cell:

v
0
i(t + Dt) ¼ uj(t) + U(a)[v

0
i(t) � uj(t)], (4)

with uj denoting the center of mass velocity of the j-th collision

cell, and U being a norm-conserving rotation matrix around

a fixed angle a. The size of these collision cells determines the

spatial resolution of the HI, and we have opted for an edge length

of s. The mean free path of a solvent particle is then given by

l � Dt
ffiffiffiffi
T

p
, and it has been shown in ref. 62 that Galilean

invariance is violated for l < s/2. Therefore, all lattice cells are

shifted by a randomly chosen vector, drawn from a cube with

edge length in the interval [�s/2, +s/2] before each collision step.

Whereas the above-described rules governing the solvent

dynamics are general, the simulation of specific flow profiles

requires special care and will be discussed in what follows.

Shear flow with shear-rate _g ¼ 2vS/Lx was incorporated into

the system by rescaling the center of mass velocities of the

collision cells close by the shear plane to �vS.
63 We have favored

this approach over other methods (such as the Lees–Edwards

boundary conditions64), since the employed boundary conditions

resemble more the actual experiment and lead to a spontaneous

development of the desired linear velocity profile. Since in our

approach the velocity profile is not externally imposed, but

completely self-emerging, we can also observe phenomena such

as wall-slip, nonlinear velocity, or density profiles. In addition,

shearing only the fluid and not the colloidal dispersion as a whole

works as well for dilute dispersions,65,66 but for dense systems,

this approach is not suitable since the resulting viscosity is much

too small.67

Poiseuille flow is driven by a pressure gradient parallel to the

flow direction, and is slowed down by viscous drag along both

plates, so that these forces are in balance. Several methods exist

for generating such a flow, for instance forced,58,68,69 surface-

induced, and gravitational70,71 approaches. We adopted the latter

technique in our simulations, since the other two techniques

produce a considerable distortion of the velocity-field and

density profile along the flow direction.70 The external force

acting on the unit volume of the fluid, F , is given by F ¼ 9sgẑ,

where 9s is the mass density of the solvent and g is the acceler-

ation constant. The effect of F can easily be incorporated into

the streaming step as follows:

r
0
iðtþ DtÞ ¼ r

0
iðtÞ þ Dtv

0
iðtÞ þ

Dt2

2
gẑ; (5)

v
0
iðtþ DtÞ ¼ v

0
iðtÞ þ Dtgẑ: (6)

The strength of the gravitational field can be varied by tuning

g, and a steady Poiseuille flow builds up self-consistently after

a short time when no-slip boundary conditions are applied at the

surface layers. For planar walls coinciding with the boundaries,

such conditions are conveniently simulated by employing

a bounce-back rule, i.e., the velocities of particles that hit the

walls are inverted after the collision. However, for a more general

setup the walls will not coincide with, or even be parallel to the

cell boundaries. Furthermore, partially occupied cells can also
Soft Matter, 2012, 8, 4121–4131 | 4123



emerge from the cell-shifting, which is unavoidable for small

mean free paths l. Lamura et al. have demonstrated that the

bounce-back rule has to be modified in such a case, by refilling of

boundary cells with virtual particles;69 this feature has been

included in our implementation.

Additionally, thermostatting is required in any non-equilib-

rium MPCD simulation whenever either isothermal conditions

are required or viscous heating can occur. The thermostat

employed was based on rescaling the random part of the veloc-

ities to maintain constant temperature.65 The MPCD parameters

employed were a ¼ 130, l ¼ 0.1, with 30 solvent particles per

collision cell. Solute particles of massm¼ 5m0 each were coupled

to the solvent via participation to the MPCD collision step, while

at the same time the GEM-8 direct interactions between the same

were taken into account in a conventionalMD approach. For the

conventional MD-step, we employed a Verlet integration scheme

with DtMD ¼ 2 � 10�3, whereas the MPCD time step was Dt ¼
10�1, measured in the unit of time s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

0
s2=3

p
.

III. Shear-induced crystallization

We first studied the possibility of accelerating the nucleation

rates in undercooled liquids through shear. The question of

whether steady shear facilitates19 or suppresses72 the nucleation

of a crystal from the metastable melt is a longstanding debate,

and it seems that the answer is not universal, it is, strongly system

dependent. For soft colloids, such as copolymer micelles,

experimental evidence supports the acceleration of nucleation

due to shear. There is, however, a particularity that makes the

whole family of Q�-interaction potentials distinct, namely the

way in which dense solutions of such particles self-organize

under shear. In ref. 55, we have shown that the application of

steady shear leads, at low shear-rates, to shear-banding, followed

by string formation, in which the flow-aligned strings form

a hexagonal lattice on the gradient-vorticity plane (see Fig. 3). As

the shear-rate further increases and eventually exceeds a well

defined critical shear-rate _gcf
ffiffiffi
r

p
, the string phase melts into

a uniform, disordered fluid with an accompanied increase of the

viscosity. At high shear rates, hydrodynamic interactions play

a particularly important role, since they dramatically facilitate

the breakup of strings. Since these strings formed out of both
Fig. 3 (a) Vorticity–gradient and (b) flow–gradient views of the strings

formed in an cluster crystal withNc ¼ 9 under shear with a shear-rate _g¼
0.2. Green spheres (not drawn to scale) represent GEMparticles. In panel

(a), a few centers of mass of the strings are connected by straight lines, the

red shading of the resulting hexagonal tiles reflects the distance from the

arbitrarily chosen central string.
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crystals and supercooled fluids, shear provides a way to reduce

the spatial symmetry, bringing thus the system closer to full,

three-dimensional broken translational invariance. This property

opens up a unique pathway to possible nucleation, since it offers

the system the possibility to augment its departure from full

translational symmetry in a stepwise fashion, a possibility that is

not present for hard colloids.

To investigate these questions, we thus applied the following

shear-protocol: We considered supercooled fluids at the

state points A, B, C (see Fig. 1), and sheared them for a period of

sshear ¼ 500. The shear computer experiments are conducted with

_g ¼ 0.2, resulting into spontaneous string formation.55 Systems

that have been prepared in this way are henceforward referred to

as presheared. After the strings have emerged, we turned off the

shear-flow and left the system to rest (total simulation time ssim¼
10000). Then we analyzed the equilibrated structures, and

compared them with those of unsheared, confined fluids of equal

density and temperature, by calculating the free volume fraction

F, the averaged bond order parameters,73,74 and the one-particle

density distributions of the equilibrated final structures.

For the calculation of F, we considered each GEM-particle as

a sphere of diameter s and calculated the free volume in each

state by straightforward counting. The identification of bond

order parameters as a measure for local crystalline ordering in

liquids and glasses was originally introduced by Steinhardt

et al.73 and then refined in ref. 74. We followed the latter scheme,

and calculated the averaged local bond order parameters �Q4 and
�Q6. Here, we first identified the clusters along the lines of ref. 54,

and then determined the parameters for the ideal fcc

structure (Q
fcc

4 ¼ 0:135� 0:003 and Q
fcc

6 ¼ 0:264� 0:004) and

for the uniform liquid state (Q
liq

4 ¼ 0:110� 0:003 and

Q
liq

6 ¼ 0:125� 0:003). Finally we calculated the values of �Q4

and �Q6 for the presheared and unsheared systems and compared

them with our reference values. In what follows, all results are

shown for the [100]-orientation (unless explicitly stated other-

wise), since the orientational dependence is very weak.

The results for the free volume fraction and for the bond-order

parameters are shown in Table 1, and at a first glance, no effect of

the different treatment is observable. However, we have to keep in

mind that the bond order parameters are a measure for the

averaged local crystalline order, and give only limited information

about the global ordering of the system. Evidently, a more

appropriate measure of long-range order is called for, and this is

offered by the averaged one-particle density r(r) of the system.

Indeed, and following also the terminology of ref. 56, we term

a system as fluid for which the one-particle density has the same
Table 1 Free volume fraction F and bond order parameters �Q4 and �Q6

for the presheared and unsheared system

Nc F �Q4
�Q6

4 (presheared) 0.496 0.098 0.267
4 (unsheared) 0.494 0.101 0.268
6 (presheared) 0.506 0.094 0.252
6 (unsheared) 0.508 0.098 0.260
9 (presheared) 0.511 0.109 0.262
9 (unsheared) 0.512 0.110 0.254

This journal is ª The Royal Society of Chemistry 2012



symmetry as the underlying Hamiltonian, and as a crystal one in

which translational symmetry is broken in a periodic fashion.

Accordingly, systems for which r(r) ¼ r(x) only, are supercooled

confined fluids, whereas if a density profile depending on all three

spatial coordinates, r(x, y, z), results, we talk about a solid.

Naturally, in the latter case, spatial periodicity in the y- and z-

directions compatible with the fcc-crystal must also be present,

whereas in the x-direction only a finite number of fcc elementary

cells can be present.

Employing this criterion, a remarkable difference between the

presheared and the unsheared systems emerges, as can be seen in

Fig. 4 and 5: while the unsheared systems show spatial modu-

lation only in the x-direction, the lattice sites in the presheared

systems are very well separated from each other, and the latter

easily find their way to crystallization after shear. This distinction

is most pronounced for the system with the lowest density (r ¼
2.6), but disappears completely for the densest one (r ¼ 5.9),

since the nucleation barrier decreases as r grows, and thus pre-

shearing is not necessary to accelerate crystallization anymore.

It can hence be argued that, for the Q�-systems, shear has

a profound effect in bringing about an effective lowering of the

nucleation barrier, thereby accelerating the crystallization rates.

This happens through a particular dynamical pathway that

involves first the breaking of the symmetry in the gradient- and

vorticity-directions through the formation of a two-dimensional

triangular lattice of strings, which then proceeds to relaxing

towards a crystal after the cessation of shear. The physical reason

behind this pathway rests, again, on the particular property of

these systems to have an hidden propensity to an instability

towards spatial modulation with wavenumber Q*, where Q* is

the position of the negative minimum of the Fourier transform of

the interaction potential.47,50 Whereas in the unsheared system

this instability is not sufficient to drive immediate crystallization,

and the fluid can thus remain trapped in a metastable phase for

long times, once shear has been applied, spatial modulation in

two dimensions takes place as the result of the external drive.

Along the flow direction, the strings have liquid-like ordering,

which is, however, only sustainable as long as shear is on.55 Once
Fig. 4 Two-dimensional color coded density profiles for r ¼ 3.9. The left pa

panel shows the data in the gradient–flow plane. The top half of each image

system (after cessation of shear).

This journal is ª The Royal Society of Chemistry 2012
the latter ceases, the liquid-like strings are not anymore stable,

and the existing two-dimensional order offers an effective

‘substrate’ on which the particles along the string now perform

an essentially one-dimensional nucleation, clumping into clusters

and building up the thermodynamically stable crystal. Naturally,

the deeper we go into the region of stability of the solid, the less

the effect of shear, since nucleation barriers decrease as the

distance from the crystallization point grows.
IV. Transport flow

A. Flow profiles and crystal transport

In the second part of our analysis, we have studied the impact of

Poiseuille flow by conducting a series of simulations for different

occupation numbers Nc and crystallographic orientations. The

strength of the flow has been varied through the gravitational

constant g ˛ [0, 0.1], which induces a pressure drop along the

channel. Performing the MPCD-simulations as described in Sec.

II, and in particular under the collision rules of eqn (5) and (6),

the pure solvent inside the channel of width Lx develops the

Hagen–Poiseuille velocity profile:

vð0Þz ðxÞ ¼ 9
s
g

2h
ðLx � xÞx; (7)

where the superscript denotes the fact that this is the velocity

profile of the pure solvent, as opposed to the one when solute

particles are present. In eqn (7) above, the solvent viscosity h is

determined by the solvent mass density 9s and the collision rules,

i.e., it is not an input parameter to the simulation. The parabolic

velocity profile vanishes at x ¼ 0 and at x ¼ Lx, and attains its

maximum value, v0, at the middle of the channel (x ¼ Lx/2), viz.:

v0 ¼
9
s
gL2

x

8h
: (8)

Eqn (7) further implies that a local shear rate _g(0)(x) ¼ vv(0)z (x)/

vx is established in the fluid, expressed as:
nel shows the distribution in the gradient–vorticity plane, while the right

shows the unsheared system, while the lower half shows the presheared

Soft Matter, 2012, 8, 4121–4131 | 4125



Fig. 5 Density profiles for r ¼ 3.9 along the vorticity (y) and flow (z) direction. Continuous lines show results for the presheared setup, while dashed

lines represent the unsheared systems.
_gð0ÞðxÞ ¼ 9
s
g

2h
ðLx � 2xÞ: (9)

Before proceeding to a detailed description of the results of

our numerical experiment, it is worth anticipating on a qualita-

tive level the behavior of the cluster crystal and of the solvent

under these conditions, on the basis of previously-known results

and physical argumentation. Suppose first that the external

pressure gradient is strong enough, so that the inserted cluster

crystal (which is hydrodynamically coupled to the fluid) can be

treated as a perturbation, i.e., let us assume that the solvent

velocity profile given by eqn (7) above remains essentially

unaffected by the solute. This implies that the latter is locally

exposed to shear rates given by eqn (9). Based on previous

work,55 we know that cluster crystals under shear react by

forming strings that are aligned along the flow (z) direction and

they self-assemble on a triangular lattice on the gradient–

vorticity plane. Accordingly, one could argue that such strings

also form under Poiseuille flow conditions. However, as can be

seen from eqn (9), the shear rate at the center of the channel

vanishes. Given the fact that a small but finite shear rate is

necessary for the formation of strings,55 this local analysis

would imply that there are a few (and, at any rate, at least one)

crystalline layer(s) in the middle of the channel, lying perpen-

dicular to the gradient direction (i.e., on the flow–vorticity

plane), which do not melt. Instead, they remain intact in their

crystallinity, and they are simply driven along by the fluid flow.

However, this scenario of simultaneous presence of two-

dimensional crystalline layers drifting on the (y, z)-plane and of

parallel strings oriented along the z-axis is untenable. Indeed, in

such a case, the crystalline layers would act on the neighboring

strings, immediately close to them along the gradient direction,

as external potentials. Since the relative velocities vrel of particles

displaced along the gradient direction are non-vanishing, these

external potentials would feature periodic, spatiotemporal

modulation along the flow-direction. The potential acting on

the strings would thus have the form of some function f(z �
vrelt), whose explicit expression depends on the interparticle

interaction, spacing, and cluster occupancy Nc but it is
4126 | Soft Matter, 2012, 8, 4121–4131
otherwise irrelevant for the rest of the argument. However,

under the action of such an external potential, the strings would

no longer be able to maintain their spatial uniformity along the

z-direction, and they would break up into clumps (see the

discussion on the acceleration of the nucleation rates in the

preceding Section). Such a breakup would then act as an

additional external potential to the next neighboring strings,

with the result that they would also break up and so on.

The above considerations bring forward a property of the

string phase that has already been briefly addressed in ref. 55,

namely that it is global: its stability rests on the fact that the

whole, macroscopically large domain of the system forms strings

but the latter cannot coexist with some other phase of different

spatial symmetry in the sense of a microphase separation

between the two. Thus, a different scenario emerges, in which the

intact crystallinity of the central layers under Poiseuille flow

causes a macroscopically thick crystalline slab to be stable within

the channel. This possibility is enhanced by the fact that the

solute acts back on the solvent, modifying its own velocity

profile. Consequently, if such a thick chunk of crystal would flow

along the fluid in the channel, then the modified solvent velocity,

vz(x), would be forced, by symmetry arguments, to be flat (i.e.,

essentially x-independent) far away from the walls. In such

a case, the resulting local shear rate _g(x) ¼ vvz(x)/vx would be

vanishingly small in that flat region, preserving the intactness of

the crystalline structure. This scenario, though by no means

proven on the basis of the present physical argumentation alone,

is at least free of internal contradictions, as the preservation of

the crystalline symmetry and the flatness of the solvent velocity

profile are in principle consistent with one another. And though

the starting point of the argument was formulated under the

assumption of undistorted solvent velocity profiles, the whole

Ansatz evidently maintains its validity in the opposite case of

weak external flow.

The results of our simulations fully confirm that indeed the

above scenario materializes in practice, and they offer a prime

example of the ways in which the properties of the suspended

particles bring about a dramatic modification of the flow prop-

erties of the pure solvent. In contrast to shear experiments,55
This journal is ª The Royal Society of Chemistry 2012



Fig. 7 Free volume fraction of the GEM particles, F(g) for the [100]-

orientation and for different values of Nc, as labeled. The arrows indicate

the g-value, at which the outermost layers melt for the first time.
transport flow does not necessarily destroy the crystallographic

order, but rather leads to a (slight) deformation and displace-

ment of the crystal as a whole.

For further insight into the system’s flow behavior, it is

worthwhile to have a look at the velocity profile of the liquid.

Fig. 6 shows vz(x), that is the flow velocity in gradient direction at

g ¼ 0.05. First of all, it is well visible that the velocity profile

deviates strongly from the parabolic shape it would have had in

the absence of the crystal; in fact, the fluid develops a profile that

is very akin to plug flow, and which has been experimentally

observed for pressure-driven flow of both intermediate-density

colloidal gels32,33 and concentrated colloidal suspensions,37–39

including the transport through channels with spatial constric-

tions.34,36,40 Moreover, the flat plateau broadens and its

maximum drops with increasing particle density r, reflecting the

resistance exerted by the crystal on the fluid. We can decompose

this flow profile into three parts, namely two outer regions in

which we find an almost linear velocity gradient, and one inner

regime in which the velocity is constant. This in turn means that

while an ordered slab of solute particles in the central area stream

with a steady velocity, the particles closer to the walls experience

considerable shear forces and hence lose their crystalline

ordering.55

The dependence of the velocity profiles on gwill be analyzed in

more detail in the following subsection. Here, we present further

quantitative results for the behavior of the solute particles under

flow. We first look at the dependence of the free volume fraction

F on g; results are shown in Fig. 7. In the equilibrium state with

zero flow (g¼ 0), the free volume fraction of the denser crystals is

slightly lower than that of their more dilute counterparts, due to

thermal fluctuations. Upon increasing g, the corresponding F

values remain then constant, until they drop at a layer-melting

transition, when the outermost GEM-particles are released from

their initial clusters. We can readily observe that these transition

points (indicated by the arrows) shift to higher g-values as Nc is

increased. Also the fact that the fluid resistance is more
Fig. 6 Velocity profile of the liquid in the presence of the GEM-crystal

for the [100]-orientation at g ¼ 0.05 and for different values of Nc, as

labeled. The points are results from the simulation, whereas the solid lines

are fits according to eqn (11). The dashed line shows the profile for the

pure solvent under the same value of the external drive. The presence of

the GEM particles results in a (weak) wall-slip, which decreases with Nc.

This journal is ª The Royal Society of Chemistry 2012
pronounced for higher Nc and fewer layers are liquefied is

reflected in the weaker decline of the respective curves.

In order to study the crystal structure in a more quantitative

fashion, we have calculated the averaged local bond order

parameters, �Q4 and �Q6, for each density and plotted the results as

a function of g; the results are shown in Fig. 8. The inspection of
�Q4 and �Q6 reveals that, although the crystal is slightly deformed

as a whole, its local structural integrity is still preserved to a high

extent. Moreover, the progression of �Q4 supports our finding

that the less dense systems liquefy more easily, since the respec-

tive values show a distinct trend towards �Qliq
4 . This statement,

however, has to be treated with caution, since the difference

between the values of the parameters of the ordered and uniform

system is rather small.
B. Flow quantization

A more detailed analysis of the velocity profiles and their

dependence on g reveals a number of striking features that are

unique to the cluster crystals. The plug-flow dependence of the

velocity on x is, of course, not a feature unique to the latter:

indeed, previous experiments with both intermediate-density

colloidal gels32–34 and with concentrated colloidal suspen-

sions37,38,40 have resulted into flows that have very similar shapes

to the representative results shown in Fig. 6. In fact, a phenom-

enological approach exists, which yields such plug-flows in

conjunction with the Navier–Stokes equations, namely the

Herschel–Bulkley model,75 which is based on the following

postulated dependence of the shear stress sxz on the shear rate _g:

sxz ¼ h* _gn + s0, (10)

with the yield stress s0, the viscosity h* of the complex fluid and

the shear-thinning exponent n.

The Herschel–Bulkley model has been applied to describe the

plug-flow profiles in colloidal disordered gels.32 In our case, the

underlying physics is different, so that an attempt to describe the

flux data with this model does not seem particularly
Soft Matter, 2012, 8, 4121–4131 | 4127



Fig. 8 Bond order parameters �Q4 (left panel) and �Q6 (right panel) as functions of the gravitational force parameter g and for different values of Nc, as

labeled. The symbols show the data at indicated occupancy number Nc, while the lines represent the reference bond order parameters for the fcc

arrangement (solid line) and the unordered arrangement (dashed line).
advantageous. We resort instead to an ad hoc fit of the velocity

profiles with a function of the form:

vz(x) ¼ A tanh(Bx) + A tanh(B(Lx � x)) + C, (11)

involving the fit parameters A, B and C. We emphasize that

there is no underlying model behind eqn (11) above; we rather

employ it as a straightforward tool to extract quantitative

information on three key characteristics of the plug flow,

namely the height h of the velocity profile, the width w of its

flat part and the wall-slip velocity s. These are readily obtain-

able from the fit parameters as:

h ¼ 2A tanh(BLx/2) + C, (12)

w ¼ Lx � 2/B, (13)

and

s ¼ A tanh(BLx) + C. (14)

The typical quality of the fit can be seen in Fig. 6. The results

for the height, width and wall-slip of the velocity profiles are

summarized in Fig. 9.

The dependence of the plateau height on Nc and g, Fig. 9(a),

reveals some remarkable novel features. First, we notice that the

presence of the crystal slows down the flow, at fixed g, as

compared to the pure solvent; this slowdown is more severe as

the cluster occupancy grows, since the presence of more GEM-8

particles increases the collisions with the solvent. Second, and

focusing for now on the less dense crystal, Nc ¼ 4, we find the

existence of a two-stage process in the flow: for sufficiently small

values of g, the flow profile is independent of the strength of the

external pressure drop, a feature akin to granular, non-Brownian

matter,36,39 whereas at higher values of g the flux increases with it.

Recently, Campbell and Haw39 established a similar behavior for

the flow of concentrated colloidal dispersions, in which, however,

the crossover from colloidal to granular flow took place by

increasing the volume fraction of the suspension. Here, the

transition occurs instead at fixed concentration of the solute, and
4128 | Soft Matter, 2012, 8, 4121–4131
it takes the form of a dynamical ‘phase transition’ with the

strength of the external field g as a control parameter. Even more

remarkable is the evolution of these phenomena when looked

upon as functions of the occupancy Nc. By increasing the latter,

the critical value gc denoting the transition between colloidal and

granular-like flow increases (see Fig. 9(a) for Nc ¼ 6). Moreover,

by going now to the most dense system,Nc ¼ 9, a transition from

the first to a second plateau is observed, and possibly even to

a third. Increasing the pressure drop induced via g leads to

discrete values of the flux, separated by well-defined jumps,

which are caused by successive melting of layers close to the

walls. The number of melted layers can be estimated from the

corresponding value of w. Whereas for low-occupancy crystals

the melting of a layer leads to colloidal-flow behavior, for high-

occupancy numbers the scenario is self-repeating after successive

melting of additional layers, producing thereby a new plateau in

which the flow of the system is granular-matter-like. We call this

remarkable behavior flow quantization, and we trace its appear-

ance in the particular nature of the cluster crystals. To the best of

our knowledge, it has not yet been seen for other, common

colloidal systems.

The width of the plateau, Fig. 9(b) shows the signature of flow

quantization even more strongly than the plateau height. There,

it can be seen that with each successive pair of molten, lubricating

layers at the edges of the system, the plug-like, flat part of the

profile becomes narrower, and that the width remains roughly

constant until the next border layers melt. This feature, allows us

to gain control not only on the strength h of the flowing beam but

also on its focus w. Finally, the wall-slip velocity s, Fig. 9(c),

shows a constant growth with g for the less dense system but it

carries the signature of the discrete plateaus for the denser ones,

Nc ¼ 6 and Nc ¼ 9. It should be kept in mind, however, that s is

a small number and thus prone to errors in the fitting procedure.

Fig. 10 shows the flux of solute particles J(g) across the

simulation box, i.e., the number of particles passing through the

gradient–vorticity plane in unit time, and a significant depen-

dency on Nc is clearly visible. While for very small g ( 0.01 the

curves collapse onto each other, their progression differs

distinctively with increasing g. For Nc ¼ 4, J(g) is almost
This journal is ª The Royal Society of Chemistry 2012



Fig. 9 (a) The plateau height h (maximum of the velocity profile) of the plug flow pattern of GEM-8 crystals driven by pressure, for crystals of different

occupancyNc, as a function of the magnitude of the driving force g. The height is expressed in units of the maximum, v0, of the parabolic velocity profile

in the absence of the GEM-8 particles, see eqn (8); (b) The width w of the flat part of the velocity profile, for the same parameters as in (a); (c) The

corresponding wall-slip velocity s. All results refer to a slit of width Lx ¼ 11s, and the positions of the arrows are the same as in Fig. 7.

Fig. 10 Particle flux J(g) as a function of the gravitational force g for

the [100]-orientation. The positions of the arrows are the same as in

Fig. 7.
completely linear, whereas forNc¼ 6 subtle kinks, and forNc¼ 9

very pronounced jumps are noticeable. These non-linearities

stem from the fact that with an increasing pressure gradient the

crystalline layers close to the walls melt and thus reduce the drag
This journal is ª The Royal Society of Chemistry 2012
forces on the remaining intact lattice. Since the potential energy

of the cluster crystal is proportional to the number of particles at

each lattice site, the critical flow, at which the outermost layer

melts for the first time, increases with Nc. Hence for small and

intermediate g, the flux of the thinner systems is higher, since the

liquefied layers act as a lubricant. However as g is increased

further, the outer layers melt in the denser systems as well, and

the respective fluxes catch up and eventually overtake. Finally it

is noteworthy, that the plateaus in Fig. 9(a) translate here into

linear curves due to the linear dependency of v0 on g.

All in all, both the existence of a transition from granular to

colloidal flow and the presence of discrete plateaus are unique

characteristics of the transport properties of cluster crystals. It is

reasonable to assume that the number of plateaus will increase

and the constancy of their values will become sharper for higher

values of Nc and also for higher widths Lx of the confining

channel (not studied here).
V. Conclusions

We have presented a study of the flow properties of cluster

crystals under two prototypical flow fields, namely steady shear

and pressure-driven Poiseuille flow. In the former case, for which
Soft Matter, 2012, 8, 4121–4131 | 4129



it has already been established that these systems form string-

phases, we focused on the issue of the influence that shear has on

the nucleation rates of crystals out of supercooled melts. We

found that the existence of the string phase under shear flow

offers the system an easy pathway towards crystallization, due to

the existence of partially broken spatial symmetry under shear.

Once shear ceases, the further step towards full, three-dimen-

sional symmetry breaking happens instantaneously. In this way,

an effective extinction of the nucleation barrier is brought about,

and an efficient way for crystallizing these soft particles opens up.

As regards the transport flow, we have established some unique

properties of these novel systems, which include the emergence of

plug flow patterns, the corpuscular transport of an essentially

undistorted crystal that ‘glides’ on liquefied layers on the walls, as

well as the phenomenon of flow quantization on well-defined

plateaus. All these characteristics have their origin in the ultra-

soft, penetrable and cluster-forming nature of the Q�-class of

systems and they underline their highly unusual properties not

only in equilibrium but also under the influence of external fields.

Future work should now focus on the attempts to assemble these

crystals on a microscopic basis45 and on appropriate treatment of

the dynamics of the same.
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